/* * libata-core.c - helper library for ATA * * Maintained by: Jeff Garzik * Please ALWAYS copy linux-ide@vger.kernel.org * on emails. * * Copyright 2003-2004 Red Hat, Inc. All rights reserved. * Copyright 2003-2004 Jeff Garzik * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * * libata documentation is available via 'make {ps|pdf}docs', * as Documentation/DocBook/libata.* * * Hardware documentation available from http://www.t13.org/ and * http://www.sata-io.org/ * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "scsi_priv.h" #include #include #include #include #include #include #include "libata.h" static unsigned int ata_busy_sleep (struct ata_port *ap, unsigned long tmout_pat, unsigned long tmout); static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev); static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev); static void ata_set_mode(struct ata_port *ap); static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev); static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift); static int fgb(u32 bitmap); static int ata_choose_xfer_mode(const struct ata_port *ap, u8 *xfer_mode_out, unsigned int *xfer_shift_out); static void __ata_qc_complete(struct ata_queued_cmd *qc); static void ata_pio_error(struct ata_port *ap); static unsigned int ata_unique_id = 1; static struct workqueue_struct *ata_wq; int atapi_enabled = 0; module_param(atapi_enabled, int, 0444); MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)"); MODULE_AUTHOR("Jeff Garzik"); MODULE_DESCRIPTION("Library module for ATA devices"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /** * ata_tf_load_pio - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller. * * LOCKING: * Inherited from caller. */ static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { outb(tf->ctl, ioaddr->ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { outb(tf->hob_feature, ioaddr->feature_addr); outb(tf->hob_nsect, ioaddr->nsect_addr); outb(tf->hob_lbal, ioaddr->lbal_addr); outb(tf->hob_lbam, ioaddr->lbam_addr); outb(tf->hob_lbah, ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { outb(tf->feature, ioaddr->feature_addr); outb(tf->nsect, ioaddr->nsect_addr); outb(tf->lbal, ioaddr->lbal_addr); outb(tf->lbam, ioaddr->lbam_addr); outb(tf->lbah, ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { outb(tf->device, ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_tf_load_mmio - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller using MMIO. * * LOCKING: * Inherited from caller. */ static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; if (tf->ctl != ap->last_ctl) { writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr); ap->last_ctl = tf->ctl; ata_wait_idle(ap); } if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr); writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr); writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr); writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr); writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr); VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam, tf->hob_lbah); } if (is_addr) { writeb(tf->feature, (void __iomem *) ioaddr->feature_addr); writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr); writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr); writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr); writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr); VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", tf->feature, tf->nsect, tf->lbal, tf->lbam, tf->lbah); } if (tf->flags & ATA_TFLAG_DEVICE) { writeb(tf->device, (void __iomem *) ioaddr->device_addr); VPRINTK("device 0x%X\n", tf->device); } ata_wait_idle(ap); } /** * ata_tf_load - send taskfile registers to host controller * @ap: Port to which output is sent * @tf: ATA taskfile register set * * Outputs ATA taskfile to standard ATA host controller using MMIO * or PIO as indicated by the ATA_FLAG_MMIO flag. * Writes the control, feature, nsect, lbal, lbam, and lbah registers. * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect, * hob_lbal, hob_lbam, and hob_lbah. * * This function waits for idle (!BUSY and !DRQ) after writing * registers. If the control register has a new value, this * function also waits for idle after writing control and before * writing the remaining registers. * * May be used as the tf_load() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_tf_load_mmio(ap, tf); else ata_tf_load_pio(ap, tf); } /** * ata_exec_command_pio - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues PIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command); outb(tf->command, ap->ioaddr.command_addr); ata_pause(ap); } /** * ata_exec_command_mmio - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues MMIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf) { DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command); writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr); ata_pause(ap); } /** * ata_exec_command - issue ATA command to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues PIO/MMIO write to ATA command register, with proper * synchronization with interrupt handler / other threads. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_exec_command_mmio(ap, tf); else ata_exec_command_pio(ap, tf); } /** * ata_tf_to_host - issue ATA taskfile to host controller * @ap: port to which command is being issued * @tf: ATA taskfile register set * * Issues ATA taskfile register set to ATA host controller, * with proper synchronization with interrupt handler and * other threads. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static inline void ata_tf_to_host(struct ata_port *ap, const struct ata_taskfile *tf) { ap->ops->tf_load(ap, tf); ap->ops->exec_command(ap, tf); } /** * ata_tf_read_pio - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. * * LOCKING: * Inherited from caller. */ static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_check_status(ap); tf->feature = inb(ioaddr->error_addr); tf->nsect = inb(ioaddr->nsect_addr); tf->lbal = inb(ioaddr->lbal_addr); tf->lbam = inb(ioaddr->lbam_addr); tf->lbah = inb(ioaddr->lbah_addr); tf->device = inb(ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr); tf->hob_feature = inb(ioaddr->error_addr); tf->hob_nsect = inb(ioaddr->nsect_addr); tf->hob_lbal = inb(ioaddr->lbal_addr); tf->hob_lbam = inb(ioaddr->lbam_addr); tf->hob_lbah = inb(ioaddr->lbah_addr); } } /** * ata_tf_read_mmio - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf via MMIO. * * LOCKING: * Inherited from caller. */ static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf) { struct ata_ioports *ioaddr = &ap->ioaddr; tf->command = ata_check_status(ap); tf->feature = readb((void __iomem *)ioaddr->error_addr); tf->nsect = readb((void __iomem *)ioaddr->nsect_addr); tf->lbal = readb((void __iomem *)ioaddr->lbal_addr); tf->lbam = readb((void __iomem *)ioaddr->lbam_addr); tf->lbah = readb((void __iomem *)ioaddr->lbah_addr); tf->device = readb((void __iomem *)ioaddr->device_addr); if (tf->flags & ATA_TFLAG_LBA48) { writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr); tf->hob_feature = readb((void __iomem *)ioaddr->error_addr); tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr); tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr); tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr); tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr); } } /** * ata_tf_read - input device's ATA taskfile shadow registers * @ap: Port from which input is read * @tf: ATA taskfile register set for storing input * * Reads ATA taskfile registers for currently-selected device * into @tf. * * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48 * is set, also reads the hob registers. * * May be used as the tf_read() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { if (ap->flags & ATA_FLAG_MMIO) ata_tf_read_mmio(ap, tf); else ata_tf_read_pio(ap, tf); } /** * ata_check_status_pio - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ static u8 ata_check_status_pio(struct ata_port *ap) { return inb(ap->ioaddr.status_addr); } /** * ata_check_status_mmio - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * via MMIO and return its value. This also clears pending interrupts * from this device * * LOCKING: * Inherited from caller. */ static u8 ata_check_status_mmio(struct ata_port *ap) { return readb((void __iomem *) ap->ioaddr.status_addr); } /** * ata_check_status - Read device status reg & clear interrupt * @ap: port where the device is * * Reads ATA taskfile status register for currently-selected device * and return its value. This also clears pending interrupts * from this device * * May be used as the check_status() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_check_status(struct ata_port *ap) { if (ap->flags & ATA_FLAG_MMIO) return ata_check_status_mmio(ap); return ata_check_status_pio(ap); } /** * ata_altstatus - Read device alternate status reg * @ap: port where the device is * * Reads ATA taskfile alternate status register for * currently-selected device and return its value. * * Note: may NOT be used as the check_altstatus() entry in * ata_port_operations. * * LOCKING: * Inherited from caller. */ u8 ata_altstatus(struct ata_port *ap) { if (ap->ops->check_altstatus) return ap->ops->check_altstatus(ap); if (ap->flags & ATA_FLAG_MMIO) return readb((void __iomem *)ap->ioaddr.altstatus_addr); return inb(ap->ioaddr.altstatus_addr); } /** * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure * @tf: Taskfile to convert * @fis: Buffer into which data will output * @pmp: Port multiplier port * * Converts a standard ATA taskfile to a Serial ATA * FIS structure (Register - Host to Device). * * LOCKING: * Inherited from caller. */ void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp) { fis[0] = 0x27; /* Register - Host to Device FIS */ fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number, bit 7 indicates Command FIS */ fis[2] = tf->command; fis[3] = tf->feature; fis[4] = tf->lbal; fis[5] = tf->lbam; fis[6] = tf->lbah; fis[7] = tf->device; fis[8] = tf->hob_lbal; fis[9] = tf->hob_lbam; fis[10] = tf->hob_lbah; fis[11] = tf->hob_feature; fis[12] = tf->nsect; fis[13] = tf->hob_nsect; fis[14] = 0; fis[15] = tf->ctl; fis[16] = 0; fis[17] = 0; fis[18] = 0; fis[19] = 0; } /** * ata_tf_from_fis - Convert SATA FIS to ATA taskfile * @fis: Buffer from which data will be input * @tf: Taskfile to output * * Converts a standard ATA taskfile to a Serial ATA * FIS structure (Register - Host to Device). * * LOCKING: * Inherited from caller. */ void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf) { tf->command = fis[2]; /* status */ tf->feature = fis[3]; /* error */ tf->lbal = fis[4]; tf->lbam = fis[5]; tf->lbah = fis[6]; tf->device = fis[7]; tf->hob_lbal = fis[8]; tf->hob_lbam = fis[9]; tf->hob_lbah = fis[10]; tf->nsect = fis[12]; tf->hob_nsect = fis[13]; } static const u8 ata_rw_cmds[] = { /* pio multi */ ATA_CMD_READ_MULTI, ATA_CMD_WRITE_MULTI, ATA_CMD_READ_MULTI_EXT, ATA_CMD_WRITE_MULTI_EXT, /* pio */ ATA_CMD_PIO_READ, ATA_CMD_PIO_WRITE, ATA_CMD_PIO_READ_EXT, ATA_CMD_PIO_WRITE_EXT, /* dma */ ATA_CMD_READ, ATA_CMD_WRITE, ATA_CMD_READ_EXT, ATA_CMD_WRITE_EXT }; /** * ata_rwcmd_protocol - set taskfile r/w commands and protocol * @qc: command to examine and configure * * Examine the device configuration and tf->flags to calculate * the proper read/write commands and protocol to use. * * LOCKING: * caller. */ void ata_rwcmd_protocol(struct ata_queued_cmd *qc) { struct ata_taskfile *tf = &qc->tf; struct ata_device *dev = qc->dev; int index, lba48, write; lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0; write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0; if (dev->flags & ATA_DFLAG_PIO) { tf->protocol = ATA_PROT_PIO; index = dev->multi_count ? 0 : 4; } else { tf->protocol = ATA_PROT_DMA; index = 8; } tf->command = ata_rw_cmds[index + lba48 + write]; } static const char * xfer_mode_str[] = { "UDMA/16", "UDMA/25", "UDMA/33", "UDMA/44", "UDMA/66", "UDMA/100", "UDMA/133", "UDMA7", "MWDMA0", "MWDMA1", "MWDMA2", "PIO0", "PIO1", "PIO2", "PIO3", "PIO4", }; /** * ata_udma_string - convert UDMA bit offset to string * @mask: mask of bits supported; only highest bit counts. * * Determine string which represents the highest speed * (highest bit in @udma_mask). * * LOCKING: * None. * * RETURNS: * Constant C string representing highest speed listed in * @udma_mask, or the constant C string "". */ static const char *ata_mode_string(unsigned int mask) { int i; for (i = 7; i >= 0; i--) if (mask & (1 << i)) goto out; for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--) if (mask & (1 << i)) goto out; for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--) if (mask & (1 << i)) goto out; return ""; out: return xfer_mode_str[i]; } /** * ata_pio_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_pio_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->dev_select(ap, device); outb(0x55, ioaddr->nsect_addr); outb(0xaa, ioaddr->lbal_addr); outb(0xaa, ioaddr->nsect_addr); outb(0x55, ioaddr->lbal_addr); outb(0x55, ioaddr->nsect_addr); outb(0xaa, ioaddr->lbal_addr); nsect = inb(ioaddr->nsect_addr); lbal = inb(ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_mmio_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * This technique was originally described in * Hale Landis's ATADRVR (www.ata-atapi.com), and * later found its way into the ATA/ATAPI spec. * * Write a pattern to the ATA shadow registers, * and if a device is present, it will respond by * correctly storing and echoing back the * ATA shadow register contents. * * LOCKING: * caller. */ static unsigned int ata_mmio_devchk(struct ata_port *ap, unsigned int device) { struct ata_ioports *ioaddr = &ap->ioaddr; u8 nsect, lbal; ap->ops->dev_select(ap, device); writeb(0x55, (void __iomem *) ioaddr->nsect_addr); writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); writeb(0xaa, (void __iomem *) ioaddr->nsect_addr); writeb(0x55, (void __iomem *) ioaddr->lbal_addr); writeb(0x55, (void __iomem *) ioaddr->nsect_addr); writeb(0xaa, (void __iomem *) ioaddr->lbal_addr); nsect = readb((void __iomem *) ioaddr->nsect_addr); lbal = readb((void __iomem *) ioaddr->lbal_addr); if ((nsect == 0x55) && (lbal == 0xaa)) return 1; /* we found a device */ return 0; /* nothing found */ } /** * ata_devchk - PATA device presence detection * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * Dispatch ATA device presence detection, depending * on whether we are using PIO or MMIO to talk to the * ATA shadow registers. * * LOCKING: * caller. */ static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) { if (ap->flags & ATA_FLAG_MMIO) return ata_mmio_devchk(ap, device); return ata_pio_devchk(ap, device); } /** * ata_dev_classify - determine device type based on ATA-spec signature * @tf: ATA taskfile register set for device to be identified * * Determine from taskfile register contents whether a device is * ATA or ATAPI, as per "Signature and persistence" section * of ATA/PI spec (volume 1, sect 5.14). * * LOCKING: * None. * * RETURNS: * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN * the event of failure. */ unsigned int ata_dev_classify(const struct ata_taskfile *tf) { /* Apple's open source Darwin code hints that some devices only * put a proper signature into the LBA mid/high registers, * So, we only check those. It's sufficient for uniqueness. */ if (((tf->lbam == 0) && (tf->lbah == 0)) || ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) { DPRINTK("found ATA device by sig\n"); return ATA_DEV_ATA; } if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) || ((tf->lbam == 0x69) && (tf->lbah == 0x96))) { DPRINTK("found ATAPI device by sig\n"); return ATA_DEV_ATAPI; } DPRINTK("unknown device\n"); return ATA_DEV_UNKNOWN; } /** * ata_dev_try_classify - Parse returned ATA device signature * @ap: ATA channel to examine * @device: Device to examine (starting at zero) * * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, * an ATA/ATAPI-defined set of values is placed in the ATA * shadow registers, indicating the results of device detection * and diagnostics. * * Select the ATA device, and read the values from the ATA shadow * registers. Then parse according to the Error register value, * and the spec-defined values examined by ata_dev_classify(). * * LOCKING: * caller. */ static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device) { struct ata_device *dev = &ap->device[device]; struct ata_taskfile tf; unsigned int class; u8 err; ap->ops->dev_select(ap, device); memset(&tf, 0, sizeof(tf)); ap->ops->tf_read(ap, &tf); err = tf.feature; dev->class = ATA_DEV_NONE; /* see if device passed diags */ if (err == 1) /* do nothing */ ; else if ((device == 0) && (err == 0x81)) /* do nothing */ ; else return err; /* determine if device if ATA or ATAPI */ class = ata_dev_classify(&tf); if (class == ATA_DEV_UNKNOWN) return err; if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0)) return err; dev->class = class; return err; } /** * ata_dev_id_string - Convert IDENTIFY DEVICE page into string * @id: IDENTIFY DEVICE results we will examine * @s: string into which data is output * @ofs: offset into identify device page * @len: length of string to return. must be an even number. * * The strings in the IDENTIFY DEVICE page are broken up into * 16-bit chunks. Run through the string, and output each * 8-bit chunk linearly, regardless of platform. * * LOCKING: * caller. */ void ata_dev_id_string(const u16 *id, unsigned char *s, unsigned int ofs, unsigned int len) { unsigned int c; while (len > 0) { c = id[ofs] >> 8; *s = c; s++; c = id[ofs] & 0xff; *s = c; s++; ofs++; len -= 2; } } /** * ata_noop_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * This function performs no actual function. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_noop_dev_select (struct ata_port *ap, unsigned int device) { } /** * ata_std_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. Works with both PIO and MMIO. * * May be used as the dev_select() entry in ata_port_operations. * * LOCKING: * caller. */ void ata_std_dev_select (struct ata_port *ap, unsigned int device) { u8 tmp; if (device == 0) tmp = ATA_DEVICE_OBS; else tmp = ATA_DEVICE_OBS | ATA_DEV1; if (ap->flags & ATA_FLAG_MMIO) { writeb(tmp, (void __iomem *) ap->ioaddr.device_addr); } else { outb(tmp, ap->ioaddr.device_addr); } ata_pause(ap); /* needed; also flushes, for mmio */ } /** * ata_dev_select - Select device 0/1 on ATA bus * @ap: ATA channel to manipulate * @device: ATA device (numbered from zero) to select * @wait: non-zero to wait for Status register BSY bit to clear * @can_sleep: non-zero if context allows sleeping * * Use the method defined in the ATA specification to * make either device 0, or device 1, active on the * ATA channel. * * This is a high-level version of ata_std_dev_select(), * which additionally provides the services of inserting * the proper pauses and status polling, where needed. * * LOCKING: * caller. */ void ata_dev_select(struct ata_port *ap, unsigned int device, unsigned int wait, unsigned int can_sleep) { VPRINTK("ENTER, ata%u: device %u, wait %u\n", ap->id, device, wait); if (wait) ata_wait_idle(ap); ap->ops->dev_select(ap, device); if (wait) { if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI) msleep(150); ata_wait_idle(ap); } } /** * ata_dump_id - IDENTIFY DEVICE info debugging output * @dev: Device whose IDENTIFY DEVICE page we will dump * * Dump selected 16-bit words from a detected device's * IDENTIFY PAGE page. * * LOCKING: * caller. */ static inline void ata_dump_id(const struct ata_device *dev) { DPRINTK("49==0x%04x " "53==0x%04x " "63==0x%04x " "64==0x%04x " "75==0x%04x \n", dev->id[49], dev->id[53], dev->id[63], dev->id[64], dev->id[75]); DPRINTK("80==0x%04x " "81==0x%04x " "82==0x%04x " "83==0x%04x " "84==0x%04x \n", dev->id[80], dev->id[81], dev->id[82], dev->id[83], dev->id[84]); DPRINTK("88==0x%04x " "93==0x%04x\n", dev->id[88], dev->id[93]); } /* * Compute the PIO modes available for this device. This is not as * trivial as it seems if we must consider early devices correctly. * * FIXME: pre IDE drive timing (do we care ?). */ static unsigned int ata_pio_modes(const struct ata_device *adev) { u16 modes; /* Usual case. Word 53 indicates word 88 is valid */ if (adev->id[ATA_ID_FIELD_VALID] & (1 << 2)) { modes = adev->id[ATA_ID_PIO_MODES] & 0x03; modes <<= 3; modes |= 0x7; return modes; } /* If word 88 isn't valid then Word 51 holds the PIO timing number for the maximum. Turn it into a mask and return it */ modes = (2 << (adev->id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ; return modes; } /** * ata_dev_identify - obtain IDENTIFY x DEVICE page * @ap: port on which device we wish to probe resides * @device: device bus address, starting at zero * * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE * command, and read back the 512-byte device information page. * The device information page is fed to us via the standard * PIO-IN protocol, but we hand-code it here. (TODO: investigate * using standard PIO-IN paths) * * After reading the device information page, we use several * bits of information from it to initialize data structures * that will be used during the lifetime of the ata_device. * Other data from the info page is used to disqualify certain * older ATA devices we do not wish to support. * * LOCKING: * Inherited from caller. Some functions called by this function * obtain the host_set lock. */ static void ata_dev_identify(struct ata_port *ap, unsigned int device) { struct ata_device *dev = &ap->device[device]; unsigned int major_version; u16 tmp; unsigned long xfer_modes; unsigned int using_edd; DECLARE_COMPLETION(wait); struct ata_queued_cmd *qc; unsigned long flags; int rc; if (!ata_dev_present(dev)) { DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n", ap->id, device); return; } if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET)) using_edd = 0; else using_edd = 1; DPRINTK("ENTER, host %u, dev %u\n", ap->id, device); assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI || dev->class == ATA_DEV_NONE); ata_dev_select(ap, device, 1, 1); /* select device 0/1 */ qc = ata_qc_new_init(ap, dev); BUG_ON(qc == NULL); ata_sg_init_one(qc, dev->id, sizeof(dev->id)); qc->dma_dir = DMA_FROM_DEVICE; qc->tf.protocol = ATA_PROT_PIO; qc->nsect = 1; retry: if (dev->class == ATA_DEV_ATA) { qc->tf.command = ATA_CMD_ID_ATA; DPRINTK("do ATA identify\n"); } else { qc->tf.command = ATA_CMD_ID_ATAPI; DPRINTK("do ATAPI identify\n"); } qc->waiting = &wait; qc->complete_fn = ata_qc_complete_noop; spin_lock_irqsave(&ap->host_set->lock, flags); rc = ata_qc_issue(qc); spin_unlock_irqrestore(&ap->host_set->lock, flags); if (rc) goto err_out; else wait_for_completion(&wait); spin_lock_irqsave(&ap->host_set->lock, flags); ap->ops->tf_read(ap, &qc->tf); spin_unlock_irqrestore(&ap->host_set->lock, flags); if (qc->tf.command & ATA_ERR) { /* * arg! EDD works for all test cases, but seems to return * the ATA signature for some ATAPI devices. Until the * reason for this is found and fixed, we fix up the mess * here. If IDENTIFY DEVICE returns command aborted * (as ATAPI devices do), then we issue an * IDENTIFY PACKET DEVICE. * * ATA software reset (SRST, the default) does not appear * to have this problem. */ if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) { u8 err = qc->tf.feature; if (err & ATA_ABORTED) { dev->class = ATA_DEV_ATAPI; qc->cursg = 0; qc->cursg_ofs = 0; qc->cursect = 0; qc->nsect = 1; goto retry; } } goto err_out; } swap_buf_le16(dev->id, ATA_ID_WORDS); /* print device capabilities */ printk(KERN_DEBUG "ata%u: dev %u cfg " "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n", ap->id, device, dev->id[49], dev->id[82], dev->id[83], dev->id[84], dev->id[85], dev->id[86], dev->id[87], dev->id[88]); /* * common ATA, ATAPI feature tests */ /* we require DMA support (bits 8 of word 49) */ if (!ata_id_has_dma(dev->id)) { printk(KERN_DEBUG "ata%u: no dma\n", ap->id); goto err_out_nosup; } /* quick-n-dirty find max transfer mode; for printk only */ xfer_modes = dev->id[ATA_ID_UDMA_MODES]; if (!xfer_modes) xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA; if (!xfer_modes) xfer_modes = ata_pio_modes(dev); ata_dump_id(dev); /* ATA-specific feature tests */ if (dev->class == ATA_DEV_ATA) { if (!ata_id_is_ata(dev->id)) /* sanity check */ goto err_out_nosup; /* get major version */ tmp = dev->id[ATA_ID_MAJOR_VER]; for (major_version = 14; major_version >= 1; major_version--) if (tmp & (1 << major_version)) break; /* * The exact sequence expected by certain pre-ATA4 drives is: * SRST RESET * IDENTIFY * INITIALIZE DEVICE PARAMETERS * anything else.. * Some drives were very specific about that exact sequence. */ if (major_version < 4 || (!ata_id_has_lba(dev->id))) { ata_dev_init_params(ap, dev); /* current CHS translation info (id[53-58]) might be * changed. reread the identify device info. */ ata_dev_reread_id(ap, dev); } if (ata_id_has_lba(dev->id)) { dev->flags |= ATA_DFLAG_LBA; if (ata_id_has_lba48(dev->id)) { dev->flags |= ATA_DFLAG_LBA48; dev->n_sectors = ata_id_u64(dev->id, 100); } else { dev->n_sectors = ata_id_u32(dev->id, 60); } /* print device info to dmesg */ printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n", ap->id, device, major_version, ata_mode_string(xfer_modes), (unsigned long long)dev->n_sectors, dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA"); } else { /* CHS */ /* Default translation */ dev->cylinders = dev->id[1]; dev->heads = dev->id[3]; dev->sectors = dev->id[6]; dev->n_sectors = dev->cylinders * dev->heads * dev->sectors; if (ata_id_current_chs_valid(dev->id)) { /* Current CHS translation is valid. */ dev->cylinders = dev->id[54]; dev->heads = dev->id[55]; dev->sectors = dev->id[56]; dev->n_sectors = ata_id_u32(dev->id, 57); } /* print device info to dmesg */ printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n", ap->id, device, major_version, ata_mode_string(xfer_modes), (unsigned long long)dev->n_sectors, (int)dev->cylinders, (int)dev->heads, (int)dev->sectors); } ap->host->max_cmd_len = 16; } /* ATAPI-specific feature tests */ else { if (ata_id_is_ata(dev->id)) /* sanity check */ goto err_out_nosup; rc = atapi_cdb_len(dev->id); if ((rc < 12) || (rc > ATAPI_CDB_LEN)) { printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id); goto err_out_nosup; } ap->cdb_len = (unsigned int) rc; ap->host->max_cmd_len = (unsigned char) ap->cdb_len; if (ata_id_cdb_intr(dev->id)) dev->flags |= ATA_DFLAG_CDB_INTR; /* print device info to dmesg */ printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n", ap->id, device, ata_mode_string(xfer_modes)); } DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap)); return; err_out_nosup: printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n", ap->id, device); err_out: dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */ DPRINTK("EXIT, err\n"); } static inline u8 ata_dev_knobble(const struct ata_port *ap) { return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id))); } /** * ata_dev_config - Run device specific handlers and check for * SATA->PATA bridges * @ap: Bus * @i: Device * * LOCKING: */ void ata_dev_config(struct ata_port *ap, unsigned int i) { /* limit bridge transfers to udma5, 200 sectors */ if (ata_dev_knobble(ap)) { printk(KERN_INFO "ata%u(%u): applying bridge limits\n", ap->id, ap->device->devno); ap->udma_mask &= ATA_UDMA5; ap->host->max_sectors = ATA_MAX_SECTORS; ap->host->hostt->max_sectors = ATA_MAX_SECTORS; ap->device->flags |= ATA_DFLAG_LOCK_SECTORS; } if (ap->ops->dev_config) ap->ops->dev_config(ap, &ap->device[i]); } /** * ata_bus_probe - Reset and probe ATA bus * @ap: Bus to probe * * Master ATA bus probing function. Initiates a hardware-dependent * bus reset, then attempts to identify any devices found on * the bus. