/* * This is the Fusion MPT base driver providing common API layer interface * for access to MPT (Message Passing Technology) firmware. * * This code is based on drivers/scsi/mpt2sas/mpt2_base.c * Copyright (C) 2007-2008 LSI Corporation * (mailto:DL-MPTFusionLinux@lsi.com) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * NO WARRANTY * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is * solely responsible for determining the appropriateness of using and * distributing the Program and assumes all risks associated with its * exercise of rights under this Agreement, including but not limited to * the risks and costs of program errors, damage to or loss of data, * programs or equipment, and unavailability or interruption of operations. * DISCLAIMER OF LIABILITY * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, * USA. */ #include <linux/version.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/kdev_t.h> #include <linux/blkdev.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/sort.h> #include <linux/io.h> #include "mpt2sas_base.h" static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS]; #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */ #define MPT2SAS_MAX_REQUEST_QUEUE 500 /* maximum controller queue depth */ static int max_queue_depth = -1; module_param(max_queue_depth, int, 0); MODULE_PARM_DESC(max_queue_depth, " max controller queue depth "); static int max_sgl_entries = -1; module_param(max_sgl_entries, int, 0); MODULE_PARM_DESC(max_sgl_entries, " max sg entries "); static int msix_disable = -1; module_param(msix_disable, int, 0); MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)"); /** * _base_fault_reset_work - workq handling ioc fault conditions * @work: input argument, used to derive ioc * Context: sleep. * * Return nothing. */ static void _base_fault_reset_work(struct work_struct *work) { struct MPT2SAS_ADAPTER *ioc = container_of(work, struct MPT2SAS_ADAPTER, fault_reset_work.work); unsigned long flags; u32 doorbell; int rc; spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->ioc_reset_in_progress) goto rearm_timer; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); doorbell = mpt2sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { rc = mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP, FORCE_BIG_HAMMER); printk(MPT2SAS_WARN_FMT "%s: hard reset: %s\n", ioc->name, __func__, (rc == 0) ? "success" : "failed"); doorbell = mpt2sas_base_get_iocstate(ioc, 0); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) mpt2sas_base_fault_info(ioc, doorbell & MPI2_DOORBELL_DATA_MASK); } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); rearm_timer: if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); } #ifdef CONFIG_SCSI_MPT2SAS_LOGGING /** * _base_sas_ioc_info - verbose translation of the ioc status * @ioc: pointer to scsi command object * @mpi_reply: reply mf payload returned from firmware * @request_hdr: request mf * * Return nothing. */ static void _base_sas_ioc_info(struct MPT2SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply, MPI2RequestHeader_t *request_hdr) { u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK; char *desc = NULL; u16 frame_sz; char *func_str = NULL; /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */ if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST || request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH || request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION) return; switch (ioc_status) { /**************************************************************************** * Common IOCStatus values for all replies ****************************************************************************/ case MPI2_IOCSTATUS_INVALID_FUNCTION: desc = "invalid function"; break; case MPI2_IOCSTATUS_BUSY: desc = "busy"; break; case MPI2_IOCSTATUS_INVALID_SGL: desc = "invalid sgl"; break; case MPI2_IOCSTATUS_INTERNAL_ERROR: desc = "internal error"; break; case MPI2_IOCSTATUS_INVALID_VPID: desc = "invalid vpid"; break; case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: desc = "insufficient resources"; break; case MPI2_IOCSTATUS_INVALID_FIELD: desc = "invalid field"; break; case MPI2_IOCSTATUS_INVALID_STATE: desc = "invalid state"; break; case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: desc = "op state not supported"; break; /**************************************************************************** * Config IOCStatus values ****************************************************************************/ case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: desc = "config invalid action"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: desc = "config invalid type"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: desc = "config invalid page"; break; case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: desc = "config invalid data"; break; case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: desc = "config no defaults"; break; case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: desc = "config cant commit"; break; /**************************************************************************** * SCSI IO Reply ****************************************************************************/ case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR: case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE: case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED: case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: break; /**************************************************************************** * For use by SCSI Initiator and SCSI Target end-to-end data protection ****************************************************************************/ case MPI2_IOCSTATUS_EEDP_GUARD_ERROR: desc = "eedp guard error"; break; case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR: desc = "eedp ref tag error"; break; case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR: desc = "eedp app tag error"; break; /**************************************************************************** * SCSI Target values ****************************************************************************/ case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX: desc = "target invalid io index"; break; case MPI2_IOCSTATUS_TARGET_ABORTED: desc = "target aborted"; break; case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE: desc = "target no conn retryable"; break; case MPI2_IOCSTATUS_TARGET_NO_CONNECTION: desc = "target no connection"; break; case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH: desc = "target xfer count mismatch"; break; case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR: desc = "target data offset error"; break; case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA: desc = "target too much write data"; break; case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT: desc = "target iu too short"; break; case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT: desc = "target ack nak timeout"; break; case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED: desc = "target nak received"; break; /**************************************************************************** * Serial Attached SCSI values ****************************************************************************/ case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: desc = "smp request failed"; break; case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: desc = "smp data overrun"; break; /**************************************************************************** * Diagnostic Buffer Post / Diagnostic Release values ****************************************************************************/ case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED: desc = "diagnostic released"; break; default: break; } if (!desc) return; switch (request_hdr->Function) { case MPI2_FUNCTION_CONFIG: frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size; func_str = "config_page"; break; case MPI2_FUNCTION_SCSI_TASK_MGMT: frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t); func_str = "task_mgmt"; break; case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL: frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t); func_str = "sas_iounit_ctl"; break; case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR: frame_sz = sizeof(Mpi2SepRequest_t); func_str = "enclosure"; break; case MPI2_FUNCTION_IOC_INIT: frame_sz = sizeof(Mpi2IOCInitRequest_t); func_str = "ioc_init"; break; case MPI2_FUNCTION_PORT_ENABLE: frame_sz = sizeof(Mpi2PortEnableRequest_t); func_str = "port_enable"; break; case MPI2_FUNCTION_SMP_PASSTHROUGH: frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size; func_str = "smp_passthru"; break; default: frame_sz = 32; func_str = "unknown"; break; } printk(MPT2SAS_WARN_FMT "ioc_status: %s(0x%04x), request(0x%p)," " (%s)\n", ioc->name, desc, ioc_status, request_hdr, func_str); _debug_dump_mf(request_hdr, frame_sz/4); } /** * _base_display_event_data - verbose translation of firmware asyn events * @ioc: pointer to scsi command object * @mpi_reply: reply mf payload returned from firmware * * Return nothing. */ static void _base_display_event_data(struct MPT2SAS_ADAPTER *ioc, Mpi2EventNotificationReply_t *mpi_reply) { char *desc = NULL; u16 event; if (!(ioc->logging_level & MPT_DEBUG_EVENTS)) return; event = le16_to_cpu(mpi_reply->Event); switch (event) { case MPI2_EVENT_LOG_DATA: desc = "Log Data"; break; case MPI2_EVENT_STATE_CHANGE: desc = "Status Change"; break; case MPI2_EVENT_HARD_RESET_RECEIVED: desc = "Hard Reset Received"; break; case MPI2_EVENT_EVENT_CHANGE: desc = "Event Change"; break; case MPI2_EVENT_TASK_SET_FULL: desc = "Task Set Full"; break; case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: desc = "Device Status Change"; break; case MPI2_EVENT_IR_OPERATION_STATUS: desc = "IR Operation Status"; break; case MPI2_EVENT_SAS_DISCOVERY: desc = "Discovery"; break; case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: desc = "SAS Broadcast Primitive"; break; case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE: desc = "SAS Init Device Status Change"; break; case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW: desc = "SAS Init Table Overflow"; break; case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: desc = "SAS Topology Change List"; break; case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: desc = "SAS Enclosure Device Status Change"; break; case MPI2_EVENT_IR_VOLUME: desc = "IR Volume"; break; case MPI2_EVENT_IR_PHYSICAL_DISK: desc = "IR Physical Disk"; break; case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: desc = "IR Configuration Change List"; break; case MPI2_EVENT_LOG_ENTRY_ADDED: desc = "Log Entry Added"; break; } if (!desc) return; printk(MPT2SAS_INFO_FMT "%s\n", ioc->name, desc); } #endif /** * _base_sas_log_info - verbose translation of firmware log info * @ioc: pointer to scsi command object * @log_info: log info * * Return nothing. */ static void _base_sas_log_info(struct MPT2SAS_ADAPTER *ioc , u32 log_info) { union loginfo_type { u32 loginfo; struct { u32 subcode:16; u32 code:8; u32 originator:4; u32 bus_type:4; } dw; }; union loginfo_type sas_loginfo; char *originator_str = NULL; sas_loginfo.loginfo = log_info; if (sas_loginfo.dw.bus_type != 3 /*SAS*/) return; /* eat the loginfos associated with task aborts */ if (ioc->ignore_loginfos && (log_info == 30050000 || log_info == 0x31140000 || log_info == 0x31130000)) return; switch (sas_loginfo.dw.originator) { case 0: originator_str = "IOP"; break; case 1: originator_str = "PL"; break; case 2: originator_str = "IR"; break; } printk(MPT2SAS_WARN_FMT "log_info(0x%08x): originator(%s), " "code(0x%02x), sub_code(0x%04x)\n", ioc->name, log_info, originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode); } /** * mpt2sas_base_fault_info - verbose translation of firmware FAULT code * @ioc: pointer to scsi command object * @fault_code: fault code * * Return nothing. */ void mpt2sas_base_fault_info(struct MPT2SAS_ADAPTER *ioc , u16 fault_code) { printk(MPT2SAS_ERR_FMT "fault_state(0x%04x)!