/************************************************************************ * Linux driver for * * ICP vortex GmbH: GDT ISA/EISA/PCI Disk Array Controllers * * Intel Corporation: Storage RAID Controllers * * * * gdth.c * * Copyright (C) 1995-06 ICP vortex GmbH, Achim Leubner * * Copyright (C) 2002-04 Intel Corporation * * Copyright (C) 2003-06 Adaptec Inc. * * <achim_leubner@adaptec.com> * * * * Additions/Fixes: * * Boji Tony Kannanthanam <boji.t.kannanthanam@intel.com> * * Johannes Dinner <johannes_dinner@adaptec.com> * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published * * by the Free Software Foundation; either version 2 of the License, * * or (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this kernel; if not, write to the Free Software * * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * * * Linux kernel 2.4.x, 2.6.x supported * * * * $Log: gdth.c,v $ * Revision 1.74 2006/04/10 13:44:47 achim * Community changes for 2.6.x * Kernel 2.2.x no longer supported * scsi_request interface removed, thanks to Christoph Hellwig * * Revision 1.73 2004/03/31 13:33:03 achim * Special command 0xfd implemented to detect 64-bit DMA support * * Revision 1.72 2004/03/17 08:56:04 achim * 64-bit DMA only enabled if FW >= x.43 * * Revision 1.71 2004/03/05 15:51:29 achim * Screen service: separate message buffer, bugfixes * * Revision 1.70 2004/02/27 12:19:07 achim * Bugfix: Reset bit in config (0xfe) call removed * * Revision 1.69 2004/02/20 09:50:24 achim * Compatibility changes for kernels < 2.4.20 * Bugfix screen service command size * pci_set_dma_mask() error handling added * * Revision 1.68 2004/02/19 15:46:54 achim * 64-bit DMA bugfixes * Drive size bugfix for drives > 1TB * * Revision 1.67 2004/01/14 13:11:57 achim * Tool access over /proc no longer supported * Bugfixes IOCTLs * * Revision 1.66 2003/12/19 15:04:06 achim * Bugfixes support for drives > 2TB * * Revision 1.65 2003/12/15 11:21:56 achim * 64-bit DMA support added * Support for drives > 2 TB implemented * Kernels 2.2.x, 2.4.x, 2.6.x supported * * Revision 1.64 2003/09/17 08:30:26 achim * EISA/ISA controller scan disabled * Command line switch probe_eisa_isa added * * Revision 1.63 2003/07/12 14:01:00 Daniele Bellucci <bellucda@tiscali.it> * Minor cleanups in gdth_ioctl. * * Revision 1.62 2003/02/27 15:01:59 achim * Dynamic DMA mapping implemented * New (character device) IOCTL interface added * Other controller related changes made * * Revision 1.61 2002/11/08 13:09:52 boji * Added support for XSCALE based RAID Controllers * Fixed SCREENSERVICE initialization in SMP cases * Added checks for gdth_polling before GDTH_HA_LOCK * * Revision 1.60 2002/02/05 09:35:22 achim * MODULE_LICENSE only if kernel >= 2.4.11 * * Revision 1.59 2002/01/30 09:46:33 achim * Small changes * * Revision 1.58 2002/01/29 15:30:02 achim * Set default value of shared_access to Y * New status S_CACHE_RESERV for clustering added * * Revision 1.57 2001/08/21 11:16:35 achim * Bugfix free_irq() * * Revision 1.56 2001/08/09 11:19:39 achim * Scsi_Host_Template changes * * Revision 1.55 2001/08/09 10:11:28 achim * Command HOST_UNFREEZE_IO before cache service init. * * Revision 1.54 2001/07/20 13:48:12 achim * Expand: gdth_analyse_hdrive() removed * * Revision 1.53 2001/07/17 09:52:49 achim * Small OEM related change * * Revision 1.52 2001/06/19 15:06:20 achim * New host command GDT_UNFREEZE_IO added * * Revision 1.51 2001/05/22 06:42:37 achim * PCI: Subdevice ID added * * Revision 1.50 2001/05/17 13:42:16 achim * Support for Intel Storage RAID Controllers added * * Revision 1.50 2001/05/17 12:12:34 achim * Support for Intel Storage RAID Controllers added * * Revision 1.49 2001/03/15 15:07:17 achim * New __setup interface for boot command line options added * * Revision 1.48 2001/02/06 12:36:28 achim * Bugfix Cluster protocol * * Revision 1.47 2001/01/10 14:42:06 achim * New switch shared_access added * * Revision 1.46 2001/01/09 08:11:35 achim * gdth_command() removed * meaning of Scsi_Pointer members changed * * Revision 1.45 2000/11/16 12:02:24 achim * Changes for kernel 2.4 * * Revision 1.44 2000/10/11 08:44:10 achim * Clustering changes: New flag media_changed added * * Revision 1.43 2000/09/20 12:59:01 achim * DPMEM remap functions for all PCI controller types implemented * Small changes for ia64 platform * * Revision 1.42 2000/07/20 09:04:50 achim * Small changes for kernel 2.4 * * Revision 1.41 2000/07/04 14:11:11 achim * gdth_analyse_hdrive() added to rescan drives after online expansion * * Revision 1.40 2000/06/27 11:24:16 achim * Changes Clustering, Screenservice * * Revision 1.39 2000/06/15 13:09:04 achim * Changes for gdth_do_cmd() * * Revision 1.38 2000/06/15 12:08:43 achim * Bugfix gdth_sync_event(), service SCREENSERVICE * Data direction for command 0xc2 changed to DOU * * Revision 1.37 2000/05/25 13:50:10 achim * New driver parameter virt_ctr added * * Revision 1.36 2000/05/04 08:50:46 achim * Event buffer now in gdth_ha_str * * Revision 1.35 2000/03/03 10:44:08 achim * New event_string only valid for the RP controller family * * Revision 1.34 2000/03/02 14:55:29 achim * New mechanism for async. event handling implemented * * Revision 1.33 2000/02/21 15:37:37 achim * Bugfix Alpha platform + DPMEM above 4GB * * Revision 1.32 2000/02/14 16:17:37 achim * Bugfix sense_buffer[] + raw devices * * Revision 1.31 2000/02/10 10:29:00 achim * Delete sense_buffer[0], if command OK * * Revision 1.30 1999/11/02 13:42:39 achim * ARRAY_DRV_LIST2 implemented * Now 255 log. and 100 host drives supported * * Revision 1.29 1999/10/05 13:28:47 achim * GDT_CLUST_RESET added * * Revision 1.28 1999/08/12 13:44:54 achim * MOUNTALL removed * Cluster drives -> removeable drives * * Revision 1.27 1999/06/22 07:22:38 achim * Small changes * * Revision 1.26 1999/06/10 16:09:12 achim * Cluster Host Drive support: Bugfixes * * Revision 1.25 1999/06/01 16:03:56 achim * gdth_init_pci(): Manipulate config. space to start RP controller * * Revision 1.24 1999/05/26 11:53:06 achim * Cluster Host Drive support added * * Revision 1.23 1999/03/26 09:12:31 achim * Default value for hdr_channel set to 0 * * Revision 1.22 1999/03/22 16:27:16 achim * Bugfix: gdth_store_event() must not be locked with GDTH_LOCK_HA() * * Revision 1.21 1999/03/16 13:40:34 achim * Problems with reserved drives solved * gdth_eh_bus_reset() implemented * * Revision 1.20 1999/03/10 09:08:13 achim * Bugfix: Corrections in gdth_direction_tab[] made * Bugfix: Increase command timeout (gdth_update_timeout()) NOT in gdth_putq() * * Revision 1.19 1999/03/05 14:38:16 achim * Bugfix: Heads/Sectors mapping for reserved devices possibly wrong * -> gdth_eval_mapping() implemented, changes in gdth_bios_param() * INIT_RETRIES set to 100s to avoid DEINIT-Timeout for controllers * with BIOS disabled and memory test set to Intensive * Enhanced /proc support * * Revision 1.18 1999/02/24 09:54:33 achim * Command line parameter hdr_channel implemented * Bugfix for EISA controllers + Linux 2.2.x * * Revision 1.17 1998/12/17 15:58:11 achim * Command line parameters implemented * Changes for Alpha platforms * PCI controller scan changed * SMP support improved (spin_lock_irqsave(),...) * New async. events, new scan/reserve commands included * * Revision 1.16 1998/09/28 16:08:46 achim * GDT_PCIMPR: DPMEM remapping, if required * mdelay() added * * Revision 1.15 1998/06/03 14:54:06 achim * gdth_delay(), gdth_flush() implemented * Bugfix: gdth_release() changed * * Revision 1.14 1998/05/22 10:01:17 achim * mj: pcibios_strerror() removed * Improved SMP support (if version >= 2.1.95) * gdth_halt(): halt_called flag added (if version < 2.1) * * Revision 1.13 1998/04/16 09:14:57 achim * Reserve drives (for raw service) implemented * New error handling code enabled * Get controller name from board_info() IOCTL * Final round of PCI device driver patches by Martin Mares * * Revision 1.12 1998/03/03 09:32:37 achim * Fibre channel controller support added * * Revision 1.11 1998/01/27 16:19:14 achim * SA_SHIRQ added * add_timer()/del_timer() instead of GDTH_TIMER * scsi_add_timer()/scsi_del_timer() instead of SCSI_TIMER * New error handling included * * Revision 1.10 1997/10/31 12:29:57 achim * Read heads/sectors from host drive * * Revision 1.9 1997/09/04 10:07:25 achim * IO-mapping with virt_to_bus(), gdth_readb(), gdth_writeb(), ... * register_reboot_notifier() to get a notify on shutown used * * Revision 1.8 1997/04/02 12:14:30 achim * Version 1.00 (see gdth.h), tested with kernel 2.0.29 * * Revision 1.7 1997/03/12 13:33:37 achim * gdth_reset() changed, new async. events * * Revision 1.6 1997/03/04 14:01:11 achim * Shutdown routine gdth_halt() implemented * * Revision 1.5 1997/02/21 09:08:36 achim * New controller included (RP, RP1, RP2 series) * IOCTL interface implemented * * Revision 1.4 1996/07/05 12:48:55 achim * Function gdth_bios_param() implemented * New constant GDTH_MAXC_P_L inserted * GDT_WRITE_THR, GDT_EXT_INFO implemented * Function gdth_reset() changed * * Revision 1.3 1996/05/10 09:04:41 achim * Small changes for Linux 1.2.13 * * Revision 1.2 1996/05/09 12:45:27 achim * Loadable module support implemented * /proc support corrections made * * Revision 1.1 1996/04/11 07:35:57 achim * Initial revision * ************************************************************************/ /* All GDT Disk Array Controllers are fully supported by this driver. * This includes the PCI/EISA/ISA SCSI Disk Array Controllers and the * PCI Fibre Channel Disk Array Controllers. See gdth.h for a complete * list of all controller types. * * If you have one or more GDT3000/3020 EISA controllers with * controller BIOS disabled, you have to set the IRQ values with the * command line option "gdth=irq1,irq2,...", where the irq1,irq2,... are * the IRQ values for the EISA controllers. * * After the optional list of IRQ values, other possible * command line options are: * disable:Y disable driver * disable:N enable driver * reserve_mode:0 reserve no drives for the raw service * reserve_mode:1 reserve all not init., removable drives * reserve_mode:2 reserve all not init. drives * reserve_list:h,b,t,l,h,b,t,l,... reserve particular drive(s) with * h- controller no., b- channel no., * t- target ID, l- LUN * reverse_scan:Y reverse scan order for PCI controllers * reverse_scan:N scan PCI controllers like BIOS * max_ids:x x - target ID count per channel (1..MAXID) * rescan:Y rescan all channels/IDs * rescan:N use all devices found until now * virt_ctr:Y map every channel to a virtual controller * virt_ctr:N use multi channel support * hdr_channel:x x - number of virtual bus for host drives * shared_access:Y disable driver reserve/release protocol to * access a shared resource from several nodes, * appropriate controller firmware required * shared_access:N enable driver reserve/release protocol * probe_eisa_isa:Y scan for EISA/ISA controllers * probe_eisa_isa:N do not scan for EISA/ISA controllers * force_dma32:Y use only 32 bit DMA mode * force_dma32:N use 64 bit DMA mode, if supported * * The default values are: "gdth=disable:N,reserve_mode:1,reverse_scan:N, * max_ids:127,rescan:N,virt_ctr:N,hdr_channel:0, * shared_access:Y,probe_eisa_isa:N,force_dma32:N". * Here is another example: "gdth=reserve_list:0,1,2,0,0,1,3,0,rescan:Y". * * When loading the gdth driver as a module, the same options are available. * You can set the IRQs with "IRQ=...". However, the syntax to specify the * options changes slightly. You must replace all ',' between options * with ' ' and all ':' with '=' and you must use * '1' in place of 'Y' and '0' in place of 'N'. * * Default: "modprobe gdth disable=0 reserve_mode=1 reverse_scan=0 * max_ids=127 rescan=0 virt_ctr=0 hdr_channel=0 shared_access=0 * probe_eisa_isa=0 force_dma32=0" * The other example: "modprobe gdth reserve_list=0,1,2,0,0,1,3,0 rescan=1". */ /* The meaning of the Scsi_Pointer members in this driver is as follows: * ptr: Chaining * this_residual: Command priority * buffer: phys. DMA sense buffer * dma_handle: phys. DMA buffer (kernel >= 2.4.0) * buffers_residual: Timeout value * Status: Command status (gdth_do_cmd()), DMA mem. mappings * Message: Additional info (gdth_do_cmd()), DMA direction * have_data_in: Flag for gdth_wait_completion() * sent_command: Opcode special command * phase: Service/parameter/return code special command */ /* interrupt coalescing */ /* #define INT_COAL */ /* statistics */ #define GDTH_STATISTICS #include <linux/module.h> #include <linux/version.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/string.h> #include <linux/ctype.h> #include <linux/ioport.h> #include <linux/delay.h> #include <linux/sched.h> #include <linux/interrupt.h> #include <linux/in.h> #include <linux/proc_fs.h> #include <linux/time.h> #include <linux/timer.h> #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,6) #include <linux/dma-mapping.h> #else #define DMA_32BIT_MASK 0x00000000ffffffffULL #define DMA_64BIT_MASK 0xffffffffffffffffULL #endif #ifdef GDTH_RTC #include <linux/mc146818rtc.h> #endif #include <linux/reboot.h> #include <asm/dma.h> #include <asm/system.h> #include <asm/io.h> #include <asm/uaccess.h> #include <linux/spinlock.h> #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) #include <linux/blkdev.h> #else #include <linux/blk.h> #include "sd.h" #endif #include "scsi.h" #include <scsi/scsi_host.h> #include "gdth_kcompat.h" #include "gdth.h" static void gdth_delay(int milliseconds); static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs); static irqreturn_t gdth_interrupt(int irq, void *dev_id); static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp); static int gdth_async_event(int hanum); static void gdth_log_event(gdth_evt_data *dvr, char *buffer); static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority); static void gdth_next(int hanum); static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b); static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp); static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source, ushort idx, gdth_evt_data *evt); static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr); static void gdth_readapp_event(gdth_ha_str *ha, unchar application, gdth_evt_str *estr); static void gdth_clear_events(void); static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp, char *buffer,ushort count); static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp); static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive); static int gdth_search_eisa(ushort eisa_adr); static int gdth_search_isa(ulong32 bios_adr); static int gdth_search_pci(gdth_pci_str *pcistr); static void gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt, ushort vendor, ushort dev); static void gdth_sort_pci(gdth_pci_str *pcistr, int cnt); static int gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha); static int gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha); static int gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha); static void gdth_enable_int(int hanum); static int gdth_get_status(unchar *pIStatus,int irq); static int gdth_test_busy(int hanum); static int gdth_get_cmd_index(int hanum); static void gdth_release_event(int hanum); static int gdth_wait(int hanum,int index,ulong32 time); static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1, ulong64 p2,ulong64 p3); static int gdth_search_drives(int hanum); static int gdth_analyse_hdrive(int hanum, ushort hdrive); static const char *gdth_ctr_name(int hanum); static int gdth_open(struct inode *inode, struct file *filep); static int gdth_close(struct inode *inode, struct file *filep); static int gdth_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg); static void gdth_flush(int hanum); static int gdth_halt(struct notifier_block *nb, ulong event, void *buf); static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *)); static void gdth_scsi_done(struct scsi_cmnd *scp); #ifdef DEBUG_GDTH static unchar DebugState = DEBUG_GDTH; #ifdef __SERIAL__ #define MAX_SERBUF 160 static void ser_init(void); static void ser_puts(char *str); static void ser_putc(char c); static int ser_printk(const char *fmt, ...); static char strbuf[MAX_SERBUF+1]; #ifdef __COM2__ #define COM_BASE 0x2f8 #else #define COM_BASE 0x3f8 #endif static void ser_init() { unsigned port=COM_BASE; outb(0x80,port+3); outb(0,port+1); /* 19200 Baud, if 9600: outb(12,port) */ outb(6, port); outb(3,port+3); outb(0,port+1); /* ser_putc('I'); ser_putc(' '); */ } static void ser_puts(char *str) { char *ptr; ser_init(); for (ptr=str;*ptr;++ptr) ser_putc(*ptr); } static void ser_putc(char c) { unsigned port=COM_BASE; while ((inb(port+5) & 0x20)==0); outb(c,port); if (c==0x0a) { while ((inb(port+5) & 0x20)==0); outb(0x0d,port); } } static int ser_printk(const char *fmt, ...) { va_list args; int i; va_start(args,fmt); i = vsprintf(strbuf,fmt,args); ser_puts(strbuf); va_end(args); return i; } #define TRACE(a) {if (DebugState==1) {ser_printk a;}} #define TRACE2(a) {if (DebugState==1 || DebugState==2) {ser_printk a;}} #define TRACE3(a) {if (DebugState!=0) {ser_printk a;}} #else /* !__SERIAL__ */ #define TRACE(a) {if (DebugState==1) {printk a;}} #define TRACE2(a) {if (DebugState==1 || DebugState==2) {printk a;}} #define TRACE3(a) {if (DebugState!