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Zero on success, non-zero on error. */ static int ata_bus_probe(struct ata_port *ap) { unsigned int i, found = 0; ap->ops->phy_reset(ap); if (ap->flags & ATA_FLAG_PORT_DISABLED) goto err_out; for (i = 0; i < ATA_MAX_DEVICES; i++) { ata_dev_identify(ap, i); if (ata_dev_present(&ap->device[i])) { found = 1; ata_dev_config(ap,i); } } if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED)) goto err_out_disable; ata_set_mode(ap); if (ap->flags & ATA_FLAG_PORT_DISABLED) goto err_out_disable; return 0; err_out_disable: ap->ops->port_disable(ap); err_out: return -1; } /** * ata_port_probe - Mark port as enabled * @ap: Port for which we indicate enablement * * Modify @ap data structure such that the system * thinks that the entire port is enabled. * * LOCKING: host_set lock, or some other form of * serialization. */ void ata_port_probe(struct ata_port *ap) { ap->flags &= ~ATA_FLAG_PORT_DISABLED; } /** * __sata_phy_reset - Wake/reset a low-level SATA PHY * @ap: SATA port associated with target SATA PHY. * * This function issues commands to standard SATA Sxxx * PHY registers, to wake up the phy (and device), and * clear any reset condition. * * LOCKING: * PCI/etc. bus probe sem. * */ void __sata_phy_reset(struct ata_port *ap) { u32 sstatus; unsigned long timeout = jiffies + (HZ * 5); if (ap->flags & ATA_FLAG_SATA_RESET) { /* issue phy wake/reset */ scr_write_flush(ap, SCR_CONTROL, 0x301); /* Couldn't find anything in SATA I/II specs, but * AHCI-1.1 10.4.2 says at least 1 ms. */ mdelay(1); } scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */ /* wait for phy to become ready, if necessary */ do { msleep(200); sstatus = scr_read(ap, SCR_STATUS); if ((sstatus & 0xf) != 1) break; } while (time_before(jiffies, timeout)); /* TODO: phy layer with polling, timeouts, etc. */ if (sata_dev_present(ap)) ata_port_probe(ap); else { sstatus = scr_read(ap, SCR_STATUS); printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n", ap->id, sstatus); ata_port_disable(ap); } if (ap->flags & ATA_FLAG_PORT_DISABLED) return; if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) { ata_port_disable(ap); return; } ap->cbl = ATA_CBL_SATA; } /** * sata_phy_reset - Reset SATA bus. * @ap: SATA port associated with target SATA PHY. * * This function resets the SATA bus, and then probes * the bus for devices. * * LOCKING: * PCI/etc. bus probe sem. * */ void sata_phy_reset(struct ata_port *ap) { __sata_phy_reset(ap); if (ap->flags & ATA_FLAG_PORT_DISABLED) return; ata_bus_reset(ap); } /** * ata_port_disable - Disable port. * @ap: Port to be disabled. * * Modify @ap data structure such that the system * thinks that the entire port is disabled, and should * never attempt to probe or communicate with devices * on this port. * * LOCKING: host_set lock, or some other form of * serialization. */ void ata_port_disable(struct ata_port *ap) { ap->device[0].class = ATA_DEV_NONE; ap->device[1].class = ATA_DEV_NONE; ap->flags |= ATA_FLAG_PORT_DISABLED; } /* * This mode timing computation functionality is ported over from * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik */ /* * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds). * These were taken from ATA/ATAPI-6 standard, rev 0a, except * for PIO 5, which is a nonstandard extension and UDMA6, which * is currently supported only by Maxtor drives. */ static const struct ata_timing ata_timing[] = { { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 }, { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 }, { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 }, { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 }, { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 }, { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 }, { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 }, /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */ { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 }, { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 }, { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 }, { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 }, { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 }, { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 }, /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */ { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 }, { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 }, { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 }, { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 }, { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 }, /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */ { 0xFF } }; #define ENOUGH(v,unit) (((v)-1)/(unit)+1) #define EZ(v,unit) ((v)?ENOUGH(v,unit):0) static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT) { q->setup = EZ(t->setup * 1000, T); q->act8b = EZ(t->act8b * 1000, T); q->rec8b = EZ(t->rec8b * 1000, T); q->cyc8b = EZ(t->cyc8b * 1000, T); q->active = EZ(t->active * 1000, T); q->recover = EZ(t->recover * 1000, T); q->cycle = EZ(t->cycle * 1000, T); q->udma = EZ(t->udma * 1000, UT); } void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b, struct ata_timing *m, unsigned int what) { if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup); if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b); if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b); if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b); if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active); if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover); if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle); if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma); } static const struct ata_timing* ata_timing_find_mode(unsigned short speed) { const struct ata_timing *t; for (t = ata_timing; t->mode != speed; t++) if (t->mode == 0xFF) return NULL; return t; } int ata_timing_compute(struct ata_device *adev, unsigned short speed, struct ata_timing *t, int T, int UT) { const struct ata_timing *s; struct ata_timing p; /* * Find the mode. */ if (!(s = ata_timing_find_mode(speed))) return -EINVAL; /* * If the drive is an EIDE drive, it can tell us it needs extended * PIO/MW_DMA cycle timing. */ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */ memset(&p, 0, sizeof(p)); if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) { if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO]; else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY]; } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) { p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN]; } ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B); } /* * Convert the timing to bus clock counts. */ ata_timing_quantize(s, t, T, UT); /* * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T * and some other commands. We have to ensure that the DMA cycle timing is * slower/equal than the fastest PIO timing. */ if (speed > XFER_PIO_4) { ata_timing_compute(adev, adev->pio_mode, &p, T, UT); ata_timing_merge(&p, t, t, ATA_TIMING_ALL); } /* * Lenghten active & recovery time so that cycle time is correct. */ if (t->act8b + t->rec8b < t->cyc8b) { t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2; t->rec8b = t->cyc8b - t->act8b; } if (t->active + t->recover < t->cycle) { t->active += (t->cycle - (t->active + t->recover)) / 2; t->recover = t->cycle - t->active; } return 0; } static const struct { unsigned int shift; u8 base; } xfer_mode_classes[] = { { ATA_SHIFT_UDMA, XFER_UDMA_0 }, { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 }, { ATA_SHIFT_PIO, XFER_PIO_0 }, }; static inline u8 base_from_shift(unsigned int shift) { int i; for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) if (xfer_mode_classes[i].shift == shift) return xfer_mode_classes[i].base; return 0xff; } static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev) { int ofs, idx; u8 base; if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED)) return; if (dev->xfer_shift == ATA_SHIFT_PIO) dev->flags |= ATA_DFLAG_PIO; ata_dev_set_xfermode(ap, dev); base = base_from_shift(dev->xfer_shift); ofs = dev->xfer_mode - base; idx = ofs + dev->xfer_shift; WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str)); DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n", idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs); printk(KERN_INFO "ata%u: dev %u configured for %s\n", ap->id, dev->devno, xfer_mode_str[idx]); } static int ata_host_set_pio(struct ata_port *ap) { unsigned int mask; int x, i; u8 base, xfer_mode; mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO); x = fgb(mask); if (x < 0) { printk(KERN_WARNING "ata%u: no PIO support\n", ap->id); return -1; } base = base_from_shift(ATA_SHIFT_PIO); xfer_mode = base + x; DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n", (int)base, (int)xfer_mode, mask, x); for (i = 0; i < ATA_MAX_DEVICES; i++) { struct ata_device *dev = &ap->device[i]; if (ata_dev_present(dev)) { dev->pio_mode = xfer_mode; dev->xfer_mode = xfer_mode; dev->xfer_shift = ATA_SHIFT_PIO; if (ap->ops->set_piomode) ap->ops->set_piomode(ap, dev); } } return 0; } static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode, unsigned int xfer_shift) { int i; for (i = 0; i < ATA_MAX_DEVICES; i++) { struct ata_device *dev = &ap->device[i]; if (ata_dev_present(dev)) { dev->dma_mode = xfer_mode; dev->xfer_mode = xfer_mode; dev->xfer_shift = xfer_shift; if (ap->ops->set_dmamode) ap->ops->set_dmamode(ap, dev); } } } /** * ata_set_mode - Program timings and issue SET FEATURES - XFER * @ap: port on which timings will be programmed * * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). * * LOCKING: * PCI/etc. bus probe sem. * */ static void ata_set_mode(struct ata_port *ap) { unsigned int xfer_shift; u8 xfer_mode; int rc; /* step 1: always set host PIO timings */ rc = ata_host_set_pio(ap); if (rc) goto err_out; /* step 2: choose the best data xfer mode */ xfer_mode = xfer_shift = 0; rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift); if (rc) goto err_out; /* step 3: if that xfer mode isn't PIO, set host DMA timings */ if (xfer_shift != ATA_SHIFT_PIO) ata_host_set_dma(ap, xfer_mode, xfer_shift); /* step 4: update devices' xfer mode */ ata_dev_set_mode(ap, &ap->device[0]); ata_dev_set_mode(ap, &ap->device[1]); if (ap->flags & ATA_FLAG_PORT_DISABLED) return; if (ap->ops->post_set_mode) ap->ops->post_set_mode(ap); return; err_out: ata_port_disable(ap); } /** * ata_busy_sleep - sleep until BSY clears, or timeout * @ap: port containing status register to be polled * @tmout_pat: impatience timeout * @tmout: overall timeout * * Sleep until ATA Status register bit BSY clears, * or a timeout occurs. * * LOCKING: None. * */ static unsigned int ata_busy_sleep (struct ata_port *ap, unsigned long tmout_pat, unsigned long tmout) { unsigned long timer_start, timeout; u8 status; status = ata_busy_wait(ap, ATA_BUSY, 300); timer_start = jiffies; timeout = timer_start + tmout_pat; while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { msleep(50); status = ata_busy_wait(ap, ATA_BUSY, 3); } if (status & ATA_BUSY) printk(KERN_WARNING "ata%u is slow to respond, " "please be patient\n", ap->id); timeout = timer_start + tmout; while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) { msleep(50); status = ata_chk_status(ap); } if (status & ATA_BUSY) { printk(KERN_ERR "ata%u failed to respond (%lu secs)\n", ap->id, tmout / HZ); return 1; } return 0; } static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int dev0 = devmask & (1 << 0); unsigned int dev1 = devmask & (1 << 1); unsigned long timeout; /* if device 0 was found in ata_devchk, wait for its * BSY bit to clear */ if (dev0) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* if device 1 was found in ata_devchk, wait for * register access, then wait for BSY to clear */ timeout = jiffies + ATA_TMOUT_BOOT; while (dev1) { u8 nsect, lbal; ap->ops->dev_select(ap, 1); if (ap->flags & ATA_FLAG_MMIO) { nsect = readb((void __iomem *) ioaddr->nsect_addr); lbal = readb((void __iomem *) ioaddr->lbal_addr); } else { nsect = inb(ioaddr->nsect_addr); lbal = inb(ioaddr->lbal_addr); } if ((nsect == 1) && (lbal == 1)) break; if (time_after(jiffies, timeout)) { dev1 = 0; break; } msleep(50); /* give drive a breather */ } if (dev1) ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); /* is all this really necessary? */ ap->ops->dev_select(ap, 0); if (dev1) ap->ops->dev_select(ap, 1); if (dev0) ap->ops->dev_select(ap, 0); } /** * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command. * @ap: Port to reset and probe * * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and * probe the bus. Not often used these days. * * LOCKING: * PCI/etc. bus probe sem. * Obtains host_set lock. * */ static unsigned int ata_bus_edd(struct ata_port *ap) { struct ata_taskfile tf; unsigned long flags; /* set up execute-device-diag (bus reset) taskfile */ /* also, take interrupts to a known state (disabled) */ DPRINTK("execute-device-diag\n"); ata_tf_init(ap, &tf, 0); tf.ctl |= ATA_NIEN; tf.command = ATA_CMD_EDD; tf.protocol = ATA_PROT_NODATA; /* do bus reset */ spin_lock_irqsave(&ap->host_set->lock, flags); ata_tf_to_host(ap, &tf); spin_unlock_irqrestore(&ap->host_set->lock, flags); /* spec says at least 2ms. but who knows with those * crazy ATAPI devices... */ msleep(150); return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT); } static unsigned int ata_bus_softreset(struct ata_port *ap, unsigned int devmask) { struct ata_ioports *ioaddr = &ap->ioaddr; DPRINTK("ata%u: bus reset via SRST\n", ap->id); /* software reset. causes dev0 to be selected */ if (ap->flags & ATA_FLAG_MMIO) { writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr); udelay(20); /* FIXME: flush */ writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); } else { outb(ap->ctl, ioaddr->ctl_addr); udelay(10); outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr); udelay(10); outb(ap->ctl, ioaddr->ctl_addr); } /* spec