\n", ioc->name, fault_code); } /** * _base_display_reply_info - * @ioc: pointer to scsi command object * @smid: system request message index * @VF_ID: virtual function id * @reply: reply message frame(lower 32bit addr) * * Return nothing. */ static void _base_display_reply_info(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 VF_ID, u32 reply) { MPI2DefaultReply_t *mpi_reply; u16 ioc_status; mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply); ioc_status = le16_to_cpu(mpi_reply->IOCStatus); #ifdef CONFIG_SCSI_MPT2SAS_LOGGING if ((ioc_status & MPI2_IOCSTATUS_MASK) && (ioc->logging_level & MPT_DEBUG_REPLY)) { _base_sas_ioc_info(ioc , mpi_reply, mpt2sas_base_get_msg_frame(ioc, smid)); } #endif if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) _base_sas_log_info(ioc, le32_to_cpu(mpi_reply->IOCLogInfo)); } /** * mpt2sas_base_done - base internal command completion routine * @ioc: pointer to scsi command object * @smid: system request message index * @VF_ID: virtual function id * @reply: reply message frame(lower 32bit addr) * * Return nothing. */ void mpt2sas_base_done(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 VF_ID, u32 reply) { MPI2DefaultReply_t *mpi_reply; mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply); if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK) return; if (ioc->base_cmds.status == MPT2_CMD_NOT_USED) return; ioc->base_cmds.status |= MPT2_CMD_COMPLETE; if (mpi_reply) { ioc->base_cmds.status |= MPT2_CMD_REPLY_VALID; memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4); } ioc->base_cmds.status &= ~MPT2_CMD_PENDING; complete(&ioc->base_cmds.done); } /** * _base_async_event - main callback handler for firmware asyn events * @ioc: pointer to scsi command object * @VF_ID: virtual function id * @reply: reply message frame(lower 32bit addr) * * Return nothing. */ static void _base_async_event(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, u32 reply) { Mpi2EventNotificationReply_t *mpi_reply; Mpi2EventAckRequest_t *ack_request; u16 smid; mpi_reply = mpt2sas_base_get_reply_virt_addr(ioc, reply); if (!mpi_reply) return; if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION) return; #ifdef CONFIG_SCSI_MPT2SAS_LOGGING _base_display_event_data(ioc, mpi_reply); #endif if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED)) goto out; smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); goto out; } ack_request = mpt2sas_base_get_msg_frame(ioc, smid); memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t)); ack_request->Function = MPI2_FUNCTION_EVENT_ACK; ack_request->Event = mpi_reply->Event; ack_request->EventContext = mpi_reply->EventContext; ack_request->VF_ID = VF_ID; mpt2sas_base_put_smid_default(ioc, smid, VF_ID); out: /* scsih callback handler */ mpt2sas_scsih_event_callback(ioc, VF_ID, reply); /* ctl callback handler */ mpt2sas_ctl_event_callback(ioc, VF_ID, reply); } /** * _base_mask_interrupts - disable interrupts * @ioc: pointer to scsi command object * * Disabling ResetIRQ, Reply and Doorbell Interrupts * * Return nothing. */ static void _base_mask_interrupts(struct MPT2SAS_ADAPTER *ioc) { u32 him_register; ioc->mask_interrupts = 1; him_register = readl(&ioc->chip->HostInterruptMask); him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK; writel(him_register, &ioc->chip->HostInterruptMask); readl(&ioc->chip->HostInterruptMask); } /** * _base_unmask_interrupts - enable interrupts * @ioc: pointer to scsi command object * * Enabling only Reply Interrupts * * Return nothing. */ static void _base_unmask_interrupts(struct MPT2SAS_ADAPTER *ioc) { u32 him_register; writel(0, &ioc->chip->HostInterruptStatus); him_register = readl(&ioc->chip->HostInterruptMask); him_register &= ~MPI2_HIM_RIM; writel(him_register, &ioc->chip->HostInterruptMask); ioc->mask_interrupts = 0; } /** * _base_interrupt - MPT adapter (IOC) specific interrupt handler. * @irq: irq number (not used) * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure * @r: pt_regs pointer (not used) * * Return IRQ_HANDLE if processed, else IRQ_NONE. */ static irqreturn_t _base_interrupt(int irq, void *bus_id) { union reply_descriptor { u64 word; struct { u32 low; u32 high; } u; }; union reply_descriptor rd; u32 post_index, post_index_next, completed_cmds; u8 request_desript_type; u16 smid; u8 cb_idx; u32 reply; u8 VF_ID; int i; struct MPT2SAS_ADAPTER *ioc = bus_id; if (ioc->mask_interrupts) return IRQ_NONE; post_index = ioc->reply_post_host_index; request_desript_type = ioc->reply_post_free[post_index]. Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) return IRQ_NONE; completed_cmds = 0; do { rd.word = ioc->reply_post_free[post_index].Words; if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX) goto out; reply = 0; cb_idx = 0xFF; smid = le16_to_cpu(ioc->reply_post_free[post_index]. Default.DescriptorTypeDependent1); VF_ID = ioc->reply_post_free[post_index]. Default.VF_ID; if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { reply = le32_to_cpu(ioc->reply_post_free[post_index]. AddressReply.ReplyFrameAddress); } else if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_TARGET_COMMAND_BUFFER) goto next; else if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_TARGETASSIST_SUCCESS) goto next; if (smid) cb_idx = ioc->scsi_lookup[smid - 1].cb_idx; if (smid && cb_idx != 0xFF) { mpt_callbacks[cb_idx](ioc, smid, VF_ID, reply); if (reply) _base_display_reply_info(ioc, smid, VF_ID, reply); mpt2sas_base_free_smid(ioc, smid); } if (!smid) _base_async_event(ioc, VF_ID, reply); /* reply free queue handling */ if (reply) { ioc->reply_free_host_index = (ioc->reply_free_host_index == (ioc->reply_free_queue_depth - 1)) ? 0 : ioc->reply_free_host_index + 1; ioc->reply_free[ioc->reply_free_host_index] = cpu_to_le32(reply); writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); wmb(); } next: post_index_next = (post_index == (ioc->reply_post_queue_depth - 1)) ? 0 : post_index + 1; request_desript_type = ioc->reply_post_free[post_index_next].Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; completed_cmds++; if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) goto out; post_index = post_index_next; } while (1); out: if (!completed_cmds) return IRQ_NONE; /* reply post descriptor handling */ post_index_next = ioc->reply_post_host_index; for (i = 0 ; i < completed_cmds; i++) { post_index = post_index_next; /* poison the reply post descriptor */ ioc->reply_post_free[post_index_next].Words = ULLONG_MAX; post_index_next = (post_index == (ioc->reply_post_queue_depth - 1)) ? 0 : post_index + 1; } ioc->reply_post_host_index = post_index_next; writel(post_index_next, &ioc->chip->ReplyPostHostIndex); wmb(); return IRQ_HANDLED; } /** * mpt2sas_base_release_callback_handler - clear interupt callback handler * @cb_idx: callback index * * Return nothing. */ void mpt2sas_base_release_callback_handler(u8 cb_idx) { mpt_callbacks[cb_idx] = NULL; } /** * mpt2sas_base_register_callback_handler - obtain index for the interrupt callback handler * @cb_func: callback function * * Returns cb_func. */ u8 mpt2sas_base_register_callback_handler(MPT_CALLBACK cb_func) { u8 cb_idx; for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--) if (mpt_callbacks[cb_idx] == NULL) break; mpt_callbacks[cb_idx] = cb_func; return cb_idx; } /** * mpt2sas_base_initialize_callback_handler - initialize the interrupt callback handler * * Return nothing. */ void mpt2sas_base_initialize_callback_handler(void) { u8 cb_idx; for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++) mpt2sas_base_release_callback_handler(cb_idx); } /** * mpt2sas_base_build_zero_len_sge - build zero length sg entry * @ioc: per adapter object * @paddr: virtual address for SGE * * Create a zero length scatter gather entry to insure the IOCs hardware has * something to use if the target device goes brain dead and tries * to send data even when none is asked for. * * Return nothing. */ void mpt2sas_base_build_zero_len_sge(struct MPT2SAS_ADAPTER *ioc, void *paddr) { u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_SIMPLE_ELEMENT) << MPI2_SGE_FLAGS_SHIFT); ioc->base_add_sg_single(paddr, flags_length, -1); } /** * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address * * Return nothing. */ static void _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple32_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le32(dma_addr); } /** * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr. * @paddr: virtual address for SGE * @flags_length: SGE flags and data transfer length * @dma_addr: Physical address * * Return nothing. */ static void _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr) { Mpi2SGESimple64_t *sgel = paddr; flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING | MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT; sgel->FlagsLength = cpu_to_le32(flags_length); sgel->Address = cpu_to_le64(dma_addr); } #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10)) /** * _base_config_dma_addressing - set dma addressing * @ioc: per adapter object * @pdev: PCI device struct * * Returns 0 for success, non-zero for failure. */ static int _base_config_dma_addressing(struct MPT2SAS_ADAPTER *ioc, struct pci_dev *pdev) { struct sysinfo s; char *desc = NULL; if (sizeof(dma_addr_t) > 4) { const uint64_t required_mask = dma_get_required_mask(&pdev->dev); if ((required_mask > DMA_BIT_MASK(32)) && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { ioc->base_add_sg_single = &_base_add_sg_single_64; ioc->sge_size = sizeof(Mpi2SGESimple64_t); desc = "64"; goto out; } } if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { ioc->base_add_sg_single = &_base_add_sg_single_32; ioc->sge_size = sizeof(Mpi2SGESimple32_t); desc = "32"; } else return -ENODEV; out: si_meminfo(&s); printk(MPT2SAS_INFO_FMT "%s BIT PCI BUS DMA ADDRESSING SUPPORTED, " "total mem (%ld kB)\n", ioc->name, desc, convert_to_kb(s.totalram)); return 0; } /** * _base_save_msix_table - backup msix vector table * @ioc: per adapter object * * This address an errata where diag reset clears out the table */ static void _base_save_msix_table(struct MPT2SAS_ADAPTER *ioc) { int i; if (!ioc->msix_enable || ioc->msix_table_backup == NULL) return; for (i = 0; i < ioc->msix_vector_count; i++) ioc->msix_table_backup[i] = ioc->msix_table[i]; } /** * _base_restore_msix_table - this restores the msix vector table * @ioc: per adapter object * */ static void _base_restore_msix_table(struct MPT2SAS_ADAPTER *ioc) { int i; if (!ioc->msix_enable || ioc->msix_table_backup == NULL) return; for (i = 0; i < ioc->msix_vector_count; i++) ioc->msix_table[i] = ioc->msix_table_backup[i]; } /** * _base_check_enable_msix - checks MSIX capabable. * @ioc: per adapter object * * Check to see if card is capable of MSIX, and set number * of avaliable msix vectors */ static int _base_check_enable_msix(struct MPT2SAS_ADAPTER *ioc) { int base; u16 message_control; u32 msix_table_offset; base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX); if (!base) { dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "msix not " "supported\n", ioc->name)); return -EINVAL; } /* get msix vector count */ pci_read_config_word(ioc->pdev, base + 2, &message_control); ioc->msix_vector_count = (message_control & 0x3FF) + 1; /* get msix table */ pci_read_config_dword(ioc->pdev, base + 4, &msix_table_offset); msix_table_offset &= 0xFFFFFFF8; ioc->msix_table = (u32 *)((void *)ioc->chip + msix_table_offset); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "msix is supported, " "vector_count(%d), table_offset(0x%08x), table(%p)\n", ioc->name, ioc->msix_vector_count, msix_table_offset, ioc->msix_table)); return 0; } /** * _base_disable_msix - disables msix * @ioc: per adapter object * */ static void _base_disable_msix(struct MPT2SAS_ADAPTER *ioc) { if (ioc->msix_enable) { pci_disable_msix(ioc->pdev); kfree(ioc->msix_table_backup); ioc->msix_table_backup = NULL; ioc->msix_enable = 0; } } /** * _base_enable_msix - enables msix, failback to io_apic * @ioc: per adapter object * */ static int _base_enable_msix(struct MPT2SAS_ADAPTER *ioc) { struct msix_entry entries; int r; u8 try_msix = 0; if (msix_disable == -1 || msix_disable == 0) try_msix = 1; if (!try_msix) goto try_ioapic; if (_base_check_enable_msix(ioc) != 0) goto try_ioapic; ioc->msix_table_backup = kcalloc(ioc->msix_vector_count, sizeof(u32), GFP_KERNEL); if (!ioc->msix_table_backup) { dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "allocation for " "msix_table_backup failed!!!\n", ioc->name)); goto try_ioapic; } memset(&entries, 0, sizeof(struct msix_entry)); r = pci_enable_msix(ioc->pdev, &entries, 1); if (r) { dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "pci_enable_msix " "failed (r=%d) !!!\n", ioc->name, r)); goto try_ioapic; } r = request_irq(entries.vector, _base_interrupt, IRQF_SHARED, ioc->name, ioc); if (r) { dfailprintk(ioc, printk(MPT2SAS_INFO_FMT "unable to allocate " "interrupt %d !!!\n", ioc->name, entries.vector)); pci_disable_msix(ioc->pdev); goto try_ioapic; } ioc->pci_irq = entries.vector; ioc->msix_enable = 1; return 0; /* failback to io_apic interrupt routing */ try_ioapic: r = request_irq(ioc->pdev->irq, _base_interrupt, IRQF_SHARED, ioc->name, ioc); if (r) { printk(MPT2SAS_ERR_FMT "unable to allocate interrupt %d!\n", ioc->name, ioc->pdev->irq); r = -EBUSY; goto out_fail; } ioc->pci_irq = ioc->pdev->irq; return 0; out_fail: return r; } /** * mpt2sas_base_map_resources - map in controller resources (io/irq/memap) * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt2sas_base_map_resources(struct MPT2SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; u32 memap_sz; u32 pio_sz; int i, r = 0; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM); if (pci_enable_device_mem(pdev)) { printk(MPT2SAS_WARN_FMT "pci_enable_device_mem: " "failed\n", ioc->name); return -ENODEV; } if (pci_request_selected_regions(pdev, ioc->bars, MPT2SAS_DRIVER_NAME)) { printk(MPT2SAS_WARN_FMT "pci_request_selected_regions: " "failed\n", ioc->name); r = -ENODEV; goto out_fail; } pci_set_master(pdev); if (_base_config_dma_addressing(ioc, pdev) != 0) { printk(MPT2SAS_WARN_FMT "no suitable DMA mask for %s\n", ioc->name, pci_name(pdev)); r = -ENODEV; goto out_fail; } for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) { if (pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO) { if (pio_sz) continue; ioc->pio_chip = pci_resource_start(pdev, i); pio_sz = pci_resource_len(pdev, i); } else { if (memap_sz) continue; ioc->chip_phys = pci_resource_start(pdev, i); memap_sz = pci_resource_len(pdev, i); ioc->chip = ioremap(ioc->chip_phys, memap_sz); if (ioc->chip == NULL) { printk(MPT2SAS_ERR_FMT "unable to map adapter " "memory!\n", ioc->name); r = -EINVAL; goto out_fail; } } } pci_set_drvdata(pdev, ioc->shost); _base_mask_interrupts(ioc); r = _base_enable_msix(ioc); if (r) goto out_fail; printk(MPT2SAS_INFO_FMT "%s: IRQ %d\n", ioc->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" : "IO-APIC enabled"), ioc->pci_irq); printk(MPT2SAS_INFO_FMT "iomem(0x%lx), mapped(0x%p), size(%d)\n", ioc->name, ioc->chip_phys, ioc->chip, memap_sz); printk(MPT2SAS_INFO_FMT "ioport(0x%lx), size(%d)\n", ioc->name, ioc->pio_chip, pio_sz); return 0; out_fail: if (ioc->chip_phys) iounmap(ioc->chip); ioc->chip_phys = 0; ioc->pci_irq = -1; pci_release_selected_regions(ioc->pdev, ioc->bars); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return r; } /** * mpt2sas_base_get_msg_frame_dma - obtain request mf pointer phys addr * @ioc: per adapter object * @smid: system request message index(smid zero is invalid) * * Returns phys pointer to message frame. */ dma_addr_t mpt2sas_base_get_msg_frame_dma(struct MPT2SAS_ADAPTER *ioc, u16 smid) { return ioc->request_dma + (smid * ioc->request_sz); } /** * mpt2sas_base_get_msg_frame - obtain request mf pointer * @ioc: per adapter object * @smid: system request message index(smid zero is invalid) * * Returns virt pointer to message frame. */ void * mpt2sas_base_get_msg_frame(struct MPT2SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->request + (smid * ioc->request_sz)); } /** * mpt2sas_base_get_sense_buffer - obtain a sense buffer assigned to a mf request * @ioc: per adapter object * @smid: system request message index * * Returns virt pointer to sense buffer. */ void * mpt2sas_base_get_sense_buffer(struct MPT2SAS_ADAPTER *ioc, u16 smid) { return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE)); } /** * mpt2sas_base_get_sense_buffer_dma - obtain a sense buffer assigned to a mf request * @ioc: per adapter object * @smid: system request message index * * Returns phys pointer to sense buffer. */ dma_addr_t mpt2sas_base_get_sense_buffer_dma(struct MPT2SAS_ADAPTER *ioc, u16 smid) { return ioc->sense_dma + ((smid - 1) * SCSI_SENSE_BUFFERSIZE); } /** * mpt2sas_base_get_reply_virt_addr - obtain reply frames virt address * @ioc: per adapter object * @phys_addr: lower 32 physical addr of the reply * * Converts 32bit lower physical addr into a virt address. */ void * mpt2sas_base_get_reply_virt_addr(struct MPT2SAS_ADAPTER *ioc, u32 phys_addr) { if (!phys_addr) return NULL; return ioc->reply + (phys_addr - (u32)ioc->reply_dma); } /** * mpt2sas_base_get_smid - obtain a free smid * @ioc: per adapter object * @cb_idx: callback index * * Returns smid (zero is invalid) */ u16 mpt2sas_base_get_smid(struct MPT2SAS_ADAPTER *ioc, u8 cb_idx) { unsigned long flags; struct request_tracker *request; u16 smid; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); if (list_empty(&ioc->free_list)) { spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); printk(MPT2SAS_ERR_FMT "%s: smid not available\n", ioc->name, __func__); return 0; } request = list_entry(ioc->free_list.next, struct request_tracker, tracker_list); request->cb_idx = cb_idx; smid = request->smid; list_del(&request->tracker_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); return smid; } /** * mpt2sas_base_free_smid - put smid back on free_list * @ioc: per adapter object * @smid: system request message index * * Return nothing. */ void mpt2sas_base_free_smid(struct MPT2SAS_ADAPTER *ioc, u16 smid) { unsigned long flags; spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); ioc->scsi_lookup[smid - 1].cb_idx = 0xFF; list_add_tail(&ioc->scsi_lookup[smid - 1].tracker_list, &ioc->free_list); spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); /* * See _wait_for_commands_to_complete() call with regards to this code. */ if (ioc->shost_recovery && ioc->pending_io_count) { if (ioc->pending_io_count == 1) wake_up(&ioc->reset_wq); ioc->pending_io_count--; } } /** * _base_writeq - 64 bit write to MMIO * @ioc: per adapter object * @b: data payload * @addr: address in MMIO space * @writeq_lock: spin lock * * Glue for handling an atomic 64 bit word to MMIO. This special handling takes * care of 32 bit environment where its not quarenteed to send the entire word * in one transfer. */ #ifndef writeq static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { unsigned long flags; __u64 data_out = cpu_to_le64(b); spin_lock_irqsave(writeq_lock, flags); writel((u32)(data_out), addr); writel((u32)(data_out >> 32), (addr + 4)); spin_unlock_irqrestore(writeq_lock, flags); } #else static inline void _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock) { writeq(cpu_to_le64(b), addr); } #endif /** * mpt2sas_base_put_smid_scsi_io - send SCSI_IO request to firmware * @ioc: per adapter object * @smid: system request message index * @vf_id: virtual function id * @handle: device handle * * Return nothing. */ void mpt2sas_base_put_smid_scsi_io(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 vf_id, u16 handle) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; descriptor.SCSIIO.VF_ID = vf_id; descriptor.SCSIIO.SMID = cpu_to_le16(smid); descriptor.SCSIIO.DevHandle = cpu_to_le16(handle); descriptor.SCSIIO.LMID = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * mpt2sas_base_put_smid_hi_priority - send Task Managment request to firmware * @ioc: per adapter object * @smid: system request message index * @vf_id: virtual function id * * Return nothing. */ void mpt2sas_base_put_smid_hi_priority(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 vf_id) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.HighPriority.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY; descriptor.HighPriority.VF_ID = vf_id; descriptor.HighPriority.SMID = cpu_to_le16(smid); descriptor.HighPriority.LMID = 0; descriptor.HighPriority.Reserved1 = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * mpt2sas_base_put_smid_default - Default, primarily used for config pages * @ioc: per adapter object * @smid: system request message index * @vf_id: virtual function id * * Return nothing. */ void mpt2sas_base_put_smid_default(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 vf_id) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; descriptor.Default.VF_ID = vf_id; descriptor.Default.SMID = cpu_to_le16(smid); descriptor.Default.LMID = 0; descriptor.Default.DescriptorTypeDependent = 0; _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * mpt2sas_base_put_smid_target_assist - send Target Assist/Status to firmware * @ioc: per adapter object * @smid: system request message index * @vf_id: virtual function id * @io_index: value used to track the IO * * Return nothing. */ void mpt2sas_base_put_smid_target_assist(struct MPT2SAS_ADAPTER *ioc, u16 smid, u8 vf_id, u16 io_index) { Mpi2RequestDescriptorUnion_t descriptor; u64 *request = (u64 *)&descriptor; descriptor.SCSITarget.