/* * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * BSD LICENSE * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "isci.h" #include "scic_io_request.h" #include "scic_task_request.h" #include "scic_port.h" #include "task.h" #include "request.h" #include "sata.h" #include "scu_completion_codes.h" #include "scic_sds_request.h" #include "sas.h" static enum sci_status isci_request_ssp_request_construct( struct isci_request *request) { enum sci_status status; dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p\n", __func__, request); status = scic_io_request_construct_basic_ssp( request->sci_request_handle ); return status; } static enum sci_status isci_request_stp_request_construct( struct isci_request *request) { struct sas_task *task = isci_request_access_task(request); enum sci_status status; struct host_to_dev_fis *register_fis; dev_dbg(&request->isci_host->pdev->dev, "%s: request = %p\n", __func__, request); /* Get the host_to_dev_fis from the core and copy * the fis from the task into it. */ register_fis = isci_sata_task_to_fis_copy(task); status = scic_io_request_construct_basic_sata( request->sci_request_handle ); /* Set the ncq tag in the fis, from the queue * command in the task. */ if (isci_sata_is_task_ncq(task)) { isci_sata_set_ncq_tag( register_fis, task ); } return status; } /* * isci_smp_request_build() - This function builds the smp request. * @ireq: This parameter points to the isci_request allocated in the * request construct function. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_smp_request_build(struct isci_request *ireq) { enum sci_status status = SCI_FAILURE; struct sas_task *task = isci_request_access_task(ireq); struct scic_sds_request *sci_req = ireq->sci_request_handle; void *cmd_iu = sci_req->command_buffer; dev_dbg(&ireq->isci_host->pdev->dev, "%s: request = %p\n", __func__, ireq); dev_dbg(&ireq->isci_host->pdev->dev, "%s: smp_req len = %d\n", __func__, task->smp_task.smp_req.length); /* copy the smp_command to the address; */ sg_copy_to_buffer(&task->smp_task.smp_req, 1, (char *)cmd_iu, sizeof(struct smp_req)); status = scic_io_request_construct_smp(sci_req); if (status != SCI_SUCCESS) dev_warn(&ireq->isci_host->pdev->dev, "%s: failed with status = %d\n", __func__, status); return status; } /** * isci_io_request_build() - This function builds the io request object. * @isci_host: This parameter specifies the ISCI host object * @request: This parameter points to the isci_request object allocated in the * request construct function. * @sci_device: This parameter is the handle for the sci core's remote device * object that is the destination for this request. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static enum sci_status isci_io_request_build( struct isci_host *isci_host, struct isci_request *request, struct isci_remote_device *isci_device) { enum sci_status status = SCI_SUCCESS; struct sas_task *task = isci_request_access_task(request); struct scic_sds_remote_device *sci_device = &isci_device->sci; dev_dbg(&isci_host->pdev->dev, "%s: isci_device = 0x%p; request = %p, " "num_scatter = %d\n", __func__, isci_device, request, task->num_scatter); /* map the sgl addresses, if present. * libata does the mapping for sata devices * before we get the request. */ if (task->num_scatter && !sas_protocol_ata(task->task_proto) && !(SAS_PROTOCOL_SMP & task->task_proto)) { request->num_sg_entries = dma_map_sg( &isci_host->pdev->dev, task->scatter, task->num_scatter, task->data_dir ); if (request->num_sg_entries == 0) return SCI_FAILURE_INSUFFICIENT_RESOURCES; } /* build the common request object. For now, * we will let the core allocate the IO tag. */ status = scic_io_request_construct( isci_host->core_controller, sci_device, SCI_CONTROLLER_INVALID_IO_TAG, request, request->sci_request_mem_ptr, (struct scic_sds_request **)&request->sci_request_handle ); if (status != SCI_SUCCESS) { dev_warn(&isci_host->pdev->dev, "%s: failed request construct\n", __func__); return SCI_FAILURE; } request->sci_request_handle->ireq = request; switch (task->task_proto) { case SAS_PROTOCOL_SMP: status = isci_smp_request_build(request); break; case SAS_PROTOCOL_SSP: status = isci_request_ssp_request_construct(request); break; case SAS_PROTOCOL_SATA: case SAS_PROTOCOL_STP: case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP: status = isci_request_stp_request_construct(request); break; default: dev_warn(&isci_host->pdev->dev, "%s: unknown protocol\n", __func__); return SCI_FAILURE; } return SCI_SUCCESS; } /** * isci_request_alloc_core() - This function gets the request object from the * isci_host dma cache. * @isci_host: This parameter specifies the ISCI host object * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @isci_device: This parameter is the pointer to the isci remote device object * that is the destination for this request. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ static int isci_request_alloc_core( struct isci_host *isci_host, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int ret = 0; dma_addr_t handle; struct isci_request *request; /* get pointer to dma memory. This actually points * to both the isci_remote_device object and the * sci object. The isci object is at the beginning * of the memory allocated here. */ request = dma_pool_alloc(isci_host->dma_pool, gfp_flags, &handle); if (!request) { dev_warn(&isci_host->pdev->dev, "%s: dma_pool_alloc returned NULL\n", __func__); return -ENOMEM; } /* initialize the request object. */ spin_lock_init(&request->state_lock); request->sci_request_mem_ptr = ((u8 *)request) + sizeof(struct isci_request); request->request_daddr = handle; request->isci_host = isci_host; request->isci_device = isci_device; request->io_request_completion = NULL; request->request_alloc_size = isci_host->dma_pool_alloc_size; request->num_sg_entries = 0; request->complete_in_target = false; INIT_LIST_HEAD(&request->completed_node); INIT_LIST_HEAD(&request->dev_node); *isci_request = request; isci_request_change_state(request, allocated); return ret; } static int isci_request_alloc_io( struct isci_host *isci_host, struct sas_task *task, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int retval = isci_request_alloc_core(isci_host, isci_request, isci_device, gfp_flags); if (!retval) { (*isci_request)->ttype_ptr.io_task_ptr = task; (*isci_request)->ttype = io_task; task->lldd_task = *isci_request; } return retval; } /** * isci_request_alloc_tmf() - This function gets the request object from the * isci_host dma cache and initializes the relevant fields as a sas_task. * @isci_host: This parameter specifies the ISCI host object * @sas_task: This parameter is the task struct from the upper layer driver. * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @isci_device: This parameter is the pointer to the isci remote device object * that is the destination for this request. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ int isci_request_alloc_tmf( struct isci_host *isci_host, struct isci_tmf *isci_tmf, struct isci_request **isci_request, struct isci_remote_device *isci_device, gfp_t gfp_flags) { int retval = isci_request_alloc_core(isci_host, isci_request, isci_device, gfp_flags); if (!retval) { (*isci_request)->ttype_ptr.tmf_task_ptr = isci_tmf; (*isci_request)->ttype = tmf_task; } return retval; } /** * isci_request_execute() - This function allocates the isci_request object, * all fills in some common fields. * @isci_host: This parameter specifies the ISCI host object * @sas_task: This parameter is the task struct from the upper layer driver. * @isci_request: This parameter will contain the pointer to the new * isci_request object. * @gfp_flags: This parameter specifies the os allocation flags. * * SCI_SUCCESS on successfull completion, or specific failure code. */ int isci_request_execute( struct isci_host *isci_host, struct sas_task *task, struct isci_request **isci_request, gfp_t gfp_flags) { int ret = 0; struct scic_sds_remote_device *sci_device; enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL; struct isci_remote_device *isci_device; struct isci_request *request; unsigned long flags; isci_device = task->dev->lldd_dev; sci_device = &isci_device->sci; /* do common allocation and init of request object. */ ret = isci_request_alloc_io( isci_host, task, &request, isci_device, gfp_flags ); if (ret) goto out; status = isci_io_request_build(isci_host, request, isci_device); if (status == SCI_SUCCESS) { spin_lock_irqsave(&isci_host->scic_lock, flags); /* send the request, let the core assign the IO TAG. */ status = scic_controller_start_io( isci_host->core_controller, sci_device, request->sci_request_handle, SCI_CONTROLLER_INVALID_IO_TAG ); if (status == SCI_SUCCESS || status == SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { /* Either I/O started OK, or the core has signaled that * the device needs a target reset. * * In either case, hold onto the I/O for later. * * Update it's status and add it to the list in the * remote device object. */ isci_request_change_state(request, started); list_add(&request->dev_node, &isci_device->reqs_in_process); if (status == SCI_SUCCESS) { /* Save the tag for possible task mgmt later. */ request->io_tag = scic_io_request_get_io_tag( request->sci_request_handle); } else { /* The request did not really start in the * hardware, so clear the request handle * here so no terminations will be done. */ request->sci_request_handle = NULL; } } else dev_warn(&isci_host->pdev->dev, "%s: failed request start (0x%x)\n", __func__, status); spin_unlock_irqrestore(&isci_host->scic_lock, flags); if (status == SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) { /* Signal libsas that we need the SCSI error * handler thread to work on this I/O and that * we want a device reset. */ spin_lock_irqsave(&task->task_state_lock, flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, flags); /* Cause this task to be scheduled in the SCSI error * handler thread. */ isci_execpath_callback(isci_host, task, sas_task_abort); /* Change the status, since we are holding * the I/O until it is managed by the SCSI * error handler. */ status = SCI_SUCCESS; } } else dev_warn(&isci_host->pdev->dev, "%s: request_construct failed - status = 0x%x\n", __func__, status); out: if (status != SCI_SUCCESS) { /* release dma memory on failure. */ isci_request_free(isci_host, request); request = NULL; ret = SCI_FAILURE; } *isci_request = request; return ret; } /** * isci_request_process_response_iu() - This function sets the status and * response iu, in the task struct, from the request object for the upper * layer driver. * @sas_task: This parameter is the task struct from the upper layer driver. * @resp_iu: This parameter points to the response iu of the completed request. * @dev: This parameter specifies the linux device struct. * * none. */ static void isci_request_process_response_iu( struct sas_task *task, struct ssp_response_iu *resp_iu, struct device *dev) { dev_dbg(dev, "%s: resp_iu = %p " "resp_iu->status = 0x%x,\nresp_iu->datapres = %d " "resp_iu->response_data_len = %x, " "resp_iu->sense_data_len = %x\nrepsonse data: ", __func__, resp_iu, resp_iu->status, resp_iu->datapres, resp_iu->response_data_len, resp_iu->sense_data_len); task->task_status.stat = resp_iu->status; /* libsas updates the task status fields based on the response iu. */ sas_ssp_task_response(dev, task, resp_iu); } /** * isci_request_set_open_reject_status() - This function prepares the I/O * completion for OPEN_REJECT conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * @open_rej_reason: This parameter specifies the encoded reason for the * abandon-class reject. * * none. */ static void isci_request_set_open_reject_status( struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr, enum sas_open_rej_reason open_rej_reason) { /* Task in the target is done. */ request->complete_in_target = true; *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAS_OPEN_REJECT; *complete_to_host_ptr = isci_perform_normal_io_completion; task->task_status.open_rej_reason = open_rej_reason; } /** * isci_request_handle_controller_specific_errors() - This function decodes * controller-specific I/O completion error conditions. * @request: This parameter is the completed isci_request object. * @response_ptr: This parameter specifies the service response for the I/O. * @status_ptr: This parameter specifies the exec status for the I/O. * @complete_to_host_ptr: This parameter specifies the action to be taken by * the LLDD with respect to completing this request or forcing an abort * condition on the I/O. * * none. */ static void isci_request_handle_controller_specific_errors( struct isci_remote_device *isci_device, struct isci_request *request, struct sas_task *task, enum service_response *response_ptr, enum exec_status *status_ptr, enum isci_completion_selection *complete_to_host_ptr) { unsigned int cstatus; cstatus = scic_request_get_controller_status( request->sci_request_handle ); dev_dbg(&request->isci_host->pdev->dev, "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR " "- controller status = 0x%x\n", __func__, request, cstatus); /* Decode the controller-specific errors; most * important is to recognize those conditions in which * the target may still have a task outstanding that * must be aborted. * * Note that there are SCU completion codes being * named in the decode below for which SCIC has already * done work to handle them in a way other than as * a controller-specific completion code; these are left * in the decode below for completeness sake. */ switch (cstatus) { case SCU_TASK_DONE_DMASETUP_DIRERR: /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */ case SCU_TASK_DONE_XFERCNT_ERR: /* Also SCU_TASK_DONE_SMP_UFI_ERR: */ if (task->task_proto == SAS_PROTOCOL_SMP) { /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; request->complete_in_target = true; *complete_to_host_ptr = isci_perform_normal_io_completion; } else { /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAM_STAT_TASK_ABORTED; request->complete_in_target = false; *complete_to_host_ptr = isci_perform_error_io_completion; } break; case SCU_TASK_DONE_CRC_ERR: case SCU_TASK_DONE_NAK_CMD_ERR: case SCU_TASK_DONE_EXCESS_DATA: case SCU_TASK_DONE_UNEXP_FIS: /* Also SCU_TASK_DONE_UNEXP_RESP: */ case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */ case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */ /* These are conditions in which the target * has completed the task, so that no cleanup * is necessary. */ *response_ptr = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) *status_ptr = SAS_DEVICE_UNKNOWN; else *status_ptr = SAS_ABORTED_TASK; request->complete_in_target = true; *complete_to_host_ptr = isci_perform_normal_io_completion; break; /* Note that the only open reject completion codes seen here will be * abandon-class codes; all others are automatically retried in the SCU. */ case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_WRONG_DEST); break; case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION: /* Note - the return of AB0 will change when * libsas implements detection of zone violations. */ isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB0); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB1); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB2); break; case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_RESV_AB3); break; case SCU_TASK_OPEN_REJECT_BAD_DESTINATION: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_BAD_DEST); break; case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_STP_NORES); break; case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_EPROTO); break; case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED: isci_request_set_open_reject_status( request, task, response_ptr, status_ptr, complete_to_host_ptr, SAS_OREJ_CONN_RATE); break; case SCU_TASK_DONE_LL_R_ERR: /* Also SCU_TASK_DONE_ACK_NAK_TO: */ case SCU_TASK_DONE_LL_PERR: case SCU_TASK_DONE_LL_SY_TERM: /* Also SCU_TASK_DONE_NAK_ERR:*/ case SCU_TASK_DONE_LL_LF_TERM: /* Also SCU_TASK_DONE_DATA_LEN_ERR: */ case SCU_TASK_DONE_LL_ABORT_ERR: case SCU_TASK_DONE_SEQ_INV_TYPE: /* Also SCU_TASK_DONE_UNEXP_XR: */ case SCU_TASK_DONE_XR_IU_LEN_ERR: case SCU_TASK_DONE_INV_FIS_LEN: /* Also SCU_TASK_DONE_XR_WD_LEN: */ case SCU_TASK_DONE_SDMA_ERR: case SCU_TASK_DONE_OFFSET_ERR: case SCU_TASK_DONE_MAX_PLD_ERR: case SCU_TASK_DONE_LF_ERR: case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */ case SCU_TASK_DONE_SMP_LL_RX_ERR: case SCU_TASK_DONE_UNEXP_DATA: case SCU_TASK_DONE_UNEXP_SDBFIS: case SCU_TASK_DONE_REG_ERR: case SCU_TASK_DONE_SDB_ERR: case SCU_TASK_DONE_TASK_ABORT: default: /* Task in the target is not done. */ *response_ptr = SAS_TASK_UNDELIVERED; *status_ptr = SAM_STAT_TASK_ABORTED; request->complete_in_target = false; *complete_to_host_ptr = isci_perform_error_io_completion; break; } } /** * isci_task_save_for_upper_layer_completion() - This function saves the * request for later completion to the upper layer driver. * @host: This parameter is a pointer to the host on which the the request * should be queued (either as an error or success). * @request: This parameter is the completed request. * @response: This parameter is the response code for the completed task. * @status: This parameter is the status code for the completed task. * * none. */ static void isci_task_save_for_upper_layer_completion( struct isci_host *host, struct isci_request *request, enum service_response response, enum exec_status status, enum isci_completion_selection task_notification_selection) { struct sas_task *task = isci_request_access_task(request); task_notification_selection = isci_task_set_completion_status(task, response, status, task_notification_selection); /* Tasks aborted specifically by a call to the lldd_abort_task * function should not be completed to the host in the regular path. */ switch (task_notification_selection) { case isci_perform_normal_io_completion: /* Normal notification (task_done) */ dev_dbg(&host->pdev->dev, "%s: Normal - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the completed list. */ list_add(&request->completed_node, &host->requests_to_complete); /* Take the request off the device's pending request list. */ list_del_init(&request->dev_node); break; case isci_perform_aborted_io_completion: /* No notification to libsas because this request is * already in the abort path. */ dev_warn(&host->pdev->dev, "%s: Aborted - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Wake up whatever process was waiting for this * request to complete. */ WARN_ON(request->io_request_completion == NULL); if (request->io_request_completion != NULL) { /* Signal whoever is waiting that this * request is complete. */ complete(request->io_request_completion); } break; case isci_perform_error_io_completion: /* Use sas_task_abort */ dev_warn(&host->pdev->dev, "%s: Error - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the aborted list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; default: dev_warn(&host->pdev->dev, "%s: Unknown - task = %p, response=%d (%d), status=%d (%d)\n", __func__, task, task->task_status.resp, response, task->task_status.stat, status); /* Add to the error to libsas list. */ list_add(&request->completed_node, &host->requests_to_errorback); break; } } /** * isci_request_io_request_complete() - This function is called by the sci core * when an io request completes. * @isci_host: This parameter specifies the ISCI host object * @request: This parameter is the completed isci_request object. * @completion_status: This parameter specifies the completion status from the * sci core. * * none. */ void isci_request_io_request_complete( struct isci_host *isci_host, struct isci_request *request, enum sci_io_status completion_status) { struct sas_task *task = isci_request_access_task(request); struct ssp_response_iu *resp_iu; void *resp_buf; unsigned long task_flags; struct isci_remote_device *isci_device = request->isci_device; enum service_response response = SAS_TASK_UNDELIVERED; enum exec_status status = SAS_ABORTED_TASK; enum isci_request_status request_status; enum isci_completion_selection complete_to_host = isci_perform_normal_io_completion; dev_dbg(&isci_host->pdev->dev, "%s: request = %p, task = %p,\n" "task->data_dir = %d completion_status = 0x%x\n", __func__, request, task, task->data_dir, completion_status); spin_lock(&request->state_lock); request_status = isci_request_get_state(request); /* Decode the request status. Note that if the request has been * aborted by a task management function, we don't care * what the status is. */ switch (request_status) { case aborted: /* "aborted" indicates that the request was aborted by a task * management function, since once a task management request is * perfomed by the device, the request only completes because * of the subsequent driver terminate. * * Aborted also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. * * The target is still there (since the TMF was successful). */ request->complete_in_target = true; response = SAS_TASK_COMPLETE; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped) ) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case aborting: /* aborting means that the task management function tried and * failed to abort the request. We need to note the request * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the * target as down. * * Aborting also means an external thread is explicitly managing * this request, so that we do not complete it up the stack. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) /* The device has been /is being stopped. Note that * we ignore the quiesce state, since we are * concerned about the actual device state. */ status = SAS_DEVICE_UNKNOWN; else status = SAS_PHY_DOWN; complete_to_host = isci_perform_aborted_io_completion; /* This was an aborted request. */ spin_unlock(&request->state_lock); break; case terminating: /* This was an terminated request. This happens when * the I/O is being terminated because of an action on * the device (reset, tear down, etc.), and the I/O needs * to be completed up the stack. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_aborted_io_completion; /* This was a terminated request. */ spin_unlock(&request->state_lock); break; default: /* The request is done from an SCU HW perspective. */ request->status = completed; spin_unlock(&request->state_lock); /* This is an active request being completed from the core. */ switch (completion_status) { case SCI_IO_FAILURE_RESPONSE_VALID: dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n", __func__, request, task); if (sas_protocol_ata(task->task_proto)) { resp_buf = scic_stp_io_request_get_d2h_reg_address( request->sci_request_handle ); isci_request_process_stp_response(task, resp_buf ); } else if (SAS_PROTOCOL_SSP == task->task_proto) { /* crack the iu response buffer. */ resp_iu = scic_io_request_get_response_iu_address( request->sci_request_handle ); isci_request_process_response_iu(task, resp_iu, &isci_host->pdev->dev ); } else if (SAS_PROTOCOL_SMP == task->task_proto) { dev_err(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_RESPONSE_VALID: " "SAS_PROTOCOL_SMP protocol\n", __func__); } else dev_err(&isci_host->pdev->dev, "%s: unknown protocol\n", __func__); /* use the task status set in the task struct by the * isci_request_process_response_iu call. */ request->complete_in_target = true; response = task->task_status.resp; status = task->task_status.stat; break; case SCI_IO_SUCCESS: case SCI_IO_SUCCESS_IO_DONE_EARLY: response = SAS_TASK_COMPLETE; status = SAM_STAT_GOOD; request->complete_in_target = true; if (task->task_proto == SAS_PROTOCOL_SMP) { u8 *command_iu_address = scic_io_request_get_command_iu_address( request->sci_request_handle ); dev_dbg(&isci_host->pdev->dev, "%s: SMP protocol completion\n", __func__); sg_copy_from_buffer( &task->smp_task.smp_resp, 1, command_iu_address + sizeof(struct smp_req), sizeof(struct smp_resp)); } else if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) { /* This was an SSP / STP / SATA transfer. * There is a possibility that less data than * the maximum was transferred. */ u32 transferred_length = scic_io_request_get_number_of_bytes_transferred( request->sci_request_handle); task->task_status.residual = task->total_xfer_len - transferred_length; /* If there were residual bytes, call this an * underrun. */ if (task->task_status.residual != 0) status = SAS_DATA_UNDERRUN; dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n", __func__, status); } else dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_SUCCESS\n", __func__); break; case SCI_IO_FAILURE_TERMINATED: dev_dbg(&isci_host->pdev->dev, "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n", __func__, request, task); /* The request was terminated explicitly. No handling * is needed in the SCSI error handler path. */ request->complete_in_target = true; response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_normal_io_completion; break; case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR: isci_request_handle_controller_specific_errors( isci_device, request, task, &response, &status, &complete_to_host); break; case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED: /* This is a special case, in that the I/O completion * is telling us that the device needs a reset. * In order for the device reset condition to be * noticed, the I/O has to be handled in the error * handler. Set the reset flag and cause the * SCSI error thread to be scheduled. */ spin_lock_irqsave(&task->task_state_lock, task_flags); task->task_state_flags |= SAS_TASK_NEED_DEV_RESET; spin_unlock_irqrestore(&task->task_state_lock, task_flags); /* Fail the I/O. */ response = SAS_TASK_UNDELIVERED; status = SAM_STAT_TASK_ABORTED; complete_to_host = isci_perform_error_io_completion; request->complete_in_target = false; break; default: /* Catch any otherwise unhandled error codes here. */ dev_warn(&isci_host->pdev->dev, "%s: invalid completion code: 0x%x - " "isci_request = %p\n", __func__, completion_status, request); response = SAS_TASK_UNDELIVERED; /* See if the device has been/is being stopped. Note * that we ignore the quiesce state, since we are * concerned about the actual device state. */ if ((isci_device->status == isci_stopping) || (isci_device->status == isci_stopped)) status = SAS_DEVICE_UNKNOWN; else status = SAS_ABORTED_TASK; complete_to_host = isci_perform_error_io_completion; request->complete_in_target = false; break; } break; } isci_request_unmap_sgl(request, isci_host->pdev); /* Put the completed request on the correct list */ isci_task_save_for_upper_layer_completion(isci_host, request, response, status, complete_to_host ); /* complete the io request to the core. */ scic_controller_complete_io(isci_host->core_controller, &isci_device->sci, request->sci_request_handle); /* NULL the request handle so it cannot be completed or * terminated again, and to cause any calls into abort * task to recognize the already completed case. */ request->sci_request_handle = NULL; isci_host_can_dequeue(isci_host, 1); } /** * isci_request_io_request_get_transfer_length() - This function is called by * the sci core to retrieve the transfer length for a given request. * @request: This parameter is the isci_request object. * * length of transfer for specified request. */ u32 isci_request_io_request_get_transfer_length(struct isci_request *request) { struct sas_task *task = isci_request_access_task(request); dev_dbg(&request->isci_host->pdev->dev, "%s: total_xfer_len: %d\n", __func__, task->total_xfer_len); return task->total_xfer_len; } /** * isci_request_io_request_get_data_direction() - This function is called by * the sci core to retrieve the data direction for a given request. * @request: This parameter is the isci_request object. * * data direction for specified request. */ enum dma_data_direction isci_request_io_request_get_data_direction( struct isci_request *request) { struct sas_task *task = isci_request_access_task(request); return task->data_dir; }