mandates ">= 2ms" before checking status. * We wait 150ms, because that was the magic delay used for * ATAPI devices in Hale Landis's ATADRVR, for the period of time * between when the ATA command register is written, and then * status is checked. Because waiting for "a while" before * checking status is fine, post SRST, we perform this magic * delay here as well. */ msleep(150); ata_bus_post_reset(ap, devmask); return 0; } /** * ata_bus_reset - reset host port and associated ATA channel * @ap: port to reset * * This is typically the first time we actually start issuing * commands to the ATA channel. We wait for BSY to clear, then * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its * result. Determine what devices, if any, are on the channel * by looking at the device 0/1 error register. Look at the signature * stored in each device's taskfile registers, to determine if * the device is ATA or ATAPI. * * LOCKING: * PCI/etc. bus probe sem. * Obtains host_set lock. * * SIDE EFFECTS: * Sets ATA_FLAG_PORT_DISABLED if bus reset fails. */ void ata_bus_reset(struct ata_port *ap) { struct ata_ioports *ioaddr = &ap->ioaddr; unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; u8 err; unsigned int dev0, dev1 = 0, rc = 0, devmask = 0; DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no); /* determine if device 0/1 are present */ if (ap->flags & ATA_FLAG_SATA_RESET) dev0 = 1; else { dev0 = ata_devchk(ap, 0); if (slave_possible) dev1 = ata_devchk(ap, 1); } if (dev0) devmask |= (1 << 0); if (dev1) devmask |= (1 << 1); /* select device 0 again */ ap->ops->dev_select(ap, 0); /* issue bus reset */ if (ap->flags & ATA_FLAG_SRST) rc = ata_bus_softreset(ap, devmask); else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) { /* set up device control */ if (ap->flags & ATA_FLAG_MMIO) writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); else outb(ap->ctl, ioaddr->ctl_addr); rc = ata_bus_edd(ap); } if (rc) goto err_out; /* * determine by signature whether we have ATA or ATAPI devices */ err = ata_dev_try_classify(ap, 0); if ((slave_possible) && (err != 0x81)) ata_dev_try_classify(ap, 1); /* re-enable interrupts */ if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */ ata_irq_on(ap); /* is double-select really necessary? */ if (ap->device[1].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 1); if (ap->device[0].class != ATA_DEV_NONE) ap->ops->dev_select(ap, 0); /* if no devices were detected, disable this port */ if ((ap->device[0].class == ATA_DEV_NONE) && (ap->device[1].class == ATA_DEV_NONE)) goto err_out; if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) { /* set up device control for ATA_FLAG_SATA_RESET */ if (ap->flags & ATA_FLAG_MMIO) writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr); else outb(ap->ctl, ioaddr->ctl_addr); } DPRINTK("EXIT\n"); return; err_out: printk(KERN_ERR "ata%u: disabling port\n", ap->id); ap->ops->port_disable(ap); DPRINTK("EXIT\n"); } static void ata_pr_blacklisted(const struct ata_port *ap, const struct ata_device *dev) { printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n", ap->id, dev->devno); } static const char * ata_dma_blacklist [] = { "WDC AC11000H", "WDC AC22100H", "WDC AC32500H", "WDC AC33100H", "WDC AC31600H", "WDC AC32100H", "WDC AC23200L", "Compaq CRD-8241B", "CRD-8400B", "CRD-8480B", "CRD-8482B", "CRD-84", "SanDisk SDP3B", "SanDisk SDP3B-64", "SANYO CD-ROM CRD", "HITACHI CDR-8", "HITACHI CDR-8335", "HITACHI CDR-8435", "Toshiba CD-ROM XM-6202B", "TOSHIBA CD-ROM XM-1702BC", "CD-532E-A", "E-IDE CD-ROM CR-840", "CD-ROM Drive/F5A", "WPI CDD-820", "SAMSUNG CD-ROM SC-148C", "SAMSUNG CD-ROM SC", "SanDisk SDP3B-64", "ATAPI CD-ROM DRIVE 40X MAXIMUM", "_NEC DV5800A", }; static int ata_dma_blacklisted(const struct ata_device *dev) { unsigned char model_num[40]; char *s; unsigned int len; int i; ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num)); s = &model_num[0]; len = strnlen(s, sizeof(model_num)); /* ATAPI specifies that empty space is blank-filled; remove blanks */ while ((len > 0) && (s[len - 1] == ' ')) { len--; s[len] = 0; } for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++) if (!strncmp(ata_dma_blacklist[i], s, len)) return 1; return 0; } static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift) { const struct ata_device *master, *slave; unsigned int mask; master = &ap->device[0]; slave = &ap->device[1]; assert (ata_dev_present(master) || ata_dev_present(slave)); if (shift == ATA_SHIFT_UDMA) { mask = ap->udma_mask; if (ata_dev_present(master)) { mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff); if (ata_dma_blacklisted(master)) { mask = 0; ata_pr_blacklisted(ap, master); } } if (ata_dev_present(slave)) { mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff); if (ata_dma_blacklisted(slave)) { mask = 0; ata_pr_blacklisted(ap, slave); } } } else if (shift == ATA_SHIFT_MWDMA) { mask = ap->mwdma_mask; if (ata_dev_present(master)) { mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07); if (ata_dma_blacklisted(master)) { mask = 0; ata_pr_blacklisted(ap, master); } } if (ata_dev_present(slave)) { mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07); if (ata_dma_blacklisted(slave)) { mask = 0; ata_pr_blacklisted(ap, slave); } } } else if (shift == ATA_SHIFT_PIO) { mask = ap->pio_mask; if (ata_dev_present(master)) { /* spec doesn't return explicit support for * PIO0-2, so we fake it */ u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03; tmp_mode <<= 3; tmp_mode |= 0x7; mask &= tmp_mode; } if (ata_dev_present(slave)) { /* spec doesn't return explicit support for * PIO0-2, so we fake it */ u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03; tmp_mode <<= 3; tmp_mode |= 0x7; mask &= tmp_mode; } } else { mask = 0xffffffff; /* shut up compiler warning */ BUG(); } return mask; } /* find greatest bit */ static int fgb(u32 bitmap) { unsigned int i; int x = -1; for (i = 0; i < 32; i++) if (bitmap & (1 << i)) x = i; return x; } /** * ata_choose_xfer_mode - attempt to find best transfer mode * @ap: Port for which an xfer mode will be selected * @xfer_mode_out: (output) SET FEATURES - XFER MODE code * @xfer_shift_out: (output) bit shift that selects this mode * * Based on host and device capabilities, determine the * maximum transfer mode that is amenable to all. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Zero on success, negative on error. */ static int ata_choose_xfer_mode(const struct ata_port *ap, u8 *xfer_mode_out, unsigned int *xfer_shift_out) { unsigned int mask, shift; int x, i; for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) { shift = xfer_mode_classes[i].shift; mask = ata_get_mode_mask(ap, shift); x = fgb(mask); if (x >= 0) { *xfer_mode_out = xfer_mode_classes[i].base + x; *xfer_shift_out = shift; return 0; } } return -1; } /** * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command * @ap: Port associated with device @dev * @dev: Device to which command will be sent * * Issue SET FEATURES - XFER MODE command to device @dev * on port @ap. * * LOCKING: * PCI/etc. bus probe sem. */ static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev) { DECLARE_COMPLETION(wait); struct ata_queued_cmd *qc; int rc; unsigned long flags; /* set up set-features taskfile */ DPRINTK("set features - xfer mode\n"); qc = ata_qc_new_init(ap, dev); BUG_ON(qc == NULL); qc->tf.command = ATA_CMD_SET_FEATURES; qc->tf.feature = SETFEATURES_XFER; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; qc->tf.protocol = ATA_PROT_NODATA; qc->tf.nsect = dev->xfer_mode; qc->waiting = &wait; qc->complete_fn = ata_qc_complete_noop; spin_lock_irqsave(&ap->host_set->lock, flags); rc = ata_qc_issue(qc); spin_unlock_irqrestore(&ap->host_set->lock, flags); if (rc) ata_port_disable(ap); else wait_for_completion(&wait); DPRINTK("EXIT\n"); } /** * ata_dev_reread_id - Reread the device identify device info * @ap: port where the device is * @dev: device to reread the identify device info * * LOCKING: */ static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev) { DECLARE_COMPLETION(wait); struct ata_queued_cmd *qc; unsigned long flags; int rc; qc = ata_qc_new_init(ap, dev); BUG_ON(qc == NULL); ata_sg_init_one(qc, dev->id, sizeof(dev->id)); qc->dma_dir = DMA_FROM_DEVICE; if (dev->class == ATA_DEV_ATA) { qc->tf.command = ATA_CMD_ID_ATA; DPRINTK("do ATA identify\n"); } else { qc->tf.command = ATA_CMD_ID_ATAPI; DPRINTK("do ATAPI identify\n"); } qc->tf.flags |= ATA_TFLAG_DEVICE; qc->tf.protocol = ATA_PROT_PIO; qc->nsect = 1; qc->waiting = &wait; qc->complete_fn = ata_qc_complete_noop; spin_lock_irqsave(&ap->host_set->lock, flags); rc = ata_qc_issue(qc); spin_unlock_irqrestore(&ap->host_set->lock, flags); if (rc) goto err_out; wait_for_completion(&wait); swap_buf_le16(dev->id, ATA_ID_WORDS); ata_dump_id(dev); DPRINTK("EXIT\n"); return; err_out: ata_port_disable(ap); } /** * ata_dev_init_params - Issue INIT DEV PARAMS command * @ap: Port associated with device @dev * @dev: Device to which command will be sent * * LOCKING: */ static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev) { DECLARE_COMPLETION(wait); struct ata_queued_cmd *qc; int rc; unsigned long flags; u16 sectors = dev->id[6]; u16 heads = dev->id[3]; /* Number of sectors per track 1-255. Number of heads 1-16 */ if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16) return; /* set up init dev params taskfile */ DPRINTK("init dev params \n"); qc = ata_qc_new_init(ap, dev); BUG_ON(qc == NULL); qc->tf.command = ATA_CMD_INIT_DEV_PARAMS; qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE; qc->tf.protocol = ATA_PROT_NODATA; qc->tf.nsect = sectors; qc->tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */ qc->waiting = &wait; qc->complete_fn = ata_qc_complete_noop; spin_lock_irqsave(&ap->host_set->lock, flags); rc = ata_qc_issue(qc); spin_unlock_irqrestore(&ap->host_set->lock, flags); if (rc) ata_port_disable(ap); else wait_for_completion(&wait); DPRINTK("EXIT\n"); } /** * ata_sg_clean - Unmap DMA memory associated with command * @qc: Command containing DMA memory to be released * * Unmap all mapped DMA memory associated with this command. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_sg_clean(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; int dir = qc->dma_dir; void *pad_buf = NULL; assert(qc->flags & ATA_QCFLAG_DMAMAP); assert(sg != NULL); if (qc->flags & ATA_QCFLAG_SINGLE) assert(qc->n_elem == 1); DPRINTK("unmapping %u sg elements\n", qc->n_elem); /* if we padded the buffer out to 32-bit bound, and data * xfer direction is from-device, we must copy from the * pad buffer back into the supplied buffer */ if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE)) pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); if (qc->flags & ATA_QCFLAG_SG) { dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir); /* restore last sg */ sg[qc->orig_n_elem - 1].length += qc->pad_len; if (pad_buf) { struct scatterlist *psg = &qc->pad_sgent; void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(addr + psg->offset, pad_buf, qc->pad_len); kunmap_atomic(psg->page, KM_IRQ0); } } else { dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]), sg_dma_len(&sg[0]), dir); /* restore sg */ sg->length += qc->pad_len; if (pad_buf) memcpy(qc->buf_virt + sg->length - qc->pad_len, pad_buf, qc->pad_len); } qc->flags &= ~ATA_QCFLAG_DMAMAP; qc->__sg = NULL; } /** * ata_fill_sg - Fill PCI IDE PRD table * @qc: Metadata associated with taskfile to be transferred * * Fill PCI IDE PRD (scatter-gather) table with segments * associated with the current disk command. * * LOCKING: * spin_lock_irqsave(host_set lock) * */ static void ata_fill_sg(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg; unsigned int idx; assert(qc->__sg != NULL); assert(qc->n_elem > 0); idx = 0; ata_for_each_sg(sg, qc) { u32 addr, offset; u32 sg_len, len; /* determine if physical DMA addr spans 64K boundary. * Note h/w doesn't support 64-bit, so we unconditionally * truncate dma_addr_t to u32. */ addr = (u32) sg_dma_address(sg); sg_len = sg_dma_len(sg); while (sg_len) { offset = addr & 0xffff; len = sg_len; if ((offset + sg_len) > 0x10000) len = 0x10000 - offset; ap->prd[idx].addr = cpu_to_le32(addr); ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff); VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len); idx++; sg_len -= len; addr += len; } } if (idx) ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); } /** * ata_check_atapi_dma - Check whether ATAPI DMA can be supported * @qc: Metadata associated with taskfile to check * * Allow low-level driver to filter ATA PACKET commands, returning * a status indicating whether or not it is OK to use DMA for the * supplied PACKET command. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: 0 when ATAPI DMA can be used * nonzero otherwise */ int ata_check_atapi_dma(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int rc = 0; /* Assume ATAPI DMA is OK by default */ if (ap->ops->check_atapi_dma) rc = ap->ops->check_atapi_dma(qc); return rc; } /** * ata_qc_prep - Prepare taskfile for submission * @qc: Metadata associated with taskfile to be prepared * * Prepare ATA taskfile for submission. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_prep(struct ata_queued_cmd *qc) { if (!(qc->flags & ATA_QCFLAG_DMAMAP)) return; ata_fill_sg(qc); } /** * ata_sg_init_one - Associate command with memory buffer * @qc: Command to be associated * @buf: Memory buffer * @buflen: Length of memory buffer, in bytes. * * Initialize the data-related elements of queued_cmd @qc * to point to a single memory buffer, @buf of byte length @buflen. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen) { struct scatterlist *sg; qc->flags |= ATA_QCFLAG_SINGLE; memset(&qc->sgent, 0, sizeof(qc->sgent)); qc->__sg = &qc->sgent; qc->n_elem = 1; qc->orig_n_elem = 1; qc->buf_virt = buf; sg = qc->__sg; sg_init_one(sg, buf, buflen); } /** * ata_sg_init - Associate command with scatter-gather table. * @qc: Command to be associated * @sg: Scatter-gather table. * @n_elem: Number of elements in s/g table. * * Initialize the data-related elements of queued_cmd @qc * to point to a scatter-gather table @sg, containing @n_elem * elements. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg, unsigned int n_elem) { qc->flags |= ATA_QCFLAG_SG; qc->__sg = sg; qc->n_elem = n_elem; qc->orig_n_elem = n_elem; } /** * ata_sg_setup_one - DMA-map the memory buffer associated with a command. * @qc: Command with memory buffer to be mapped. * * DMA-map the memory buffer associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. */ static int ata_sg_setup_one(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; int dir = qc->dma_dir; struct scatterlist *sg = qc->__sg; dma_addr_t dma_address; /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = sg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; assert(qc->dev->class == ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); if (qc->tf.flags & ATA_TFLAG_WRITE) memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len, qc->pad_len); sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim sg */ sg->length -= qc->pad_len; DPRINTK("padding done, sg->length=%u pad_len=%u\n", sg->length, qc->pad_len); } dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt, sg->length, dir); if (dma_mapping_error(dma_address)) { /* restore sg */ sg->length += qc->pad_len; return -1; } sg_dma_address(sg) = dma_address; sg_dma_len(sg) = sg->length; DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg), qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); return 0; } /** * ata_sg_setup - DMA-map the scatter-gather table associated with a command. * @qc: Command with scatter-gather table to be mapped. * * DMA-map the scatter-gather table associated with queued_cmd @qc. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. * */ static int ata_sg_setup(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct scatterlist *sg = qc->__sg; struct scatterlist *lsg = &sg[qc->n_elem - 1]; int n_elem, dir; VPRINTK("ENTER, ata%u\n", ap->id); assert(qc->flags & ATA_QCFLAG_SG); /* we must lengthen transfers to end on a 32-bit boundary */ qc->pad_len = lsg->length & 3; if (qc->pad_len) { void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ); struct scatterlist *psg = &qc->pad_sgent; unsigned int offset; assert(qc->dev->class == ATA_DEV_ATAPI); memset(pad_buf, 0, ATA_DMA_PAD_SZ); /* * psg->page/offset are used to copy to-be-written * data in this function or read data in ata_sg_clean. */ offset = lsg->offset + lsg->length - qc->pad_len; psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT); psg->offset = offset_in_page(offset); if (qc->tf.flags & ATA_TFLAG_WRITE) { void *addr = kmap_atomic(psg->page, KM_IRQ0); memcpy(pad_buf, addr + psg->offset, qc->pad_len); kunmap_atomic(psg->page, KM_IRQ0); } sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ); sg_dma_len(psg) = ATA_DMA_PAD_SZ; /* trim last sg */ lsg->length -= qc->pad_len; DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n", qc->n_elem - 1, lsg->length, qc->pad_len); } dir = qc->dma_dir; n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir); if (n_elem < 1) { /* restore last sg */ lsg->length += qc->pad_len; return -1; } DPRINTK("%d sg elements mapped\n", n_elem); qc->n_elem = n_elem; return 0; } /** * ata_poll_qc_complete - turn irq back on and finish qc * @qc: Command to complete * @err_mask: ATA status register content * * LOCKING: * None. (grabs host lock) */ void ata_poll_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask) { struct ata_port *ap = qc->ap; unsigned long flags; spin_lock_irqsave(&ap->host_set->lock, flags); ata_irq_on(ap); ata_qc_complete(qc, err_mask); spin_unlock_irqrestore(&ap->host_set->lock, flags); } /** * ata_pio_poll - * @ap: the target ata_port * * LOCKING: * None. (executing in kernel thread context) * * RETURNS: * timeout value to use */ static unsigned long ata_pio_poll(struct ata_port *ap) { u8 status; unsigned int poll_state = HSM_ST_UNKNOWN; unsigned int reg_state = HSM_ST_UNKNOWN; const unsigned int tmout_state = HSM_ST_TMOUT; switch (ap->hsm_task_state) { case HSM_ST: case HSM_ST_POLL: poll_state = HSM_ST_POLL; reg_state = HSM_ST; break; case HSM_ST_LAST: case HSM_ST_LAST_POLL: poll_state = HSM_ST_LAST_POLL; reg_state = HSM_ST_LAST; break; default: BUG(); break; } status = ata_chk_status(ap); if (status & ATA_BUSY) { if (time_after(jiffies, ap->pio_task_timeout)) { ap->hsm_task_state = tmout_state; return 0; } ap->hsm_task_state = poll_state; return ATA_SHORT_PAUSE; } ap->hsm_task_state = reg_state; return 0; } /** * ata_pio_complete - check if drive is busy or idle * @ap: the target ata_port * * LOCKING: * None. (executing in kernel thread context) * * RETURNS: * Non-zero if qc completed, zero otherwise. */ static int ata_pio_complete (struct ata_port *ap) { struct ata_queued_cmd *qc; u8 drv_stat; /* * This is purely heuristic. This is a fast path. Sometimes when * we enter, BSY will be cleared in a chk-status or two. If not, * the drive is probably seeking or something. Snooze for a couple * msecs, then chk-status again. If still busy, fall back to * HSM_ST_POLL state. */ drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); if (drv_stat & (ATA_BUSY | ATA_DRQ)) { msleep(2); drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10); if (drv_stat & (ATA_BUSY | ATA_DRQ)) { ap->hsm_task_state = HSM_ST_LAST_POLL; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; return 0; } } drv_stat = ata_wait_idle(ap); if (!ata_ok(drv_stat)) { ap->hsm_task_state = HSM_ST_ERR; return 0; } qc = ata_qc_from_tag(ap, ap->active_tag); assert(qc != NULL); ap->hsm_task_state = HSM_ST_IDLE; ata_poll_qc_complete(qc, 0); /* another command may start at this point */ return 1; } /** * swap_buf_le16 - swap halves of 16-words in place * @buf: Buffer to swap * @buf_words: Number of 16-bit words in buffer. * * Swap halves of 16-bit words if needed to convert from * little-endian byte order to native cpu byte order, or * vice-versa. * * LOCKING: * Inherited from caller. */ void swap_buf_le16(u16 *buf, unsigned int buf_words) { #ifdef __BIG_ENDIAN unsigned int i; for (i = 0; i < buf_words; i++) buf[i] = le16_to_cpu(buf[i]); #endif /* __BIG_ENDIAN */ } /** * ata_mmio_data_xfer - Transfer data by MMIO * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by MMIO. * * LOCKING: * Inherited from caller. */ static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int write_data) { unsigned int i; unsigned int words = buflen >> 1; u16 *buf16 = (u16 *) buf; void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr; /* Transfer multiple of 2 bytes */ if (write_data) { for (i = 0; i < words; i++) writew(le16_to_cpu(buf16[i]), mmio); } else { for (i = 0; i < words; i++) buf16[i] = cpu_to_le16(readw(mmio)); } /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { u16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (write_data) { memcpy(align_buf, trailing_buf, 1); writew(le16_to_cpu(align_buf[0]), mmio); } else { align_buf[0] = cpu_to_le16(readw(mmio)); memcpy(trailing_buf, align_buf, 1); } } } /** * ata_pio_data_xfer - Transfer data by PIO * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @write_data: read/write * * Transfer data from/to the device data register by PIO. * * LOCKING: * Inherited from caller. */ static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int write_data) { unsigned int words = buflen >> 1; /* Transfer multiple of 2 bytes */ if (write_data) outsw(ap->ioaddr.data_addr, buf, words); else insw(ap->ioaddr.data_addr, buf, words); /* Transfer trailing 1 byte, if any. */ if (unlikely(buflen & 0x01)) { u16 align_buf[1] = { 0 }; unsigned char *trailing_buf = buf + buflen - 1; if (write_data) { memcpy(align_buf, trailing_buf, 1); outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr); } else { align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr)); memcpy(trailing_buf, align_buf, 1); } } } /** * ata_data_xfer - Transfer data from/to the data register. * @ap: port to read/write * @buf: data buffer * @buflen: buffer length * @do_write: read/write * * Transfer data from/to the device data register. * * LOCKING: * Inherited from caller. */ static void ata_data_xfer(struct ata_port *ap, unsigned char *buf, unsigned int buflen, int do_write) { if (ap->flags & ATA_FLAG_MMIO) ata_mmio_data_xfer(ap, buf, buflen, do_write); else ata_pio_data_xfer(ap, buf, buflen, do_write); } /** * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data. * @qc: Command on going * * Transfer ATA_SECT_SIZE of data from/to the ATA device. * * LOCKING: * Inherited from caller. */ static void ata_pio_sector(struct ata_queued_cmd *qc) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned int offset; unsigned char *buf; if (qc->cursect == (qc->nsect - 1)) ap->hsm_task_state = HSM_ST_LAST; page = sg[qc->cursg].page; offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write); } qc->cursect++; qc->cursg_ofs++; if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) { qc->cursg++; qc->cursg_ofs = 0; } } /** * atapi_send_cdb - Write CDB bytes to hardware * @ap: Port to which ATAPI device is attached. * @qc: Taskfile currently active * * When device has indicated its readiness to accept * a CDB, this function is called. Send the CDB. * * LOCKING: * caller. */ static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) { /* send SCSI cdb */ DPRINTK("send cdb\n"); assert(ap->cdb_len >= 12); ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1); ata_altstatus(ap); /* flush */ switch (qc->tf.protocol) { case ATA_PROT_ATAPI: ap->hsm_task_state = HSM_ST; break; case ATA_PROT_ATAPI_NODATA: ap->hsm_task_state = HSM_ST_LAST; break; case ATA_PROT_ATAPI_DMA: ap->hsm_task_state = HSM_ST_LAST; /* initiate bmdma */ ap->ops->bmdma_start(qc); break; } } /** * ata_pio_first_block - Write first data block to hardware * @ap: Port to which ATA/ATAPI device is attached. * * When device has indicated its readiness to accept * the data, this function sends out the CDB or * the first data block by PIO. * After this, * - If polling, ata_pio_task() handles the rest. * - Otherwise, interrupt handler takes over. * * LOCKING: * Kernel thread context (may sleep) */ static void ata_pio_first_block(struct ata_port *ap) { struct ata_queued_cmd *qc; u8 status; unsigned long flags; qc = ata_qc_from_tag(ap, ap->active_tag); assert(qc != NULL); assert(qc->flags & ATA_QCFLAG_ACTIVE); /* sleep-wait for BSY to clear */ DPRINTK("busy wait\n"); if (ata_busy_sleep(ap, ATA_TMOUT_DATAOUT_QUICK, ATA_TMOUT_DATAOUT)) goto err_out; /* make sure DRQ is set */ status = ata_chk_status(ap); if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) goto err_out; /* Send the CDB (atapi) or the first data block (ata pio out). * During the state transition, interrupt handler shouldn't * be invoked before the data transfer is complete and * hsm_task_state is changed. Hence, the following locking. */ spin_lock_irqsave(&ap->host_set->lock, flags); if (qc->tf.protocol == ATA_PROT_PIO) { /* PIO data out protocol. * send first data block. */ /* ata_pio_sector() might change the state to HSM_ST_LAST. * so, the state is changed here before ata_pio_sector(). */ ap->hsm_task_state = HSM_ST; ata_pio_sector(qc); ata_altstatus(ap); /* flush */ } else /* send CDB */ atapi_send_cdb(ap, qc); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ if (qc->tf.flags & ATA_TFLAG_POLLING) queue_work(ata_wq, &ap->pio_task); spin_unlock_irqrestore(&ap->host_set->lock, flags); return; err_out: ata_pio_error(ap); } /** * __atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * @bytes: number of bytes * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. * */ static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) { int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); struct scatterlist *sg = qc->__sg; struct ata_port *ap = qc->ap; struct page *page; unsigned char *buf; unsigned int offset, count; if (qc->curbytes + bytes >= qc->nbytes) ap->hsm_task_state = HSM_ST_LAST; next_sg: if (unlikely(qc->cursg >= qc->n_elem)) { /* * The end of qc->sg is reached and the device expects * more data to transfer. In order not to overrun qc->sg * and fulfill length specified in the byte count register, * - for read case, discard trailing data from the device * - for write case, padding zero data to the device */ u16 pad_buf[1] = { 0 }; unsigned int words = bytes >> 1; unsigned int i; if (words) /* warning if bytes > 1 */ printk(KERN_WARNING "ata%u: %u bytes trailing data\n", ap->id, bytes); for (i = 0; i < words; i++) ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write); ap->hsm_task_state = HSM_ST_LAST; return; } sg = &qc->__sg[qc->cursg]; page = sg->page; offset = sg->offset + qc->cursg_ofs; /* get the current page and offset */ page = nth_page(page, (offset >> PAGE_SHIFT)); offset %= PAGE_SIZE; /* don't overrun current sg */ count = min(sg->length - qc->cursg_ofs, bytes); /* don't cross page boundaries */ count = min(count, (unsigned int)PAGE_SIZE - offset); DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); if (PageHighMem(page)) { unsigned long flags; local_irq_save(flags); buf = kmap_atomic(page, KM_IRQ0); /* do the actual data transfer */ ata_data_xfer(ap, buf + offset, count, do_write); kunmap_atomic(buf, KM_IRQ0); local_irq_restore(flags); } else { buf = page_address(page); ata_data_xfer(ap, buf + offset, count, do_write); } bytes -= count; qc->curbytes += count; qc->cursg_ofs += count; if (qc->cursg_ofs == sg->length) { qc->cursg++; qc->cursg_ofs = 0; } if (bytes) goto next_sg; } /** * atapi_pio_bytes - Transfer data from/to the ATAPI device. * @qc: Command on going * * Transfer Transfer data from/to the ATAPI device. * * LOCKING: * Inherited from caller. */ static void atapi_pio_bytes(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_device *dev = qc->dev; unsigned int