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_TARGET; descriptor.SCSITarget.VF_ID = vf_id; descriptor.SCSITarget.SMID = cpu_to_le16(smid); descriptor.SCSITarget.LMID = 0; descriptor.SCSITarget.IoIndex = cpu_to_le16(io_index); _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow, &ioc->scsi_lookup_lock); } /** * _base_display_dell_branding - Disply branding string * @ioc: per adapter object * * Return nothing. */ static void _base_display_dell_branding(struct MPT2SAS_ADAPTER *ioc) { char dell_branding[MPT2SAS_DELL_BRANDING_SIZE]; if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_DELL) return; memset(dell_branding, 0, MPT2SAS_DELL_BRANDING_SIZE); switch (ioc->pdev->subsystem_device) { case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID: strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID: strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID: strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID: strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID: strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_PERC_H200_SSDID: strncpy(dell_branding, MPT2SAS_DELL_PERC_H200_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; case MPT2SAS_DELL_6GBPS_SAS_SSDID: strncpy(dell_branding, MPT2SAS_DELL_6GBPS_SAS_BRANDING, MPT2SAS_DELL_BRANDING_SIZE - 1); break; default: sprintf(dell_branding, "0x%4X", ioc->pdev->subsystem_device); break; } printk(MPT2SAS_INFO_FMT "%s: Vendor(0x%04X), Device(0x%04X)," " SSVID(0x%04X), SSDID(0x%04X)\n", ioc->name, dell_branding, ioc->pdev->vendor, ioc->pdev->device, ioc->pdev->subsystem_vendor, ioc->pdev->subsystem_device); } /** * _base_display_ioc_capabilities - Disply IOC's capabilities. * @ioc: per adapter object * * Return nothing. */ static void _base_display_ioc_capabilities(struct MPT2SAS_ADAPTER *ioc) { int i = 0; char desc[16]; u8 revision; u32 iounit_pg1_flags; pci_read_config_byte(ioc->pdev, PCI_CLASS_REVISION, &revision); strncpy(desc, ioc->manu_pg0.ChipName, 16); printk(MPT2SAS_INFO_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), " "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n", ioc->name, desc, (ioc->facts.FWVersion.Word & 0xFF000000) >> 24, (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16, (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8, ioc->facts.FWVersion.Word & 0x000000FF, revision, (ioc->bios_pg3.BiosVersion & 0xFF000000) >> 24, (ioc->bios_pg3.BiosVersion & 0x00FF0000) >> 16, (ioc->bios_pg3.BiosVersion & 0x0000FF00) >> 8, ioc->bios_pg3.BiosVersion & 0x000000FF); printk(MPT2SAS_INFO_FMT "Protocol=(", ioc->name); if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) { printk("Initiator"); i++; } if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) { printk("%sTarget", i ? "," : ""); i++; } _base_display_dell_branding(ioc); i = 0; printk("), "); printk("Capabilities=("); if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) { printk("Raid"); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) { printk("%sTLR", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) { printk("%sMulticast", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) { printk("%sBIDI Target", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) { printk("%sEEDP", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) { printk("%sSnapshot Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) { printk("%sDiag Trace Buffer", i ? "," : ""); i++; } if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) { printk("%sTask Set Full", i ? "," : ""); i++; } iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) { printk("%sNCQ", i ? "," : ""); i++; } printk(")\n"); } /** * _base_static_config_pages - static start of day config pages * @ioc: per adapter object * * Return nothing. */ static void _base_static_config_pages(struct MPT2SAS_ADAPTER *ioc) { Mpi2ConfigReply_t mpi_reply; u32 iounit_pg1_flags; mpt2sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0); mpt2sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2); mpt2sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3); mpt2sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8); mpt2sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0); mpt2sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1); _base_display_ioc_capabilities(ioc); /* * Enable task_set_full handling in iounit_pg1 when the * facts capabilities indicate that its supported. */ iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags); if ((ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING)) iounit_pg1_flags &= ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; else iounit_pg1_flags |= MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING; ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags); mpt2sas_config_set_iounit_pg1(ioc, &mpi_reply, ioc->iounit_pg1); } /** * _base_release_memory_pools - release memory * @ioc: per adapter object * * Free memory allocated from _base_allocate_memory_pools. * * Return nothing. */ static void _base_release_memory_pools(struct MPT2SAS_ADAPTER *ioc) { dexitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); if (ioc->request) { pci_free_consistent(ioc->pdev, ioc->request_dma_sz, ioc->request, ioc->request_dma); dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "request_pool(0x%p)" ": free\n", ioc->name, ioc->request)); ioc->request = NULL; } if (ioc->sense) { pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma); if (ioc->sense_dma_pool) pci_pool_destroy(ioc->sense_dma_pool); dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_pool(0x%p)" ": free\n", ioc->name, ioc->sense)); ioc->sense = NULL; } if (ioc->reply) { pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma); if (ioc->reply_dma_pool) pci_pool_destroy(ioc->reply_dma_pool); dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_pool(0x%p)" ": free\n", ioc->name, ioc->reply)); ioc->reply = NULL; } if (ioc->reply_free) { pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free, ioc->reply_free_dma); if (ioc->reply_free_dma_pool) pci_pool_destroy(ioc->reply_free_dma_pool); dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_pool" "(0x%p): free\n", ioc->name, ioc->reply_free)); ioc->reply_free = NULL; } if (ioc->reply_post_free) { pci_pool_free(ioc->reply_post_free_dma_pool, ioc->reply_post_free, ioc->reply_post_free_dma); if (ioc->reply_post_free_dma_pool) pci_pool_destroy(ioc->reply_post_free_dma_pool); dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_post_free_pool(0x%p): free\n", ioc->name, ioc->reply_post_free)); ioc->reply_post_free = NULL; } if (ioc->config_page) { dexitprintk(ioc, printk(MPT2SAS_INFO_FMT "config_page(0x%p): free\n", ioc->name, ioc->config_page)); pci_free_consistent(ioc->pdev, ioc->config_page_sz, ioc->config_page, ioc->config_page_dma); } kfree(ioc->scsi_lookup); } /** * _base_allocate_memory_pools - allocate start of day memory pools * @ioc: per adapter object * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 success, anything else error */ static int _base_allocate_memory_pools(struct MPT2SAS_ADAPTER *ioc, int sleep_flag) { Mpi2IOCFactsReply_t *facts; u32 queue_size, queue_diff; u16 max_sge_elements; u16 num_of_reply_frames; u16 chains_needed_per_io; u32 sz, total_sz; u16 i; u32 retry_sz; u16 max_request_credit; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); retry_sz = 0; facts = &ioc->facts; /* command line tunables for max sgl entries */ if (max_sgl_entries != -1) { ioc->shost->sg_tablesize = (max_sgl_entries < MPT2SAS_SG_DEPTH) ? max_sgl_entries : MPT2SAS_SG_DEPTH; } else { ioc->shost->sg_tablesize = MPT2SAS_SG_DEPTH; } /* command line tunables for max controller queue depth */ if (max_queue_depth != -1) { max_request_credit = (max_queue_depth < facts->RequestCredit) ? max_queue_depth : facts->RequestCredit; } else { max_request_credit = (facts->RequestCredit > MPT2SAS_MAX_REQUEST_QUEUE) ? MPT2SAS_MAX_REQUEST_QUEUE : facts->RequestCredit; } ioc->request_depth = max_request_credit; /* request frame size */ ioc->request_sz = facts->IOCRequestFrameSize * 4; /* reply frame size */ ioc->reply_sz = facts->ReplyFrameSize * 4; retry_allocation: total_sz = 0; /* calculate number of sg elements left over in the 1st frame */ max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) + ioc->sge_size); ioc->max_sges_in_main_message = max_sge_elements/ioc->sge_size; /* now do the same for a chain buffer */ max_sge_elements = ioc->request_sz - ioc->sge_size; ioc->max_sges_in_chain_message = max_sge_elements/ioc->sge_size; ioc->chain_offset_value_for_main_message = ((sizeof(Mpi2SCSIIORequest_t) - sizeof(Mpi2SGEIOUnion_t)) + (ioc->max_sges_in_chain_message * ioc->sge_size)) / 4; /* * MPT2SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE */ chains_needed_per_io = ((ioc->shost->sg_tablesize - ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message) + 1; if (chains_needed_per_io > facts->MaxChainDepth) { chains_needed_per_io = facts->MaxChainDepth; ioc->shost->sg_tablesize = min_t(u16, ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message * chains_needed_per_io), ioc->shost->sg_tablesize); } ioc->chains_needed_per_io = chains_needed_per_io; /* reply free queue sizing - taking into account for events */ num_of_reply_frames = ioc->request_depth + 32; /* number of replies frames can't be a multiple of 16 */ /* decrease number of reply frames by 1 */ if (!(num_of_reply_frames % 16)) num_of_reply_frames--; /* calculate number of reply free queue entries * (must be multiple of 16) */ /* (we know reply_free_queue_depth is not a multiple of 16) */ queue_size = num_of_reply_frames; queue_size += 16 - (queue_size % 16); ioc->reply_free_queue_depth = queue_size; /* reply descriptor post queue sizing */ /* this size should be the number of request frames + number of reply * frames */ queue_size = ioc->request_depth + num_of_reply_frames + 1; /* round up to 16 byte boundary */ if (queue_size % 16) queue_size += 16 - (queue_size % 16); /* check against IOC maximum reply post queue depth */ if (queue_size > facts->MaxReplyDescriptorPostQueueDepth) { queue_diff = queue_size - facts->MaxReplyDescriptorPostQueueDepth; /* round queue_diff up to multiple of 16 */ if (queue_diff % 16) queue_diff += 16 - (queue_diff % 16); /* adjust request_depth, reply_free_queue_depth, * and queue_size */ ioc->request_depth -= queue_diff; ioc->reply_free_queue_depth -= queue_diff; queue_size -= queue_diff; } ioc->reply_post_queue_depth = queue_size; /* max scsi host queue depth */ ioc->shost->can_queue = ioc->request_depth - INTERNAL_CMDS_COUNT; dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scsi host queue: depth" "(%d)\n", ioc->name, ioc->shost->can_queue)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "scatter gather: " "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), " "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message, ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize, ioc->chains_needed_per_io)); /* contiguous pool for request and chains, 16 byte align, one extra " * "frame for smid=0 */ ioc->chain_depth = ioc->chains_needed_per_io * ioc->request_depth; sz = ((ioc->request_depth + 1 + ioc->chain_depth) * ioc->request_sz); ioc->request_dma_sz = sz; ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma); if (!ioc->request) { printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent " "failed: req_depth(%d), chains_per_io(%d), frame_sz(%d), " "total(%d kB)\n", ioc->name, ioc->request_depth, ioc->chains_needed_per_io, ioc->request_sz, sz/1024); if (ioc->request_depth < MPT2SAS_SAS_QUEUE_DEPTH) goto out; retry_sz += 64; ioc->request_depth = max_request_credit - retry_sz; goto retry_allocation; } if (retry_sz) printk(MPT2SAS_ERR_FMT "request pool: pci_alloc_consistent " "succeed: req_depth(%d), chains_per_io(%d), frame_sz(%d), " "total(%d kb)\n", ioc->name, ioc->request_depth, ioc->chains_needed_per_io, ioc->request_sz, sz/1024); ioc->chain = ioc->request + ((ioc->request_depth + 1) * ioc->request_sz); ioc->chain_dma = ioc->request_dma + ((ioc->request_depth + 1) * ioc->request_sz); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool(0x%p): " "depth(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->request, ioc->request_depth, ioc->request_sz, ((ioc->request_depth + 1) * ioc->request_sz)/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "chain pool(0x%p): depth" "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->chain, ioc->chain_depth, ioc->request_sz, ((ioc->chain_depth * ioc->request_sz))/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request pool: dma(0x%llx)\n", ioc->name, (unsigned long long) ioc->request_dma)); total_sz += sz; ioc->scsi_lookup = kcalloc(ioc->request_depth, sizeof(struct request_tracker), GFP_KERNEL); if (!ioc->scsi_lookup) { printk(MPT2SAS_ERR_FMT "scsi_lookup: kcalloc failed\n", ioc->name); goto out; } /* initialize some bits */ for (i = 0; i < ioc->request_depth; i++) ioc->scsi_lookup[i].smid = i + 1; /* sense buffers, 4 byte align */ sz = ioc->request_depth * SCSI_SENSE_BUFFERSIZE; ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4, 0); if (!ioc->sense_dma_pool) { printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_create failed\n", ioc->name); goto out; } ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL, &ioc->sense_dma); if (!ioc->sense) { printk(MPT2SAS_ERR_FMT "sense pool: pci_pool_alloc failed\n", ioc->name); goto out; } dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense pool(0x%p): depth(%d), element_size(%d), pool_size" "(%d kB)\n", ioc->name, ioc->sense, ioc->request_depth, SCSI_SENSE_BUFFERSIZE, sz/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "sense_dma(0x%llx)\n", ioc->name, (unsigned long long)ioc->sense_dma)); total_sz += sz; /* reply pool, 4 byte align */ sz = ioc->reply_free_queue_depth * ioc->reply_sz; ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4, 0); if (!ioc->reply_dma_pool) { printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_create failed\n", ioc->name); goto out; } ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL, &ioc->reply_dma); if (!ioc->reply) { printk(MPT2SAS_ERR_FMT "reply pool: pci_pool_alloc failed\n", ioc->name); goto out; } dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply pool(0x%p): depth" "(%d), frame_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply, ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_dma(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_dma)); total_sz += sz; /* reply free queue, 16 byte align */ sz = ioc->reply_free_queue_depth * 4; ioc->reply_free_dma_pool = pci_pool_create("reply_free pool", ioc->pdev, sz, 16, 0); if (!ioc->reply_free_dma_pool) { printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_create " "failed\n", ioc->name); goto out; } ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL, &ioc->reply_free_dma); if (!ioc->reply_free) { printk(MPT2SAS_ERR_FMT "reply_free pool: pci_pool_alloc " "failed\n", ioc->name); goto out; } memset(ioc->reply_free, 0, sz); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free pool(0x%p): " "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_free_dma" "(0x%llx)\n", ioc->name, (unsigned long long)ioc->reply_free_dma)); total_sz += sz; /* reply post queue, 16 byte align */ sz = ioc->reply_post_queue_depth * sizeof(Mpi2DefaultReplyDescriptor_t); ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool", ioc->pdev, sz, 16, 0); if (!ioc->reply_post_free_dma_pool) { printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_create " "failed\n", ioc->name); goto out; } ioc->reply_post_free = pci_pool_alloc(ioc->reply_post_free_dma_pool , GFP_KERNEL, &ioc->reply_post_free_dma); if (!ioc->reply_post_free) { printk(MPT2SAS_ERR_FMT "reply_post_free pool: pci_pool_alloc " "failed\n", ioc->name); goto out; } memset(ioc->reply_post_free, 0, sz); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply post free pool" "(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name, ioc->reply_post_free, ioc->reply_post_queue_depth, 8, sz/1024)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "reply_post_free_dma = " "(0x%llx)\n", ioc->name, (unsigned long long) ioc->reply_post_free_dma)); total_sz += sz; ioc->config_page_sz = 512; ioc->config_page = pci_alloc_consistent(ioc->pdev, ioc->config_page_sz, &ioc->config_page_dma); if (!ioc->config_page) { printk(MPT2SAS_ERR_FMT "config page: pci_pool_alloc " "failed\n", ioc->name); goto out; } dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config page(0x%p): size" "(%d)\n", ioc->name, ioc->config_page, ioc->config_page_sz)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "config_page_dma" "(0x%llx)\n", ioc->name, (unsigned long long)ioc->config_page_dma)); total_sz += ioc->config_page_sz; printk(MPT2SAS_INFO_FMT "Allocated physical memory: size(%d kB)\n", ioc->name, total_sz/1024); printk(MPT2SAS_INFO_FMT "Current Controller Queue Depth(%d), " "Max Controller Queue Depth(%d)\n", ioc->name, ioc->shost->can_queue, facts->RequestCredit); printk(MPT2SAS_INFO_FMT "Scatter Gather Elements per IO(%d)\n", ioc->name, ioc->shost->sg_tablesize); return 0; out: _base_release_memory_pools(ioc); return -ENOMEM; } /** * mpt2sas_base_get_iocstate - Get the current state of a MPT adapter. * @ioc: Pointer to MPT_ADAPTER structure * @cooked: Request raw or cooked IOC state * * Returns all IOC Doorbell register bits if cooked==0, else just the * Doorbell bits in MPI_IOC_STATE_MASK. */ u32 mpt2sas_base_get_iocstate(struct MPT2SAS_ADAPTER *ioc, int cooked) { u32 s, sc; s = readl(&ioc->chip->Doorbell); sc = s & MPI2_IOC_STATE_MASK; return cooked ? sc : s; } /** * _base_wait_on_iocstate - waiting on a particular ioc state * @ioc_state: controller state { READY, OPERATIONAL, or RESET } * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_wait_on_iocstate(struct MPT2SAS_ADAPTER *ioc, u32 ioc_state, int timeout, int sleep_flag) { u32 count, cntdn; u32 current_state; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { current_state = mpt2sas_base_get_iocstate(ioc, 1); if (current_state == ioc_state) return 0; if (count && current_state == MPI2_IOC_STATE_FAULT) break; if (sleep_flag == CAN_SLEEP) msleep(1); else udelay(500); count++; } while (--cntdn); return current_state; } /** * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by * a write to the doorbell) * @ioc: per adapter object * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. * * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell. */ static int _base_wait_for_doorbell_int(struct MPT2SAS_ADAPTER *ioc, int timeout, int sleep_flag) { u32 cntdn, count; u32 int_status; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { int_status = readl(&ioc->chip->HostInterruptStatus); if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { dhsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "successfull count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } if (sleep_flag == CAN_SLEEP) msleep(1); else udelay(500); count++; } while (--cntdn); printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), " "int_status(%x)!\n", ioc->name, __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell. * @ioc: per adapter object * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. * * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to * doorbell. */ static int _base_wait_for_doorbell_ack(struct MPT2SAS_ADAPTER *ioc, int timeout, int sleep_flag) { u32 cntdn, count; u32 int_status; u32 doorbell; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { int_status = readl(&ioc->chip->HostInterruptStatus); if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) { dhsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "successfull count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) { doorbell = readl(&ioc->chip->Doorbell); if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt2sas_base_fault_info(ioc , doorbell); return -EFAULT; } } else if (int_status == 0xFFFFFFFF) goto out; if (sleep_flag == CAN_SLEEP) msleep(1); else udelay(500); count++; } while (--cntdn); out: printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), " "int_status(%x)!\n", ioc->name, __func__, count, int_status); return -EFAULT; } /** * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use * @ioc: per adapter object * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. * */ static int _base_wait_for_doorbell_not_used(struct MPT2SAS_ADAPTER *ioc, int timeout, int sleep_flag) { u32 cntdn, count; u32 doorbell_reg; count = 0; cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout; do { doorbell_reg = readl(&ioc->chip->Doorbell); if (!(doorbell_reg & MPI2_DOORBELL_USED)) { dhsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "successfull count(%d), timeout(%d)\n", ioc->name, __func__, count, timeout)); return 0; } if (sleep_flag == CAN_SLEEP) msleep(1); else udelay(500); count++; } while (--cntdn); printk(MPT2SAS_ERR_FMT "%s: failed due to timeout count(%d), " "doorbell_reg(%x)!\n", ioc->name, __func__, count, doorbell_reg); return -EFAULT; } /** * _base_send_ioc_reset - send doorbell reset * @ioc: per adapter object * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_send_ioc_reset(struct MPT2SAS_ADAPTER *ioc, u8 reset_type, int timeout, int sleep_flag) { u32 ioc_state; int r = 0; if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) { printk(MPT2SAS_ERR_FMT "%s: unknown reset_type\n", ioc->name, __func__); return -EFAULT; } if (!(ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY)) return -EFAULT; printk(MPT2SAS_INFO_FMT "sending message unit reset !!