=0) {printk a;}} #endif #else /* !DEBUG */ #define TRACE(a) #define TRACE2(a) #define TRACE3(a) #endif #ifdef GDTH_STATISTICS static ulong32 max_rq=0, max_index=0, max_sg=0; #ifdef INT_COAL static ulong32 max_int_coal=0; #endif static ulong32 act_ints=0, act_ios=0, act_stats=0, act_rq=0; static struct timer_list gdth_timer; #endif #define PTR2USHORT(a) (ushort)(ulong)(a) #define GDTOFFSOF(a,b) (size_t)&(((a*)0)->b) #define INDEX_OK(i,t) ((i)<ARRAY_SIZE(t)) #define NUMDATA(a) ( (gdth_num_str *)((a)->hostdata)) #define HADATA(a) (&((gdth_ext_str *)((a)->hostdata))->haext) #define CMDDATA(a) (&((gdth_ext_str *)((a)->hostdata))->cmdext) #define BUS_L2P(a,b) ((b)>(a)->virt_bus ? (b-1):(b)) #define gdth_readb(addr) readb(addr) #define gdth_readw(addr) readw(addr) #define gdth_readl(addr) readl(addr) #define gdth_writeb(b,addr) writeb((b),(addr)) #define gdth_writew(b,addr) writew((b),(addr)) #define gdth_writel(b,addr) writel((b),(addr)) static unchar gdth_drq_tab[4] = {5,6,7,7}; /* DRQ table */ static unchar gdth_irq_tab[6] = {0,10,11,12,14,0}; /* IRQ table */ static unchar gdth_polling; /* polling if TRUE */ static unchar gdth_from_wait = FALSE; /* gdth_wait() */ static int wait_index,wait_hanum; /* gdth_wait() */ static int gdth_ctr_count = 0; /* controller count */ static int gdth_ctr_vcount = 0; /* virt. ctr. count */ static int gdth_ctr_released = 0; /* gdth_release() */ static struct Scsi_Host *gdth_ctr_tab[MAXHA]; /* controller table */ static struct Scsi_Host *gdth_ctr_vtab[MAXHA*MAXBUS]; /* virt. ctr. table */ static unchar gdth_write_through = FALSE; /* write through */ static gdth_evt_str ebuffer[MAX_EVENTS]; /* event buffer */ static int elastidx; static int eoldidx; static int major; #define DIN 1 /* IN data direction */ #define DOU 2 /* OUT data direction */ #define DNO DIN /* no data transfer */ #define DUN DIN /* unknown data direction */ static unchar gdth_direction_tab[0x100] = { DNO,DNO,DIN,DIN,DOU,DIN,DIN,DOU,DIN,DUN,DOU,DOU,DUN,DUN,DUN,DIN, DNO,DIN,DIN,DOU,DIN,DOU,DNO,DNO,DOU,DNO,DIN,DNO,DIN,DOU,DNO,DUN, DIN,DUN,DIN,DUN,DOU,DIN,DUN,DUN,DIN,DIN,DOU,DNO,DUN,DIN,DOU,DOU, DOU,DOU,DOU,DNO,DIN,DNO,DNO,DIN,DOU,DOU,DOU,DOU,DIN,DOU,DIN,DOU, DOU,DOU,DIN,DIN,DIN,DNO,DUN,DNO,DNO,DNO,DUN,DNO,DOU,DIN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DIN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN,DOU,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN, DUN,DUN,DUN,DUN,DUN,DNO,DNO,DUN,DIN,DNO,DOU,DUN,DNO,DUN,DOU,DOU, DOU,DOU,DOU,DNO,DUN,DIN,DOU,DIN,DIN,DUN,DUN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN, DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN }; /* LILO and modprobe/insmod parameters */ /* IRQ list for GDT3000/3020 EISA controllers */ static int irq[MAXHA] __initdata = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; /* disable driver flag */ static int disable __initdata = 0; /* reserve flag */ static int reserve_mode = 1; /* reserve list */ static int reserve_list[MAX_RES_ARGS] = {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, 0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; /* scan order for PCI controllers */ static int reverse_scan = 0; /* virtual channel for the host drives */ static int hdr_channel = 0; /* max. IDs per channel */ static int max_ids = MAXID; /* rescan all IDs */ static int rescan = 0; /* map channels to virtual controllers */ static int virt_ctr = 0; /* shared access */ static int shared_access = 1; /* enable support for EISA and ISA controllers */ static int probe_eisa_isa = 0; /* 64 bit DMA mode, support for drives > 2 TB, if force_dma32 = 0 */ static int force_dma32 = 0; /* parameters for modprobe/insmod */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11) module_param_array(irq, int, NULL, 0); module_param(disable, int, 0); module_param(reserve_mode, int, 0); module_param_array(reserve_list, int, NULL, 0); module_param(reverse_scan, int, 0); module_param(hdr_channel, int, 0); module_param(max_ids, int, 0); module_param(rescan, int, 0); module_param(virt_ctr, int, 0); module_param(shared_access, int, 0); module_param(probe_eisa_isa, int, 0); module_param(force_dma32, int, 0); #else MODULE_PARM(irq, "i"); MODULE_PARM(disable, "i"); MODULE_PARM(reserve_mode, "i"); MODULE_PARM(reserve_list, "4-" __MODULE_STRING(MAX_RES_ARGS) "i"); MODULE_PARM(reverse_scan, "i"); MODULE_PARM(hdr_channel, "i"); MODULE_PARM(max_ids, "i"); MODULE_PARM(rescan, "i"); MODULE_PARM(virt_ctr, "i"); MODULE_PARM(shared_access, "i"); MODULE_PARM(probe_eisa_isa, "i"); MODULE_PARM(force_dma32, "i"); #endif MODULE_AUTHOR("Achim Leubner"); MODULE_LICENSE("GPL"); /* ioctl interface */ static struct file_operations gdth_fops = { .ioctl = gdth_ioctl, .open = gdth_open, .release = gdth_close, }; #include "gdth_proc.h" #include "gdth_proc.c" /* notifier block to get a notify on system shutdown/halt/reboot */ static struct notifier_block gdth_notifier = { gdth_halt, NULL, 0 }; static int notifier_disabled = 0; static void gdth_delay(int milliseconds) { if (milliseconds == 0) { udelay(1); } else { mdelay(milliseconds); } } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) static void gdth_scsi_done(struct scsi_cmnd *scp) { TRACE2(("gdth_scsi_done()\n")); if (scp->request) complete((struct completion *)scp->request); } int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd, int timeout, u32 *info) { Scsi_Cmnd *scp; DECLARE_COMPLETION_ONSTACK(wait); int rval; scp = kmalloc(sizeof(*scp), GFP_KERNEL); if (!scp) return -ENOMEM; memset(scp, 0, sizeof(*scp)); scp->device = sdev; /* use request field to save the ptr. to completion struct. */ scp->request = (struct request *)&wait; scp->timeout_per_command = timeout*HZ; scp->request_buffer = gdtcmd; scp->cmd_len = 12; memcpy(scp->cmnd, cmnd, 12); scp->SCp.this_residual = IOCTL_PRI; /* priority */ scp->done = gdth_scsi_done; /* some fn. test this */ gdth_queuecommand(scp, gdth_scsi_done); wait_for_completion(&wait); rval = scp->SCp.Status; if (info) *info = scp->SCp.Message; kfree(scp); return rval; } #else static void gdth_scsi_done(Scsi_Cmnd *scp) { TRACE2(("gdth_scsi_done()\n")); scp->request.rq_status = RQ_SCSI_DONE; if (scp->request.waiting) complete(scp->request.waiting); } int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd, int timeout, u32 *info) { Scsi_Cmnd *scp = scsi_allocate_device(sdev, 1, FALSE); unsigned bufflen = gdtcmd ? sizeof(gdth_cmd_str) : 0; DECLARE_COMPLETION_ONSTACK(wait); int rval; if (!scp) return -ENOMEM; scp->cmd_len = 12; scp->use_sg = 0; scp->SCp.this_residual = IOCTL_PRI; /* priority */ scp->request.rq_status = RQ_SCSI_BUSY; scp->request.waiting = &wait; scsi_do_cmd(scp, cmnd, gdtcmd, bufflen, gdth_scsi_done, timeout*HZ, 1); wait_for_completion(&wait); rval = scp->SCp.Status; if (info) *info = scp->SCp.Message; scsi_release_command(scp); return rval; } #endif int gdth_execute(struct Scsi_Host *shost, gdth_cmd_str *gdtcmd, char *cmnd, int timeout, u32 *info) { struct scsi_device *sdev = scsi_get_host_dev(shost); int rval = __gdth_execute(sdev, gdtcmd, cmnd, timeout, info); scsi_free_host_dev(sdev); return rval; } static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs) { *cyls = size /HEADS/SECS; if (*cyls <= MAXCYLS) { *heads = HEADS; *secs = SECS; } else { /* too high for 64*32 */ *cyls = size /MEDHEADS/MEDSECS; if (*cyls <= MAXCYLS) { *heads = MEDHEADS; *secs = MEDSECS; } else { /* too high for 127*63 */ *cyls = size /BIGHEADS/BIGSECS; *heads = BIGHEADS; *secs = BIGSECS; } } } /* controller search and initialization functions */ static int __init gdth_search_eisa(ushort eisa_adr) { ulong32 id; TRACE(("gdth_search_eisa() adr. %x\n",eisa_adr)); id = inl(eisa_adr+ID0REG); if (id == GDT3A_ID || id == GDT3B_ID) { /* GDT3000A or GDT3000B */ if ((inb(eisa_adr+EISAREG) & 8) == 0) return 0; /* not EISA configured */ return 1; } if (id == GDT3_ID) /* GDT3000 */ return 1; return 0; } static int __init gdth_search_isa(ulong32 bios_adr) { void __iomem *addr; ulong32 id; TRACE(("gdth_search_isa() bios adr. %x\n",bios_adr)); if ((addr = ioremap(bios_adr+BIOS_ID_OFFS, sizeof(ulong32))) != NULL) { id = gdth_readl(addr); iounmap(addr); if (id == GDT2_ID) /* GDT2000 */ return 1; } return 0; } static int __init gdth_search_pci(gdth_pci_str *pcistr) { ushort device, cnt; TRACE(("gdth_search_pci()\n")); cnt = 0; for (device = 0; device <= PCI_DEVICE_ID_VORTEX_GDT6555; ++device) gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device); for (device = PCI_DEVICE_ID_VORTEX_GDT6x17RP; device <= PCI_DEVICE_ID_VORTEX_GDTMAXRP; ++device) gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device); gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, PCI_DEVICE_ID_VORTEX_GDTNEWRX); gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, PCI_DEVICE_ID_VORTEX_GDTNEWRX2); gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SRC); gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_SRC_XSCALE); return cnt; } /* Vortex only makes RAID controllers. * We do not really want to specify all 550 ids here, so wildcard match. */ static struct pci_device_id gdthtable[] __attribute_used__ = { {PCI_VENDOR_ID_VORTEX,PCI_ANY_ID,PCI_ANY_ID, PCI_ANY_ID}, {PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC,PCI_ANY_ID,PCI_ANY_ID}, {PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC_XSCALE,PCI_ANY_ID,PCI_ANY_ID}, {0} }; MODULE_DEVICE_TABLE(pci,gdthtable); static void __init gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt, ushort vendor, ushort device) { ulong base0, base1, base2; struct pci_dev *pdev; TRACE(("gdth_search_dev() cnt %d vendor %x device %x\n", *cnt, vendor, device)); pdev = NULL; while ((pdev = pci_find_device(vendor, device, pdev)) != NULL) { if (pci_enable_device(pdev)) continue; if (*cnt >= MAXHA) return; /* GDT PCI controller found, resources are already in pdev */ pcistr[*cnt].pdev = pdev; pcistr[*cnt].vendor_id = vendor; pcistr[*cnt].device_id = device; pcistr[*cnt].subdevice_id = pdev->subsystem_device; pcistr[*cnt].bus = pdev->bus->number; pcistr[*cnt].device_fn = pdev->devfn; pcistr[*cnt].irq = pdev->irq; base0 = pci_resource_flags(pdev, 0); base1 = pci_resource_flags(pdev, 1); base2 = pci_resource_flags(pdev, 2); if (device <= PCI_DEVICE_ID_VORTEX_GDT6000B || /* GDT6000/B */ device >= PCI_DEVICE_ID_VORTEX_GDT6x17RP) { /* MPR */ if (!(base0 & IORESOURCE_MEM)) continue; pcistr[*cnt].dpmem = pci_resource_start(pdev, 0); } else { /* GDT6110, GDT6120, .. */ if (!(base0 & IORESOURCE_MEM) || !(base2 & IORESOURCE_MEM) || !(base1 & IORESOURCE_IO)) continue; pcistr[*cnt].dpmem = pci_resource_start(pdev, 2); pcistr[*cnt].io_mm = pci_resource_start(pdev, 0); pcistr[*cnt].io = pci_resource_start(pdev, 1); } TRACE2(("Controller found at %d/%d, irq %d, dpmem 0x%lx\n", pcistr[*cnt].bus, PCI_SLOT(pcistr[*cnt].device_fn), pcistr[*cnt].irq, pcistr[*cnt].dpmem)); (*cnt)++; } } static void __init gdth_sort_pci(gdth_pci_str *pcistr, int cnt) { gdth_pci_str temp; int i, changed; TRACE(("gdth_sort_pci() cnt %d\n",cnt)); if (cnt == 0) return; do { changed = FALSE; for (i = 0; i < cnt-1; ++i) { if (!reverse_scan) { if ((pcistr[i].bus > pcistr[i+1].bus) || (pcistr[i].bus == pcistr[i+1].bus && PCI_SLOT(pcistr[i].device_fn) > PCI_SLOT(pcistr[i+1].device_fn))) { temp = pcistr[i]; pcistr[i] = pcistr[i+1]; pcistr[i+1] = temp; changed = TRUE; } } else { if ((pcistr[i].bus < pcistr[i+1].bus) || (pcistr[i].bus == pcistr[i+1].bus && PCI_SLOT(pcistr[i].device_fn) < PCI_SLOT(pcistr[i+1].device_fn))) { temp = pcistr[i]; pcistr[i] = pcistr[i+1]; pcistr[i+1] = temp; changed = TRUE; } } } } while (changed); } static int __init gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha) { ulong32 retries,id; unchar prot_ver,eisacf,i,irq_found; TRACE(("gdth_init_eisa() adr. %x\n",eisa_adr)); /* disable board interrupts, deinitialize services */ outb(0xff,eisa_adr+EDOORREG); outb(0x00,eisa_adr+EDENABREG); outb(0x00,eisa_adr+EINTENABREG); outb(0xff,eisa_adr+LDOORREG); retries = INIT_RETRIES; gdth_delay(20); while (inb(eisa_adr+EDOORREG) != 0xff) { if (--retries == 0) { printk("GDT-EISA: Initialization error (DEINIT failed)\n"); return 0; } gdth_delay(1); TRACE2(("wait for DEINIT: retries=%d\n",retries)); } prot_ver = inb(eisa_adr+MAILBOXREG); outb(0xff,eisa_adr+EDOORREG); if (prot_ver != PROTOCOL_VERSION) { printk("GDT-EISA: Illegal protocol version\n"); return 0; } ha->bmic = eisa_adr; ha->brd_phys = (ulong32)eisa_adr >> 12; outl(0,eisa_adr+MAILBOXREG); outl(0,eisa_adr+MAILBOXREG+4); outl(0,eisa_adr+MAILBOXREG+8); outl(0,eisa_adr+MAILBOXREG+12); /* detect IRQ */ if ((id = inl(eisa_adr+ID0REG)) == GDT3_ID) { ha->oem_id = OEM_ID_ICP; ha->type = GDT_EISA; ha->stype = id; outl(1,eisa_adr+MAILBOXREG+8); outb(0xfe,eisa_adr+LDOORREG); retries = INIT_RETRIES; gdth_delay(20); while (inb(eisa_adr+EDOORREG) != 0xfe) { if (--retries == 0) { printk("GDT-EISA: Initialization error (get IRQ failed)\n"); return 0; } gdth_delay(1); } ha->irq = inb(eisa_adr+MAILBOXREG); outb(0xff,eisa_adr+EDOORREG); TRACE2(("GDT3000/3020: IRQ=%d\n",ha->irq)); /* check the result */ if (ha->irq == 0) { TRACE2(("Unknown IRQ, use IRQ table from cmd line !\n")); for (i = 0, irq_found = FALSE; i < MAXHA && irq[i] != 0xff; ++i) { if (irq[i]==10 || irq[i]==11 || irq[i]==12 || irq[i]==14) { irq_found = TRUE; break; } } if (irq_found) { ha->irq = irq[i]; irq[i] = 0; printk("GDT-EISA: Can not detect controller IRQ,\n"); printk("Use IRQ setting from command line (IRQ = %d)\n", ha->irq); } else { printk("GDT-EISA: Initialization error (unknown IRQ), Enable\n"); printk("the controller BIOS or use command line parameters\n"); return 0; } } } else { eisacf = inb(eisa_adr+EISAREG) & 7; if (eisacf > 4) /* level triggered */ eisacf -= 4; ha->irq = gdth_irq_tab[eisacf]; ha->oem_id = OEM_ID_ICP; ha->type = GDT_EISA; ha->stype = id; } ha->dma64_support = 0; return 1; } static int __init gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha) { register gdt2_dpram_str __iomem *dp2_ptr; int i; unchar irq_drq,prot_ver; ulong32 retries; TRACE(("gdth_init_isa() bios adr. %x\n",bios_adr)); ha->brd = ioremap(bios_adr, sizeof(gdt2_dpram_str)); if (ha->brd == NULL) { printk("GDT-ISA: Initialization error (DPMEM remap error)\n"); return 0; } dp2_ptr = ha->brd; gdth_writeb(1, &dp2_ptr->io.memlock); /* switch off write protection */ /* reset interface area */ memset_io(&dp2_ptr->u, 0, sizeof(dp2_ptr->u)); if (gdth_readl(&dp2_ptr->u) != 0) { printk("GDT-ISA: Initialization error (DPMEM write error)\n"); iounmap(ha->brd); return 0; } /* disable board interrupts, read DRQ and IRQ */ gdth_writeb(0xff, &dp2_ptr->io.irqdel); gdth_writeb(0x00, &dp2_ptr->io.irqen); gdth_writeb(0x00, &dp2_ptr->u.ic.S_Status); gdth_writeb(0x00, &dp2_ptr->u.ic.Cmd_Index); irq_drq = gdth_readb(&dp2_ptr->io.rq); for (i=0; i<3; ++i) { if ((irq_drq & 1)==0) break; irq_drq >>= 1; } ha->drq = gdth_drq_tab[i]; irq_drq = gdth_readb(&dp2_ptr->io.rq) >> 3; for (i=1; i<5; ++i) { if ((irq_drq & 1)==0) break; irq_drq >>= 1; } ha->irq = gdth_irq_tab[i]; /* deinitialize services */ gdth_writel(bios_adr, &dp2_ptr->u.ic.S_Info[0]); gdth_writeb(0xff, &dp2_ptr->u.ic.S_Cmd_Indx); gdth_writeb(0, &dp2_ptr->io.event); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xff) { if (--retries == 0) { printk("GDT-ISA: Initialization error (DEINIT failed)\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } prot_ver = (unchar)gdth_readl(&dp2_ptr->u.ic.S_Info[0]); gdth_writeb(0, &dp2_ptr->u.ic.Status); gdth_writeb(0xff, &dp2_ptr->io.irqdel); if (prot_ver != PROTOCOL_VERSION) { printk("GDT-ISA: Illegal protocol version\n"); iounmap(ha->brd); return 0; } ha->oem_id = OEM_ID_ICP; ha->type = GDT_ISA; ha->ic_all_size = sizeof(dp2_ptr->u); ha->stype= GDT2_ID; ha->brd_phys = bios_adr >> 4; /* special request to controller BIOS */ gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[0]); gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[1]); gdth_writel(0x01, &dp2_ptr->u.ic.S_Info[2]); gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[3]); gdth_writeb(0xfe, &dp2_ptr->u.ic.S_Cmd_Indx); gdth_writeb(0, &dp2_ptr->io.event); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xfe) { if (--retries == 0) { printk("GDT-ISA: Initialization error\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } gdth_writeb(0, &dp2_ptr->u.ic.Status); gdth_writeb(0xff, &dp2_ptr->io.irqdel); ha->dma64_support = 0; return 1; } static int __init gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha) { register gdt6_dpram_str __iomem *dp6_ptr; register gdt6c_dpram_str __iomem *dp6c_ptr; register gdt6m_dpram_str __iomem *dp6m_ptr; ulong32 retries; unchar prot_ver; ushort command; int i, found = FALSE; TRACE(("gdth_init_pci()\n")); if (pcistr->vendor_id == PCI_VENDOR_ID_INTEL) ha->oem_id = OEM_ID_INTEL; else ha->oem_id = OEM_ID_ICP; ha->brd_phys = (pcistr->bus << 8) | (pcistr->device_fn & 0xf8); ha->stype = (ulong32)pcistr->device_id; ha->subdevice_id = pcistr->subdevice_id; ha->irq = pcistr->irq; ha->pdev = pcistr->pdev; if (ha->stype <= PCI_DEVICE_ID_VORTEX_GDT6000B) { /* GDT6000/B */ TRACE2(("init_pci() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq)); ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } /* check and reset interface area */ dp6_ptr = ha->brd; gdth_writel(DPMEM_MAGIC, &dp6_ptr->u); if (gdth_readl(&dp6_ptr->u) != DPMEM_MAGIC) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = FALSE; for (i = 0xC8000; i < 0xE8000; i += 0x4000) { iounmap(ha->brd); ha->brd = ioremap(i, sizeof(ushort)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } if (gdth_readw(ha->brd) != 0xffff) { TRACE2(("init_pci_old() address 0x%x busy\n", i)); continue; } iounmap(ha->brd); pci_write_config_dword(pcistr->pdev, PCI_BASE_ADDRESS_0, i); ha->brd = ioremap(i, sizeof(gdt6_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } dp6_ptr = ha->brd; gdth_writel(DPMEM_MAGIC, &dp6_ptr->u); if (gdth_readl(&dp6_ptr->u) == DPMEM_MAGIC) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = TRUE; break; } } if (!found) { printk("GDT-PCI: No free address found!\n"); iounmap(ha->brd); return 0; } } memset_io(&dp6_ptr->u, 0, sizeof(dp6_ptr->u)); if (gdth_readl(&dp6_ptr->u) != 0) { printk("GDT-PCI: Initialization error (DPMEM write error)\n"); iounmap(ha->brd); return 0; } /* disable board interrupts, deinit services */ gdth_writeb(0xff, &dp6_ptr->io.irqdel); gdth_writeb(0x00, &dp6_ptr->io.irqen); gdth_writeb(0x00, &dp6_ptr->u.ic.S_Status); gdth_writeb(0x00, &dp6_ptr->u.ic.Cmd_Index); gdth_writel(pcistr->dpmem, &dp6_ptr->u.ic.S_Info[0]); gdth_writeb(0xff, &dp6_ptr->u.ic.S_Cmd_Indx); gdth_writeb(0, &dp6_ptr->io.event); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xff) { if (--retries == 0) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } prot_ver = (unchar)gdth_readl(&dp6_ptr->u.ic.S_Info[0]); gdth_writeb(0, &dp6_ptr->u.ic.S_Status); gdth_writeb(0xff, &dp6_ptr->io.irqdel); if (prot_ver != PROTOCOL_VERSION) { printk("GDT-PCI: Illegal protocol version\n"); iounmap(ha->brd); return 0; } ha->type = GDT_PCI; ha->ic_all_size = sizeof(dp6_ptr->u); /* special command to controller BIOS */ gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[0]); gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[1]); gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[2]); gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[3]); gdth_writeb(0xfe, &dp6_ptr->u.ic.S_Cmd_Indx); gdth_writeb(0, &dp6_ptr->io.event); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xfe) { if (--retries == 0) { printk("GDT-PCI: Initialization error\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } gdth_writeb(0, &dp6_ptr->u.ic.S_Status); gdth_writeb(0xff, &dp6_ptr->io.irqdel); ha->dma64_support = 0; } else if (ha->stype <= PCI_DEVICE_ID_VORTEX_GDT6555) { /* GDT6110, ... */ ha->plx = (gdt6c_plx_regs *)pcistr->io; TRACE2(("init_pci_new() dpmem %lx irq %d\n", pcistr->dpmem,ha->irq)); ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6c_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); iounmap(ha->brd); return 0; } /* check and reset interface area */ dp6c_ptr = ha->brd; gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u); if (gdth_readl(&dp6c_ptr->u) != DPMEM_MAGIC) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = FALSE; for (i = 0xC8000; i < 0xE8000; i += 0x4000) { iounmap(ha->brd); ha->brd = ioremap(i, sizeof(ushort)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } if (gdth_readw(ha->brd) != 0xffff) { TRACE2(("init_pci_plx() address 0x%x busy\n", i)); continue; } iounmap(ha->brd); pci_write_config_dword(pcistr->pdev, PCI_BASE_ADDRESS_2, i); ha->brd = ioremap(i, sizeof(gdt6c_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } dp6c_ptr = ha->brd; gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u); if (gdth_readl(&dp6c_ptr->u) == DPMEM_MAGIC) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = TRUE; break; } } if (!found) { printk("GDT-PCI: No free address found!