ireason, bc_lo, bc_hi, bytes; int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; ap->ops->tf_read(ap, &qc->tf); ireason = qc->tf.nsect; bc_lo = qc->tf.lbam; bc_hi = qc->tf.lbah; bytes = (bc_hi << 8) | bc_lo; /* shall be cleared to zero, indicating xfer of data */ if (ireason & (1 << 0)) goto err_out; /* make sure transfer direction matches expected */ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0; if (do_write != i_write) goto err_out; VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes); __atapi_pio_bytes(qc, bytes); return; err_out: printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n", ap->id, dev->devno); ap->hsm_task_state = HSM_ST_ERR; } /** * ata_pio_block - start PIO on a block * @ap: the target ata_port * * LOCKING: * None. (executing in kernel thread context) */ static void ata_pio_block(struct ata_port *ap) { struct ata_queued_cmd *qc; u8 status; /* * This is purely heuristic. This is a fast path. * Sometimes when we enter, BSY will be cleared in * a chk-status or two. If not, the drive is probably seeking * or something. Snooze for a couple msecs, then * chk-status again. If still busy, fall back to * HSM_ST_POLL state. */ status = ata_busy_wait(ap, ATA_BUSY, 5); if (status & ATA_BUSY) { msleep(2); status = ata_busy_wait(ap, ATA_BUSY, 10); if (status & ATA_BUSY) { ap->hsm_task_state = HSM_ST_POLL; ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO; return; } } qc = ata_qc_from_tag(ap, ap->active_tag); assert(qc != NULL); if (is_atapi_taskfile(&qc->tf)) { /* no more data to transfer or unsupported ATAPI command */ if ((status & ATA_DRQ) == 0) { ap->hsm_task_state = HSM_ST_LAST; return; } atapi_pio_bytes(qc); } else { /* handle BSY=0, DRQ=0 as error */ if ((status & ATA_DRQ) == 0) { ap->hsm_task_state = HSM_ST_ERR; return; } ata_pio_sector(qc); } ata_altstatus(ap); /* flush */ } static void ata_pio_error(struct ata_port *ap) { struct ata_queued_cmd *qc; printk(KERN_WARNING "ata%u: PIO error\n", ap->id); qc = ata_qc_from_tag(ap, ap->active_tag); assert(qc != NULL); ap->hsm_task_state = HSM_ST_IDLE; ata_poll_qc_complete(qc, AC_ERR_ATA_BUS); } static void ata_pio_task(void *_data) { struct ata_port *ap = _data; unsigned long timeout; int qc_completed; fsm_start: timeout = 0; qc_completed = 0; switch (ap->hsm_task_state) { case HSM_ST_FIRST: ata_pio_first_block(ap); return; case HSM_ST: ata_pio_block(ap); break; case HSM_ST_LAST: qc_completed = ata_pio_complete(ap); break; case HSM_ST_POLL: case HSM_ST_LAST_POLL: timeout = ata_pio_poll(ap); break; case HSM_ST_TMOUT: case HSM_ST_ERR: ata_pio_error(ap); return; default: BUG(); return; } if (timeout) queue_delayed_work(ata_wq, &ap->pio_task, timeout); else if (!qc_completed) goto fsm_start; } /** * ata_qc_timeout - Handle timeout of queued command * @qc: Command that timed out * * Some part of the kernel (currently, only the SCSI layer) * has noticed that the active command on port @ap has not * completed after a specified length of time. Handle this * condition by disabling DMA (if necessary) and completing * transactions, with error if necessary. * * This also handles the case of the "lost interrupt", where * for some reason (possibly hardware bug, possibly driver bug) * an interrupt was not delivered to the driver, even though the * transaction completed successfully. * * LOCKING: * Inherited from SCSI layer (none, can sleep) */ static void ata_qc_timeout(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; struct ata_host_set *host_set = ap->host_set; struct ata_device *dev = qc->dev; u8 host_stat = 0, drv_stat; unsigned long flags; DPRINTK("ENTER\n"); /* FIXME: doesn't this conflict with timeout handling? */ if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) { struct scsi_cmnd *cmd = qc->scsicmd; if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) { /* finish completing original command */ spin_lock_irqsave(&host_set->lock, flags); __ata_qc_complete(qc); spin_unlock_irqrestore(&host_set->lock, flags); atapi_request_sense(ap, dev, cmd); cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16); scsi_finish_command(cmd); goto out; } } spin_lock_irqsave(&host_set->lock, flags); /* hack alert! We cannot use the supplied completion * function from inside the ->eh_strategy_handler() thread. * libata is the only user of ->eh_strategy_handler() in * any kernel, so the default scsi_done() assumes it is * not being called from the SCSI EH. */ qc->scsidone = scsi_finish_command; switch (qc->tf.protocol) { case ATA_PROT_DMA: case ATA_PROT_ATAPI_DMA: host_stat = ap->ops->bmdma_status(ap); /* before we do anything else, clear DMA-Start bit */ ap->ops->bmdma_stop(qc); /* fall through */ default: ata_altstatus(ap); drv_stat = ata_chk_status(ap); /* ack bmdma irq events */ ap->ops->irq_clear(ap); printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n", ap->id, qc->tf.command, drv_stat, host_stat); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_qc_complete(qc, ac_err_mask(drv_stat)); break; } spin_unlock_irqrestore(&host_set->lock, flags); out: DPRINTK("EXIT\n"); } /** * ata_eng_timeout - Handle timeout of queued command * @ap: Port on which timed-out command is active * * Some part of the kernel (currently, only the SCSI layer) * has noticed that the active command on port @ap has not * completed after a specified length of time. Handle this * condition by disabling DMA (if necessary) and completing * transactions, with error if necessary. * * This also handles the case of the "lost interrupt", where * for some reason (possibly hardware bug, possibly driver bug) * an interrupt was not delivered to the driver, even though the * transaction completed successfully. * * LOCKING: * Inherited from SCSI layer (none, can sleep) */ void ata_eng_timeout(struct ata_port *ap) { struct ata_queued_cmd *qc; DPRINTK("ENTER\n"); qc = ata_qc_from_tag(ap, ap->active_tag); if (qc) ata_qc_timeout(qc); else { printk(KERN_ERR "ata%u: BUG: timeout without command\n", ap->id); goto out; } out: DPRINTK("EXIT\n"); } /** * ata_qc_new - Request an available ATA command, for queueing * @ap: Port associated with device @dev * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap) { struct ata_queued_cmd *qc = NULL; unsigned int i; for (i = 0; i < ATA_MAX_QUEUE; i++) if (!test_and_set_bit(i, &ap->qactive)) { qc = ata_qc_from_tag(ap, i); break; } if (qc) qc->tag = i; return qc; } /** * ata_qc_new_init - Request an available ATA command, and initialize it * @ap: Port associated with device @dev * @dev: Device from whom we request an available command structure * * LOCKING: * None. */ struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap, struct ata_device *dev) { struct ata_queued_cmd *qc; qc = ata_qc_new(ap); if (qc) { qc->__sg = NULL; qc->flags = 0; qc->scsicmd = NULL; qc->ap = ap; qc->dev = dev; qc->cursect = qc->cursg = qc->cursg_ofs = 0; qc->nsect = 0; qc->nbytes = qc->curbytes = 0; ata_tf_init(ap, &qc->tf, dev->devno); } return qc; } int ata_qc_complete_noop(struct ata_queued_cmd *qc, unsigned int err_mask) { return 0; } static void __ata_qc_complete(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int tag, do_clear = 0; qc->flags = 0; tag = qc->tag; if (likely(ata_tag_valid(tag))) { if (tag == ap->active_tag) ap->active_tag = ATA_TAG_POISON; qc->tag = ATA_TAG_POISON; do_clear = 1; } if (qc->waiting) { struct completion *waiting = qc->waiting; qc->waiting = NULL; complete(waiting); } if (likely(do_clear)) clear_bit(tag, &ap->qactive); } /** * ata_qc_free - free unused ata_queued_cmd * @qc: Command to complete * * Designed to free unused ata_queued_cmd object * in case something prevents using it. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_free(struct ata_queued_cmd *qc) { assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */ assert(qc->waiting == NULL); /* nothing should be waiting */ __ata_qc_complete(qc); } /** * ata_qc_complete - Complete an active ATA command * @qc: Command to complete * @err_mask: ATA Status register contents * * Indicate to the mid and upper layers that an ATA * command has completed, with either an ok or not-ok status. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_qc_complete(struct ata_queued_cmd *qc, unsigned int err_mask) { int rc; assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */ assert(qc->flags & ATA_QCFLAG_ACTIVE); if (likely(qc->flags & ATA_QCFLAG_DMAMAP)) ata_sg_clean(qc); /* atapi: mark qc as inactive to prevent the interrupt handler * from completing the command twice later, before the error handler * is called. (when rc != 0 and atapi request sense is needed) */ qc->flags &= ~ATA_QCFLAG_ACTIVE; /* call completion callback */ rc = qc->complete_fn(qc, err_mask); /* if callback indicates not to complete command (non-zero), * return immediately */ if (rc != 0) return; __ata_qc_complete(qc); VPRINTK("EXIT\n"); } static inline int ata_should_dma_map(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; switch (qc->tf.protocol) { case ATA_PROT_DMA: case ATA_PROT_ATAPI_DMA: return 1; case ATA_PROT_ATAPI: case ATA_PROT_PIO: case ATA_PROT_PIO_MULT: if (ap->flags & ATA_FLAG_PIO_DMA) return 1; /* fall through */ default: return 0; } /* never reached */ } /** * ata_qc_issue - issue taskfile to device * @qc: command to issue to device * * Prepare an ATA command to submission to device. * This includes mapping the data into a DMA-able * area, filling in the S/G table, and finally * writing the taskfile to hardware, starting the command. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. */ int ata_qc_issue(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; if (ata_should_dma_map(qc)) { if (qc->flags & ATA_QCFLAG_SG) { if (ata_sg_setup(qc)) goto err_out; } else if (qc->flags & ATA_QCFLAG_SINGLE) { if (ata_sg_setup_one(qc)) goto err_out; } } else { qc->flags &= ~ATA_QCFLAG_DMAMAP; } ap->ops->qc_prep(qc); qc->ap->active_tag = qc->tag; qc->flags |= ATA_QCFLAG_ACTIVE; return ap->ops->qc_issue(qc); err_out: return -1; } /** * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner * @qc: command to issue to device * * Using various libata functions and hooks, this function * starts an ATA command. ATA commands are grouped into * classes called "protocols", and issuing each type of protocol * is slightly different. * * May be used as the qc_issue() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * Zero on success, negative on error. */ int ata_qc_issue_prot(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; /* Use polling pio if the LLD doesn't handle * interrupt driven pio and atapi CDB interrupt. */ if (ap->flags & ATA_FLAG_PIO_POLLING) { switch (qc->tf.protocol) { case ATA_PROT_PIO: case ATA_PROT_ATAPI: case ATA_PROT_ATAPI_NODATA: qc->tf.flags |= ATA_TFLAG_POLLING; break; case ATA_PROT_ATAPI_DMA: if (qc->dev->flags & ATA_DFLAG_CDB_INTR) BUG(); break; default: break; } } /* select the device */ ata_dev_select(ap, qc->dev->devno, 1, 0); /* start the command */ switch (qc->tf.protocol) { case ATA_PROT_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_LAST; if (qc->tf.flags & ATA_TFLAG_POLLING) queue_work(ata_wq, &ap->pio_task); break; case ATA_PROT_DMA: assert(!(qc->tf.flags & ATA_TFLAG_POLLING)); ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->ops->bmdma_start(qc); /* initiate bmdma */ ap->hsm_task_state = HSM_ST_LAST; break; case ATA_PROT_PIO: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); if (qc->tf.flags & ATA_TFLAG_WRITE) { /* PIO data out protocol */ ap->hsm_task_state = HSM_ST_FIRST; queue_work(ata_wq, &ap->pio_task); /* always send first data block using * the ata_pio_task() codepath. */ } else { /* PIO data in protocol */ ap->hsm_task_state = HSM_ST; if (qc->tf.flags & ATA_TFLAG_POLLING) queue_work(ata_wq, &ap->pio_task); /* if polling, ata_pio_task() handles the rest. * otherwise, interrupt handler takes over from here. */ } break; case ATA_PROT_ATAPI: case ATA_PROT_ATAPI_NODATA: if (qc->tf.flags & ATA_TFLAG_POLLING) ata_qc_set_polling(qc); ata_tf_to_host(ap, &qc->tf); ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || (qc->tf.flags & ATA_TFLAG_POLLING)) queue_work(ata_wq, &ap->pio_task); break; case ATA_PROT_ATAPI_DMA: assert(!