\n", ioc->name); writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT, &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) { r = -EFAULT; goto out; } ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout, sleep_flag); if (ioc_state) { printk(MPT2SAS_ERR_FMT "%s: failed going to ready state " " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); r = -EFAULT; goto out; } out: printk(MPT2SAS_INFO_FMT "message unit reset: %s\n", ioc->name, ((r == 0) ? "SUCCESS" : "FAILED")); return r; } /** * _base_handshake_req_reply_wait - send request thru doorbell interface * @ioc: per adapter object * @request_bytes: request length * @request: pointer having request payload * @reply_bytes: reply length * @reply: pointer to reply payload * @timeout: timeout in second * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_handshake_req_reply_wait(struct MPT2SAS_ADAPTER *ioc, int request_bytes, u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag) { MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply; int i; u8 failed; u16 dummy; u32 *mfp; /* make sure doorbell is not in use */ if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) { printk(MPT2SAS_ERR_FMT "doorbell is in use " " (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* clear pending doorbell interrupts from previous state changes */ if (readl(&ioc->chip->HostInterruptStatus) & MPI2_HIS_IOC2SYS_DB_STATUS) writel(0, &ioc->chip->HostInterruptStatus); /* send message to ioc */ writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) | ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)), &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) { printk(MPT2SAS_ERR_FMT "doorbell handshake " "int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) { printk(MPT2SAS_ERR_FMT "doorbell handshake " "ack failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* send message 32-bits at a time */ for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) { writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell); if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) failed = 1; } if (failed) { printk(MPT2SAS_ERR_FMT "doorbell handshake " "sending request failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* now wait for the reply */ if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) { printk(MPT2SAS_ERR_FMT "doorbell handshake " "int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } /* read the first two 16-bits, it gives the total length of the reply */ reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) { printk(MPT2SAS_ERR_FMT "doorbell handshake " "int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); for (i = 2; i < default_reply->MsgLength * 2; i++) { if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) { printk(MPT2SAS_ERR_FMT "doorbell " "handshake int failed (line=%d)\n", ioc->name, __LINE__); return -EFAULT; } if (i >= reply_bytes/2) /* overflow case */ dummy = readl(&ioc->chip->Doorbell); else reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_DATA_MASK); writel(0, &ioc->chip->HostInterruptStatus); } _base_wait_for_doorbell_int(ioc, 5, sleep_flag); if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) { dhsprintk(ioc, printk(MPT2SAS_INFO_FMT "doorbell is in use " " (line=%d)\n", ioc->name, __LINE__)); } writel(0, &ioc->chip->HostInterruptStatus); if (ioc->logging_level & MPT_DEBUG_INIT) { mfp = (u32 *)reply; printk(KERN_DEBUG "\toffset:data\n"); for (i = 0; i < reply_bytes/4; i++) printk(KERN_DEBUG "\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } return 0; } /** * mpt2sas_base_sas_iounit_control - send sas iounit control to FW * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SAS IO Unit Control Request message allows the host to perform low-level * operations, such as resets on the PHYs of the IO Unit, also allows the host * to obtain the IOC assigned device handles for a device if it has other * identifying information about the device, in addition allows the host to * remove IOC resources associated with the device. * * Returns 0 for success, non-zero for failure. */ int mpt2sas_base_sas_iounit_control(struct MPT2SAS_ADAPTER *ioc, Mpi2SasIoUnitControlReply_t *mpi_reply, Mpi2SasIoUnitControlRequest_t *mpi_request) { u16 smid; u32 ioc_state; unsigned long timeleft; u8 issue_reset; int rc; void *request; u16 wait_state_count; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) { printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n", ioc->name, __func__); rc = -EAGAIN; goto out; } wait_state_count = 0; ioc_state = mpt2sas_base_get_iocstate(ioc, 1); while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { if (wait_state_count++ == 10) { printk(MPT2SAS_ERR_FMT "%s: failed due to ioc not operational\n", ioc->name, __func__); rc = -EFAULT; goto out; } ssleep(1); ioc_state = mpt2sas_base_get_iocstate(ioc, 1); printk(MPT2SAS_INFO_FMT "%s: waiting for " "operational state(count=%d)\n", ioc->name, __func__, wait_state_count); } smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT2_CMD_PENDING; request = mpt2sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)); if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) ioc->ioc_link_reset_in_progress = 1; mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID); timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET || mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) && ioc->ioc_link_reset_in_progress) ioc->ioc_link_reset_in_progress = 0; if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) { printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4); if (!(ioc->base_cmds.status & MPT2_CMD_RESET)) issue_reset = 1; goto issue_host_reset; } if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SasIoUnitControlReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t)); ioc->base_cmds.status = MPT2_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT2_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * mpt2sas_base_scsi_enclosure_processor - sending request to sep device * @ioc: per adapter object * @mpi_reply: the reply payload from FW * @mpi_request: the request payload sent to FW * * The SCSI Enclosure Processor request message causes the IOC to * communicate with SES devices to control LED status signals. * * Returns 0 for success, non-zero for failure. */ int mpt2sas_base_scsi_enclosure_processor(struct MPT2SAS_ADAPTER *ioc, Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request) { u16 smid; u32 ioc_state; unsigned long timeleft; u8 issue_reset; int rc; void *request; u16 wait_state_count; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); mutex_lock(&ioc->base_cmds.mutex); if (ioc->base_cmds.status != MPT2_CMD_NOT_USED) { printk(MPT2SAS_ERR_FMT "%s: base_cmd in use\n", ioc->name, __func__); rc = -EAGAIN; goto out; } wait_state_count = 0; ioc_state = mpt2sas_base_get_iocstate(ioc, 1); while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) { if (wait_state_count++ == 10) { printk(MPT2SAS_ERR_FMT "%s: failed due to ioc not operational\n", ioc->name, __func__); rc = -EFAULT; goto out; } ssleep(1); ioc_state = mpt2sas_base_get_iocstate(ioc, 1); printk(MPT2SAS_INFO_FMT "%s: waiting for " "operational state(count=%d)\n", ioc->name, __func__, wait_state_count); } smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); rc = -EAGAIN; goto out; } rc = 0; ioc->base_cmds.status = MPT2_CMD_PENDING; request = mpt2sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memcpy(request, mpi_request, sizeof(Mpi2SepReply_t)); mpt2sas_base_put_smid_default(ioc, smid, mpi_request->VF_ID); timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, msecs_to_jiffies(10000)); if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) { printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2SepRequest_t)/4); if (!(ioc->base_cmds.status & MPT2_CMD_RESET)) issue_reset = 1; goto issue_host_reset; } if (ioc->base_cmds.status & MPT2_CMD_REPLY_VALID) memcpy(mpi_reply, ioc->base_cmds.reply, sizeof(Mpi2SepReply_t)); else memset(mpi_reply, 0, sizeof(Mpi2SepReply_t)); ioc->base_cmds.status = MPT2_CMD_NOT_USED; goto out; issue_host_reset: if (issue_reset) mpt2sas_base_hard_reset_handler(ioc, CAN_SLEEP, FORCE_BIG_HAMMER); ioc->base_cmds.status = MPT2_CMD_NOT_USED; rc = -EFAULT; out: mutex_unlock(&ioc->base_cmds.mutex); return rc; } /** * _base_get_port_facts - obtain port facts reply and save in ioc * @ioc: per adapter object * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_get_port_facts(struct MPT2SAS_ADAPTER *ioc, int port, int sleep_flag) { Mpi2PortFactsRequest_t mpi_request; Mpi2PortFactsReply_t mpi_reply, *pfacts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); mpi_reply_sz = sizeof(Mpi2PortFactsReply_t); mpi_request_sz = sizeof(Mpi2PortFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_PORT_FACTS; mpi_request.PortNumber = port; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP); if (r != 0) { printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); return r; } pfacts = &ioc->pfacts[port]; memset(pfacts, 0, sizeof(Mpi2PortFactsReply_t)); pfacts->PortNumber = mpi_reply.PortNumber; pfacts->VP_ID = mpi_reply.VP_ID; pfacts->VF_ID = mpi_reply.VF_ID; pfacts->MaxPostedCmdBuffers = le16_to_cpu(mpi_reply.MaxPostedCmdBuffers); return 0; } /** * _base_get_ioc_facts - obtain ioc facts reply and save in ioc * @ioc: per adapter object * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_get_ioc_facts(struct MPT2SAS_ADAPTER *ioc, int sleep_flag) { Mpi2IOCFactsRequest_t mpi_request; Mpi2IOCFactsReply_t mpi_reply, *facts; int mpi_reply_sz, mpi_request_sz, r; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t); mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t); memset(&mpi_request, 0, mpi_request_sz); mpi_request.Function = MPI2_FUNCTION_IOC_FACTS; r = _base_handshake_req_reply_wait(ioc, mpi_request_sz, (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP); if (r != 0) { printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); return r; } facts = &ioc->facts; memset(facts, 0, sizeof(Mpi2IOCFactsReply_t)); facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion); facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion); facts->VP_ID = mpi_reply.VP_ID; facts->VF_ID = mpi_reply.VF_ID; facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions); facts->MaxChainDepth = mpi_reply.MaxChainDepth; facts->WhoInit = mpi_reply.WhoInit; facts->NumberOfPorts = mpi_reply.NumberOfPorts; facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit); facts->MaxReplyDescriptorPostQueueDepth = le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth); facts->ProductID = le16_to_cpu(mpi_reply.ProductID); facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities); if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID)) ioc->ir_firmware = 1; facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word); facts->IOCRequestFrameSize = le16_to_cpu(mpi_reply.IOCRequestFrameSize); facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators); facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets); ioc->shost->max_id = -1; facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders); facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures); facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags); facts->HighPriorityCredit = le16_to_cpu(mpi_reply.HighPriorityCredit); facts->ReplyFrameSize = mpi_reply.ReplyFrameSize; facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "hba queue depth(%d), " "max chains per io(%d)\n", ioc->name, facts->RequestCredit, facts->MaxChainDepth)); dinitprintk(ioc, printk(MPT2SAS_INFO_FMT "request frame size(%d), " "reply frame size(%d)\n", ioc->name, facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4)); return 0; } /** * _base_send_ioc_init - send ioc_init to firmware * @ioc: per adapter object * @VF_ID: virtual function id * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_send_ioc_init(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, int sleep_flag) { Mpi2IOCInitRequest_t mpi_request; Mpi2IOCInitReply_t mpi_reply; int r; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t)); mpi_request.Function = MPI2_FUNCTION_IOC_INIT; mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER; mpi_request.VF_ID = VF_ID; mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION); mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION); /* In MPI Revision I (0xA), the SystemReplyFrameSize(offset 0x18) was * removed and made reserved. For those with older firmware will need * this fix. It was decided that the Reply and Request frame sizes are * the same. */ if ((ioc->facts.HeaderVersion >> 8) < 0xA) { mpi_request.Reserved7 = cpu_to_le16(ioc->reply_sz); /* mpi_request.SystemReplyFrameSize = * cpu_to_le16(ioc->reply_sz); */ } mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4); mpi_request.ReplyDescriptorPostQueueDepth = cpu_to_le16(ioc->reply_post_queue_depth); mpi_request.ReplyFreeQueueDepth = cpu_to_le16(ioc->reply_free_queue_depth); #if BITS_PER_LONG > 32 mpi_request.SenseBufferAddressHigh = cpu_to_le32(ioc->sense_dma >> 32); mpi_request.SystemReplyAddressHigh = cpu_to_le32(ioc->reply_dma >> 32); mpi_request.SystemRequestFrameBaseAddress = cpu_to_le64(ioc->request_dma); mpi_request.ReplyFreeQueueAddress = cpu_to_le64(ioc->reply_free_dma); mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le64(ioc->reply_post_free_dma); #else mpi_request.SystemRequestFrameBaseAddress = cpu_to_le32(ioc->request_dma); mpi_request.ReplyFreeQueueAddress = cpu_to_le32(ioc->reply_free_dma); mpi_request.ReplyDescriptorPostQueueAddress = cpu_to_le32(ioc->reply_post_free_dma); #endif if (ioc->logging_level & MPT_DEBUG_INIT) { u32 *mfp; int i; mfp = (u32 *)&mpi_request; printk(KERN_DEBUG "\toffset:data\n"); for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++) printk(KERN_DEBUG "\t[0x%02x]:%08x\n", i*4, le32_to_cpu(mfp[i])); } r = _base_handshake_req_reply_wait(ioc, sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request, sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10, sleep_flag); if (r != 0) { printk(MPT2SAS_ERR_FMT "%s: handshake failed (r=%d)\n", ioc->name, __func__, r); return r; } if (mpi_reply.IOCStatus != MPI2_IOCSTATUS_SUCCESS || mpi_reply.IOCLogInfo) { printk(MPT2SAS_ERR_FMT "%s: failed\n", ioc->name, __func__); r = -EIO; } return 0; } /** * _base_send_port_enable - send port_enable(discovery stuff) to firmware * @ioc: per adapter object * @VF_ID: virtual function id * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_send_port_enable(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, int sleep_flag) { Mpi2PortEnableRequest_t *mpi_request; u32 ioc_state; unsigned long timeleft; int r = 0; u16 smid; printk(MPT2SAS_INFO_FMT "sending port enable !!\n", ioc->name); if (ioc->base_cmds.status & MPT2_CMD_PENDING) { printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n", ioc->name, __func__); return -EAGAIN; } smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); return -EAGAIN; } ioc->base_cmds.status = MPT2_CMD_PENDING; mpi_request = mpt2sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t)); mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE; mpi_request->VF_ID = VF_ID; mpt2sas_base_put_smid_default(ioc, smid, VF_ID); timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 300*HZ); if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) { printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2PortEnableRequest_t)/4); if (ioc->base_cmds.status & MPT2_CMD_RESET) r = -EFAULT; else r = -ETIME; goto out; } else dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: complete\n", ioc->name, __func__)); ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_OPERATIONAL, 60, sleep_flag); if (ioc_state) { printk(MPT2SAS_ERR_FMT "%s: failed going to operational state " " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); r = -EFAULT; } out: ioc->base_cmds.status = MPT2_CMD_NOT_USED; printk(MPT2SAS_INFO_FMT "port enable: %s\n", ioc->name, ((r == 0) ? "SUCCESS" : "FAILED")); return r; } /** * _base_unmask_events - turn on notification for this event * @ioc: per adapter object * @event: firmware event * * The mask is stored in ioc->event_masks. */ static void _base_unmask_events(struct MPT2SAS_ADAPTER *ioc, u16 event) { u32 desired_event; if (event >= 128) return; desired_event = (1 << (event % 32)); if (event < 32) ioc->event_masks[0] &= ~desired_event; else if (event < 64) ioc->event_masks[1] &= ~desired_event; else if (event < 96) ioc->event_masks[2] &= ~desired_event; else if (event < 128) ioc->event_masks[3] &= ~desired_event; } /** * _base_event_notification - send event notification * @ioc: per adapter object * @VF_ID: virtual function id * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_event_notification(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, int sleep_flag) { Mpi2EventNotificationRequest_t *mpi_request; unsigned long timeleft; u16 smid; int r = 0; int i; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); if (ioc->base_cmds.status & MPT2_CMD_PENDING) { printk(MPT2SAS_ERR_FMT "%s: internal command already in use\n", ioc->name, __func__); return -EAGAIN; } smid = mpt2sas_base_get_smid(ioc, ioc->base_cb_idx); if (!smid) { printk(MPT2SAS_ERR_FMT "%s: failed obtaining a smid\n", ioc->name, __func__); return -EAGAIN; } ioc->base_cmds.status = MPT2_CMD_PENDING; mpi_request = mpt2sas_base_get_msg_frame(ioc, smid); ioc->base_cmds.smid = smid; memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t)); mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION; mpi_request->VF_ID = VF_ID; for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) mpi_request->EventMasks[i] = le32_to_cpu(ioc->event_masks[i]); mpt2sas_base_put_smid_default(ioc, smid, VF_ID); timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ); if (!(ioc->base_cmds.status & MPT2_CMD_COMPLETE)) { printk(MPT2SAS_ERR_FMT "%s: timeout\n", ioc->name, __func__); _debug_dump_mf(mpi_request, sizeof(Mpi2EventNotificationRequest_t)/4); if (ioc->base_cmds.status & MPT2_CMD_RESET) r = -EFAULT; else r = -ETIME; } else dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: complete\n", ioc->name, __func__)); ioc->base_cmds.status = MPT2_CMD_NOT_USED; return r; } /** * mpt2sas_base_validate_event_type - validating event types * @ioc: per adapter object * @event: firmware event * * This will turn on firmware event notification when application * ask for that event. We don't mask events that are already enabled. */ void mpt2sas_base_validate_event_type(struct MPT2SAS_ADAPTER *ioc, u32 *event_type) { int i, j; u32 event_mask, desired_event; u8 send_update_to_fw; for (i = 0, send_update_to_fw = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) { event_mask = ~event_type[i]; desired_event = 1; for (j = 0; j < 32; j++) { if (!(event_mask & desired_event) && (ioc->event_masks[i] & desired_event)) { ioc->event_masks[i] &= ~desired_event; send_update_to_fw = 1; } desired_event = (desired_event << 1); } } if (!send_update_to_fw) return; mutex_lock(&ioc->base_cmds.mutex); _base_event_notification(ioc, 0, CAN_SLEEP); mutex_unlock(&ioc->base_cmds.mutex); } /** * _base_diag_reset - the "big hammer" start of day reset * @ioc: per adapter object * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_diag_reset(struct MPT2SAS_ADAPTER *ioc, int sleep_flag) { u32 host_diagnostic; u32 ioc_state; u32 count; u32 hcb_size; printk(MPT2SAS_INFO_FMT "sending diag reset !!\n", ioc->name); _base_save_msix_table(ioc); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "clear interrupts\n", ioc->name)); writel(0, &ioc->chip->HostInterruptStatus); count = 0; do { /* Write magic sequence to WriteSequence register * Loop until in diagnostic mode */ drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "write magic " "sequence\n", ioc->name)); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence); writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence); /* wait 100 msec */ if (sleep_flag == CAN_SLEEP) msleep(100); else mdelay(100); if (count++ > 20) goto out; host_diagnostic = readl(&ioc->chip->HostDiagnostic); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "wrote magic " "sequence: count(%d), host_diagnostic(0x%08x)\n", ioc->name, count, host_diagnostic)); } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0); hcb_size = readl(&ioc->chip->HCBSize); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "diag reset: issued\n", ioc->name)); writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER, &ioc->chip->HostDiagnostic); /* don't access any registers for 50 milliseconds */ msleep(50); /* 300 second max wait */ for (count = 0; count < 3000000 ; count++) { host_diagnostic = readl(&ioc->chip->HostDiagnostic); if (host_diagnostic == 0xFFFFFFFF) goto out; if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER)) break; /* wait 100 msec */ if (sleep_flag == CAN_SLEEP) msleep(1); else mdelay(1); } if (host_diagnostic & MPI2_DIAG_HCB_MODE) { drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "restart the adapter " "assuming the HCB Address points to good F/W\n", ioc->name)); host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK; host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW; writel(host_diagnostic, &ioc->chip->HostDiagnostic); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "re-enable the HCDW\n", ioc->name)); writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE, &ioc->chip->HCBSize); } drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "restart the adapter\n", ioc->name)); writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET, &ioc->chip->HostDiagnostic); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "disable writes to the " "diagnostic register\n", ioc->name)); writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence); drsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "Wait for FW to go to the " "READY state\n", ioc->name)); ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20, sleep_flag); if (ioc_state) { printk(MPT2SAS_ERR_FMT "%s: failed going to ready state " " (ioc_state=0x%x)\n", ioc->name, __func__, ioc_state); goto out; } _base_restore_msix_table(ioc); printk(MPT2SAS_INFO_FMT "diag reset: SUCCESS\n", ioc->name); return 0; out: printk(MPT2SAS_ERR_FMT "diag reset: FAILED\n", ioc->name); return -EFAULT; } /** * _base_make_ioc_ready - put controller in READY state * @ioc: per adapter object * @sleep_flag: CAN_SLEEP or NO_SLEEP * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Returns 0 for success, non-zero for failure. */ static int _base_make_ioc_ready(struct MPT2SAS_ADAPTER *ioc, int sleep_flag, enum reset_type type) { u32 ioc_state; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); ioc_state = mpt2sas_base_get_iocstate(ioc, 0); dhsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: ioc_state(0x%08x)\n", ioc->name, __func__, ioc_state)); if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) return 0; if (ioc_state & MPI2_DOORBELL_USED) { dhsprintk(ioc, printk(MPT2SAS_DEBUG_FMT "unexpected doorbell " "active!\n", ioc->name)); goto issue_diag_reset; } if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { mpt2sas_base_fault_info(ioc, ioc_state & MPI2_DOORBELL_DATA_MASK); goto issue_diag_reset; } if (type == FORCE_BIG_HAMMER) goto issue_diag_reset; if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL) if (!