\n"); iounmap(ha->brd); return 0; } } memset_io(&dp6c_ptr->u, 0, sizeof(dp6c_ptr->u)); if (gdth_readl(&dp6c_ptr->u) != 0) { printk("GDT-PCI: Initialization error (DPMEM write error)\n"); iounmap(ha->brd); return 0; } /* disable board interrupts, deinit services */ outb(0x00,PTR2USHORT(&ha->plx->control1)); outb(0xff,PTR2USHORT(&ha->plx->edoor_reg)); gdth_writeb(0x00, &dp6c_ptr->u.ic.S_Status); gdth_writeb(0x00, &dp6c_ptr->u.ic.Cmd_Index); gdth_writel(pcistr->dpmem, &dp6c_ptr->u.ic.S_Info[0]); gdth_writeb(0xff, &dp6c_ptr->u.ic.S_Cmd_Indx); outb(1,PTR2USHORT(&ha->plx->ldoor_reg)); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xff) { if (--retries == 0) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } prot_ver = (unchar)gdth_readl(&dp6c_ptr->u.ic.S_Info[0]); gdth_writeb(0, &dp6c_ptr->u.ic.Status); if (prot_ver != PROTOCOL_VERSION) { printk("GDT-PCI: Illegal protocol version\n"); iounmap(ha->brd); return 0; } ha->type = GDT_PCINEW; ha->ic_all_size = sizeof(dp6c_ptr->u); /* special command to controller BIOS */ gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[0]); gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[1]); gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[2]); gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[3]); gdth_writeb(0xfe, &dp6c_ptr->u.ic.S_Cmd_Indx); outb(1,PTR2USHORT(&ha->plx->ldoor_reg)); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xfe) { if (--retries == 0) { printk("GDT-PCI: Initialization error\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } gdth_writeb(0, &dp6c_ptr->u.ic.S_Status); ha->dma64_support = 0; } else { /* MPR */ TRACE2(("init_pci_mpr() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq)); ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6m_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } /* manipulate config. space to enable DPMEM, start RP controller */ pci_read_config_word(pcistr->pdev, PCI_COMMAND, &command); command |= 6; pci_write_config_word(pcistr->pdev, PCI_COMMAND, command); if (pci_resource_start(pcistr->pdev, 8) == 1UL) pci_resource_start(pcistr->pdev, 8) = 0UL; i = 0xFEFF0001UL; pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS, i); gdth_delay(1); pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS, pci_resource_start(pcistr->pdev, 8)); dp6m_ptr = ha->brd; /* Ensure that it is safe to access the non HW portions of DPMEM. * Aditional check needed for Xscale based RAID controllers */ while( ((int)gdth_readb(&dp6m_ptr->i960r.sema0_reg) ) & 3 ) gdth_delay(1); /* check and reset interface area */ gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u); if (gdth_readl(&dp6m_ptr->u) != DPMEM_MAGIC) { printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n", pcistr->dpmem); found = FALSE; for (i = 0xC8000; i < 0xE8000; i += 0x4000) { iounmap(ha->brd); ha->brd = ioremap(i, sizeof(ushort)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } if (gdth_readw(ha->brd) != 0xffff) { TRACE2(("init_pci_mpr() address 0x%x busy\n", i)); continue; } iounmap(ha->brd); pci_write_config_dword(pcistr->pdev, PCI_BASE_ADDRESS_0, i); ha->brd = ioremap(i, sizeof(gdt6m_dpram_str)); if (ha->brd == NULL) { printk("GDT-PCI: Initialization error (DPMEM remap error)\n"); return 0; } dp6m_ptr = ha->brd; gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u); if (gdth_readl(&dp6m_ptr->u) == DPMEM_MAGIC) { printk("GDT-PCI: Use free address at 0x%x\n", i); found = TRUE; break; } } if (!found) { printk("GDT-PCI: No free address found!\n"); iounmap(ha->brd); return 0; } } memset_io(&dp6m_ptr->u, 0, sizeof(dp6m_ptr->u)); /* disable board interrupts, deinit services */ gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) | 4, &dp6m_ptr->i960r.edoor_en_reg); gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg); gdth_writeb(0x00, &dp6m_ptr->u.ic.S_Status); gdth_writeb(0x00, &dp6m_ptr->u.ic.Cmd_Index); gdth_writel(pcistr->dpmem, &dp6m_ptr->u.ic.S_Info[0]); gdth_writeb(0xff, &dp6m_ptr->u.ic.S_Cmd_Indx); gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xff) { if (--retries == 0) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } prot_ver = (unchar)gdth_readl(&dp6m_ptr->u.ic.S_Info[0]); gdth_writeb(0, &dp6m_ptr->u.ic.S_Status); if (prot_ver != PROTOCOL_VERSION) { printk("GDT-PCI: Illegal protocol version\n"); iounmap(ha->brd); return 0; } ha->type = GDT_PCIMPR; ha->ic_all_size = sizeof(dp6m_ptr->u); /* special command to controller BIOS */ gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[0]); gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[1]); gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[2]); gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[3]); gdth_writeb(0xfe, &dp6m_ptr->u.ic.S_Cmd_Indx); gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfe) { if (--retries == 0) { printk("GDT-PCI: Initialization error\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } gdth_writeb(0, &dp6m_ptr->u.ic.S_Status); /* read FW version to detect 64-bit DMA support */ gdth_writeb(0xfd, &dp6m_ptr->u.ic.S_Cmd_Indx); gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg); retries = INIT_RETRIES; gdth_delay(20); while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfd) { if (--retries == 0) { printk("GDT-PCI: Initialization error (DEINIT failed)\n"); iounmap(ha->brd); return 0; } gdth_delay(1); } prot_ver = (unchar)(gdth_readl(&dp6m_ptr->u.ic.S_Info[0]) >> 16); gdth_writeb(0, &dp6m_ptr->u.ic.S_Status); if (prot_ver < 0x2b) /* FW < x.43: no 64-bit DMA support */ ha->dma64_support = 0; else ha->dma64_support = 1; } return 1; } /* controller protocol functions */ static void __init gdth_enable_int(int hanum) { gdth_ha_str *ha; ulong flags; gdt2_dpram_str __iomem *dp2_ptr; gdt6_dpram_str __iomem *dp6_ptr; gdt6m_dpram_str __iomem *dp6m_ptr; TRACE(("gdth_enable_int() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); spin_lock_irqsave(&ha->smp_lock, flags); if (ha->type == GDT_EISA) { outb(0xff, ha->bmic + EDOORREG); outb(0xff, ha->bmic + EDENABREG); outb(0x01, ha->bmic + EINTENABREG); } else if (ha->type == GDT_ISA) { dp2_ptr = ha->brd; gdth_writeb(1, &dp2_ptr->io.irqdel); gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index); gdth_writeb(1, &dp2_ptr->io.irqen); } else if (ha->type == GDT_PCI) { dp6_ptr = ha->brd; gdth_writeb(1, &dp6_ptr->io.irqdel); gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index); gdth_writeb(1, &dp6_ptr->io.irqen); } else if (ha->type == GDT_PCINEW) { outb(0xff, PTR2USHORT(&ha->plx->edoor_reg)); outb(0x03, PTR2USHORT(&ha->plx->control1)); } else if (ha->type == GDT_PCIMPR) { dp6m_ptr = ha->brd; gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg); gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) & ~4, &dp6m_ptr->i960r.edoor_en_reg); } spin_unlock_irqrestore(&ha->smp_lock, flags); } static int gdth_get_status(unchar *pIStatus,int irq) { register gdth_ha_str *ha; int i; TRACE(("gdth_get_status() irq %d ctr_count %d\n", irq,gdth_ctr_count)); *pIStatus = 0; for (i=0; i<gdth_ctr_count; ++i) { ha = HADATA(gdth_ctr_tab[i]); if (ha->irq != (unchar)irq) /* check IRQ */ continue; if (ha->type == GDT_EISA) *pIStatus = inb((ushort)ha->bmic + EDOORREG); else if (ha->type == GDT_ISA) *pIStatus = gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index); else if (ha->type == GDT_PCI) *pIStatus = gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index); else if (ha->type == GDT_PCINEW) *pIStatus = inb(PTR2USHORT(&ha->plx->edoor_reg)); else if (ha->type == GDT_PCIMPR) *pIStatus = gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.edoor_reg); if (*pIStatus) return i; /* board found */ } return -1; } static int gdth_test_busy(int hanum) { register gdth_ha_str *ha; register int gdtsema0 = 0; TRACE(("gdth_test_busy() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); if (ha->type == GDT_EISA) gdtsema0 = (int)inb(ha->bmic + SEMA0REG); else if (ha->type == GDT_ISA) gdtsema0 = (int)gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0); else if (ha->type == GDT_PCI) gdtsema0 = (int)gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0); else if (ha->type == GDT_PCINEW) gdtsema0 = (int)inb(PTR2USHORT(&ha->plx->sema0_reg)); else if (ha->type == GDT_PCIMPR) gdtsema0 = (int)gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg); return (gdtsema0 & 1); } static int gdth_get_cmd_index(int hanum) { register gdth_ha_str *ha; int i; TRACE(("gdth_get_cmd_index() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); for (i=0; i<GDTH_MAXCMDS; ++i) { if (ha->cmd_tab[i].cmnd == UNUSED_CMND) { ha->cmd_tab[i].cmnd = ha->pccb->RequestBuffer; ha->cmd_tab[i].service = ha->pccb->Service; ha->pccb->CommandIndex = (ulong32)i+2; return (i+2); } } return 0; } static void gdth_set_sema0(int hanum) { register gdth_ha_str *ha; TRACE(("gdth_set_sema0() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); if (ha->type == GDT_EISA) { outb(1, ha->bmic + SEMA0REG); } else if (ha->type == GDT_ISA) { gdth_writeb(1, &((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0); } else if (ha->type == GDT_PCI) { gdth_writeb(1, &((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0); } else if (ha->type == GDT_PCINEW) { outb(1, PTR2USHORT(&ha->plx->sema0_reg)); } else if (ha->type == GDT_PCIMPR) { gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg); } } static void gdth_copy_command(int hanum) { register gdth_ha_str *ha; register gdth_cmd_str *cmd_ptr; register gdt6m_dpram_str __iomem *dp6m_ptr; register gdt6c_dpram_str __iomem *dp6c_ptr; gdt6_dpram_str __iomem *dp6_ptr; gdt2_dpram_str __iomem *dp2_ptr; ushort cp_count,dp_offset,cmd_no; TRACE(("gdth_copy_command() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); cp_count = ha->cmd_len; dp_offset= ha->cmd_offs_dpmem; cmd_no = ha->cmd_cnt; cmd_ptr = ha->pccb; ++ha->cmd_cnt; if (ha->type == GDT_EISA) return; /* no DPMEM, no copy */ /* set cpcount dword aligned */ if (cp_count & 3) cp_count += (4 - (cp_count & 3)); ha->cmd_offs_dpmem += cp_count; /* set offset and service, copy command to DPMEM */ if (ha->type == GDT_ISA) { dp2_ptr = ha->brd; gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET, &dp2_ptr->u.ic.comm_queue[cmd_no].offset); gdth_writew((ushort)cmd_ptr->Service, &dp2_ptr->u.ic.comm_queue[cmd_no].serv_id); memcpy_toio(&dp2_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count); } else if (ha->type == GDT_PCI) { dp6_ptr = ha->brd; gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET, &dp6_ptr->u.ic.comm_queue[cmd_no].offset); gdth_writew((ushort)cmd_ptr->Service, &dp6_ptr->u.ic.comm_queue[cmd_no].serv_id); memcpy_toio(&dp6_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count); } else if (ha->type == GDT_PCINEW) { dp6c_ptr = ha->brd; gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET, &dp6c_ptr->u.ic.comm_queue[cmd_no].offset); gdth_writew((ushort)cmd_ptr->Service, &dp6c_ptr->u.ic.comm_queue[cmd_no].serv_id); memcpy_toio(&dp6c_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count); } else if (ha->type == GDT_PCIMPR) { dp6m_ptr = ha->brd; gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET, &dp6m_ptr->u.ic.comm_queue[cmd_no].offset); gdth_writew((ushort)cmd_ptr->Service, &dp6m_ptr->u.ic.comm_queue[cmd_no].serv_id); memcpy_toio(&dp6m_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count); } } static void gdth_release_event(int hanum) { register gdth_ha_str *ha; TRACE(("gdth_release_event() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); #ifdef GDTH_STATISTICS { ulong32 i,j; for (i=0,j=0; j<GDTH_MAXCMDS; ++j) { if (ha->cmd_tab[j].cmnd != UNUSED_CMND) ++i; } if (max_index < i) { max_index = i; TRACE3(("GDT: max_index = %d\n",(ushort)i)); } } #endif if (ha->pccb->OpCode == GDT_INIT) ha->pccb->Service |= 0x80; if (ha->type == GDT_EISA) { if (ha->pccb->OpCode == GDT_INIT) /* store DMA buffer */ outl(ha->ccb_phys, ha->bmic + MAILBOXREG); outb(ha->pccb->Service, ha->bmic + LDOORREG); } else if (ha->type == GDT_ISA) { gdth_writeb(0, &((gdt2_dpram_str __iomem *)ha->brd)->io.event); } else if (ha->type == GDT_PCI) { gdth_writeb(0, &((gdt6_dpram_str __iomem *)ha->brd)->io.event); } else if (ha->type == GDT_PCINEW) { outb(1, PTR2USHORT(&ha->plx->ldoor_reg)); } else if (ha->type == GDT_PCIMPR) { gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.ldoor_reg); } } static int gdth_wait(int hanum,int index,ulong32 time) { gdth_ha_str *ha; int answer_found = FALSE; TRACE(("gdth_wait() hanum %d index %d time %d\n",hanum,index,time)); ha = HADATA(gdth_ctr_tab[hanum]); if (index == 0) return 1; /* no wait required */ gdth_from_wait = TRUE; do { gdth_interrupt((int)ha->irq,ha); if (wait_hanum==hanum && wait_index==index) { answer_found = TRUE; break; } gdth_delay(1); } while (--time); gdth_from_wait = FALSE; while (gdth_test_busy(hanum)) gdth_delay(0); return (answer_found); } static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1, ulong64 p2,ulong64 p3) { register gdth_ha_str *ha; register gdth_cmd_str *cmd_ptr; int retries,index; TRACE2(("gdth_internal_cmd() service %d opcode %d\n",service,opcode)); ha = HADATA(gdth_ctr_tab[hanum]); cmd_ptr = ha->pccb; memset((char*)cmd_ptr,0,sizeof(gdth_cmd_str)); /* make command */ for (retries = INIT_RETRIES;;) { cmd_ptr->Service = service; cmd_ptr->RequestBuffer = INTERNAL_CMND; if (!(index=gdth_get_cmd_index(hanum))) { TRACE(("GDT: No free command index found\n")); return 0; } gdth_set_sema0(hanum); cmd_ptr->OpCode = opcode; cmd_ptr->BoardNode = LOCALBOARD; if (service == CACHESERVICE) { if (opcode == GDT_IOCTL) { cmd_ptr->u.ioctl.subfunc = p1; cmd_ptr->u.ioctl.channel = (ulong32)p2; cmd_ptr->u.ioctl.param_size = (ushort)p3; cmd_ptr->u.ioctl.p_param = ha->scratch_phys; } else { if (ha->cache_feat & GDT_64BIT) { cmd_ptr->u.cache64.DeviceNo = (ushort)p1; cmd_ptr->u.cache64.BlockNo = p2; } else { cmd_ptr->u.cache.DeviceNo = (ushort)p1; cmd_ptr->u.cache.BlockNo = (ulong32)p2; } } } else if (service == SCSIRAWSERVICE) { if (ha->raw_feat & GDT_64BIT) { cmd_ptr->u.raw64.direction = p1; cmd_ptr->u.raw64.bus = (unchar)p2; cmd_ptr->u.raw64.target = (unchar)p3; cmd_ptr->u.raw64.lun = (unchar)(p3 >> 8); } else { cmd_ptr->u.raw.direction = p1; cmd_ptr->u.raw.bus = (unchar)p2; cmd_ptr->u.raw.target = (unchar)p3; cmd_ptr->u.raw.lun = (unchar)(p3 >> 8); } } else if (service == SCREENSERVICE) { if (opcode == GDT_REALTIME) { *(ulong32 *)&cmd_ptr->u.screen.su.data[0] = p1; *(ulong32 *)&cmd_ptr->u.screen.su.data[4] = (ulong32)p2; *(ulong32 *)&cmd_ptr->u.screen.su.data[8] = (ulong32)p3; } } ha->cmd_len = sizeof(gdth_cmd_str); ha->cmd_offs_dpmem = 0; ha->cmd_cnt = 0; gdth_copy_command(hanum); gdth_release_event(hanum); gdth_delay(20); if (!gdth_wait(hanum,index,INIT_TIMEOUT)) { printk("GDT: Initialization error (timeout service %d)\n",service); return 0; } if (ha->status != S_BSY || --retries == 0) break; gdth_delay(1); } return (ha->status != S_OK ? 0:1); } /* search for devices */ static int __init gdth_search_drives(int hanum) { register gdth_ha_str *ha; ushort cdev_cnt, i; int ok; ulong32 bus_no, drv_cnt, drv_no, j; gdth_getch_str *chn; gdth_drlist_str *drl; gdth_iochan_str *ioc; gdth_raw_iochan_str *iocr; gdth_arcdl_str *alst; gdth_alist_str *alst2; gdth_oem_str_ioctl *oemstr; #ifdef INT_COAL gdth_perf_modes *pmod; #endif #ifdef GDTH_RTC unchar rtc[12]; ulong flags; #endif TRACE(("gdth_search_drives() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); ok = 0; /* initialize controller services, at first: screen service */ ha->screen_feat = 0; if (!force_dma32) { ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_X_INIT_SCR,0,0,0); if (ok) ha->screen_feat = GDT_64BIT; } if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC)) ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_INIT,0,0,0); if (!ok) { printk("GDT-HA %d: Initialization error screen service (code %d)\n", hanum, ha->status); return 0; } TRACE2(("gdth_search_drives(): SCREENSERVICE initialized\n")); #ifdef GDTH_RTC /* read realtime clock info, send to controller */ /* 1. wait for the falling edge of update flag */ spin_lock_irqsave(&rtc_lock, flags); for (j = 0; j < 1000000; ++j) if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP) break; for (j = 0; j < 1000000; ++j) if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)) break; /* 2. read info */ do { for (j = 0; j < 12; ++j) rtc[j] = CMOS_READ(j); } while (rtc[0] != CMOS_READ(0)); spin_lock_irqrestore(&rtc_lock, flags); TRACE2(("gdth_search_drives(): RTC: %x/%x/%x\n",*(ulong32 *)&rtc[0], *(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8])); /* 3. send to controller firmware */ gdth_internal_cmd(hanum,SCREENSERVICE,GDT_REALTIME, *(ulong32 *)&rtc[0], *(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8]); #endif /* unfreeze all IOs */ gdth_internal_cmd(hanum,CACHESERVICE,GDT_UNFREEZE_IO,0,0,0); /* initialize cache service */ ha->cache_feat = 0; if (!force_dma32) { ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INIT_HOST,LINUX_OS,0,0); if (ok) ha->cache_feat = GDT_64BIT; } if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC)) ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_INIT,LINUX_OS,0,0); if (!ok) { printk("GDT-HA %d: Initialization error cache service (code %d)\n", hanum, ha->status); return 0; } TRACE2(("gdth_search_drives(): CACHESERVICE initialized\n")); cdev_cnt = (ushort)ha->info; ha->fw_vers = ha->service; #ifdef INT_COAL if (ha->type == GDT_PCIMPR) { /* set perf. modes */ pmod = (gdth_perf_modes *)ha->pscratch; pmod->version = 1; pmod->st_mode = 1; /* enable one status buffer */ *((ulong64 *)&pmod->st_buff_addr1) = ha->coal_stat_phys; pmod->st_buff_indx1 = COALINDEX; pmod->st_buff_addr2 = 0; pmod->st_buff_u_addr2 = 0; pmod->st_buff_indx2 = 0; pmod->st_buff_size = sizeof(gdth_coal_status) * MAXOFFSETS; pmod->cmd_mode = 0; // disable all cmd buffers pmod->cmd_buff_addr1 = 0; pmod->cmd_buff_u_addr1 = 0; pmod->cmd_buff_indx1 = 0; pmod->cmd_buff_addr2 = 0; pmod->cmd_buff_u_addr2 = 0; pmod->cmd_buff_indx2 = 0; pmod->cmd_buff_size = 0; pmod->reserved1 = 0; pmod->reserved2 = 0; if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,SET_PERF_MODES, INVALID_CHANNEL,sizeof(gdth_perf_modes))) { printk("GDT-HA %d: Interrupt coalescing activated\n", hanum); } } #endif /* detect number of buses - try new IOCTL */ iocr = (gdth_raw_iochan_str *)ha->pscratch; iocr->hdr.version = 0xffffffff; iocr->hdr.list_entries = MAXBUS; iocr->hdr.first_chan = 0; iocr->hdr.last_chan = MAXBUS-1; iocr->hdr.list_offset = GDTOFFSOF(gdth_raw_iochan_str, list[0]); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_RAW_DESC, INVALID_CHANNEL,sizeof(gdth_raw_iochan_str))) { TRACE2(("IOCHAN_RAW_DESC supported!