(qc->tf.flags & ATA_TFLAG_POLLING)); ap->ops->tf_load(ap, &qc->tf); /* load tf registers */ ap->ops->bmdma_setup(qc); /* set up bmdma */ ap->hsm_task_state = HSM_ST_FIRST; /* send cdb by polling if no cdb interrupt */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) queue_work(ata_wq, &ap->pio_task); break; default: WARN_ON(1); return -1; } return 0; } /** * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; /* load PRD table addr. */ mb(); /* make sure PRD table writes are visible to controller */ writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = readb(mmio + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; writeb(dmactl, mmio + ATA_DMA_CMD); /* issue r/w command */ ap->ops->exec_command(ap, &qc->tf); } /** * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; u8 dmactl; /* start host DMA transaction */ dmactl = readb(mmio + ATA_DMA_CMD); writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD); /* Strictly, one may wish to issue a readb() here, to * flush the mmio write. However, control also passes * to the hardware at this point, and it will interrupt * us when we are to resume control. So, in effect, * we don't care when the mmio write flushes. * Further, a read of the DMA status register _immediately_ * following the write may not be what certain flaky hardware * is expected, so I think it is best to not add a readb() * without first all the MMIO ATA cards/mobos. * Or maybe I'm just being paranoid. */ } /** * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO) * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); u8 dmactl; /* load PRD table addr. */ outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); /* specify data direction, triple-check start bit is clear */ dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); if (!rw) dmactl |= ATA_DMA_WR; outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); /* issue r/w command */ ap->ops->exec_command(ap, &qc->tf); } /** * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO) * @qc: Info associated with this ATA transaction. * * LOCKING: * spin_lock_irqsave(host_set lock) */ static void ata_bmdma_start_pio (struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; u8 dmactl; /* start host DMA transaction */ dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); outb(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); } /** * ata_bmdma_start - Start a PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * Writes the ATA_DMA_START flag to the DMA command register. * * May be used as the bmdma_start() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_bmdma_start(struct ata_queued_cmd *qc) { if (qc->ap->flags & ATA_FLAG_MMIO) ata_bmdma_start_mmio(qc); else ata_bmdma_start_pio(qc); } /** * ata_bmdma_setup - Set up PCI IDE BMDMA transaction * @qc: Info associated with this ATA transaction. * * Writes address of PRD table to device's PRD Table Address * register, sets the DMA control register, and calls * ops->exec_command() to start the transfer. * * May be used as the bmdma_setup() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_bmdma_setup(struct ata_queued_cmd *qc) { if (qc->ap->flags & ATA_FLAG_MMIO) ata_bmdma_setup_mmio(qc); else ata_bmdma_setup_pio(qc); } /** * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. * @ap: Port associated with this ATA transaction. * * Clear interrupt and error flags in DMA status register. * * May be used as the irq_clear() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_bmdma_irq_clear(struct ata_port *ap) { if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS; writeb(readb(mmio), mmio); } else { unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS; outb(inb(addr), addr); } } /** * ata_bmdma_status - Read PCI IDE BMDMA status * @ap: Port associated with this ATA transaction. * * Read and return BMDMA status register. * * May be used as the bmdma_status() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) */ u8 ata_bmdma_status(struct ata_port *ap) { u8 host_stat; if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; host_stat = readb(mmio + ATA_DMA_STATUS); } else host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); return host_stat; } /** * ata_bmdma_stop - Stop PCI IDE BMDMA transfer * @qc: Command we are ending DMA for * * Clears the ATA_DMA_START flag in the dma control register * * May be used as the bmdma_stop() entry in ata_port_operations. * * LOCKING: * spin_lock_irqsave(host_set lock) */ void ata_bmdma_stop(struct ata_queued_cmd *qc) { struct ata_port *ap = qc->ap; if (ap->flags & ATA_FLAG_MMIO) { void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr; /* clear start/stop bit */ writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, mmio + ATA_DMA_CMD); } else { /* clear start/stop bit */ outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); } /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ ata_altstatus(ap); /* dummy read */ } /** * ata_host_intr - Handle host interrupt for given (port, task) * @ap: Port on which interrupt arrived (possibly...) * @qc: Taskfile currently active in engine * * Handle host interrupt for given queued command. Currently, * only DMA interrupts are handled. All other commands are * handled via polling with interrupts disabled (nIEN bit). * * LOCKING: * spin_lock_irqsave(host_set lock) * * RETURNS: * One if interrupt was handled, zero if not (shared irq). */ inline unsigned int ata_host_intr (struct ata_port *ap, struct ata_queued_cmd *qc) { u8 status, host_stat = 0; VPRINTK("ata%u: protocol %d task_state %d\n", ap->id, qc->tf.protocol, ap->hsm_task_state); /* Check whether we are expecting interrupt in this state */ switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Check the ATA_DFLAG_CDB_INTR flag is enough here. * The flag was turned on only for atapi devices. * No need to check is_atapi_taskfile(&qc->tf) again. */ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) goto idle_irq; break; case HSM_ST_LAST: if (qc->tf.protocol == ATA_PROT_DMA || qc->tf.protocol == ATA_PROT_ATAPI_DMA) { /* check status of DMA engine */ host_stat = ap->ops->bmdma_status(ap); VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat); /* if it's not our irq... */ if (!(host_stat & ATA_DMA_INTR)) goto idle_irq; /* before we do anything else, clear DMA-Start bit */ ap->ops->bmdma_stop(qc); } break; case HSM_ST: break; default: goto idle_irq; } /* check altstatus */ status = ata_altstatus(ap); if (status & ATA_BUSY) goto idle_irq; /* check main status, clearing INTRQ */ status = ata_chk_status(ap); if (unlikely(status & ATA_BUSY)) goto idle_irq; DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", ap->id, qc->tf.protocol, ap->hsm_task_state, status); /* ack bmdma irq events */ ap->ops->irq_clear(ap); /* check error */ if (unlikely((status & ATA_ERR) || (host_stat & ATA_DMA_ERR))) ap->hsm_task_state = HSM_ST_ERR; fsm_start: switch (ap->hsm_task_state) { case HSM_ST_FIRST: /* Some pre-ATAPI-4 devices assert INTRQ * at this state when ready to receive CDB. */ /* check device status */ if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) { /* Wrong status. Let EH handle this */ ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } atapi_send_cdb(ap, qc); break; case HSM_ST: /* complete command or read/write the data register */ if (qc->tf.protocol == ATA_PROT_ATAPI) { /* ATAPI PIO protocol */ if ((status & ATA_DRQ) == 0) { /* no more data to transfer */ ap->hsm_task_state = HSM_ST_LAST; goto fsm_start; } atapi_pio_bytes(qc); if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) /* bad ireason reported by device */ goto fsm_start; } else { /* ATA PIO protocol */ if (unlikely((status & ATA_DRQ) == 0)) { /* handle BSY=0, DRQ=0 as error */ ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } ata_pio_sector(qc); if (ap->hsm_task_state == HSM_ST_LAST && (!(qc->tf.flags & ATA_TFLAG_WRITE))) { /* all data read */ ata_altstatus(ap); status = ata_chk_status(ap); goto fsm_start; } } ata_altstatus(ap); /* flush */ break; case HSM_ST_LAST: if (unlikely(status & ATA_DRQ)) { /* handle DRQ=1 as error */ ap->hsm_task_state = HSM_ST_ERR; goto fsm_start; } /* no more data to transfer */ DPRINTK("ata%u: command complete, drv_stat 0x%x\n", ap->id, status); ap->hsm_task_state = HSM_ST_IDLE; /* complete taskfile transaction */ ata_qc_complete(qc, ac_err_mask(status)); break; case HSM_ST_ERR: printk(KERN_ERR "ata%u: command error, drv_stat 0x%x host_stat 0x%x\n", ap->id, status, host_stat); ap->hsm_task_state = HSM_ST_IDLE; ata_qc_complete(qc, status | ATA_ERR); break; default: goto idle_irq; } return 1; /* irq handled */ idle_irq: ap->stats.idle_irq++; #ifdef ATA_IRQ_TRAP if ((ap->stats.idle_irq % 1000) == 0) { handled = 1; ata_irq_ack(ap, 0); /* debug trap */ printk(KERN_WARNING "ata%d: irq trap\n", ap->id); } #endif return 0; /* irq not handled */ } /** * ata_interrupt - Default ATA host interrupt handler * @irq: irq line (unused) * @dev_instance: pointer to our ata_host_set information structure * @regs: unused * * Default interrupt handler for PCI IDE devices. Calls * ata_host_intr() for each port that is not disabled. * * LOCKING: * Obtains host_set lock during operation. * * RETURNS: * IRQ_NONE or IRQ_HANDLED. */ irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs) { struct ata_host_set *host_set = dev_instance; unsigned int i; unsigned int handled = 0; unsigned long flags; /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ spin_lock_irqsave(&host_set->lock, flags); for (i = 0; i < host_set->n_ports; i++) { struct ata_port *ap; ap = host_set->ports[i]; if (ap && !(ap->flags & ATA_FLAG_PORT_DISABLED)) { struct ata_queued_cmd *qc; qc = ata_qc_from_tag(ap, ap->active_tag); if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) && (qc->flags & ATA_QCFLAG_ACTIVE)) handled |= ata_host_intr(ap, qc); } } spin_unlock_irqrestore(&host_set->lock, flags); return IRQ_RETVAL(handled); } /** * ata_port_start - Set port up for dma. * @ap: Port to initialize * * Called just after data structures for each port are * initialized. Allocates space for PRD table. * * May be used as the port_start() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ int ata_port_start (struct ata_port *ap) { struct device *dev = ap->host_set->dev; int rc; ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL); if (!ap->prd) return -ENOMEM; rc = ata_pad_alloc(ap, dev); if (rc) { dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); return rc; } DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma); return 0; } /** * ata_port_stop - Undo ata_port_start() * @ap: Port to shut down * * Frees the PRD table. * * May be used as the port_stop() entry in ata_port_operations. * * LOCKING: * Inherited from caller. */ void ata_port_stop (struct ata_port *ap) { struct device *dev = ap->host_set->dev; dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma); ata_pad_free(ap, dev); } void ata_host_stop (struct ata_host_set *host_set) { if (host_set->mmio_base) iounmap(host_set->mmio_base); } /** * ata_host_remove - Unregister SCSI host structure with upper layers * @ap: Port to unregister * @do_unregister: 1 if we fully unregister, 0 to just stop the port * * LOCKING: * Inherited from caller. */ static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister) { struct Scsi_Host *sh = ap->host; DPRINTK("ENTER\n"); if (do_unregister) scsi_remove_host(sh); ap->ops->port_stop(ap); } /** * ata_host_init - Initialize an ata_port structure * @ap: Structure to initialize * @host: associated SCSI mid-layer structure * @host_set: Collection of hosts to which @ap belongs * @ent: Probe information provided by low-level driver * @port_no: Port number associated with this ata_port * * Initialize a new ata_port structure, and its associated * scsi_host. * * LOCKING: * Inherited from caller. */ static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host, struct ata_host_set *host_set, const struct ata_probe_ent *ent, unsigned int port_no) { unsigned int i; host->max_id = 16; host->max_lun = 1; host->max_channel = 1; host->unique_id = ata_unique_id++; host->max_cmd_len = 12; ap->flags = ATA_FLAG_PORT_DISABLED; ap->id = host->unique_id; ap->host = host; ap->ctl = ATA_DEVCTL_OBS; ap->host_set = host_set; ap->port_no = port_no; ap->hard_port_no = ent->legacy_mode ? ent->hard_port_no : port_no; ap->pio_mask = ent->pio_mask; ap->mwdma_mask = ent->mwdma_mask; ap->udma_mask = ent->udma_mask; ap->flags |= ent->host_flags; ap->ops = ent->port_ops; ap->cbl = ATA_CBL_NONE; ap->active_tag = ATA_TAG_POISON; ap->last_ctl = 0xFF; INIT_WORK(&ap->pio_task, ata_pio_task, ap); for (i = 0; i < ATA_MAX_DEVICES; i++) ap->device[i].devno = i; #ifdef ATA_IRQ_TRAP ap->stats.unhandled_irq = 1; ap->stats.idle_irq = 1; #endif memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports)); } /** * ata_host_add - Attach low-level ATA driver to system * @ent: Information provided by low-level driver * @host_set: Collections of ports to which we add * @port_no: Port number associated with this host * * Attach low-level ATA driver to system. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * New ata_port on success, for NULL on error. */ static struct ata_port * ata_host_add(const struct ata_probe_ent *ent, struct ata_host_set *host_set, unsigned int port_no) { struct Scsi_Host *host; struct ata_port *ap; int rc; DPRINTK("ENTER\n"); host = scsi_host_alloc(ent->sht, sizeof(struct ata_port)); if (!host) return NULL; ap = (struct ata_port *) &host->hostdata[0]; ata_host_init(ap, host, host_set, ent, port_no); rc = ap->ops->port_start(ap); if (rc) goto err_out; return ap; err_out: scsi_host_put(host); return NULL; } /** * ata_device_add - Register hardware device with ATA and SCSI layers * @ent: Probe information describing hardware device to be registered * * This function processes the information provided in the probe * information struct @ent, allocates the necessary ATA and SCSI * host information structures, initializes them, and registers * everything with requisite kernel subsystems. * * This function requests irqs, probes the ATA bus, and probes * the SCSI bus. * * LOCKING: * PCI/etc. bus probe sem. * * RETURNS: * Number of ports registered. Zero on error (no ports registered). */ int ata_device_add(const struct ata_probe_ent *ent) { unsigned int count = 0, i; struct device *dev = ent->dev; struct ata_host_set *host_set; DPRINTK("ENTER\n"); /* alloc a container for our list of ATA ports (buses) */ host_set = kzalloc(sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)), GFP_KERNEL); if (!host_set) return 0; spin_lock_init(&host_set->lock); host_set->dev = dev; host_set->n_ports = ent->n_ports; host_set->irq = ent->irq; host_set->mmio_base = ent->mmio_base; host_set->private_data = ent->private_data; host_set->ops = ent->port_ops; /* register each port bound to this device */ for (i = 0; i < ent->n_ports; i++) { struct ata_port *ap; unsigned long xfer_mode_mask; ap = ata_host_add(ent, host_set, i); if (!ap) goto err_out; host_set->ports[i] = ap; xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) | (ap->mwdma_mask << ATA_SHIFT_MWDMA) | (ap->pio_mask << ATA_SHIFT_PIO); /* print per-port info to dmesg */ printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX " "bmdma 0x%lX irq %lu\n", ap->id, ap->flags & ATA_FLAG_SATA ? 