(_base_send_ioc_reset(ioc, MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) return 0; issue_diag_reset: return _base_diag_reset(ioc, CAN_SLEEP); } /** * _base_make_ioc_operational - put controller in OPERATIONAL state * @ioc: per adapter object * @VF_ID: virtual function id * @sleep_flag: CAN_SLEEP or NO_SLEEP * * Returns 0 for success, non-zero for failure. */ static int _base_make_ioc_operational(struct MPT2SAS_ADAPTER *ioc, u8 VF_ID, int sleep_flag) { int r, i; unsigned long flags; u32 reply_address; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); /* initialize the scsi lookup free list */ spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); INIT_LIST_HEAD(&ioc->free_list); for (i = 0; i < ioc->request_depth; i++) { ioc->scsi_lookup[i].cb_idx = 0xFF; list_add_tail(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list); } spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); /* initialize Reply Free Queue */ for (i = 0, reply_address = (u32)ioc->reply_dma ; i < ioc->reply_free_queue_depth ; i++, reply_address += ioc->reply_sz) ioc->reply_free[i] = cpu_to_le32(reply_address); /* initialize Reply Post Free Queue */ for (i = 0; i < ioc->reply_post_queue_depth; i++) ioc->reply_post_free[i].Words = ULLONG_MAX; r = _base_send_ioc_init(ioc, VF_ID, sleep_flag); if (r) return r; /* initialize the index's */ ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1; ioc->reply_post_host_index = 0; writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex); writel(0, &ioc->chip->ReplyPostHostIndex); _base_unmask_interrupts(ioc); r = _base_event_notification(ioc, VF_ID, sleep_flag); if (r) return r; if (sleep_flag == CAN_SLEEP) _base_static_config_pages(ioc); r = _base_send_port_enable(ioc, VF_ID, sleep_flag); if (r) return r; return r; } /** * mpt2sas_base_free_resources - free resources controller resources (io/irq/memap) * @ioc: per adapter object * * Return nothing. */ void mpt2sas_base_free_resources(struct MPT2SAS_ADAPTER *ioc) { struct pci_dev *pdev = ioc->pdev; dexitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); _base_mask_interrupts(ioc); _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET); if (ioc->pci_irq) { synchronize_irq(pdev->irq); free_irq(ioc->pci_irq, ioc); } _base_disable_msix(ioc); if (ioc->chip_phys) iounmap(ioc->chip); ioc->pci_irq = -1; ioc->chip_phys = 0; pci_release_selected_regions(ioc->pdev, ioc->bars); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return; } /** * mpt2sas_base_attach - attach controller instance * @ioc: per adapter object * * Returns 0 for success, non-zero for failure. */ int mpt2sas_base_attach(struct MPT2SAS_ADAPTER *ioc) { int r, i; unsigned long flags; dinitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); r = mpt2sas_base_map_resources(ioc); if (r) return r; r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET); if (r) goto out_free_resources; r = _base_get_ioc_facts(ioc, CAN_SLEEP); if (r) goto out_free_resources; r = _base_allocate_memory_pools(ioc, CAN_SLEEP); if (r) goto out_free_resources; init_waitqueue_head(&ioc->reset_wq); /* base internal command bits */ mutex_init(&ioc->base_cmds.mutex); init_completion(&ioc->base_cmds.done); ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->base_cmds.status = MPT2_CMD_NOT_USED; /* transport internal command bits */ ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->transport_cmds.status = MPT2_CMD_NOT_USED; mutex_init(&ioc->transport_cmds.mutex); init_completion(&ioc->transport_cmds.done); /* task management internal command bits */ ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->tm_cmds.status = MPT2_CMD_NOT_USED; mutex_init(&ioc->tm_cmds.mutex); init_completion(&ioc->tm_cmds.done); /* config page internal command bits */ ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->config_cmds.status = MPT2_CMD_NOT_USED; mutex_init(&ioc->config_cmds.mutex); init_completion(&ioc->config_cmds.done); /* ctl module internal command bits */ ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL); ioc->ctl_cmds.status = MPT2_CMD_NOT_USED; mutex_init(&ioc->ctl_cmds.mutex); init_completion(&ioc->ctl_cmds.done); for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) ioc->event_masks[i] = -1; /* here we enable the events we care about */ _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY); _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE); _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE); _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST); _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME); _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK); _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS); _base_unmask_events(ioc, MPI2_EVENT_TASK_SET_FULL); _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED); ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts, sizeof(Mpi2PortFactsReply_t), GFP_KERNEL); if (!ioc->pfacts) goto out_free_resources; for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) { r = _base_get_port_facts(ioc, i, CAN_SLEEP); if (r) goto out_free_resources; } r = _base_make_ioc_operational(ioc, 0, CAN_SLEEP); if (r) goto out_free_resources; /* initialize fault polling */ INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work); snprintf(ioc->fault_reset_work_q_name, sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id); ioc->fault_reset_work_q = create_singlethread_workqueue(ioc->fault_reset_work_q_name); if (!ioc->fault_reset_work_q) { printk(MPT2SAS_ERR_FMT "%s: failed (line=%d)\n", ioc->name, __func__, __LINE__); goto out_free_resources; } spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->fault_reset_work_q) queue_delayed_work(ioc->fault_reset_work_q, &ioc->fault_reset_work, msecs_to_jiffies(FAULT_POLLING_INTERVAL)); spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); return 0; out_free_resources: ioc->remove_host = 1; mpt2sas_base_free_resources(ioc); _base_release_memory_pools(ioc); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->config_cmds.reply); kfree(ioc->base_cmds.reply); kfree(ioc->ctl_cmds.reply); kfree(ioc->pfacts); ioc->ctl_cmds.reply = NULL; ioc->base_cmds.reply = NULL; ioc->tm_cmds.reply = NULL; ioc->transport_cmds.reply = NULL; ioc->config_cmds.reply = NULL; ioc->pfacts = NULL; return r; } /** * mpt2sas_base_detach - remove controller instance * @ioc: per adapter object * * Return nothing. */ void mpt2sas_base_detach(struct MPT2SAS_ADAPTER *ioc) { unsigned long flags; struct workqueue_struct *wq; dexitprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s\n", ioc->name, __func__)); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); wq = ioc->fault_reset_work_q; ioc->fault_reset_work_q = NULL; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); if (!cancel_delayed_work(&ioc->fault_reset_work)) flush_workqueue(wq); destroy_workqueue(wq); mpt2sas_base_free_resources(ioc); _base_release_memory_pools(ioc); kfree(ioc->pfacts); kfree(ioc->ctl_cmds.reply); kfree(ioc->base_cmds.reply); kfree(ioc->tm_cmds.reply); kfree(ioc->transport_cmds.reply); kfree(ioc->config_cmds.reply); } /** * _base_reset_handler - reset callback handler (for base) * @ioc: per adapter object * @reset_phase: phase * * The handler for doing any required cleanup or initialization. * * The reset phase can be MPT2_IOC_PRE_RESET, MPT2_IOC_AFTER_RESET, * MPT2_IOC_DONE_RESET * * Return nothing. */ static void _base_reset_handler(struct MPT2SAS_ADAPTER *ioc, int reset_phase) { switch (reset_phase) { case MPT2_IOC_PRE_RESET: dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "MPT2_IOC_PRE_RESET\n", ioc->name, __func__)); break; case MPT2_IOC_AFTER_RESET: dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "MPT2_IOC_AFTER_RESET\n", ioc->name, __func__)); if (ioc->transport_cmds.status & MPT2_CMD_PENDING) { ioc->transport_cmds.status |= MPT2_CMD_RESET; mpt2sas_base_free_smid(ioc, ioc->transport_cmds.smid); complete(&ioc->transport_cmds.done); } if (ioc->base_cmds.status & MPT2_CMD_PENDING) { ioc->base_cmds.status |= MPT2_CMD_RESET; mpt2sas_base_free_smid(ioc, ioc->base_cmds.smid); complete(&ioc->base_cmds.done); } if (ioc->config_cmds.status & MPT2_CMD_PENDING) { ioc->config_cmds.status |= MPT2_CMD_RESET; mpt2sas_base_free_smid(ioc, ioc->config_cmds.smid); complete(&ioc->config_cmds.done); } break; case MPT2_IOC_DONE_RESET: dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: " "MPT2_IOC_DONE_RESET\n", ioc->name, __func__)); break; } mpt2sas_scsih_reset_handler(ioc, reset_phase); mpt2sas_ctl_reset_handler(ioc, reset_phase); } /** * _wait_for_commands_to_complete - reset controller * @ioc: Pointer to MPT_ADAPTER structure * @sleep_flag: CAN_SLEEP or NO_SLEEP * * This function waiting(3s) for all pending commands to complete * prior to putting controller in reset. */ static void _wait_for_commands_to_complete(struct MPT2SAS_ADAPTER *ioc, int sleep_flag) { u32 ioc_state; unsigned long flags; u16 i; ioc->pending_io_count = 0; if (sleep_flag != CAN_SLEEP) return; ioc_state = mpt2sas_base_get_iocstate(ioc, 0); if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) return; /* pending command count */ spin_lock_irqsave(&ioc->scsi_lookup_lock, flags); for (i = 0; i < ioc->request_depth; i++) if (ioc->scsi_lookup[i].cb_idx != 0xFF) ioc->pending_io_count++; spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags); if (!ioc->pending_io_count) return; /* wait for pending commands to complete */ wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 3 * HZ); } /** * mpt2sas_base_hard_reset_handler - reset controller * @ioc: Pointer to MPT_ADAPTER structure * @sleep_flag: CAN_SLEEP or NO_SLEEP * @type: FORCE_BIG_HAMMER or SOFT_RESET * * Returns 0 for success, non-zero for failure. */ int mpt2sas_base_hard_reset_handler(struct MPT2SAS_ADAPTER *ioc, int sleep_flag, enum reset_type type) { int r, i; unsigned long flags; dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: enter\n", ioc->name, __func__)); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); if (ioc->ioc_reset_in_progress) { spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); printk(MPT2SAS_ERR_FMT "%s: busy\n", ioc->name, __func__); return -EBUSY; } ioc->ioc_reset_in_progress = 1; ioc->shost_recovery = 1; if (ioc->shost->shost_state == SHOST_RUNNING) { /* set back to SHOST_RUNNING in mpt2sas_scsih.c */ scsi_host_set_state(ioc->shost, SHOST_RECOVERY); printk(MPT2SAS_INFO_FMT "putting controller into " "SHOST_RECOVERY\n", ioc->name); } spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); _base_reset_handler(ioc, MPT2_IOC_PRE_RESET); _wait_for_commands_to_complete(ioc, sleep_flag); _base_mask_interrupts(ioc); r = _base_make_ioc_ready(ioc, sleep_flag, type); if (r) goto out; _base_reset_handler(ioc, MPT2_IOC_AFTER_RESET); for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) r = _base_make_ioc_operational(ioc, ioc->pfacts[i].VF_ID, sleep_flag); if (!r) _base_reset_handler(ioc, MPT2_IOC_DONE_RESET); out: dtmprintk(ioc, printk(MPT2SAS_DEBUG_FMT "%s: %s\n", ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED"))); spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags); ioc->ioc_reset_in_progress = 0; spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags); return r; }