\n")); ha->bus_cnt = iocr->hdr.chan_count; for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) { if (iocr->list[bus_no].proc_id < MAXID) ha->bus_id[bus_no] = iocr->list[bus_no].proc_id; else ha->bus_id[bus_no] = 0xff; } } else { /* old method */ chn = (gdth_getch_str *)ha->pscratch; for (bus_no = 0; bus_no < MAXBUS; ++bus_no) { chn->channel_no = bus_no; if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, SCSI_CHAN_CNT | L_CTRL_PATTERN, IO_CHANNEL | INVALID_CHANNEL, sizeof(gdth_getch_str))) { if (bus_no == 0) { printk("GDT-HA %d: Error detecting channel count (0x%x)\n", hanum, ha->status); return 0; } break; } if (chn->siop_id < MAXID) ha->bus_id[bus_no] = chn->siop_id; else ha->bus_id[bus_no] = 0xff; } ha->bus_cnt = (unchar)bus_no; } TRACE2(("gdth_search_drives() %d channels\n",ha->bus_cnt)); /* read cache configuration */ if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_INFO, INVALID_CHANNEL,sizeof(gdth_cinfo_str))) { printk("GDT-HA %d: Initialization error cache service (code %d)\n", hanum, ha->status); return 0; } ha->cpar = ((gdth_cinfo_str *)ha->pscratch)->cpar; TRACE2(("gdth_search_drives() cinfo: vs %x sta %d str %d dw %d b %d\n", ha->cpar.version,ha->cpar.state,ha->cpar.strategy, ha->cpar.write_back,ha->cpar.block_size)); /* read board info and features */ ha->more_proc = FALSE; if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_INFO, INVALID_CHANNEL,sizeof(gdth_binfo_str))) { memcpy(&ha->binfo, (gdth_binfo_str *)ha->pscratch, sizeof(gdth_binfo_str)); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_FEATURES, INVALID_CHANNEL,sizeof(gdth_bfeat_str))) { TRACE2(("BOARD_INFO/BOARD_FEATURES supported\n")); ha->bfeat = *(gdth_bfeat_str *)ha->pscratch; ha->more_proc = TRUE; } } else { TRACE2(("BOARD_INFO requires firmware >= 1.10/2.08\n")); strcpy(ha->binfo.type_string, gdth_ctr_name(hanum)); } TRACE2(("Controller name: %s\n",ha->binfo.type_string)); /* read more informations */ if (ha->more_proc) { /* physical drives, channel addresses */ ioc = (gdth_iochan_str *)ha->pscratch; ioc->hdr.version = 0xffffffff; ioc->hdr.list_entries = MAXBUS; ioc->hdr.first_chan = 0; ioc->hdr.last_chan = MAXBUS-1; ioc->hdr.list_offset = GDTOFFSOF(gdth_iochan_str, list[0]); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_DESC, INVALID_CHANNEL,sizeof(gdth_iochan_str))) { for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) { ha->raw[bus_no].address = ioc->list[bus_no].address; ha->raw[bus_no].local_no = ioc->list[bus_no].local_no; } } else { for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) { ha->raw[bus_no].address = IO_CHANNEL; ha->raw[bus_no].local_no = bus_no; } } for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) { chn = (gdth_getch_str *)ha->pscratch; chn->channel_no = ha->raw[bus_no].local_no; if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, SCSI_CHAN_CNT | L_CTRL_PATTERN, ha->raw[bus_no].address | INVALID_CHANNEL, sizeof(gdth_getch_str))) { ha->raw[bus_no].pdev_cnt = chn->drive_cnt; TRACE2(("Channel %d: %d phys. drives\n", bus_no,chn->drive_cnt)); } if (ha->raw[bus_no].pdev_cnt > 0) { drl = (gdth_drlist_str *)ha->pscratch; drl->sc_no = ha->raw[bus_no].local_no; drl->sc_cnt = ha->raw[bus_no].pdev_cnt; if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, SCSI_DR_LIST | L_CTRL_PATTERN, ha->raw[bus_no].address | INVALID_CHANNEL, sizeof(gdth_drlist_str))) { for (j = 0; j < ha->raw[bus_no].pdev_cnt; ++j) ha->raw[bus_no].id_list[j] = drl->sc_list[j]; } else { ha->raw[bus_no].pdev_cnt = 0; } } } /* logical drives */ if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_CNT, INVALID_CHANNEL,sizeof(ulong32))) { drv_cnt = *(ulong32 *)ha->pscratch; if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_LIST, INVALID_CHANNEL,drv_cnt * sizeof(ulong32))) { for (j = 0; j < drv_cnt; ++j) { drv_no = ((ulong32 *)ha->pscratch)[j]; if (drv_no < MAX_LDRIVES) { ha->hdr[drv_no].is_logdrv = TRUE; TRACE2(("Drive %d is log. drive\n",drv_no)); } } } alst = (gdth_arcdl_str *)ha->pscratch; alst->entries_avail = MAX_LDRIVES; alst->first_entry = 0; alst->list_offset = GDTOFFSOF(gdth_arcdl_str, list[0]); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, ARRAY_DRV_LIST2 | LA_CTRL_PATTERN, INVALID_CHANNEL, sizeof(gdth_arcdl_str) + (alst->entries_avail-1) * sizeof(gdth_alist_str))) { for (j = 0; j < alst->entries_init; ++j) { ha->hdr[j].is_arraydrv = alst->list[j].is_arrayd; ha->hdr[j].is_master = alst->list[j].is_master; ha->hdr[j].is_parity = alst->list[j].is_parity; ha->hdr[j].is_hotfix = alst->list[j].is_hotfix; ha->hdr[j].master_no = alst->list[j].cd_handle; } } else if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, ARRAY_DRV_LIST | LA_CTRL_PATTERN, 0, 35 * sizeof(gdth_alist_str))) { for (j = 0; j < 35; ++j) { alst2 = &((gdth_alist_str *)ha->pscratch)[j]; ha->hdr[j].is_arraydrv = alst2->is_arrayd; ha->hdr[j].is_master = alst2->is_master; ha->hdr[j].is_parity = alst2->is_parity; ha->hdr[j].is_hotfix = alst2->is_hotfix; ha->hdr[j].master_no = alst2->cd_handle; } } } } /* initialize raw service */ ha->raw_feat = 0; if (!force_dma32) { ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_X_INIT_RAW,0,0,0); if (ok) ha->raw_feat = GDT_64BIT; } if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC)) ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_INIT,0,0,0); if (!ok) { printk("GDT-HA %d: Initialization error raw service (code %d)\n", hanum, ha->status); return 0; } TRACE2(("gdth_search_drives(): RAWSERVICE initialized\n")); /* set/get features raw service (scatter/gather) */ if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_SET_FEAT,SCATTER_GATHER, 0,0)) { TRACE2(("gdth_search_drives(): set features RAWSERVICE OK\n")); if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_GET_FEAT,0,0,0)) { TRACE2(("gdth_search_dr(): get feat RAWSERVICE %d\n", ha->info)); ha->raw_feat |= (ushort)ha->info; } } /* set/get features cache service (equal to raw service) */ if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_SET_FEAT,0, SCATTER_GATHER,0)) { TRACE2(("gdth_search_drives(): set features CACHESERVICE OK\n")); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_GET_FEAT,0,0,0)) { TRACE2(("gdth_search_dr(): get feat CACHESERV. %d\n", ha->info)); ha->cache_feat |= (ushort)ha->info; } } /* reserve drives for raw service */ if (reserve_mode != 0) { gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE_ALL, reserve_mode == 1 ? 1 : 3, 0, 0); TRACE2(("gdth_search_drives(): RESERVE_ALL code %d\n", ha->status)); } for (i = 0; i < MAX_RES_ARGS; i += 4) { if (reserve_list[i] == hanum && reserve_list[i+1] < ha->bus_cnt && reserve_list[i+2] < ha->tid_cnt && reserve_list[i+3] < MAXLUN) { TRACE2(("gdth_search_drives(): reserve ha %d bus %d id %d lun %d\n", reserve_list[i], reserve_list[i+1], reserve_list[i+2], reserve_list[i+3])); if (!gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE,0, reserve_list[i+1], reserve_list[i+2] | (reserve_list[i+3] << 8))) { printk("GDT-HA %d: Error raw service (RESERVE, code %d)\n", hanum, ha->status); } } } /* Determine OEM string using IOCTL */ oemstr = (gdth_oem_str_ioctl *)ha->pscratch; oemstr->params.ctl_version = 0x01; oemstr->params.buffer_size = sizeof(oemstr->text); if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL, CACHE_READ_OEM_STRING_RECORD,INVALID_CHANNEL, sizeof(gdth_oem_str_ioctl))) { TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD OK\n")); printk("GDT-HA %d: Vendor: %s Name: %s\n", hanum,oemstr->text.oem_company_name,ha->binfo.type_string); /* Save the Host Drive inquiry data */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) strlcpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id, sizeof(ha->oem_name)); #else strncpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id,7); ha->oem_name[7] = '\0'; #endif } else { /* Old method, based on PCI ID */ TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD failed\n")); printk("GDT-HA %d: Name: %s\n", hanum,ha->binfo.type_string); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) if (ha->oem_id == OEM_ID_INTEL) strlcpy(ha->oem_name,"Intel ", sizeof(ha->oem_name)); else strlcpy(ha->oem_name,"ICP ", sizeof(ha->oem_name)); #else if (ha->oem_id == OEM_ID_INTEL) strcpy(ha->oem_name,"Intel "); else strcpy(ha->oem_name,"ICP "); #endif } /* scanning for host drives */ for (i = 0; i < cdev_cnt; ++i) gdth_analyse_hdrive(hanum,i); TRACE(("gdth_search_drives() OK\n")); return 1; } static int gdth_analyse_hdrive(int hanum,ushort hdrive) { register gdth_ha_str *ha; ulong32 drv_cyls; int drv_hds, drv_secs; TRACE(("gdth_analyse_hdrive() hanum %d drive %d\n",hanum,hdrive)); if (hdrive >= MAX_HDRIVES) return 0; ha = HADATA(gdth_ctr_tab[hanum]); if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_INFO,hdrive,0,0)) return 0; ha->hdr[hdrive].present = TRUE; ha->hdr[hdrive].size = ha->info; /* evaluate mapping (sectors per head, heads per cylinder) */ ha->hdr[hdrive].size &= ~SECS32; if (ha->info2 == 0) { gdth_eval_mapping(ha->hdr[hdrive].size,&drv_cyls,&drv_hds,&drv_secs); } else { drv_hds = ha->info2 & 0xff; drv_secs = (ha->info2 >> 8) & 0xff; drv_cyls = (ulong32)ha->hdr[hdrive].size / drv_hds / drv_secs; } ha->hdr[hdrive].heads = (unchar)drv_hds; ha->hdr[hdrive].secs = (unchar)drv_secs; /* round size */ ha->hdr[hdrive].size = drv_cyls * drv_hds * drv_secs; if (ha->cache_feat & GDT_64BIT) { if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INFO,hdrive,0,0) && ha->info2 != 0) { ha->hdr[hdrive].size = ((ulong64)ha->info2 << 32) | ha->info; } } TRACE2(("gdth_search_dr() cdr. %d size %d hds %d scs %d\n", hdrive,ha->hdr[hdrive].size,drv_hds,drv_secs)); /* get informations about device */ if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_DEVTYPE,hdrive,0,0)) { TRACE2(("gdth_search_dr() cache drive %d devtype %d\n", hdrive,ha->info)); ha->hdr[hdrive].devtype = (ushort)ha->info; } /* cluster info */ if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_CLUST_INFO,hdrive,0,0)) { TRACE2(("gdth_search_dr() cache drive %d cluster info %d\n", hdrive,ha->info)); if (!shared_access) ha->hdr[hdrive].cluster_type = (unchar)ha->info; } /* R/W attributes */ if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_RW_ATTRIBS,hdrive,0,0)) { TRACE2(("gdth_search_dr() cache drive %d r/w attrib. %d\n", hdrive,ha->info)); ha->hdr[hdrive].rw_attribs = (unchar)ha->info; } return 1; } /* command queueing/sending functions */ static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority) { register gdth_ha_str *ha; register Scsi_Cmnd *pscp; register Scsi_Cmnd *nscp; ulong flags; unchar b, t; TRACE(("gdth_putq() priority %d\n",priority)); ha = HADATA(gdth_ctr_tab[hanum]); spin_lock_irqsave(&ha->smp_lock, flags); if (scp->done != gdth_scsi_done) { scp->SCp.this_residual = (int)priority; b = virt_ctr ? NUMDATA(scp->device->host)->busnum:scp->device->channel; t = scp->device->id; if (priority >= DEFAULT_PRI) { if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) || (b==ha->virt_bus && t<MAX_HDRIVES && ha->hdr[t].lock)) { TRACE2(("gdth_putq(): locked IO ->update_timeout()\n")); scp->SCp.buffers_residual = gdth_update_timeout(hanum, scp, 0); } } } if (ha->req_first==NULL) { ha->req_first = scp; /* queue was empty */ scp->SCp.ptr = NULL; } else { /* queue not empty */ pscp = ha->req_first; nscp = (Scsi_Cmnd *)pscp->SCp.ptr; /* priority: 0-highest,..,0xff-lowest */ while (nscp && (unchar)nscp->SCp.this_residual <= priority) { pscp = nscp; nscp = (Scsi_Cmnd *)pscp->SCp.ptr; } pscp->SCp.ptr = (char *)scp; scp->SCp.ptr = (char *)nscp; } spin_unlock_irqrestore(&ha->smp_lock, flags); #ifdef GDTH_STATISTICS flags = 0; for (nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr) ++flags; if (max_rq < flags) { max_rq = flags; TRACE3(("GDT: max_rq = %d\n",(ushort)max_rq)); } #endif } static void gdth_next(int hanum) { register gdth_ha_str *ha; register Scsi_Cmnd *pscp; register Scsi_Cmnd *nscp; unchar b, t, l, firsttime; unchar this_cmd, next_cmd; ulong flags = 0; int cmd_index; TRACE(("gdth_next() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); if (!gdth_polling) spin_lock_irqsave(&ha->smp_lock, flags); ha->cmd_cnt = ha->cmd_offs_dpmem = 0; this_cmd = firsttime = TRUE; next_cmd = gdth_polling ? FALSE:TRUE; cmd_index = 0; for (nscp = pscp = ha->req_first; nscp; nscp = (Scsi_Cmnd *)nscp->SCp.ptr) { if (nscp != pscp && nscp != (Scsi_Cmnd *)pscp->SCp.ptr) pscp = (Scsi_Cmnd *)pscp->SCp.ptr; if (nscp->done != gdth_scsi_done) { b = virt_ctr ? NUMDATA(nscp->device->host)->busnum : nscp->device->channel; t = nscp->device->id; l = nscp->device->lun; if (nscp->SCp.this_residual >= DEFAULT_PRI) { if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) || (b == ha->virt_bus && t < MAX_HDRIVES && ha->hdr[t].lock)) continue; } } else b = t = l = 0; if (firsttime) { if (gdth_test_busy(hanum)) { /* controller busy ? */ TRACE(("gdth_next() controller %d busy !\n",hanum)); if (!gdth_polling) { spin_unlock_irqrestore(&ha->smp_lock, flags); return; } while (gdth_test_busy(hanum)) gdth_delay(1); } firsttime = FALSE; } if (nscp->done != gdth_scsi_done) { if (nscp->SCp.phase == -1) { nscp->SCp.phase = CACHESERVICE; /* default: cache svc. */ if (nscp->cmnd[0] == TEST_UNIT_READY) { TRACE2(("TEST_UNIT_READY Bus %d Id %d LUN %d\n", b, t, l)); /* TEST_UNIT_READY -> set scan mode */ if ((ha->scan_mode & 0x0f) == 0) { if (b == 0 && t == 0 && l == 0) { ha->scan_mode |= 1; TRACE2(("Scan mode: 0x%x\n", ha->scan_mode)); } } else if ((ha->scan_mode & 0x0f) == 1) { if (b == 0 && ((t == 0 && l == 1) || (t == 1 && l == 0))) { nscp->SCp.sent_command = GDT_SCAN_START; nscp->SCp.phase = ((ha->scan_mode & 0x10 ? 1:0) << 8) | SCSIRAWSERVICE; ha->scan_mode = 0x12; TRACE2(("Scan mode: 0x%x (SCAN_START)\n", ha->scan_mode)); } else { ha->scan_mode &= 0x10; TRACE2(("Scan mode: 0x%x\n", ha->scan_mode)); } } else if (ha->scan_mode == 0x12) { if (b == ha->bus_cnt && t == ha->tid_cnt-1) { nscp->SCp.phase = SCSIRAWSERVICE; nscp->SCp.sent_command = GDT_SCAN_END; ha->scan_mode &= 0x10; TRACE2(("Scan mode: 0x%x (SCAN_END)\n", ha->scan_mode)); } } } if (b == ha->virt_bus && nscp->cmnd[0] != INQUIRY && nscp->cmnd[0] != READ_CAPACITY && nscp->cmnd[0] != MODE_SENSE && (ha->hdr[t].cluster_type & CLUSTER_DRIVE)) { /* always GDT_CLUST_INFO! */ nscp->SCp.sent_command = GDT_CLUST_INFO; } } } if (nscp->SCp.sent_command != -1) { if ((nscp->SCp.phase & 0xff) == CACHESERVICE) { if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t))) this_cmd = FALSE; next_cmd = FALSE; } else if ((nscp->SCp.phase & 0xff) == SCSIRAWSERVICE) { if (!(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b)))) this_cmd = FALSE; next_cmd = FALSE; } else { memset((char*)nscp->sense_buffer,0,16); nscp->sense_buffer[0] = 0x70; nscp->sense_buffer[2] = NOT_READY; nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1); if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); } } else if (nscp->done == gdth_scsi_done) { if (!(cmd_index=gdth_special_cmd(hanum,nscp))) this_cmd = FALSE; next_cmd = FALSE; } else if (b != ha->virt_bus) { if (ha->raw[BUS_L2P(ha,b)].io_cnt[t] >= GDTH_MAX_RAW || !(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b)))) this_cmd = FALSE; else ha->raw[BUS_L2P(ha,b)].io_cnt[t]++; } else if (t >= MAX_HDRIVES || !ha->hdr[t].present || l != 0) { TRACE2(("Command 0x%x to bus %d id %d lun %d -> IGNORE\n", nscp->cmnd[0], b, t, l)); nscp->result = DID_BAD_TARGET << 16; if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); } else { switch (nscp->cmnd[0]) { case TEST_UNIT_READY: case INQUIRY: case REQUEST_SENSE: case READ_CAPACITY: case VERIFY: case START_STOP: case MODE_SENSE: case SERVICE_ACTION_IN: TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0], nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3], nscp->cmnd[4],nscp->cmnd[5])); if (ha->hdr[t].media_changed && nscp->cmnd[0] != INQUIRY) { /* return UNIT_ATTENTION */ TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n", nscp->cmnd[0], t)); ha->hdr[t].media_changed = FALSE; memset((char*)nscp->sense_buffer,0,16); nscp->sense_buffer[0] = 0x70; nscp->sense_buffer[2] = UNIT_ATTENTION; nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1); if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); } else if (gdth_internal_cache_cmd(hanum,nscp)) nscp->scsi_done(nscp); break; case ALLOW_MEDIUM_REMOVAL: TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0], nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3], nscp->cmnd[4],nscp->cmnd[5])); if ( (nscp->cmnd[4]&1) && !(ha->hdr[t].devtype&1) ) { TRACE(("Prevent r. nonremov. drive->do nothing\n")); nscp->result = DID_OK << 16; nscp->sense_buffer[0] = 0; if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); } else { nscp->cmnd[3] = (ha->hdr[t].devtype&1) ? 1:0; TRACE(("Prevent/allow r. %d rem. drive %d\n", nscp->cmnd[4],nscp->cmnd[3])); if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t))) this_cmd = FALSE; } break; case RESERVE: case RELEASE: TRACE2(("cache cmd %s\n",nscp->cmnd[0] == RESERVE ? "RESERVE" : "RELEASE")); if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t))) this_cmd = FALSE; break; case READ_6: case WRITE_6: case READ_10: case WRITE_10: case READ_16: case WRITE_16: if (ha->hdr[t].media_changed) { /* return UNIT_ATTENTION */ TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n", nscp->cmnd[0], t)); ha->hdr[t].media_changed = FALSE; memset((char*)nscp->sense_buffer,0,16); nscp->sense_buffer[0] = 0x70; nscp->sense_buffer[2] = UNIT_ATTENTION; nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1); if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); } else if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t))) this_cmd = FALSE; break; default: TRACE2(("cache cmd %x/%x/%x/%x/%x/%x unknown\n",nscp->cmnd[0], nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3], nscp->cmnd[4],nscp->cmnd[5])); printk("GDT-HA %d: Unknown SCSI command 0x%x to cache service !\n", hanum, nscp->cmnd[0]); nscp->result = DID_ABORT << 16; if (!nscp->SCp.have_data_in) nscp->SCp.have_data_in++; else nscp->scsi_done(nscp); break; } } if (!this_cmd) break; if (nscp == ha->req_first) ha->req_first = pscp = (Scsi_Cmnd *)nscp->SCp.ptr; else pscp->SCp.ptr = nscp->SCp.ptr; if (!next_cmd) break; } if (ha->cmd_cnt > 0) { gdth_release_event(hanum); } if (!gdth_polling) spin_unlock_irqrestore(&ha->smp_lock, flags); if (gdth_polling && ha->cmd_cnt > 0) { if (!gdth_wait(hanum,cmd_index,POLL_TIMEOUT)) printk("GDT-HA %d: Command %d timed out !\n", hanum,cmd_index); } } static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp, char *buffer,ushort count) { ushort cpcount,i; ushort cpsum,cpnow; struct scatterlist *sl; gdth_ha_str *ha; char *address; cpcount = count<=(ushort)scp->request_bufflen ? count:(ushort)scp->request_bufflen; ha = HADATA(gdth_ctr_tab[hanum]); if (scp->use_sg) { sl = (struct scatterlist *)scp->request_buffer; for (i=0,cpsum=0; i<scp->use_sg; ++i,++sl) { unsigned long flags; cpnow = (ushort)sl->length; TRACE(("copy_internal() now %d sum %d count %d %d\n", cpnow,cpsum,cpcount,(ushort)scp->bufflen)); if (cpsum+cpnow > cpcount) cpnow = cpcount - cpsum; cpsum += cpnow; if (!sl->page) { printk("GDT-HA %d: invalid sc/gt element in gdth_copy_internal_data()\n", hanum); return; } local_irq_save(flags); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) address = kmap_atomic(sl->page, KM_BIO_SRC_IRQ) + sl->offset; memcpy(address,buffer,cpnow); flush_dcache_page(sl->page); kunmap_atomic(address, KM_BIO_SRC_IRQ); #else address = kmap_atomic(sl->page, KM_BH_IRQ) + sl->offset; memcpy(address,buffer,cpnow); flush_dcache_page(sl->page); kunmap_atomic(address, KM_BH_IRQ); #endif local_irq_restore(flags); if (cpsum == cpcount) break; buffer += cpnow; } } else { TRACE(("copy_internal() count %d\n",cpcount)); memcpy((char*)scp->request_buffer,buffer,cpcount); } } static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp) { register gdth_ha_str *ha; unchar t; gdth_inq_data inq; gdth_rdcap_data rdc; gdth_sense_data sd; gdth_modep_data mpd; ha = HADATA(gdth_ctr_tab[hanum]); t = scp->device->id; TRACE(("gdth_internal_cache_cmd() cmd 0x%x hdrive %d\n", scp->cmnd[0],t)); scp->result = DID_OK << 16; scp->sense_buffer[0] = 0; switch (scp->cmnd[0]) { case TEST_UNIT_READY: case VERIFY: case START_STOP: TRACE2(("Test/Verify/Start hdrive %d\n",t)); break; case INQUIRY: TRACE2(("Inquiry hdrive %d devtype %d\n", t,ha->hdr[t].devtype)); inq.type_qual = (ha->hdr[t].devtype&4) ? TYPE_ROM:TYPE_DISK; /* you can here set all disks to removable, if you want to do a flush using the ALLOW_MEDIUM_REMOVAL command */ inq.modif_rmb = 0x00; if ((ha->hdr[t].devtype & 1) || (ha->hdr[t].cluster_type & CLUSTER_DRIVE)) inq.modif_rmb = 0x80; inq.version = 2; inq.resp_aenc = 2; inq.add_length= 32; strcpy(inq.vendor,ha->oem_name); sprintf(inq.product,"Host Drive #%02d",t); strcpy(inq.revision," "); gdth_copy_internal_data(hanum,scp,(char*)&inq,sizeof(gdth_inq_data)); break; case REQUEST_SENSE: TRACE2(("Request sense hdrive %d\n",t)); sd.errorcode = 0x70; sd.segno = 0x00; sd.key = NO_SENSE; sd.info = 0; sd.add_length= 0; gdth_copy_internal_data(hanum,scp,(char*)&sd,sizeof(gdth_sense_data)); break; case MODE_SENSE: TRACE2(("Mode sense hdrive %d\n",t)); memset((char*)&mpd,0,sizeof(gdth_modep_data)); mpd.hd.data_length = sizeof(gdth_modep_data); mpd.hd.dev_par = (ha->hdr[t].devtype&2) ? 