'S' : 'P', ata_mode_string(xfer_mode_mask), ap->ioaddr.cmd_addr, ap->ioaddr.ctl_addr, ap->ioaddr.bmdma_addr, ent->irq); ata_chk_status(ap); host_set->ops->irq_clear(ap); count++; } if (!count) goto err_free_ret; /* obtain irq, that is shared between channels */ if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags, DRV_NAME, host_set)) goto err_out; /* perform each probe synchronously */ DPRINTK("probe begin\n"); for (i = 0; i < count; i++) { struct ata_port *ap; int rc; ap = host_set->ports[i]; DPRINTK("ata%u: probe begin\n", ap->id); rc = ata_bus_probe(ap); DPRINTK("ata%u: probe end\n", ap->id); if (rc) { /* FIXME: do something useful here? * Current libata behavior will * tear down everything when * the module is removed * or the h/w is unplugged. */ } rc = scsi_add_host(ap->host, dev); if (rc) { printk(KERN_ERR "ata%u: scsi_add_host failed\n", ap->id); /* FIXME: do something useful here */ /* FIXME: handle unconditional calls to * scsi_scan_host and ata_host_remove, below, * at the very least */ } } /* probes are done, now scan each port's disk(s) */ DPRINTK("probe begin\n"); for (i = 0; i < count; i++) { struct ata_port *ap = host_set->ports[i]; ata_scsi_scan_host(ap); } dev_set_drvdata(dev, host_set); VPRINTK("EXIT, returning %u\n", ent->n_ports); return ent->n_ports; /* success */ err_out: for (i = 0; i < count; i++) { ata_host_remove(host_set->ports[i], 1); scsi_host_put(host_set->ports[i]->host); } err_free_ret: kfree(host_set); VPRINTK("EXIT, returning 0\n"); return 0; } /** * ata_host_set_remove - PCI layer callback for device removal * @host_set: ATA host set that was removed * * Unregister all objects associated with this host set. Free those * objects. * * LOCKING: * Inherited from calling layer (may sleep). */ void ata_host_set_remove(struct ata_host_set *host_set) { struct ata_port *ap; unsigned int i; for (i = 0; i < host_set->n_ports; i++) { ap = host_set->ports[i]; scsi_remove_host(ap->host); } free_irq(host_set->irq, host_set); for (i = 0; i < host_set->n_ports; i++) { ap = host_set->ports[i]; ata_scsi_release(ap->host); if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) { struct ata_ioports *ioaddr = &ap->ioaddr; if (ioaddr->cmd_addr == 0x1f0) release_region(0x1f0, 8); else if (ioaddr->cmd_addr == 0x170) release_region(0x170, 8); } scsi_host_put(ap->host); } if (host_set->ops->host_stop) host_set->ops->host_stop(host_set); kfree(host_set); } /** * ata_scsi_release - SCSI layer callback hook for host unload * @host: libata host to be unloaded * * Performs all duties necessary to shut down a libata port... * Kill port kthread, disable port, and release resources. * * LOCKING: * Inherited from SCSI layer. * * RETURNS: * One. */ int ata_scsi_release(struct Scsi_Host *host) { struct ata_port *ap = (struct ata_port *) &host->hostdata[0]; DPRINTK("ENTER\n"); ap->ops->port_disable(ap); ata_host_remove(ap, 0); DPRINTK("EXIT\n"); return 1; } /** * ata_std_ports - initialize ioaddr with standard port offsets. * @ioaddr: IO address structure to be initialized * * Utility function which initializes data_addr, error_addr, * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, * device_addr, status_addr, and command_addr to standard offsets * relative to cmd_addr. * * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. */ void ata_std_ports(struct ata_ioports *ioaddr) { ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; } static struct ata_probe_ent * ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port) { struct ata_probe_ent *probe_ent; probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL); if (!probe_ent) { printk(KERN_ERR DRV_NAME "(%s): out of memory\n", kobject_name(&(dev->kobj))); return NULL; } INIT_LIST_HEAD(&probe_ent->node); probe_ent->dev = dev; probe_ent->sht = port->sht; probe_ent->host_flags = port->host_flags; probe_ent->pio_mask = port->pio_mask; probe_ent->mwdma_mask = port->mwdma_mask; probe_ent->udma_mask = port->udma_mask; probe_ent->port_ops = port->port_ops; return probe_ent; } #ifdef CONFIG_PCI void ata_pci_host_stop (struct ata_host_set *host_set) { struct pci_dev *pdev = to_pci_dev(host_set->dev); pci_iounmap(pdev, host_set->mmio_base); } /** * ata_pci_init_native_mode - Initialize native-mode driver * @pdev: pci device to be initialized * @port: array[2] of pointers to port info structures. * @ports: bitmap of ports present * * Utility function which allocates and initializes an * ata_probe_ent structure for a standard dual-port * PIO-based IDE controller. The returned ata_probe_ent * structure can be passed to ata_device_add(). The returned * ata_probe_ent structure should then be freed with kfree(). * * The caller need only pass the address of the primary port, the * secondary will be deduced automatically. If the device has non * standard secondary port mappings this function can be called twice, * once for each interface. */ struct ata_probe_ent * ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports) { struct ata_probe_ent *probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); int p = 0; if (!probe_ent) return NULL; probe_ent->irq = pdev->irq; probe_ent->irq_flags = SA_SHIRQ; if (ports & ATA_PORT_PRIMARY) { probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0); probe_ent->port[p].altstatus_addr = probe_ent->port[p].ctl_addr = pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS; probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4); ata_std_ports(&probe_ent->port[p]); p++; } if (ports & ATA_PORT_SECONDARY) { probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2); probe_ent->port[p].altstatus_addr = probe_ent->port[p].ctl_addr = pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS; probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8; ata_std_ports(&probe_ent->port[p]); p++; } probe_ent->n_ports = p; return probe_ent; } static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num) { struct ata_probe_ent *probe_ent; probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port); if (!probe_ent) return NULL; probe_ent->legacy_mode = 1; probe_ent->n_ports = 1; probe_ent->hard_port_no = port_num; switch(port_num) { case 0: probe_ent->irq = 14; probe_ent->port[0].cmd_addr = 0x1f0; probe_ent->port[0].altstatus_addr = probe_ent->port[0].ctl_addr = 0x3f6; break; case 1: probe_ent->irq = 15; probe_ent->port[0].cmd_addr = 0x170; probe_ent->port[0].altstatus_addr = probe_ent->port[0].ctl_addr = 0x376; break; } probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num; ata_std_ports(&probe_ent->port[0]); return probe_ent; } /** * ata_pci_init_one - Initialize/register PCI IDE host controller * @pdev: Controller to be initialized * @port_info: Information from low-level host driver * @n_ports: Number of ports attached to host controller * * This is a helper function which can be called from a driver's * xxx_init_one() probe function if the hardware uses traditional * IDE taskfile registers. * * This function calls pci_enable_device(), reserves its register * regions, sets the dma mask, enables bus master mode, and calls * ata_device_add() * * LOCKING: * Inherited from PCI layer (may sleep). * * RETURNS: * Zero on success, negative on errno-based value on error. */ int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, unsigned int n_ports) { struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL; struct ata_port_info *port[2]; u8 tmp8, mask; unsigned int legacy_mode = 0; int disable_dev_on_err = 1; int rc; DPRINTK("ENTER\n"); port[0] = port_info[0]; if (n_ports > 1) port[1] = port_info[1]; else port[1] = port[0]; if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { /* TODO: What if one channel is in native mode ... */ pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); mask = (1 << 2) | (1 << 0); if ((tmp8 & mask) != mask) legacy_mode = (1 << 3); } /* FIXME... */ if ((!legacy_mode) && (n_ports > 2)) { printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n"); n_ports = 2; /* For now */ } /* FIXME: Really for ATA it isn't safe because the device may be multi-purpose and we want to leave it alone if it was already enabled. Secondly for shared use as Arjan says we want refcounting Checking dev->is_enabled is insufficient as this is not set at boot for the primary video which is BIOS enabled */ rc = pci_enable_device(pdev); if (rc) return rc; rc = pci_request_regions(pdev, DRV_NAME); if (rc) { disable_dev_on_err = 0; goto err_out; } /* FIXME: Should use platform specific mappers for legacy port ranges */ if (legacy_mode) { if (!request_region(0x1f0, 8, "libata")) { struct resource *conflict, res; res.start = 0x1f0; res.end = 0x1f0 + 8 - 1; conflict = ____request_resource(&ioport_resource, &res); if (!strcmp(conflict->name, "libata")) legacy_mode |= (1 << 0); else { disable_dev_on_err = 0; printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n"); } } else legacy_mode |= (1 << 0); if (!request_region(0x170, 8, "libata")) { struct resource *conflict, res; res.start = 0x170; res.end = 0x170 + 8 - 1; conflict = ____request_resource(&ioport_resource, &res); if (!strcmp(conflict->name, "libata")) legacy_mode |= (1 << 1); else { disable_dev_on_err = 0; printk(KERN_WARNING "ata: 0x170 IDE port busy\n"); } } else legacy_mode |= (1 << 1); } /* we have legacy mode, but all ports are unavailable */ if (legacy_mode == (1 << 3)) { rc = -EBUSY; goto err_out_regions; } rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); if (rc) goto err_out_regions; rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); if (rc) goto err_out_regions; if (legacy_mode) { if (legacy_mode & (1 << 0)) probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0); if (legacy_mode & (1 << 1)) probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1); } else { if (n_ports == 2) probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); else probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY); } if (!probe_ent && !probe_ent2) { rc = -ENOMEM; goto err_out_regions; } pci_set_master(pdev); /* FIXME: check ata_device_add return */ if (legacy_mode) { if (legacy_mode & (1 << 0)) ata_device_add(probe_ent); if (legacy_mode & (1 << 1)) ata_device_add(probe_ent2); } else ata_device_add(probe_ent); kfree(probe_ent); kfree(probe_ent2); return 0; err_out_regions: if (legacy_mode & (1 << 0)) release_region(0x1f0, 8); if (legacy_mode & (1 << 1)) release_region(0x170, 8); pci_release_regions(pdev); err_out: if (disable_dev_on_err) pci_disable_device(pdev); return rc; } /** * ata_pci_remove_one - PCI layer callback for device removal * @pdev: PCI device that was removed * * PCI layer indicates to libata via this hook that * hot-unplug or module unload event has occurred. * Handle this by unregistering all objects associated * with this PCI device. Free those objects. Then finally * release PCI resources and disable device. * * LOCKING: * Inherited from PCI layer (may sleep). */ void ata_pci_remove_one (struct pci_dev *pdev) { struct device *dev = pci_dev_to_dev(pdev); struct ata_host_set *host_set = dev_get_drvdata(dev); ata_host_set_remove(host_set); pci_release_regions(pdev); pci_disable_device(pdev); dev_set_drvdata(dev, NULL); } /* move to PCI subsystem */ int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits) { unsigned long tmp = 0; switch (bits->width) { case 1: { u8 tmp8 = 0; pci_read_config_byte(pdev, bits->reg, &tmp8); tmp = tmp8; break; } case 2: { u16 tmp16 = 0; pci_read_config_word(pdev, bits->reg, &tmp16); tmp = tmp16; break; } case 4: { u32 tmp32 = 0; pci_read_config_dword(pdev, bits->reg, &tmp32); tmp = tmp32; break; } default: return -EINVAL; } tmp &= bits->mask; return (tmp == bits->val) ? 1 : 0; } #endif /* CONFIG_PCI */ static int __init ata_init(void) { ata_wq = create_workqueue("ata"); if (!ata_wq) return -ENOMEM; printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n"); return 0; } static void __exit ata_exit(void) { destroy_workqueue(ata_wq); } module_init(ata_init); module_exit(ata_exit); static unsigned long ratelimit_time; static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED; int ata_ratelimit(void) { int rc; unsigned long flags; spin_lock_irqsave(&ata_ratelimit_lock, flags); if (time_after(jiffies, ratelimit_time)) { rc = 1; ratelimit_time = jiffies + (HZ/5); } else rc = 0; spin_unlock_irqrestore(&ata_ratelimit_lock, flags); return rc; } /* * libata is essentially a library of internal helper functions for * low-level ATA host controller drivers. As such, the API/ABI is * likely to change as new drivers are added and updated. * Do not depend on ABI/API stability. */ EXPORT_SYMBOL_GPL(ata_std_bios_param); EXPORT_SYMBOL_GPL(ata_std_ports); EXPORT_SYMBOL_GPL(ata_device_add); EXPORT_SYMBOL_GPL(ata_host_set_remove); EXPORT_SYMBOL_GPL(ata_sg_init); EXPORT_SYMBOL_GPL(ata_sg_init_one); EXPORT_SYMBOL_GPL(ata_qc_complete); EXPORT_SYMBOL_GPL(ata_qc_issue_prot); EXPORT_SYMBOL_GPL(ata_eng_timeout); EXPORT_SYMBOL_GPL(ata_tf_load); EXPORT_SYMBOL_GPL(ata_tf_read); EXPORT_SYMBOL_GPL(ata_noop_dev_select); EXPORT_SYMBOL_GPL(ata_std_dev_select); EXPORT_SYMBOL_GPL(ata_tf_to_fis); EXPORT_SYMBOL_GPL(ata_tf_from_fis); EXPORT_SYMBOL_GPL(ata_check_status); EXPORT_SYMBOL_GPL(ata_altstatus); EXPORT_SYMBOL_GPL(ata_exec_command); EXPORT_SYMBOL_GPL(ata_port_start); EXPORT_SYMBOL_GPL(ata_port_stop); EXPORT_SYMBOL_GPL(ata_host_stop); EXPORT_SYMBOL_GPL(ata_interrupt); EXPORT_SYMBOL_GPL(ata_qc_prep); EXPORT_SYMBOL_GPL(ata_bmdma_setup); EXPORT_SYMBOL_GPL(ata_bmdma_start); EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); EXPORT_SYMBOL_GPL(ata_bmdma_status); EXPORT_SYMBOL_GPL(ata_bmdma_stop); EXPORT_SYMBOL_GPL(ata_port_probe); EXPORT_SYMBOL_GPL(sata_phy_reset); EXPORT_SYMBOL_GPL(__sata_phy_reset); EXPORT_SYMBOL_GPL(ata_bus_reset); EXPORT_SYMBOL_GPL(ata_port_disable); EXPORT_SYMBOL_GPL(ata_ratelimit); EXPORT_SYMBOL_GPL(ata_scsi_ioctl); EXPORT_SYMBOL_GPL(ata_scsi_queuecmd); EXPORT_SYMBOL_GPL(ata_scsi_error); EXPORT_SYMBOL_GPL(ata_scsi_slave_config); EXPORT_SYMBOL_GPL(ata_scsi_release); EXPORT_SYMBOL_GPL(ata_host_intr); EXPORT_SYMBOL_GPL(ata_dev_classify); EXPORT_SYMBOL_GPL(ata_dev_id_string); EXPORT_SYMBOL_GPL(ata_dev_config); EXPORT_SYMBOL_GPL(ata_scsi_simulate); EXPORT_SYMBOL_GPL(ata_timing_compute); EXPORT_SYMBOL_GPL(ata_timing_merge); #ifdef CONFIG_PCI EXPORT_SYMBOL_GPL(pci_test_config_bits); EXPORT_SYMBOL_GPL(ata_pci_host_stop); EXPORT_SYMBOL_GPL(ata_pci_init_native_mode); EXPORT_SYMBOL_GPL(ata_pci_init_one); EXPORT_SYMBOL_GPL(ata_pci_remove_one); #endif /* CONFIG_PCI */