0x80:0; mpd.hd.bd_length = sizeof(mpd.bd); mpd.bd.block_length[0] = (SECTOR_SIZE & 0x00ff0000) >> 16; mpd.bd.block_length[1] = (SECTOR_SIZE & 0x0000ff00) >> 8; mpd.bd.block_length[2] = (SECTOR_SIZE & 0x000000ff); gdth_copy_internal_data(hanum,scp,(char*)&mpd,sizeof(gdth_modep_data)); break; case READ_CAPACITY: TRACE2(("Read capacity hdrive %d\n",t)); if (ha->hdr[t].size > (ulong64)0xffffffff) rdc.last_block_no = 0xffffffff; else rdc.last_block_no = cpu_to_be32(ha->hdr[t].size-1); rdc.block_length = cpu_to_be32(SECTOR_SIZE); gdth_copy_internal_data(hanum,scp,(char*)&rdc,sizeof(gdth_rdcap_data)); break; case SERVICE_ACTION_IN: if ((scp->cmnd[1] & 0x1f) == SAI_READ_CAPACITY_16 && (ha->cache_feat & GDT_64BIT)) { gdth_rdcap16_data rdc16; TRACE2(("Read capacity (16) hdrive %d\n",t)); rdc16.last_block_no = cpu_to_be64(ha->hdr[t].size-1); rdc16.block_length = cpu_to_be32(SECTOR_SIZE); gdth_copy_internal_data(hanum,scp,(char*)&rdc16,sizeof(gdth_rdcap16_data)); } else { scp->result = DID_ABORT << 16; } break; default: TRACE2(("Internal cache cmd 0x%x unknown\n",scp->cmnd[0])); break; } if (!scp->SCp.have_data_in) scp->SCp.have_data_in++; else return 1; return 0; } static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive) { register gdth_ha_str *ha; register gdth_cmd_str *cmdp; struct scatterlist *sl; ulong32 cnt, blockcnt; ulong64 no, blockno; dma_addr_t phys_addr; int i, cmd_index, read_write, sgcnt, mode64; struct page *page; ulong offset; ha = HADATA(gdth_ctr_tab[hanum]); cmdp = ha->pccb; TRACE(("gdth_fill_cache_cmd() cmd 0x%x cmdsize %d hdrive %d\n", scp->cmnd[0],scp->cmd_len,hdrive)); if (ha->type==GDT_EISA && ha->cmd_cnt>0) return 0; mode64 = (ha->cache_feat & GDT_64BIT) ? TRUE : FALSE; /* test for READ_16, WRITE_16 if !mode64 ? --- not required, should not occur due to error return on READ_CAPACITY_16 */ cmdp->Service = CACHESERVICE; cmdp->RequestBuffer = scp; /* search free command index */ if (!(cmd_index=gdth_get_cmd_index(hanum))) { TRACE(("GDT: No free command index found\n")); return 0; } /* if it's the first command, set command semaphore */ if (ha->cmd_cnt == 0) gdth_set_sema0(hanum); /* fill command */ read_write = 0; if (scp->SCp.sent_command != -1) cmdp->OpCode = scp->SCp.sent_command; /* special cache cmd. */ else if (scp->cmnd[0] == RESERVE) cmdp->OpCode = GDT_RESERVE_DRV; else if (scp->cmnd[0] == RELEASE) cmdp->OpCode = GDT_RELEASE_DRV; else if (scp->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { if (scp->cmnd[4] & 1) /* prevent ? */ cmdp->OpCode = GDT_MOUNT; else if (scp->cmnd[3] & 1) /* removable drive ? */ cmdp->OpCode = GDT_UNMOUNT; else cmdp->OpCode = GDT_FLUSH; } else if (scp->cmnd[0] == WRITE_6 || scp->cmnd[0] == WRITE_10 || scp->cmnd[0] == WRITE_12 || scp->cmnd[0] == WRITE_16 ) { read_write = 1; if (gdth_write_through || ((ha->hdr[hdrive].rw_attribs & 1) && (ha->cache_feat & GDT_WR_THROUGH))) cmdp->OpCode = GDT_WRITE_THR; else cmdp->OpCode = GDT_WRITE; } else { read_write = 2; cmdp->OpCode = GDT_READ; } cmdp->BoardNode = LOCALBOARD; if (mode64) { cmdp->u.cache64.DeviceNo = hdrive; cmdp->u.cache64.BlockNo = 1; cmdp->u.cache64.sg_canz = 0; } else { cmdp->u.cache.DeviceNo = hdrive; cmdp->u.cache.BlockNo = 1; cmdp->u.cache.sg_canz = 0; } if (read_write) { if (scp->cmd_len == 16) { memcpy(&no, &scp->cmnd[2], sizeof(ulong64)); blockno = be64_to_cpu(no); memcpy(&cnt, &scp->cmnd[10], sizeof(ulong32)); blockcnt = be32_to_cpu(cnt); } else if (scp->cmd_len == 10) { memcpy(&no, &scp->cmnd[2], sizeof(ulong32)); blockno = be32_to_cpu(no); memcpy(&cnt, &scp->cmnd[7], sizeof(ushort)); blockcnt = be16_to_cpu(cnt); } else { memcpy(&no, &scp->cmnd[0], sizeof(ulong32)); blockno = be32_to_cpu(no) & 0x001fffffUL; blockcnt= scp->cmnd[4]==0 ? 0x100 : scp->cmnd[4]; } if (mode64) { cmdp->u.cache64.BlockNo = blockno; cmdp->u.cache64.BlockCnt = blockcnt; } else { cmdp->u.cache.BlockNo = (ulong32)blockno; cmdp->u.cache.BlockCnt = blockcnt; } if (scp->use_sg) { sl = (struct scatterlist *)scp->request_buffer; sgcnt = scp->use_sg; scp->SCp.Status = GDTH_MAP_SG; scp->SCp.Message = (read_write == 1 ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message); if (mode64) { cmdp->u.cache64.DestAddr= (ulong64)-1; cmdp->u.cache64.sg_canz = sgcnt; for (i=0; i<sgcnt; ++i,++sl) { cmdp->u.cache64.sg_lst[i].sg_ptr = sg_dma_address(sl); #ifdef GDTH_DMA_STATISTICS if (cmdp->u.cache64.sg_lst[i].sg_ptr > (ulong64)0xffffffff) ha->dma64_cnt++; else ha->dma32_cnt++; #endif cmdp->u.cache64.sg_lst[i].sg_len = sg_dma_len(sl); } } else { cmdp->u.cache.DestAddr= 0xffffffff; cmdp->u.cache.sg_canz = sgcnt; for (i=0; i<sgcnt; ++i,++sl) { cmdp->u.cache.sg_lst[i].sg_ptr = sg_dma_address(sl); #ifdef GDTH_DMA_STATISTICS ha->dma32_cnt++; #endif cmdp->u.cache.sg_lst[i].sg_len = sg_dma_len(sl); } } #ifdef GDTH_STATISTICS if (max_sg < (ulong32)sgcnt) { max_sg = (ulong32)sgcnt; TRACE3(("GDT: max_sg = %d\n",max_sg)); } #endif } else if (scp->request_bufflen) { scp->SCp.Status = GDTH_MAP_SINGLE; scp->SCp.Message = (read_write == 1 ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE); page = virt_to_page(scp->request_buffer); offset = (ulong)scp->request_buffer & ~PAGE_MASK; phys_addr = pci_map_page(ha->pdev,page,offset, scp->request_bufflen,scp->SCp.Message); scp->SCp.dma_handle = phys_addr; if (mode64) { if (ha->cache_feat & SCATTER_GATHER) { cmdp->u.cache64.DestAddr = (ulong64)-1; cmdp->u.cache64.sg_canz = 1; cmdp->u.cache64.sg_lst[0].sg_ptr = phys_addr; cmdp->u.cache64.sg_lst[0].sg_len = scp->request_bufflen; cmdp->u.cache64.sg_lst[1].sg_len = 0; } else { cmdp->u.cache64.DestAddr = phys_addr; cmdp->u.cache64.sg_canz= 0; } } else { if (ha->cache_feat & SCATTER_GATHER) { cmdp->u.cache.DestAddr = 0xffffffff; cmdp->u.cache.sg_canz = 1; cmdp->u.cache.sg_lst[0].sg_ptr = phys_addr; cmdp->u.cache.sg_lst[0].sg_len = scp->request_bufflen; cmdp->u.cache.sg_lst[1].sg_len = 0; } else { cmdp->u.cache.DestAddr = phys_addr; cmdp->u.cache.sg_canz= 0; } } } } /* evaluate command size, check space */ if (mode64) { TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n", cmdp->u.cache64.DestAddr,cmdp->u.cache64.sg_canz, cmdp->u.cache64.sg_lst[0].sg_ptr, cmdp->u.cache64.sg_lst[0].sg_len)); TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n", cmdp->OpCode,cmdp->u.cache64.BlockNo,cmdp->u.cache64.BlockCnt)); ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) + (ushort)cmdp->u.cache64.sg_canz * sizeof(gdth_sg64_str); } else { TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n", cmdp->u.cache.DestAddr,cmdp->u.cache.sg_canz, cmdp->u.cache.sg_lst[0].sg_ptr, cmdp->u.cache.sg_lst[0].sg_len)); TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n", cmdp->OpCode,cmdp->u.cache.BlockNo,cmdp->u.cache.BlockCnt)); ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) + (ushort)cmdp->u.cache.sg_canz * sizeof(gdth_sg_str); } if (ha->cmd_len & 3) ha->cmd_len += (4 - (ha->cmd_len & 3)); if (ha->cmd_cnt > 0) { if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) > ha->ic_all_size) { TRACE2(("gdth_fill_cache() DPMEM overflow\n")); ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND; return 0; } } /* copy command */ gdth_copy_command(hanum); return cmd_index; } static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b) { register gdth_ha_str *ha; register gdth_cmd_str *cmdp; struct scatterlist *sl; ushort i; dma_addr_t phys_addr, sense_paddr; int cmd_index, sgcnt, mode64; unchar t,l; struct page *page; ulong offset; ha = HADATA(gdth_ctr_tab[hanum]); t = scp->device->id; l = scp->device->lun; cmdp = ha->pccb; TRACE(("gdth_fill_raw_cmd() cmd 0x%x bus %d ID %d LUN %d\n", scp->cmnd[0],b,t,l)); if (ha->type==GDT_EISA && ha->cmd_cnt>0) return 0; mode64 = (ha->raw_feat & GDT_64BIT) ? TRUE : FALSE; cmdp->Service = SCSIRAWSERVICE; cmdp->RequestBuffer = scp; /* search free command index */ if (!(cmd_index=gdth_get_cmd_index(hanum))) { TRACE(("GDT: No free command index found\n")); return 0; } /* if it's the first command, set command semaphore */ if (ha->cmd_cnt == 0) gdth_set_sema0(hanum); /* fill command */ if (scp->SCp.sent_command != -1) { cmdp->OpCode = scp->SCp.sent_command; /* special raw cmd. */ cmdp->BoardNode = LOCALBOARD; if (mode64) { cmdp->u.raw64.direction = (scp->SCp.phase >> 8); TRACE2(("special raw cmd 0x%x param 0x%x\n", cmdp->OpCode, cmdp->u.raw64.direction)); /* evaluate command size */ ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst); } else { cmdp->u.raw.direction = (scp->SCp.phase >> 8); TRACE2(("special raw cmd 0x%x param 0x%x\n", cmdp->OpCode, cmdp->u.raw.direction)); /* evaluate command size */ ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst); } } else { page = virt_to_page(scp->sense_buffer); offset = (ulong)scp->sense_buffer & ~PAGE_MASK; sense_paddr = pci_map_page(ha->pdev,page,offset, 16,PCI_DMA_FROMDEVICE); *(ulong32 *)&scp->SCp.buffer = (ulong32)sense_paddr; /* high part, if 64bit */ *(ulong32 *)&scp->host_scribble = (ulong32)((ulong64)sense_paddr >> 32); cmdp->OpCode = GDT_WRITE; /* always */ cmdp->BoardNode = LOCALBOARD; if (mode64) { cmdp->u.raw64.reserved = 0; cmdp->u.raw64.mdisc_time = 0; cmdp->u.raw64.mcon_time = 0; cmdp->u.raw64.clen = scp->cmd_len; cmdp->u.raw64.target = t; cmdp->u.raw64.lun = l; cmdp->u.raw64.bus = b; cmdp->u.raw64.priority = 0; cmdp->u.raw64.sdlen = scp->request_bufflen; cmdp->u.raw64.sense_len = 16; cmdp->u.raw64.sense_data = sense_paddr; cmdp->u.raw64.direction = gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN; memcpy(cmdp->u.raw64.cmd,scp->cmnd,16); } else { cmdp->u.raw.reserved = 0; cmdp->u.raw.mdisc_time = 0; cmdp->u.raw.mcon_time = 0; cmdp->u.raw.clen = scp->cmd_len; cmdp->u.raw.target = t; cmdp->u.raw.lun = l; cmdp->u.raw.bus = b; cmdp->u.raw.priority = 0; cmdp->u.raw.link_p = 0; cmdp->u.raw.sdlen = scp->request_bufflen; cmdp->u.raw.sense_len = 16; cmdp->u.raw.sense_data = sense_paddr; cmdp->u.raw.direction = gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN; memcpy(cmdp->u.raw.cmd,scp->cmnd,12); } if (scp->use_sg) { sl = (struct scatterlist *)scp->request_buffer; sgcnt = scp->use_sg; scp->SCp.Status = GDTH_MAP_SG; scp->SCp.Message = PCI_DMA_BIDIRECTIONAL; sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message); if (mode64) { cmdp->u.raw64.sdata = (ulong64)-1; cmdp->u.raw64.sg_ranz = sgcnt; for (i=0; i<sgcnt; ++i,++sl) { cmdp->u.raw64.sg_lst[i].sg_ptr = sg_dma_address(sl); #ifdef GDTH_DMA_STATISTICS if (cmdp->u.raw64.sg_lst[i].sg_ptr > (ulong64)0xffffffff) ha->dma64_cnt++; else ha->dma32_cnt++; #endif cmdp->u.raw64.sg_lst[i].sg_len = sg_dma_len(sl); } } else { cmdp->u.raw.sdata = 0xffffffff; cmdp->u.raw.sg_ranz = sgcnt; for (i=0; i<sgcnt; ++i,++sl) { cmdp->u.raw.sg_lst[i].sg_ptr = sg_dma_address(sl); #ifdef GDTH_DMA_STATISTICS ha->dma32_cnt++; #endif cmdp->u.raw.sg_lst[i].sg_len = sg_dma_len(sl); } } #ifdef GDTH_STATISTICS if (max_sg < sgcnt) { max_sg = sgcnt; TRACE3(("GDT: max_sg = %d\n",sgcnt)); } #endif } else if (scp->request_bufflen) { scp->SCp.Status = GDTH_MAP_SINGLE; scp->SCp.Message = PCI_DMA_BIDIRECTIONAL; page = virt_to_page(scp->request_buffer); offset = (ulong)scp->request_buffer & ~PAGE_MASK; phys_addr = pci_map_page(ha->pdev,page,offset, scp->request_bufflen,scp->SCp.Message); scp->SCp.dma_handle = phys_addr; if (mode64) { if (ha->raw_feat & SCATTER_GATHER) { cmdp->u.raw64.sdata = (ulong64)-1; cmdp->u.raw64.sg_ranz= 1; cmdp->u.raw64.sg_lst[0].sg_ptr = phys_addr; cmdp->u.raw64.sg_lst[0].sg_len = scp->request_bufflen; cmdp->u.raw64.sg_lst[1].sg_len = 0; } else { cmdp->u.raw64.sdata = phys_addr; cmdp->u.raw64.sg_ranz= 0; } } else { if (ha->raw_feat & SCATTER_GATHER) { cmdp->u.raw.sdata = 0xffffffff; cmdp->u.raw.sg_ranz= 1; cmdp->u.raw.sg_lst[0].sg_ptr = phys_addr; cmdp->u.raw.sg_lst[0].sg_len = scp->request_bufflen; cmdp->u.raw.sg_lst[1].sg_len = 0; } else { cmdp->u.raw.sdata = phys_addr; cmdp->u.raw.sg_ranz= 0; } } } if (mode64) { TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n", cmdp->u.raw64.sdata,cmdp->u.raw64.sg_ranz, cmdp->u.raw64.sg_lst[0].sg_ptr, cmdp->u.raw64.sg_lst[0].sg_len)); /* evaluate command size */ ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) + (ushort)cmdp->u.raw64.sg_ranz * sizeof(gdth_sg64_str); } else { TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n", cmdp->u.raw.sdata,cmdp->u.raw.sg_ranz, cmdp->u.raw.sg_lst[0].sg_ptr, cmdp->u.raw.sg_lst[0].sg_len)); /* evaluate command size */ ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) + (ushort)cmdp->u.raw.sg_ranz * sizeof(gdth_sg_str); } } /* check space */ if (ha->cmd_len & 3) ha->cmd_len += (4 - (ha->cmd_len & 3)); if (ha->cmd_cnt > 0) { if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) > ha->ic_all_size) { TRACE2(("gdth_fill_raw() DPMEM overflow\n")); ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND; return 0; } } /* copy command */ gdth_copy_command(hanum); return cmd_index; } static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp) { register gdth_ha_str *ha; register gdth_cmd_str *cmdp; int cmd_index; ha = HADATA(gdth_ctr_tab[hanum]); cmdp= ha->pccb; TRACE2(("gdth_special_cmd(): ")); if (ha->type==GDT_EISA && ha->cmd_cnt>0) return 0; memcpy( cmdp, scp->request_buffer, sizeof(gdth_cmd_str)); cmdp->RequestBuffer = scp; /* search free command index */ if (!(cmd_index=gdth_get_cmd_index(hanum))) { TRACE(("GDT: No free command index found\n")); return 0; } /* if it's the first command, set command semaphore */ if (ha->cmd_cnt == 0) gdth_set_sema0(hanum); /* evaluate command size, check space */ if (cmdp->OpCode == GDT_IOCTL) { TRACE2(("IOCTL\n")); ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.ioctl.p_param) + sizeof(ulong64); } else if (cmdp->Service == CACHESERVICE) { TRACE2(("cache command %d\n",cmdp->OpCode)); if (ha->cache_feat & GDT_64BIT) ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) + sizeof(gdth_sg64_str); else ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) + sizeof(gdth_sg_str); } else if (cmdp->Service == SCSIRAWSERVICE) { TRACE2(("raw command %d\n",cmdp->OpCode)); if (ha->raw_feat & GDT_64BIT) ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) + sizeof(gdth_sg64_str); else ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) + sizeof(gdth_sg_str); } if (ha->cmd_len & 3) ha->cmd_len += (4 - (ha->cmd_len & 3)); if (ha->cmd_cnt > 0) { if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) > ha->ic_all_size) { TRACE2(("gdth_special_cmd() DPMEM overflow\n")); ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND; return 0; } } /* copy command */ gdth_copy_command(hanum); return cmd_index; } /* Controller event handling functions */ static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source, ushort idx, gdth_evt_data *evt) { gdth_evt_str *e; struct timeval tv; /* no GDTH_LOCK_HA() ! */ TRACE2(("gdth_store_event() source %d idx %d\n", source, idx)); if (source == 0) /* no source -> no event */ return NULL; if (ebuffer[elastidx].event_source == source && ebuffer[elastidx].event_idx == idx && ((evt->size != 0 && ebuffer[elastidx].event_data.size != 0 && !memcmp((char *)&ebuffer[elastidx].event_data.eu, (char *)&evt->eu, evt->size)) || (evt->size == 0 && ebuffer[elastidx].event_data.size == 0 && !strcmp((char *)&ebuffer[elastidx].event_data.event_string, (char *)&evt->event_string)))) { e = &ebuffer[elastidx]; do_gettimeofday(&tv); e->last_stamp = tv.tv_sec; ++e->same_count; } else { if (ebuffer[elastidx].event_source != 0) { /* entry not free ? */ ++elastidx; if (elastidx == MAX_EVENTS) elastidx = 0; if (elastidx == eoldidx) { /* reached mark ? */ ++eoldidx; if (eoldidx == MAX_EVENTS) eoldidx = 0; } } e = &ebuffer[elastidx]; e->event_source = source; e->event_idx = idx; do_gettimeofday(&tv); e->first_stamp = e->last_stamp = tv.tv_sec; e->same_count = 1; e->event_data = *evt; e->application = 0; } return e; } static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr) { gdth_evt_str *e; int eindex; ulong flags; TRACE2(("gdth_read_event() handle %d\n", handle)); spin_lock_irqsave(&ha->smp_lock, flags); if (handle == -1) eindex = eoldidx; else eindex = handle; estr->event_source = 0; if (eindex >= MAX_EVENTS) { spin_unlock_irqrestore(&ha->smp_lock, flags); return eindex; } e = &ebuffer[eindex]; if (e->event_source != 0) { if (eindex != elastidx) { if (++eindex == MAX_EVENTS) eindex = 0; } else { eindex = -1; } memcpy(estr, e, sizeof(gdth_evt_str)); } spin_unlock_irqrestore(&ha->smp_lock, flags); return eindex; } static void gdth_readapp_event(gdth_ha_str *ha, unchar application, gdth_evt_str *estr) { gdth_evt_str *e; int eindex; ulong flags; unchar found = FALSE; TRACE2(("gdth_readapp_event() app. %d\n", application)); spin_lock_irqsave(&ha->smp_lock, flags); eindex = eoldidx; for (;;) { e = &ebuffer[eindex]; if (e->event_source == 0) break; if ((e->application & application) == 0) { e->application |= application; found = TRUE; break; } if (eindex == elastidx) break; if (++eindex == MAX_EVENTS) eindex = 0; } if (found) memcpy(estr, e, sizeof(gdth_evt_str)); else estr->event_source = 0; spin_unlock_irqrestore(&ha->smp_lock, flags); } static void gdth_clear_events(void) { TRACE(("gdth_clear_events()")); eoldidx = elastidx = 0; ebuffer[0].event_source = 0; } /* SCSI interface functions */ static irqreturn_t gdth_interrupt(int irq,void *dev_id) { gdth_ha_str *ha2 = (gdth_ha_str *)dev_id; register gdth_ha_str *ha; gdt6m_dpram_str __iomem *dp6m_ptr = NULL; gdt6_dpram_str __iomem *dp6_ptr; gdt2_dpram_str __iomem *dp2_ptr; Scsi_Cmnd *scp; int hanum, rval, i; unchar IStatus; ushort Service; ulong flags = 0; #ifdef INT_COAL int coalesced = FALSE; int next = FALSE; gdth_coal_status *pcs = NULL; int act_int_coal = 0; #endif TRACE(("gdth_interrupt() IRQ %d\n",irq)); /* if polling and not from gdth_wait() -> return */ if (gdth_polling) { if (!gdth_from_wait) { return IRQ_HANDLED; } } if (!gdth_polling) spin_lock_irqsave(&ha2->smp_lock, flags); wait_index = 0; /* search controller */ if ((hanum = gdth_get_status(&IStatus,irq)) == -1) { /* spurious interrupt */ if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); return IRQ_HANDLED; } ha = HADATA(gdth_ctr_tab[hanum]); #ifdef GDTH_STATISTICS ++act_ints; #endif #ifdef INT_COAL /* See if the fw is returning coalesced status */ if (IStatus == COALINDEX) { /* Coalesced status. Setup the initial status buffer pointer and flags */ pcs = ha->coal_stat; coalesced = TRUE; next = TRUE; } do { if (coalesced) { /* For coalesced requests all status information is found in the status buffer */ IStatus = (unchar)(pcs->status & 0xff); } #endif if (ha->type == GDT_EISA) { if (IStatus & 0x80) { /* error flag */ IStatus &= ~0x80; ha->status = inw(ha->bmic + MAILBOXREG+8); TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status)); } else /* no error */ ha->status = S_OK; ha->info = inl(ha->bmic + MAILBOXREG+12); ha->service = inw(ha->bmic + MAILBOXREG+10); ha->info2 = inl(ha->bmic + MAILBOXREG+4); outb(0xff, ha->bmic + EDOORREG); /* acknowledge interrupt */ outb(0x00, ha->bmic + SEMA1REG); /* reset status semaphore */ } else if (ha->type == GDT_ISA) { dp2_ptr = ha->brd; if (IStatus & 0x80) { /* error flag */ IStatus &= ~0x80; ha->status = gdth_readw(&dp2_ptr->u.ic.Status); TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status)); } else /* no error */ ha->status = S_OK; ha->info = gdth_readl(&dp2_ptr->u.ic.Info[0]); ha->service = gdth_readw(&dp2_ptr->u.ic.Service); ha->info2 = gdth_readl(&dp2_ptr->u.ic.Info[1]); gdth_writeb(0xff, &dp2_ptr->io.irqdel); /* acknowledge interrupt */ gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index);/* reset command index */ gdth_writeb(0, &dp2_ptr->io.Sema1); /* reset status semaphore */ } else if (ha->type == GDT_PCI) { dp6_ptr = ha->brd; if (IStatus & 0x80) { /* error flag */ IStatus &= ~0x80; ha->status = gdth_readw(&dp6_ptr->u.ic.Status); TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status)); } else /* no error */ ha->status = S_OK; ha->info = gdth_readl(&dp6_ptr->u.ic.Info[0]); ha->service = gdth_readw(&dp6_ptr->u.ic.Service); ha->info2 = gdth_readl(&dp6_ptr->u.ic.Info[1]); gdth_writeb(0xff, &dp6_ptr->io.irqdel); /* acknowledge interrupt */ gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index);/* reset command index */ gdth_writeb(0, &dp6_ptr->io.Sema1); /* reset status semaphore */ } else if (ha->type == GDT_PCINEW) { if (IStatus & 0x80) { /* error flag */ IStatus &= ~0x80; ha->status = inw(PTR2USHORT(&ha->plx->status)); TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status)); } else ha->status = S_OK; ha->info = inl(PTR2USHORT(&ha->plx->info[0])); ha->service = inw(PTR2USHORT(&ha->plx->service)); ha->info2 = inl(PTR2USHORT(&ha->plx->info[1])); outb(0xff, PTR2USHORT(&ha->plx->edoor_reg)); outb(0x00, PTR2USHORT(&ha->plx->sema1_reg)); } else if (ha->type == GDT_PCIMPR) { dp6m_ptr = ha->brd; if (IStatus & 0x80) { /* error flag */ IStatus &= ~0x80; #ifdef INT_COAL if (coalesced) ha->status = pcs->ext_status && 0xffff; else #endif ha->status = gdth_readw(&dp6m_ptr->i960r.status); TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status)); } else /* no error */ ha->status = S_OK; #ifdef INT_COAL /* get information */ if (coalesced) { ha->info = pcs->info0; ha->info2 = pcs->info1; ha->service = (pcs->ext_status >> 16) && 0xffff; } else #endif { ha->info = gdth_readl(&dp6m_ptr->i960r.info[0]); ha->service = gdth_readw(&dp6m_ptr->i960r.service); ha->info2 = gdth_readl(&dp6m_ptr->i960r.info[1]); } /* event string */ if (IStatus == ASYNCINDEX) { if (ha->service != SCREENSERVICE && (ha->fw_vers & 0xff) >= 0x1a) { ha->dvr.severity = gdth_readb (&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.severity); for (i = 0; i < 256; ++i) { ha->dvr.event_string[i] = gdth_readb (&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.evt_str[i]); if (ha->dvr.event_string[i] == 0) break; } } } #ifdef INT_COAL /* Make sure that non coalesced interrupts get cleared before being handled by gdth_async_event/gdth_sync_event */ if (!coalesced) #endif { gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg); gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg); } } else { TRACE2(("gdth_interrupt() unknown controller type\n")); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); return IRQ_HANDLED; } TRACE(("gdth_interrupt() index %d stat %d info %d\n", IStatus,ha->status,ha->info)); if (gdth_from_wait) { wait_hanum = hanum; wait_index = (int)IStatus; } if (IStatus == ASYNCINDEX) { TRACE2(("gdth_interrupt() async. event\n")); gdth_async_event(hanum); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); gdth_next(hanum); return IRQ_HANDLED; } if (IStatus == SPEZINDEX) { TRACE2(("Service unknown or not initialized !\n")); ha->dvr.size = sizeof(ha->dvr.eu.driver); ha->dvr.eu.driver.ionode = hanum; gdth_store_event(ha, ES_DRIVER, 4, &ha->dvr); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); return IRQ_HANDLED; } scp = ha->cmd_tab[IStatus-2].cmnd; Service = ha->cmd_tab[IStatus-2].service; ha->cmd_tab[IStatus-2].cmnd = UNUSED_CMND; if (scp == UNUSED_CMND) { TRACE2(("gdth_interrupt() index to unused command (%d)\n",IStatus)); ha->dvr.size = sizeof(ha->dvr.eu.driver); ha->dvr.eu.driver.ionode = hanum; ha->dvr.eu.driver.index = IStatus; gdth_store_event(ha, ES_DRIVER, 1, &ha->dvr); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); return IRQ_HANDLED; } if (scp == INTERNAL_CMND) { TRACE(("gdth_interrupt() answer to internal command\n")); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); return IRQ_HANDLED; } TRACE(("gdth_interrupt() sync. status\n")); rval = gdth_sync_event(hanum,Service,IStatus,scp); if (!gdth_polling) spin_unlock_irqrestore(&ha2->smp_lock, flags); if (rval == 2) { gdth_putq(hanum,scp,scp->SCp.this_residual); } else if (rval == 1) { scp->scsi_done(scp); } #ifdef INT_COAL if (coalesced) { /* go to the next status in the status buffer */ ++pcs; #ifdef GDTH_STATISTICS ++act_int_coal; if (act_int_coal > max_int_coal) { max_int_coal = act_int_coal; printk("GDT: max_int_coal = %d\n",(ushort)max_int_coal); } #endif /* see if there is another status */ if (pcs->status == 0) /* Stop the coalesce loop */ next = FALSE; } } while (next); /* coalescing only for new GDT_PCIMPR controllers available */ if (ha->type == GDT_PCIMPR && coalesced) { gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg); gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg); } #endif gdth_next(hanum); return IRQ_HANDLED; } static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp) { register gdth_ha_str *ha; gdth_msg_str *msg; gdth_cmd_str *cmdp; unchar b, t; ha = HADATA(gdth_ctr_tab[hanum]); cmdp = ha->pccb; TRACE(("gdth_sync_event() serv %d status %d\n", service,ha->status)); if (service == SCREENSERVICE) { msg = ha->pmsg; TRACE(("len: %d, answer: %d, ext: %d, alen: %d\n", msg->msg_len,msg->msg_answer,msg->msg_ext,msg->msg_alen)); if (msg->msg_len > MSGLEN+1) msg->msg_len = MSGLEN+1; if (msg->msg_len) if (!(msg->msg_answer && msg->msg_ext)) { msg->msg_text[msg->msg_len] = '\0'; printk("%s",msg->msg_text); } if (msg->msg_ext && !msg->msg_answer) { while (gdth_test_busy(hanum)) gdth_delay(0); cmdp->Service = SCREENSERVICE; cmdp->RequestBuffer = SCREEN_CMND; gdth_get_cmd_index(hanum); gdth_set_sema0(hanum); cmdp->OpCode = GDT_READ; cmdp->BoardNode = LOCALBOARD; cmdp->u.screen.reserved = 0; cmdp->u.screen.su.msg.msg_handle= msg->msg_handle; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0; ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr) + sizeof(ulong64); ha->cmd_cnt = 0; gdth_copy_command(hanum); gdth_release_event(hanum); return 0; } if (msg->msg_answer && msg->msg_alen) { /* default answers (getchar() not possible) */ if (msg->msg_alen == 1) { msg->msg_alen = 0; msg->msg_len = 1; msg->msg_text[0] = 0; } else { msg->msg_alen -= 2; msg->msg_len = 2; msg->msg_text[0] = 1; msg->msg_text[1] = 0; } msg->msg_ext = 0; msg->msg_answer = 0; while (gdth_test_busy(hanum)) gdth_delay(0); cmdp->Service = SCREENSERVICE; cmdp->RequestBuffer = SCREEN_CMND; gdth_get_cmd_index(hanum); gdth_set_sema0(hanum); cmdp->OpCode = GDT_WRITE; cmdp->BoardNode = LOCALBOARD; cmdp->u.screen.reserved = 0; cmdp->u.screen.su.msg.msg_handle= msg->msg_handle; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0; ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr) + sizeof(ulong64); ha->cmd_cnt = 0; gdth_copy_command(hanum); gdth_release_event(hanum); return 0; } printk("\n"); } else { b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel; t = scp->device->id; if (scp->SCp.sent_command == -1 && b != ha->virt_bus) { ha->raw[BUS_L2P(ha,b)].io_cnt[t]--; } /* cache or raw service */ if (ha->status == S_BSY) { TRACE2(("Controller busy -> retry !\n")); if (scp->SCp.sent_command == GDT_MOUNT) scp->SCp.sent_command = GDT_CLUST_INFO; /* retry */ return 2; } if (scp->SCp.Status == GDTH_MAP_SG) pci_unmap_sg(ha->pdev,scp->request_buffer, scp->use_sg,scp->SCp.Message); else if (scp->SCp.Status == GDTH_MAP_SINGLE) pci_unmap_page(ha->pdev,scp->SCp.dma_handle, scp->request_bufflen,scp->SCp.Message); if (scp->SCp.buffer) { dma_addr_t addr; addr = (dma_addr_t)*(ulong32 *)&scp->SCp.buffer; if (scp->host_scribble) addr += (dma_addr_t) ((ulong64)(*(ulong32 *)&scp->host_scribble) << 32); pci_unmap_page(ha->pdev,addr,16,PCI_DMA_FROMDEVICE); } if (ha->status == S_OK) { scp->SCp.Status = S_OK; scp->SCp.Message = ha->info; if (scp->SCp.sent_command != -1) { TRACE2(("gdth_sync_event(): special cmd 0x%x OK\n", scp->SCp.sent_command)); /* special commands GDT_CLUST_INFO/GDT_MOUNT ? */ if (scp->SCp.sent_command == GDT_CLUST_INFO) { ha->hdr[t].cluster_type = (unchar)ha->info; if (!(ha->hdr[t].cluster_type & CLUSTER_MOUNTED)) { /* NOT MOUNTED -> MOUNT */ scp->SCp.sent_command = GDT_MOUNT; if (ha->hdr[t].cluster_type & CLUSTER_RESERVED) { /* cluster drive RESERVED (on the other node) */ scp->SCp.phase = -2; /* reservation conflict */ } } else { scp->SCp.sent_command = -1; } } else { if (scp->SCp.sent_command == GDT_MOUNT) { ha->hdr[t].cluster_type |= CLUSTER_MOUNTED; ha->hdr[t].media_changed = TRUE; } else if (scp->SCp.sent_command == GDT_UNMOUNT) { ha->hdr[t].cluster_type &= ~CLUSTER_MOUNTED; ha->hdr[t].media_changed = TRUE; } scp->SCp.sent_command = -1; } /* retry */ scp->SCp.this_residual = HIGH_PRI; return 2; } else { /* RESERVE/RELEASE ? */ if (scp->cmnd[0] == RESERVE) { ha->hdr[t].cluster_type |= CLUSTER_RESERVED; } else if (scp->cmnd[0] == RELEASE) { ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED; } scp->result = DID_OK << 16; scp->sense_buffer[0] = 0; } } else { scp->SCp.Status = ha->status; scp->SCp.Message = ha->info; if (scp->SCp.sent_command != -1) { TRACE2(("gdth_sync_event(): special cmd 0x%x error 0x%x\n", scp->SCp.sent_command, ha->status)); if (scp->SCp.sent_command == GDT_SCAN_START || scp->SCp.sent_command == GDT_SCAN_END) { scp->SCp.sent_command = -1; /* retry */ scp->SCp.this_residual = HIGH_PRI; return 2; } memset((char*)scp->sense_buffer,0,16); scp->sense_buffer[0] = 0x70; scp->sense_buffer[2] = NOT_READY; scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1); } else if (service == CACHESERVICE) { if (ha->status == S_CACHE_UNKNOWN && (ha->hdr[t].cluster_type & CLUSTER_RESERVE_STATE) == CLUSTER_RESERVE_STATE) { /* bus reset -> force GDT_CLUST_INFO */ ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED; } memset((char*)scp->sense_buffer,0,16); if (ha->status == (ushort)S_CACHE_RESERV) { scp->result = (DID_OK << 16) | (RESERVATION_CONFLICT << 1); } else { scp->sense_buffer[0] = 0x70; scp->sense_buffer[2] = NOT_READY; scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1); } if (scp->done != gdth_scsi_done) { ha->dvr.size = sizeof(ha->dvr.eu.sync); ha->dvr.eu.sync.ionode = hanum; ha->dvr.eu.sync.service = service; ha->dvr.eu.sync.status = ha->status; ha->dvr.eu.sync.info = ha->info; ha->dvr.eu.sync.hostdrive = t; if (ha->status >= 0x8000) gdth_store_event(ha, ES_SYNC, 0, &ha->dvr); else gdth_store_event(ha, ES_SYNC, service, &ha->dvr); } } else { /* sense buffer filled from controller firmware (DMA) */ if (ha->status != S_RAW_SCSI || ha->info >= 0x100) { scp->result = DID_BAD_TARGET << 16; } else { scp->result = (DID_OK << 16) | ha->info; } } } if (!scp->SCp.have_data_in) scp->SCp.have_data_in++; else return 1; } return 0; } static char *async_cache_tab[] = { /* 0*/ "\011\000\002\002\002\004\002\006\004" "GDT HA %u, service %u, async. status %u/%lu unknown", /* 1*/ "\011\000\002\002\002\004\002\006\004" "GDT HA %u, service %u, async. status %u/%lu unknown", /* 2*/ "\005\000\002\006\004" "GDT HA %u, Host Drive %lu not ready", /* 3*/ "\005\000\002\006\004" "GDT HA %u, Host Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced", /* 4*/ "\005\000\002\006\004" "GDT HA %u, mirror update on Host Drive %lu failed", /* 5*/ "\005\000\002\006\004" "GDT HA %u, Mirror Drive %lu failed", /* 6*/ "\005\000\002\006\004" "GDT HA %u, Mirror Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced", /* 7*/ "\005\000\002\006\004" "GDT HA %u, Host Drive %lu write protected", /* 8*/ "\005\000\002\006\004" "GDT HA %u, media changed in Host Drive %lu", /* 9*/ "\005\000\002\006\004" "GDT HA %u, Host Drive %lu is offline", /*10*/ "\005\000\002\006\004" "GDT HA %u, media change of Mirror Drive %lu", /*11*/ "\005\000\002\006\004" "GDT HA %u, Mirror Drive %lu is write protected", /*12*/ "\005\000\002\006\004" "GDT HA %u, general error on Host Drive %lu. Please check the devices of this drive!", /*13*/ "\007\000\002\006\002\010\002" "GDT HA %u, Array Drive %u: Cache Drive %u failed", /*14*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: FAIL state entered", /*15*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: error", /*16*/ "\007\000\002\006\002\010\002" "GDT HA %u, Array Drive %u: failed drive replaced by Cache Drive %u", /*17*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity build failed", /*18*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive rebuild failed", /*19*/ "\005\000\002\010\002" "GDT HA %u, Test of Hot Fix %u failed", /*20*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive build finished successfully", /*21*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive rebuild finished successfully", /*22*/ "\007\000\002\006\002\010\002" "GDT HA %u, Array Drive %u: Hot Fix %u activated", /*23*/ "\005\000\002\006\002" "GDT HA %u, Host Drive %u: processing of i/o aborted due to serious drive error", /*24*/ "\005\000\002\010\002" "GDT HA %u, mirror update on Cache Drive %u completed", /*25*/ "\005\000\002\010\002" "GDT HA %u, mirror update on Cache Drive %lu failed", /*26*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive rebuild started", /*27*/ "\005\000\002\012\001" "GDT HA %u, Fault bus %u: SHELF OK detected", /*28*/ "\005\000\002\012\001" "GDT HA %u, Fault bus %u: SHELF not OK detected", /*29*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug started", /*30*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: new disk detected", /*31*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: old disk detected", /*32*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: plugging an active disk is invalid", /*33*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: invalid device detected", /*34*/ "\011\000\002\012\001\013\001\006\004" "GDT HA %u, Fault bus %u, ID %u: insufficient disk capacity (%lu MB required)", /*35*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: disk write protected", /*36*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: disk not available", /*37*/ "\007\000\002\012\001\006\004" "GDT HA %u, Fault bus %u: swap detected (%lu)", /*38*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug finished successfully", /*39*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted due to user Hot Plug", /*40*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted", /*41*/ "\007\000\002\012\001\013\001" "GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug for Hot Fix started", /*42*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive build started", /*43*/ "\003\000\002" "GDT HA %u, DRAM parity error detected", /*44*/ "\005\000\002\006\002" "GDT HA %u, Mirror Drive %u: update started", /*45*/ "\007\000\002\006\002\010\002" "GDT HA %u, Mirror Drive %u: Hot Fix %u activated", /*46*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: no matching Pool Hot Fix Drive available", /*47*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: Pool Hot Fix Drive available", /*48*/ "\005\000\002\006\002" "GDT HA %u, Mirror Drive %u: no matching Pool Hot Fix Drive available", /*49*/ "\005\000\002\006\002" "GDT HA %u, Mirror Drive %u: Pool Hot Fix Drive available", /*50*/ "\007\000\002\012\001\013\001" "GDT HA %u, SCSI bus %u, ID %u: IGNORE_WIDE_RESIDUE message received", /*51*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: expand started", /*52*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: expand finished successfully", /*53*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: expand failed", /*54*/ "\003\000\002" "GDT HA %u, CPU temperature critical", /*55*/ "\003\000\002" "GDT HA %u, CPU temperature OK", /*56*/ "\005\000\002\006\004" "GDT HA %u, Host drive %lu created", /*57*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: expand restarted", /*58*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: expand stopped", /*59*/ "\005\000\002\010\002" "GDT HA %u, Mirror Drive %u: drive build quited", /*60*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity build quited", /*61*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: drive rebuild quited", /*62*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity verify started", /*63*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity verify done", /*64*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity verify failed", /*65*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity error detected", /*66*/ "\005\000\002\006\002" "GDT HA %u, Array Drive %u: parity verify quited", /*67*/ "\005\000\002\006\002" "GDT HA %u, Host Drive %u reserved", /*68*/ "\005\000\002\006\002" "GDT HA %u, Host Drive %u mounted and released", /*69*/ "\005\000\002\006\002" "GDT HA %u, Host Drive %u released", /*70*/ "\003\000\002" "GDT HA %u, DRAM error detected and corrected with ECC", /*71*/ "\003\000\002" "GDT HA %u, Uncorrectable DRAM error detected with ECC", /*72*/ "\011\000\002\012\001\013\001\014\001" "GDT HA %u, SCSI bus %u, ID %u, LUN %u: reassigning block", /*73*/ "\005\000\002\006\002" "GDT HA %u, Host drive %u resetted locally", /*74*/ "\005\000\002\006\002" "GDT HA %u, Host drive %u resetted remotely", /*75*/ "\003\000\002" "GDT HA %u, async. status 75 unknown", }; static int gdth_async_event(int hanum) { gdth_ha_str *ha; gdth_cmd_str *cmdp; int cmd_index; ha = HADATA(gdth_ctr_tab[hanum]); cmdp= ha->pccb; TRACE2(("gdth_async_event() ha %d serv %d\n", hanum,ha->service)); if (ha->service == SCREENSERVICE) { if (ha->status == MSG_REQUEST) { while (gdth_test_busy(hanum)) gdth_delay(0); cmdp->Service = SCREENSERVICE; cmdp->RequestBuffer = SCREEN_CMND; cmd_index = gdth_get_cmd_index(hanum); gdth_set_sema0(hanum); cmdp->OpCode = GDT_READ; cmdp->BoardNode = LOCALBOARD; cmdp->u.screen.reserved = 0; cmdp->u.screen.su.msg.msg_handle= MSG_INV_HANDLE; cmdp->u.screen.su.msg.msg_addr = ha->msg_phys; ha->cmd_offs_dpmem = 0; ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr) + sizeof(ulong64); ha->cmd_cnt = 0; gdth_copy_command(hanum); if (ha->type == GDT_EISA) printk("[EISA slot %d] ",(ushort)ha->brd_phys); else if (ha->type == GDT_ISA) printk("[DPMEM 0x%4X] ",(ushort)ha->brd_phys); else printk("[PCI %d/%d] ",(ushort)(ha->brd_phys>>8), (ushort)((ha->brd_phys>>3)&0x1f)); gdth_release_event(hanum); } } else { if (ha->type == GDT_PCIMPR && (ha->fw_vers & 0xff) >= 0x1a) { ha->dvr.size = 0; ha->dvr.eu.async.ionode = hanum; ha->dvr.eu.async.status = ha->status; /* severity and event_string already set! */ } else { ha->dvr.size = sizeof(ha->dvr.eu.async); ha->dvr.eu.async.ionode = hanum; ha->dvr.eu.async.service = ha->service; ha->dvr.eu.async.status = ha->status; ha->dvr.eu.async.info = ha->info; *(ulong32 *)ha->dvr.eu.async.scsi_coord = ha->info2; } gdth_store_event( ha, ES_ASYNC, ha->service, &ha->dvr ); gdth_log_event( &ha->dvr, NULL ); /* new host drive from expand? */ if (ha->service == CACHESERVICE && ha->status == 56) { TRACE2(("gdth_async_event(): new host drive %d created\n", (ushort)ha->info)); /* gdth_analyse_hdrive(hanum, (ushort)ha->info); */ } } return 1; } static void gdth_log_event(gdth_evt_data *dvr, char *buffer) { gdth_stackframe stack; char *f = NULL; int i,j; TRACE2(("gdth_log_event()\n")); if (dvr->size == 0) { if (buffer == NULL) { printk("Adapter %d: %s\n",dvr->eu.async.ionode,dvr->event_string); } else { sprintf(buffer,"Adapter %d: %s\n", dvr->eu.async.ionode,dvr->event_string); } } else if (dvr->eu.async.service == CACHESERVICE && INDEX_OK(dvr->eu.async.status, async_cache_tab)) { TRACE2(("GDT: Async. event cache service, event no.: %d\n", dvr->eu.async.status)); f = async_cache_tab[dvr->eu.async.status]; /* i: parameter to push, j: stack element to fill */ for (j=0,i=1; i < f[0]; i+=2) { switch (f[i+1]) { case 4: stack.b[j++] = *(ulong32*)&dvr->eu.stream[(int)f[i]]; break; case 2: stack.b[j++] = *(ushort*)&dvr->eu.stream[(int)f[i]]; break; case 1: stack.b[j++] = *(unchar*)&dvr->eu.stream[(int)f[i]]; break; default: break; } } if (buffer == NULL) { printk(&f[(int)f[0]],stack); printk("\n"); } else { sprintf(buffer,&f[(int)f[0]],stack); } } else { if (buffer == NULL) { printk("GDT HA %u, Unknown async. event service %d event no. %d\n", dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status); } else { sprintf(buffer,"GDT HA %u, Unknown async. event service %d event no. %d", dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status); } } } #ifdef GDTH_STATISTICS static void gdth_timeout(ulong data) { ulong32 i; Scsi_Cmnd *nscp; gdth_ha_str *ha; ulong flags; int hanum = 0; ha = HADATA(gdth_ctr_tab[hanum]); spin_lock_irqsave(&ha->smp_lock, flags); for (act_stats=0,i=0; i<GDTH_MAXCMDS; ++i) if (ha->cmd_tab[i].cmnd != UNUSED_CMND) ++act_stats; for (act_rq=0,nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr) ++act_rq; TRACE2(("gdth_to(): ints %d, ios %d, act_stats %d, act_rq %d\n", act_ints, act_ios, act_stats, act_rq)); act_ints = act_ios = 0; gdth_timer.expires = jiffies + 30 * HZ; add_timer(&gdth_timer); spin_unlock_irqrestore(&ha->smp_lock, flags); } #endif static void __init internal_setup(char *str,int *ints) { int i, argc; char *cur_str, *argv; TRACE2(("internal_setup() str %s ints[0] %d\n", str ? str:"NULL", ints ? ints[0]:0)); /* read irq[] from ints[] */ if (ints) { argc = ints[0]; if (argc > 0) { if (argc > MAXHA) argc = MAXHA; for (i = 0; i < argc; ++i) irq[i] = ints[i+1]; } } /* analyse string */ argv = str; while (argv && (cur_str = strchr(argv, ':'))) { int val = 0, c = *++cur_str; if (c == 'n' || c == 'N') val = 0; else if (c == 'y' || c == 'Y') val = 1; else val = (int)simple_strtoul(cur_str, NULL, 0); if (!strncmp(argv, "disable:", 8)) disable = val; else if (!strncmp(argv, "reserve_mode:", 13)) reserve_mode = val; else if (!strncmp(argv, "reverse_scan:", 13)) reverse_scan = val; else if (!strncmp(argv, "hdr_channel:", 12)) hdr_channel = val; else if (!strncmp(argv, "max_ids:", 8)) max_ids = val; else if (!strncmp(argv, "rescan:", 7)) rescan = val; else if (!strncmp(argv, "virt_ctr:", 9)) virt_ctr = val; else if (!strncmp(argv, "shared_access:", 14)) shared_access = val; else if (!strncmp(argv, "probe_eisa_isa:", 15)) probe_eisa_isa = val; else if (!strncmp(argv, "reserve_list:", 13)) { reserve_list[0] = val; for (i = 1; i < MAX_RES_ARGS; i++) { cur_str = strchr(cur_str, ','); if (!cur_str) break; if (!isdigit((int)*++cur_str)) { --cur_str; break; } reserve_list[i] = (int)simple_strtoul(cur_str, NULL, 0); } if (!cur_str) break; argv = ++cur_str; continue; } if ((argv = strchr(argv, ','))) ++argv; } } int __init option_setup(char *str) { int ints[MAXHA]; char *cur = str; int i = 1; TRACE2(("option_setup() str %s\n", str ? str:"NULL")); while (cur && isdigit(*cur) && i <= MAXHA) { ints[i++] = simple_strtoul(cur, NULL, 0); if ((cur = strchr(cur, ',')) != NULL) cur++; } ints[0] = i - 1; internal_setup(cur, ints); return 1; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) static int __init gdth_detect(struct scsi_host_template *shtp) #else static int __init gdth_detect(Scsi_Host_Template *shtp) #endif { struct Scsi_Host *shp; gdth_pci_str pcistr[MAXHA]; gdth_ha_str *ha; ulong32 isa_bios; ushort eisa_slot; int i,hanum,cnt,ctr,err; unchar b; #ifdef DEBUG_GDTH printk("GDT: This driver contains debugging information !! Trace level = %d\n", DebugState); printk(" Destination of debugging information: "); #ifdef __SERIAL__ #ifdef __COM2__ printk("Serial port COM2\n"); #else printk("Serial port COM1\n"); #endif #else printk("Console\n"); #endif gdth_delay(3000); #endif TRACE(("gdth_detect()\n")); if (disable) { printk("GDT-HA: Controller driver disabled from command line !\n"); return 0; } printk("GDT-HA: Storage RAID Controller Driver. Version: %s\n",GDTH_VERSION_STR); /* initializations */ gdth_polling = TRUE; b = 0; gdth_clear_events(); /* As default we do not probe for EISA or ISA controllers */ if (probe_eisa_isa) { /* scanning for controllers, at first: ISA controller */ for (isa_bios=0xc8000UL; isa_bios<=0xd8000UL; isa_bios+=0x8000UL) { dma_addr_t scratch_dma_handle; scratch_dma_handle = 0; if (gdth_ctr_count >= MAXHA) break; if (gdth_search_isa(isa_bios)) { /* controller found */ shp = scsi_register(shtp,sizeof(gdth_ext_str)); if (shp == NULL) continue; ha = HADATA(shp); if (!gdth_init_isa(isa_bios,ha)) { scsi_unregister(shp); continue; } #ifdef __ia64__ break; #else /* controller found and initialized */ printk("Configuring GDT-ISA HA at BIOS 0x%05X IRQ %u DRQ %u\n", isa_bios,ha->irq,ha->drq); if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) { printk("GDT-ISA: Unable to allocate IRQ\n"); scsi_unregister(shp); continue; } if (request_dma(ha->drq,"gdth")) { printk("GDT-ISA: Unable to allocate DMA channel\n"); free_irq(ha->irq,ha); scsi_unregister(shp); continue; } set_dma_mode(ha->drq,DMA_MODE_CASCADE); enable_dma(ha->drq); shp->unchecked_isa_dma = 1; shp->irq = ha->irq; shp->dma_channel = ha->drq; hanum = gdth_ctr_count; gdth_ctr_tab[gdth_ctr_count++] = shp; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum= 0; ha->pccb = CMDDATA(shp); ha->ccb_phys = 0L; ha->pdev = NULL; ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH, &scratch_dma_handle); ha->scratch_phys = scratch_dma_handle; ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str), &scratch_dma_handle); ha->msg_phys = scratch_dma_handle; #ifdef INT_COAL ha->coal_stat = (gdth_coal_status *) pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, &scratch_dma_handle); ha->coal_stat_phys = scratch_dma_handle; #endif ha->scratch_busy = FALSE; ha->req_first = NULL; ha->tid_cnt = MAX_HDRIVES; if (max_ids > 0 && max_ids < ha->tid_cnt) ha->tid_cnt = max_ids; for (i=0; i<GDTH_MAXCMDS; ++i) ha->cmd_tab[i].cmnd = UNUSED_CMND; ha->scan_mode = rescan ? 0x10 : 0; if (ha->pscratch == NULL || ha->pmsg == NULL || !gdth_search_drives(hanum)) { printk("GDT-ISA: Error during device scan\n"); --gdth_ctr_count; --gdth_ctr_vcount; #ifdef INT_COAL if (ha->coal_stat) pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys); #endif if (ha->pscratch) pci_free_consistent(ha->pdev, GDTH_SCRATCH, ha->pscratch, ha->scratch_phys); if (ha->pmsg) pci_free_consistent(ha->pdev, sizeof(gdth_msg_str), ha->pmsg, ha->msg_phys); free_irq(ha->irq,ha); scsi_unregister(shp); continue; } if (hdr_channel < 0 || hdr_channel > ha->bus_cnt) hdr_channel = ha->bus_cnt; ha->virt_bus = hdr_channel; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) shp->highmem_io = 0; #endif if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT) shp->max_cmd_len = 16; shp->max_id = ha->tid_cnt; shp->max_lun = MAXLUN; shp->max_channel = virt_ctr ? 0 : ha->bus_cnt; if (virt_ctr) { virt_ctr = 1; /* register addit. SCSI channels as virtual controllers */ for (b = 1; b < ha->bus_cnt + 1; ++b) { shp = scsi_register(shtp,sizeof(gdth_num_str)); shp->unchecked_isa_dma = 1; shp->irq = ha->irq; shp->dma_channel = ha->drq; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum = b; } } spin_lock_init(&ha->smp_lock); gdth_enable_int(hanum); #endif /* !__ia64__ */ } } /* scanning for EISA controllers */ for (eisa_slot=0x1000; eisa_slot<=0x8000; eisa_slot+=0x1000) { dma_addr_t scratch_dma_handle; scratch_dma_handle = 0; if (gdth_ctr_count >= MAXHA) break; if (gdth_search_eisa(eisa_slot)) { /* controller found */ shp = scsi_register(shtp,sizeof(gdth_ext_str)); if (shp == NULL) continue; ha = HADATA(shp); if (!gdth_init_eisa(eisa_slot,ha)) { scsi_unregister(shp); continue; } /* controller found and initialized */ printk("Configuring GDT-EISA HA at Slot %d IRQ %u\n", eisa_slot>>12,ha->irq); if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) { printk("GDT-EISA: Unable to allocate IRQ\n"); scsi_unregister(shp); continue; } shp->unchecked_isa_dma = 0; shp->irq = ha->irq; shp->dma_channel = 0xff; hanum = gdth_ctr_count; gdth_ctr_tab[gdth_ctr_count++] = shp; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum= 0; TRACE2(("EISA detect Bus 0: hanum %d\n", NUMDATA(shp)->hanum)); ha->pccb = CMDDATA(shp); ha->ccb_phys = 0L; ha->pdev = NULL; ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH, &scratch_dma_handle); ha->scratch_phys = scratch_dma_handle; ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str), &scratch_dma_handle); ha->msg_phys = scratch_dma_handle; #ifdef INT_COAL ha->coal_stat = (gdth_coal_status *) pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, &scratch_dma_handle); ha->coal_stat_phys = scratch_dma_handle; #endif ha->ccb_phys = pci_map_single(ha->pdev,ha->pccb, sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL); ha->scratch_busy = FALSE; ha->req_first = NULL; ha->tid_cnt = MAX_HDRIVES; if (max_ids > 0 && max_ids < ha->tid_cnt) ha->tid_cnt = max_ids; for (i=0; i<GDTH_MAXCMDS; ++i) ha->cmd_tab[i].cmnd = UNUSED_CMND; ha->scan_mode = rescan ? 0x10 : 0; if (ha->pscratch == NULL || ha->pmsg == NULL || !gdth_search_drives(hanum)) { printk("GDT-EISA: Error during device scan\n"); --gdth_ctr_count; --gdth_ctr_vcount; #ifdef INT_COAL if (ha->coal_stat) pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys); #endif if (ha->pscratch) pci_free_consistent(ha->pdev, GDTH_SCRATCH, ha->pscratch, ha->scratch_phys); if (ha->pmsg) pci_free_consistent(ha->pdev, sizeof(gdth_msg_str), ha->pmsg, ha->msg_phys); if (ha->ccb_phys) pci_unmap_single(ha->pdev,ha->ccb_phys, sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL); free_irq(ha->irq,ha); scsi_unregister(shp); continue; } if (hdr_channel < 0 || hdr_channel > ha->bus_cnt) hdr_channel = ha->bus_cnt; ha->virt_bus = hdr_channel; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \ LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) shp->highmem_io = 0; #endif if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT) shp->max_cmd_len = 16; shp->max_id = ha->tid_cnt; shp->max_lun = MAXLUN; shp->max_channel = virt_ctr ? 0 : ha->bus_cnt; if (virt_ctr) { virt_ctr = 1; /* register addit. SCSI channels as virtual controllers */ for (b = 1; b < ha->bus_cnt + 1; ++b) { shp = scsi_register(shtp,sizeof(gdth_num_str)); shp->unchecked_isa_dma = 0; shp->irq = ha->irq; shp->dma_channel = 0xff; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum = b; } } spin_lock_init(&ha->smp_lock); gdth_enable_int(hanum); } } } /* scanning for PCI controllers */ cnt = gdth_search_pci(pcistr); printk("GDT-HA: Found %d PCI Storage RAID Controllers\n",cnt); gdth_sort_pci(pcistr,cnt); for (ctr = 0; ctr < cnt; ++ctr) { dma_addr_t scratch_dma_handle; scratch_dma_handle = 0; if (gdth_ctr_count >= MAXHA) break; shp = scsi_register(shtp,sizeof(gdth_ext_str)); if (shp == NULL) continue; ha = HADATA(shp); if (!gdth_init_pci(&pcistr[ctr],ha)) { scsi_unregister(shp); continue; } /* controller found and initialized */ printk("Configuring GDT-PCI HA at %d/%d IRQ %u\n", pcistr[ctr].bus,PCI_SLOT(pcistr[ctr].device_fn),ha->irq); if (request_irq(ha->irq, gdth_interrupt, IRQF_DISABLED|IRQF_SHARED, "gdth", ha)) { printk("GDT-PCI: Unable to allocate IRQ\n"); scsi_unregister(shp); continue; } shp->unchecked_isa_dma = 0; shp->irq = ha->irq; shp->dma_channel = 0xff; hanum = gdth_ctr_count; gdth_ctr_tab[gdth_ctr_count++] = shp; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum= 0; ha->pccb = CMDDATA(shp); ha->ccb_phys = 0L; ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH, &scratch_dma_handle); ha->scratch_phys = scratch_dma_handle; ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str), &scratch_dma_handle); ha->msg_phys = scratch_dma_handle; #ifdef INT_COAL ha->coal_stat = (gdth_coal_status *) pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, &scratch_dma_handle); ha->coal_stat_phys = scratch_dma_handle; #endif ha->scratch_busy = FALSE; ha->req_first = NULL; ha->tid_cnt = pcistr[ctr].device_id >= 0x200 ? MAXID : MAX_HDRIVES; if (max_ids > 0 && max_ids < ha->tid_cnt) ha->tid_cnt = max_ids; for (i=0; i<GDTH_MAXCMDS; ++i) ha->cmd_tab[i].cmnd = UNUSED_CMND; ha->scan_mode = rescan ? 0x10 : 0; err = FALSE; if (ha->pscratch == NULL || ha->pmsg == NULL || !gdth_search_drives(hanum)) { err = TRUE; } else { if (hdr_channel < 0 || hdr_channel > ha->bus_cnt) hdr_channel = ha->bus_cnt; ha->virt_bus = hdr_channel; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) scsi_set_pci_device(shp, pcistr[ctr].pdev); #endif if (!(ha->cache_feat & ha->raw_feat & ha->screen_feat &GDT_64BIT)|| /* 64-bit DMA only supported from FW >= x.43 */ (!ha->dma64_support)) { if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) { printk(KERN_WARNING "GDT-PCI %d: Unable to set 32-bit DMA\n", hanum); err = TRUE; } } else { shp->max_cmd_len = 16; if (!pci_set_dma_mask(pcistr[ctr].pdev, DMA_64BIT_MASK)) { printk("GDT-PCI %d: 64-bit DMA enabled\n", hanum); } else if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) { printk(KERN_WARNING "GDT-PCI %d: Unable to set 64/32-bit DMA\n", hanum); err = TRUE; } } } if (err) { printk("GDT-PCI %d: Error during device scan\n", hanum); --gdth_ctr_count; --gdth_ctr_vcount; #ifdef INT_COAL if (ha->coal_stat) pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys); #endif if (ha->pscratch) pci_free_consistent(ha->pdev, GDTH_SCRATCH, ha->pscratch, ha->scratch_phys); if (ha->pmsg) pci_free_consistent(ha->pdev, sizeof(gdth_msg_str), ha->pmsg, ha->msg_phys); free_irq(ha->irq,ha); scsi_unregister(shp); continue; } shp->max_id = ha->tid_cnt; shp->max_lun = MAXLUN; shp->max_channel = virt_ctr ? 0 : ha->bus_cnt; if (virt_ctr) { virt_ctr = 1; /* register addit. SCSI channels as virtual controllers */ for (b = 1; b < ha->bus_cnt + 1; ++b) { shp = scsi_register(shtp,sizeof(gdth_num_str)); shp->unchecked_isa_dma = 0; shp->irq = ha->irq; shp->dma_channel = 0xff; gdth_ctr_vtab[gdth_ctr_vcount++] = shp; NUMDATA(shp)->hanum = (ushort)hanum; NUMDATA(shp)->busnum = b; } } spin_lock_init(&ha->smp_lock); gdth_enable_int(hanum); } TRACE2(("gdth_detect() %d controller detected\n",gdth_ctr_count)); if (gdth_ctr_count > 0) { #ifdef GDTH_STATISTICS TRACE2(("gdth_detect(): Initializing timer !\n")); init_timer(&gdth_timer); gdth_timer.expires = jiffies + HZ; gdth_timer.data = 0L; gdth_timer.function = gdth_timeout; add_timer(&gdth_timer); #endif major = register_chrdev(0,"gdth",&gdth_fops); notifier_disabled = 0; register_reboot_notifier(&gdth_notifier); } gdth_polling = FALSE; return gdth_ctr_vcount; } static int gdth_release(struct Scsi_Host *shp) { int hanum; gdth_ha_str *ha; TRACE2(("gdth_release()\n")); if (NUMDATA(shp)->busnum == 0) { hanum = NUMDATA(shp)->hanum; ha = HADATA(gdth_ctr_tab[hanum]); if (ha->sdev) { scsi_free_host_dev(ha->sdev); ha->sdev = NULL; } gdth_flush(hanum); if (shp->irq) { free_irq(shp->irq,ha); } #ifndef __ia64__ if (shp->dma_channel != 0xff) { free_dma(shp->dma_channel); } #endif #ifdef INT_COAL if (ha->coal_stat) pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) * MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys); #endif if (ha->pscratch) pci_free_consistent(ha->pdev, GDTH_SCRATCH, ha->pscratch, ha->scratch_phys); if (ha->pmsg) pci_free_consistent(ha->pdev, sizeof(gdth_msg_str), ha->pmsg, ha->msg_phys); if (ha->ccb_phys) pci_unmap_single(ha->pdev,ha->ccb_phys, sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL); gdth_ctr_released++; TRACE2(("gdth_release(): HA %d of %d\n", gdth_ctr_released, gdth_ctr_count)); if (gdth_ctr_released == gdth_ctr_count) { #ifdef GDTH_STATISTICS del_timer(&gdth_timer); #endif unregister_chrdev(major,"gdth"); unregister_reboot_notifier(&gdth_notifier); } } scsi_unregister(shp); return 0; } static const char *gdth_ctr_name(int hanum) { gdth_ha_str *ha; TRACE2(("gdth_ctr_name()\n")); ha = HADATA(gdth_ctr_tab[hanum]); if (ha->type == GDT_EISA) { switch (ha->stype) { case GDT3_ID: return("GDT3000/3020"); case GDT3A_ID: return("GDT3000A/3020A/3050A"); case GDT3B_ID: return("GDT3000B/3010A"); } } else if (ha->type == GDT_ISA) { return("GDT2000/2020"); } else if (ha->type == GDT_PCI) { switch (ha->stype) { case PCI_DEVICE_ID_VORTEX_GDT60x0: return("GDT6000/6020/6050"); case PCI_DEVICE_ID_VORTEX_GDT6000B: return("GDT6000B/6010"); } } /* new controllers (GDT_PCINEW, GDT_PCIMPR, ..) use board_info IOCTL! */ return(""); } static const char *gdth_info(struct Scsi_Host *shp) { int hanum; gdth_ha_str *ha; TRACE2(("gdth_info()\n")); hanum = NUMDATA(shp)->hanum; ha = HADATA(gdth_ctr_tab[hanum]); return ((const char *)ha->binfo.type_string); } static int gdth_eh_bus_reset(Scsi_Cmnd *scp) { int i, hanum; gdth_ha_str *ha; ulong flags; Scsi_Cmnd *cmnd; unchar b; TRACE2(("gdth_eh_bus_reset()\n")); hanum = NUMDATA(scp->device->host)->hanum; b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel; ha = HADATA(gdth_ctr_tab[hanum]); /* clear command tab */ spin_lock_irqsave(&ha->smp_lock, flags); for (i = 0; i < GDTH_MAXCMDS; ++i) { cmnd = ha->cmd_tab[i].cmnd; if (!SPECIAL_SCP(cmnd) && cmnd->device->channel == b) ha->cmd_tab[i].cmnd = UNUSED_CMND; } spin_unlock_irqrestore(&ha->smp_lock, flags); if (b == ha->virt_bus) { /* host drives */ for (i = 0; i < MAX_HDRIVES; ++i) { if (ha->hdr[i].present) { spin_lock_irqsave(&ha->smp_lock, flags); gdth_polling = TRUE; while (gdth_test_busy(hanum)) gdth_delay(0); if (gdth_internal_cmd(hanum, CACHESERVICE, GDT_CLUST_RESET, i, 0, 0)) ha->hdr[i].cluster_type &= ~CLUSTER_RESERVED; gdth_polling = FALSE; spin_unlock_irqrestore(&ha->smp_lock, flags); } } } else { /* raw devices */ spin_lock_irqsave(&ha->smp_lock, flags); for (i = 0; i < MAXID; ++i) ha->raw[BUS_L2P(ha,b)].io_cnt[i] = 0; gdth_polling = TRUE; while (gdth_test_busy(hanum)) gdth_delay(0); gdth_internal_cmd(hanum, SCSIRAWSERVICE, GDT_RESET_BUS, BUS_L2P(ha,b), 0, 0); gdth_polling = FALSE; spin_unlock_irqrestore(&ha->smp_lock, flags); } return SUCCESS; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) static int gdth_bios_param(struct scsi_device *sdev,struct block_device *bdev,sector_t cap,int *ip) #else static int gdth_bios_param(Disk *disk,kdev_t dev,int *ip) #endif { unchar b, t; int hanum; gdth_ha_str *ha; struct scsi_device *sd; unsigned capacity; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) sd = sdev; capacity = cap; #else sd = disk->device; capacity = disk->capacity; #endif hanum = NUMDATA(sd->host)->hanum; b = virt_ctr ? NUMDATA(sd->host)->busnum : sd->channel; t = sd->id; TRACE2(("gdth_bios_param() ha %d bus %d target %d\n", hanum, b, t)); ha = HADATA(gdth_ctr_tab[hanum]); if (b != ha->virt_bus || ha->hdr[t].heads == 0) { /* raw device or host drive without mapping information */ TRACE2(("Evaluate mapping\n")); gdth_eval_mapping(capacity,&ip[2],&ip[0],&ip[1]); } else { ip[0] = ha->hdr[t].heads; ip[1] = ha->hdr[t].secs; ip[2] = capacity / ip[0] / ip[1]; } TRACE2(("gdth_bios_param(): %d heads, %d secs, %d cyls\n", ip[0],ip[1],ip[2])); return 0; } static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *)) { int hanum; int priority; TRACE(("gdth_queuecommand() cmd 0x%x\n", scp->cmnd[0])); scp->scsi_done = (void *)done; scp->SCp.have_data_in = 1; scp->SCp.phase = -1; scp->SCp.sent_command = -1; scp->SCp.Status = GDTH_MAP_NONE; scp->SCp.buffer = (struct scatterlist *)NULL; hanum = NUMDATA(scp->device->host)->hanum; #ifdef GDTH_STATISTICS ++act_ios; #endif priority = DEFAULT_PRI; if (scp->done == gdth_scsi_done) priority = scp->SCp.this_residual; else gdth_update_timeout(hanum, scp, scp->timeout_per_command * 6); gdth_putq( hanum, scp, priority ); gdth_next( hanum ); return 0; } static int gdth_open(struct inode *inode, struct file *filep) { gdth_ha_str *ha; int i; for (i = 0; i < gdth_ctr_count; i++) { ha = HADATA(gdth_ctr_tab[i]); if (!ha->sdev) ha->sdev = scsi_get_host_dev(gdth_ctr_tab[i]); } TRACE(("gdth_open()\n")); return 0; } static int gdth_close(struct inode *inode, struct file *filep) { TRACE(("gdth_close()\n")); return 0; } static int ioc_event(void __user *arg) { gdth_ioctl_event evt; gdth_ha_str *ha; ulong flags; if (copy_from_user(&evt, arg, sizeof(gdth_ioctl_event)) || evt.ionode >= gdth_ctr_count) return -EFAULT; ha = HADATA(gdth_ctr_tab[evt.ionode]); if (evt.erase == 0xff) { if (evt.event.event_source == ES_TEST) evt.event.event_data.size=sizeof(evt.event.event_data.eu.test); else if (evt.event.event_source == ES_DRIVER) evt.event.event_data.size=sizeof(evt.event.event_data.eu.driver); else if (evt.event.event_source == ES_SYNC) evt.event.event_data.size=sizeof(evt.event.event_data.eu.sync); else evt.event.event_data.size=sizeof(evt.event.event_data.eu.async); spin_lock_irqsave(&ha->smp_lock, flags); gdth_store_event(ha, evt.event.event_source, evt.event.event_idx, &evt.event.event_data); spin_unlock_irqrestore(&ha->smp_lock, flags); } else if (evt.erase == 0xfe) { gdth_clear_events(); } else if (evt.erase == 0) { evt.handle = gdth_read_event(ha, evt.handle, &evt.event); } else { gdth_readapp_event(ha, evt.erase, &evt.event); } if (copy_to_user(arg, &evt, sizeof(gdth_ioctl_event))) return -EFAULT; return 0; } static int ioc_lockdrv(void __user *arg) { gdth_ioctl_lockdrv ldrv; unchar i, j; ulong flags; gdth_ha_str *ha; if (copy_from_user(&ldrv, arg, sizeof(gdth_ioctl_lockdrv)) || ldrv.ionode >= gdth_ctr_count) return -EFAULT; ha = HADATA(gdth_ctr_tab[ldrv.ionode]); for (i = 0; i < ldrv.drive_cnt && i < MAX_HDRIVES; ++i) { j = ldrv.drives[i]; if (j >= MAX_HDRIVES || !ha->hdr[j].present) continue; if (ldrv.lock) { spin_lock_irqsave(&ha->smp_lock, flags); ha->hdr[j].lock = 1; spin_unlock_irqrestore(&ha->smp_lock, flags); gdth_wait_completion(ldrv.ionode, ha->bus_cnt, j); gdth_stop_timeout(ldrv.ionode, ha->bus_cnt, j); } else { spin_lock_irqsave(&ha->smp_lock, flags); ha->hdr[j].lock = 0; spin_unlock_irqrestore(&ha->smp_lock, flags); gdth_start_timeout(ldrv.ionode, ha->bus_cnt, j); gdth_next(ldrv.ionode); } } return 0; } static int ioc_resetdrv(void __user *arg, char *cmnd) { gdth_ioctl_reset res; gdth_cmd_str cmd; int hanum; gdth_ha_str *ha; int rval; if (copy_from_user(&res, arg, sizeof(gdth_ioctl_reset)) || res.ionode >= gdth_ctr_count || res.number >= MAX_HDRIVES) return -EFAULT; hanum = res.ionode; ha = HADATA(gdth_ctr_tab[hanum]); if (!ha->hdr[res.number].present) return 0; memset(&cmd, 0, sizeof(gdth_cmd_str)); cmd.Service = CACHESERVICE; cmd.OpCode = GDT_CLUST_RESET; if (ha->cache_feat & GDT_64BIT) cmd.u.cache64.DeviceNo = res.number; else cmd.u.cache.DeviceNo = res.number; rval = __gdth_execute(ha->sdev, &cmd, cmnd, 30, NULL); if (rval < 0) return rval; res.status = rval; if (copy_to_user(arg, &res, sizeof(gdth_ioctl_reset))) return -EFAULT; return 0; } static int ioc_general(void __user *arg, char *cmnd) { gdth_ioctl_general gen; char *buf = NULL; ulong64 paddr; int hanum; gdth_ha_str *ha; int rval; if (copy_from_user(&gen, arg, sizeof(gdth_ioctl_general)) || gen.ionode >= gdth_ctr_count) return -EFAULT; hanum = gen.ionode; ha = HADATA(gdth_ctr_tab[hanum]); if (gen.data_len + gen.sense_len != 0) { if (!(buf = gdth_ioctl_alloc(hanum, gen.data_len + gen.sense_len, FALSE, &paddr))) return -EFAULT; if (copy_from_user(buf, arg + sizeof(gdth_ioctl_general), gen.data_len + gen.sense_len)) { gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr); return -EFAULT; } if (gen.command.OpCode == GDT_IOCTL) { gen.command.u.ioctl.p_param = paddr; } else if (gen.command.Service == CACHESERVICE) { if (ha->cache_feat & GDT_64BIT) { /* copy elements from 32-bit IOCTL structure */ gen.command.u.cache64.BlockCnt = gen.command.u.cache.BlockCnt; gen.command.u.cache64.BlockNo = gen.command.u.cache.BlockNo; gen.command.u.cache64.DeviceNo = gen.command.u.cache.DeviceNo; /* addresses */ if (ha->cache_feat & SCATTER_GATHER) { gen.command.u.cache64.DestAddr = (ulong64)-1; gen.command.u.cache64.sg_canz = 1; gen.command.u.cache64.sg_lst[0].sg_ptr = paddr; gen.command.u.cache64.sg_lst[0].sg_len = gen.data_len; gen.command.u.cache64.sg_lst[1].sg_len = 0; } else { gen.command.u.cache64.DestAddr = paddr; gen.command.u.cache64.sg_canz = 0; } } else { if (ha->cache_feat & SCATTER_GATHER) { gen.command.u.cache.DestAddr = 0xffffffff; gen.command.u.cache.sg_canz = 1; gen.command.u.cache.sg_lst[0].sg_ptr = (ulong32)paddr; gen.command.u.cache.sg_lst[0].sg_len = gen.data_len; gen.command.u.cache.sg_lst[1].sg_len = 0; } else { gen.command.u.cache.DestAddr = paddr; gen.command.u.cache.sg_canz = 0; } } } else if (gen.command.Service == SCSIRAWSERVICE) { if (ha->raw_feat & GDT_64BIT) { /* copy elements from 32-bit IOCTL structure */ char cmd[16]; gen.command.u.raw64.sense_len = gen.command.u.raw.sense_len; gen.command.u.raw64.bus = gen.command.u.raw.bus; gen.command.u.raw64.lun = gen.command.u.raw.lun; gen.command.u.raw64.target = gen.command.u.raw.target; memcpy(cmd, gen.command.u.raw.cmd, 16); memcpy(gen.command.u.raw64.cmd, cmd, 16); gen.command.u.raw64.clen = gen.command.u.raw.clen; gen.command.u.raw64.sdlen = gen.command.u.raw.sdlen; gen.command.u.raw64.direction = gen.command.u.raw.direction; /* addresses */ if (ha->raw_feat & SCATTER_GATHER) { gen.command.u.raw64.sdata = (ulong64)-1; gen.command.u.raw64.sg_ranz = 1; gen.command.u.raw64.sg_lst[0].sg_ptr = paddr; gen.command.u.raw64.sg_lst[0].sg_len = gen.data_len; gen.command.u.raw64.sg_lst[1].sg_len = 0; } else { gen.command.u.raw64.sdata = paddr; gen.command.u.raw64.sg_ranz = 0; } gen.command.u.raw64.sense_data = paddr + gen.data_len; } else { if (ha->raw_feat & SCATTER_GATHER) { gen.command.u.raw.sdata = 0xffffffff; gen.command.u.raw.sg_ranz = 1; gen.command.u.raw.sg_lst[0].sg_ptr = (ulong32)paddr; gen.command.u.raw.sg_lst[0].sg_len = gen.data_len; gen.command.u.raw.sg_lst[1].sg_len = 0; } else { gen.command.u.raw.sdata = paddr; gen.command.u.raw.sg_ranz = 0; } gen.command.u.raw.sense_data = (ulong32)paddr + gen.data_len; } } else { gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr); return -EFAULT; } } rval = __gdth_execute(ha->sdev, &gen.command, cmnd, gen.timeout, &gen.info); if (rval < 0) return rval; gen.status = rval; if (copy_to_user(arg + sizeof(gdth_ioctl_general), buf, gen.data_len + gen.sense_len)) { gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr); return -EFAULT; } if (copy_to_user(arg, &gen, sizeof(gdth_ioctl_general) - sizeof(gdth_cmd_str))) { gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr); return -EFAULT; } gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr); return 0; } static int ioc_hdrlist(void __user *arg, char *cmnd) { gdth_ioctl_rescan *rsc; gdth_cmd_str *cmd; gdth_ha_str *ha; unchar i; int hanum, rc = -ENOMEM; u32 cluster_type = 0; rsc = kmalloc(sizeof(*rsc), GFP_KERNEL); cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!rsc || !cmd) goto free_fail; if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) || rsc->ionode >= gdth_ctr_count) { rc = -EFAULT; goto free_fail; } hanum = rsc->ionode; ha = HADATA(gdth_ctr_tab[hanum]); memset(cmd, 0, sizeof(gdth_cmd_str)); for (i = 0; i < MAX_HDRIVES; ++i) { if (!ha->hdr[i].present) { rsc->hdr_list[i].bus = 0xff; continue; } rsc->hdr_list[i].bus = ha->virt_bus; rsc->hdr_list[i].target = i; rsc->hdr_list[i].lun = 0; rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type; if (ha->hdr[i].cluster_type & CLUSTER_DRIVE) { cmd->Service = CACHESERVICE; cmd->OpCode = GDT_CLUST_INFO; if (ha->cache_feat & GDT_64BIT) cmd->u.cache64.DeviceNo = i; else cmd->u.cache.DeviceNo = i; if (__gdth_execute(ha->sdev, cmd, cmnd, 30, &cluster_type) == S_OK) rsc->hdr_list[i].cluster_type = cluster_type; } } if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan))) rc = -EFAULT; else rc = 0; free_fail: kfree(rsc); kfree(cmd); return rc; } static int ioc_rescan(void __user *arg, char *cmnd) { gdth_ioctl_rescan *rsc; gdth_cmd_str *cmd; ushort i, status, hdr_cnt; ulong32 info; int hanum, cyls, hds, secs; int rc = -ENOMEM; ulong flags; gdth_ha_str *ha; rsc = kmalloc(sizeof(*rsc), GFP_KERNEL); cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); if (!cmd || !rsc) goto free_fail; if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) || rsc->ionode >= gdth_ctr_count) { rc = -EFAULT; goto free_fail; } hanum = rsc->ionode; ha = HADATA(gdth_ctr_tab[hanum]); memset(cmd, 0, sizeof(gdth_cmd_str)); if (rsc->flag == 0) { /* old method: re-init. cache service */ cmd->Service = CACHESERVICE; if (ha->cache_feat & GDT_64BIT) { cmd->OpCode = GDT_X_INIT_HOST; cmd->u.cache64.DeviceNo = LINUX_OS; } else { cmd->OpCode = GDT_INIT; cmd->u.cache.DeviceNo = LINUX_OS; } status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info); i = 0; hdr_cnt = (status == S_OK ? (ushort)info : 0); } else { i = rsc->hdr_no; hdr_cnt = i + 1; } for (; i < hdr_cnt && i < MAX_HDRIVES; ++i) { cmd->Service = CACHESERVICE; cmd->OpCode = GDT_INFO; if (ha->cache_feat & GDT_64BIT) cmd->u.cache64.DeviceNo = i; else cmd->u.cache.DeviceNo = i; status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info); spin_lock_irqsave(&ha->smp_lock, flags); rsc->hdr_list[i].bus = ha->virt_bus; rsc->hdr_list[i].target = i; rsc->hdr_list[i].lun = 0; if (status != S_OK) { ha->hdr[i].present = FALSE; } else { ha->hdr[i].present = TRUE; ha->hdr[i].size = info; /* evaluate mapping */ ha->hdr[i].size &= ~SECS32; gdth_eval_mapping(ha->hdr[i].size,&cyls,&hds,&secs); ha->hdr[i].heads = hds; ha->hdr[i].secs = secs; /* round size */ ha->hdr[i].size = cyls * hds * secs; } spin_unlock_irqrestore(&ha->smp_lock, flags); if (status != S_OK) continue; /* extended info, if GDT_64BIT, for drives > 2 TB */ /* but we need ha->info2, not yet stored in scp->SCp */ /* devtype, cluster info, R/W attribs */ cmd->Service = CACHESERVICE; cmd->OpCode = GDT_DEVTYPE; if (ha->cache_feat & GDT_64BIT) cmd->u.cache64.DeviceNo = i; else cmd->u.cache.DeviceNo = i; status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info); spin_lock_irqsave(&ha->smp_lock, flags); ha->hdr[i].devtype = (status == S_OK ? (ushort)info : 0); spin_unlock_irqrestore(&ha->smp_lock, flags); cmd->Service = CACHESERVICE; cmd->OpCode = GDT_CLUST_INFO; if (ha->cache_feat & GDT_64BIT) cmd->u.cache64.DeviceNo = i; else cmd->u.cache.DeviceNo = i; status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info); spin_lock_irqsave(&ha->smp_lock, flags); ha->hdr[i].cluster_type = ((status == S_OK && !shared_access) ? (ushort)info : 0); spin_unlock_irqrestore(&ha->smp_lock, flags); rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type; cmd->Service = CACHESERVICE; cmd->OpCode = GDT_RW_ATTRIBS; if (ha->cache_feat & GDT_64BIT) cmd->u.cache64.DeviceNo = i; else cmd->u.cache.DeviceNo = i; status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info); spin_lock_irqsave(&ha->smp_lock, flags); ha->hdr[i].rw_attribs = (status == S_OK ? (ushort)info : 0); spin_unlock_irqrestore(&ha->smp_lock, flags); } if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan))) rc = -EFAULT; else rc = 0; free_fail: kfree(rsc); kfree(cmd); return rc; } static int gdth_ioctl(struct inode *inode, struct file *filep, unsigned int cmd, unsigned long arg) { gdth_ha_str *ha; Scsi_Cmnd *scp; ulong flags; char cmnd[MAX_COMMAND_SIZE]; void __user *argp = (void __user *)arg; memset(cmnd, 0xff, 12); TRACE(("gdth_ioctl() cmd 0x%x\n", cmd)); switch (cmd) { case GDTIOCTL_CTRCNT: { int cnt = gdth_ctr_count; if (put_user(cnt, (int __user *)argp)) return -EFAULT; break; } case GDTIOCTL_DRVERS: { int ver = (GDTH_VERSION<<8) | GDTH_SUBVERSION; if (put_user(ver, (int __user *)argp)) return -EFAULT; break; } case GDTIOCTL_OSVERS: { gdth_ioctl_osvers osv; osv.version = (unchar)(LINUX_VERSION_CODE >> 16); osv.subversion = (unchar)(LINUX_VERSION_CODE >> 8); osv.revision = (ushort)(LINUX_VERSION_CODE & 0xff); if (copy_to_user(argp, &osv, sizeof(gdth_ioctl_osvers))) return -EFAULT; break; } case GDTIOCTL_CTRTYPE: { gdth_ioctl_ctrtype ctrt; if (copy_from_user(&ctrt, argp, sizeof(gdth_ioctl_ctrtype)) || ctrt.ionode >= gdth_ctr_count) return -EFAULT; ha = HADATA(gdth_ctr_tab[ctrt.ionode]); if (ha->type == GDT_ISA || ha->type == GDT_EISA) { ctrt.type = (unchar)((ha->stype>>20) - 0x10); } else { if (ha->type != GDT_PCIMPR) { ctrt.type = (unchar)((ha->stype<<4) + 6); } else { ctrt.type = (ha->oem_id == OEM_ID_INTEL ? 0xfd : 0xfe); if (ha->stype >= 0x300) ctrt.ext_type = 0x6000 | ha->subdevice_id; else ctrt.ext_type = 0x6000 | ha->stype; } ctrt.device_id = ha->stype; ctrt.sub_device_id = ha->subdevice_id; } ctrt.info = ha->brd_phys; ctrt.oem_id = ha->oem_id; if (copy_to_user(argp, &ctrt, sizeof(gdth_ioctl_ctrtype))) return -EFAULT; break; } case GDTIOCTL_GENERAL: return ioc_general(argp, cmnd); case GDTIOCTL_EVENT: return ioc_event(argp); case GDTIOCTL_LOCKDRV: return ioc_lockdrv(argp); case GDTIOCTL_LOCKCHN: { gdth_ioctl_lockchn lchn; unchar i, j; if (copy_from_user(&lchn, argp, sizeof(gdth_ioctl_lockchn)) || lchn.ionode >= gdth_ctr_count) return -EFAULT; ha = HADATA(gdth_ctr_tab[lchn.ionode]); i = lchn.channel; if (i < ha->bus_cnt) { if (lchn.lock) { spin_lock_irqsave(&ha->smp_lock, flags); ha->raw[i].lock = 1; spin_unlock_irqrestore(&ha->smp_lock, flags); for (j = 0; j < ha->tid_cnt; ++j) { gdth_wait_completion(lchn.ionode, i, j); gdth_stop_timeout(lchn.ionode, i, j); } } else { spin_lock_irqsave(&ha->smp_lock, flags); ha->raw[i].lock = 0; spin_unlock_irqrestore(&ha->smp_lock, flags); for (j = 0; j < ha->tid_cnt; ++j) { gdth_start_timeout(lchn.ionode, i, j); gdth_next(lchn.ionode); } } } break; } case GDTIOCTL_RESCAN: return ioc_rescan(argp, cmnd); case GDTIOCTL_HDRLIST: return ioc_hdrlist(argp, cmnd); case GDTIOCTL_RESET_BUS: { gdth_ioctl_reset res; int hanum, rval; if (copy_from_user(&res, argp, sizeof(gdth_ioctl_reset)) || res.ionode >= gdth_ctr_count) return -EFAULT; hanum = res.ionode; ha = HADATA(gdth_ctr_tab[hanum]); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) scp = kmalloc(sizeof(*scp), GFP_KERNEL); if (!scp) return -ENOMEM; memset(scp, 0, sizeof(*scp)); scp->device = ha->sdev; scp->cmd_len = 12; scp->use_sg = 0; scp->device->channel = virt_ctr ? 0 : res.number; rval = gdth_eh_bus_reset(scp); res.status = (rval == SUCCESS ? S_OK : S_GENERR); kfree(scp); #else scp = scsi_allocate_device(ha->sdev, 1, FALSE); if (!scp) return -ENOMEM; scp->cmd_len = 12; scp->use_sg = 0; scp->channel = virt_ctr ? 0 : res.number; rval = gdth_eh_bus_reset(scp); res.status = (rval == SUCCESS ? S_OK : S_GENERR); scsi_release_command(scp); #endif if (copy_to_user(argp, &res, sizeof(gdth_ioctl_reset))) return -EFAULT; break; } case GDTIOCTL_RESET_DRV: return ioc_resetdrv(argp, cmnd); default: break; } return 0; } /* flush routine */ static void gdth_flush(int hanum) { int i; gdth_ha_str *ha; gdth_cmd_str gdtcmd; char cmnd[MAX_COMMAND_SIZE]; memset(cmnd, 0xff, MAX_COMMAND_SIZE); TRACE2(("gdth_flush() hanum %d\n",hanum)); ha = HADATA(gdth_ctr_tab[hanum]); for (i = 0; i < MAX_HDRIVES; ++i) { if (ha->hdr[i].present) { gdtcmd.BoardNode = LOCALBOARD; gdtcmd.Service = CACHESERVICE; gdtcmd.OpCode = GDT_FLUSH; if (ha->cache_feat & GDT_64BIT) { gdtcmd.u.cache64.DeviceNo = i; gdtcmd.u.cache64.BlockNo = 1; gdtcmd.u.cache64.sg_canz = 0; } else { gdtcmd.u.cache.DeviceNo = i; gdtcmd.u.cache.BlockNo = 1; gdtcmd.u.cache.sg_canz = 0; } TRACE2(("gdth_flush(): flush ha %d drive %d\n", hanum, i)); gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 30, NULL); } } } /* shutdown routine */ static int gdth_halt(struct notifier_block *nb, ulong event, void *buf) { int hanum; #ifndef __alpha__ gdth_cmd_str gdtcmd; char cmnd[MAX_COMMAND_SIZE]; #endif if (notifier_disabled) return NOTIFY_OK; TRACE2(("gdth_halt() event %d\n",(int)event)); if (event != SYS_RESTART && event != SYS_HALT && event != SYS_POWER_OFF) return NOTIFY_DONE; notifier_disabled = 1; printk("GDT-HA: Flushing all host drives .. "); for (hanum = 0; hanum < gdth_ctr_count; ++hanum) { gdth_flush(hanum); #ifndef __alpha__ /* controller reset */ memset(cmnd, 0xff, MAX_COMMAND_SIZE); gdtcmd.BoardNode = LOCALBOARD; gdtcmd.Service = CACHESERVICE; gdtcmd.OpCode = GDT_RESET; TRACE2(("gdth_halt(): reset controller %d\n", hanum)); gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 10, NULL); #endif } printk("Done.\n"); #ifdef GDTH_STATISTICS del_timer(&gdth_timer); #endif return NOTIFY_OK; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) /* configure lun */ static int gdth_slave_configure(struct scsi_device *sdev) { scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); sdev->skip_ms_page_3f = 1; sdev->skip_ms_page_8 = 1; return 0; } #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) static struct scsi_host_template driver_template = { #else static Scsi_Host_Template driver_template = { #endif .proc_name = "gdth", .proc_info = gdth_proc_info, .name = "GDT SCSI Disk Array Controller", .detect = gdth_detect, .release = gdth_release, .info = gdth_info, .queuecommand = gdth_queuecommand, .eh_bus_reset_handler = gdth_eh_bus_reset, .bios_param = gdth_bios_param, .can_queue = GDTH_MAXCMDS, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0) .slave_configure = gdth_slave_configure, #endif .this_id = -1, .sg_tablesize = GDTH_MAXSG, .cmd_per_lun = GDTH_MAXC_P_L, .unchecked_isa_dma = 1, .use_clustering = ENABLE_CLUSTERING, #if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0) .use_new_eh_code = 1, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) .highmem_io = 1, #endif #endif }; #include "scsi_module.c" #ifndef MODULE __setup("gdth=", option_setup); #endif