/* ******************************************************************************* ** O.S : Linux ** FILE NAME : arcmsr_hba.c ** BY : Erich Chen ** Description: SCSI RAID Device Driver for ** ARECA RAID Host adapter ******************************************************************************* ** Copyright (C) 2002 - 2005, Areca Technology Corporation All rights reserved ** ** Web site: www.areca.com.tw ** E-mail: support@areca.com.tw ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License version 2 as ** published by the Free Software Foundation. ** This program is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ******************************************************************************* ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* ** For history of changes, see Documentation/scsi/ChangeLog.arcmsr ** Firmware Specification, see Documentation/scsi/arcmsr_spec.txt ******************************************************************************* */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "arcmsr.h" MODULE_AUTHOR("Erich Chen "); MODULE_DESCRIPTION("ARECA (ARC11xx/12xx/13xx/16xx) SATA/SAS RAID HOST Adapter"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_VERSION(ARCMSR_DRIVER_VERSION); static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb, struct scsi_cmnd *cmd); static int arcmsr_iop_confirm(struct AdapterControlBlock *acb); static int arcmsr_abort(struct scsi_cmnd *); static int arcmsr_bus_reset(struct scsi_cmnd *); static int arcmsr_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *info); static int arcmsr_queue_command(struct scsi_cmnd *cmd, void (*done) (struct scsi_cmnd *)); static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id); static void arcmsr_remove(struct pci_dev *pdev); static void arcmsr_shutdown(struct pci_dev *pdev); static void arcmsr_iop_init(struct AdapterControlBlock *acb); static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb); static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb); static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb); static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb); static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb); static const char *arcmsr_info(struct Scsi_Host *); static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb); static pci_ers_result_t arcmsr_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state); static pci_ers_result_t arcmsr_pci_slot_reset(struct pci_dev *pdev); static int arcmsr_adjust_disk_queue_depth(struct scsi_device *sdev, int queue_depth) { if (queue_depth > ARCMSR_MAX_CMD_PERLUN) queue_depth = ARCMSR_MAX_CMD_PERLUN; scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, queue_depth); return queue_depth; } static struct scsi_host_template arcmsr_scsi_host_template = { .module = THIS_MODULE, .name = "ARCMSR ARECA SATA/SAS RAID HOST Adapter" ARCMSR_DRIVER_VERSION, .info = arcmsr_info, .queuecommand = arcmsr_queue_command, .eh_abort_handler = arcmsr_abort, .eh_bus_reset_handler = arcmsr_bus_reset, .bios_param = arcmsr_bios_param, .change_queue_depth = arcmsr_adjust_disk_queue_depth, .can_queue = ARCMSR_MAX_OUTSTANDING_CMD, .this_id = ARCMSR_SCSI_INITIATOR_ID, .sg_tablesize = ARCMSR_MAX_SG_ENTRIES, .max_sectors = ARCMSR_MAX_XFER_SECTORS, .cmd_per_lun = ARCMSR_MAX_CMD_PERLUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = arcmsr_host_attrs, }; #ifdef CONFIG_SCSI_ARCMSR_AER static struct pci_error_handlers arcmsr_pci_error_handlers = { .error_detected = arcmsr_pci_error_detected, .slot_reset = arcmsr_pci_slot_reset, }; #endif static struct pci_device_id arcmsr_device_id_table[] = { {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1110)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1120)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1130)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1160)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1170)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1200)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1201)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1202)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1210)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1220)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1230)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1260)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1270)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1280)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1380)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1381)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1680)}, {PCI_DEVICE(PCI_VENDOR_ID_ARECA, PCI_DEVICE_ID_ARECA_1681)}, {0, 0}, /* Terminating entry */ }; MODULE_DEVICE_TABLE(pci, arcmsr_device_id_table); static struct pci_driver arcmsr_pci_driver = { .name = "arcmsr", .id_table = arcmsr_device_id_table, .probe = arcmsr_probe, .remove = arcmsr_remove, .shutdown = arcmsr_shutdown, #ifdef CONFIG_SCSI_ARCMSR_AER .err_handler = &arcmsr_pci_error_handlers, #endif }; static irqreturn_t arcmsr_do_interrupt(int irq, void *dev_id) { irqreturn_t handle_state; struct AdapterControlBlock *acb = dev_id; spin_lock(acb->host->host_lock); handle_state = arcmsr_interrupt(acb); spin_unlock(acb->host->host_lock); return handle_state; } static int arcmsr_bios_param(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *geom) { int ret, heads, sectors, cylinders, total_capacity; unsigned char *buffer;/* return copy of block device's partition table */ buffer = scsi_bios_ptable(bdev); if (buffer) { ret = scsi_partsize(buffer, capacity, &geom[2], &geom[0], &geom[1]); kfree(buffer); if (ret != -1) return ret; } total_capacity = capacity; heads = 64; sectors = 32; cylinders = total_capacity / (heads * sectors); if (cylinders > 1024) { heads = 255; sectors = 63; cylinders = total_capacity / (heads * sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return 0; } static void arcmsr_define_adapter_type(struct AdapterControlBlock *acb) { struct pci_dev *pdev = acb->pdev; u16 dev_id; pci_read_config_word(pdev, PCI_DEVICE_ID, &dev_id); switch (dev_id) { case 0x1201 : { acb->adapter_type = ACB_ADAPTER_TYPE_B; } break; default : acb->adapter_type = ACB_ADAPTER_TYPE_A; } } static int arcmsr_alloc_ccb_pool(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct pci_dev *pdev = acb->pdev; void *dma_coherent; dma_addr_t dma_coherent_handle, dma_addr; struct CommandControlBlock *ccb_tmp; uint32_t intmask_org; int i, j; acb->pmu = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!acb->pmu) { printk(KERN_NOTICE "arcmsr%d: memory mapping region fail \n", acb->host->host_no); } dma_coherent = dma_alloc_coherent(&pdev->dev, ARCMSR_MAX_FREECCB_NUM * sizeof (struct CommandControlBlock) + 0x20, &dma_coherent_handle, GFP_KERNEL); if (!dma_coherent) return -ENOMEM; acb->dma_coherent = dma_coherent; acb->dma_coherent_handle = dma_coherent_handle; if (((unsigned long)dma_coherent & 0x1F)) { dma_coherent = dma_coherent + (0x20 - ((unsigned long)dma_coherent & 0x1F)); dma_coherent_handle = dma_coherent_handle + (0x20 - ((unsigned long)dma_coherent_handle & 0x1F)); } dma_addr = dma_coherent_handle; ccb_tmp = (struct CommandControlBlock *)dma_coherent; for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5; ccb_tmp->acb = acb; acb->pccb_pool[i] = ccb_tmp; list_add_tail(&ccb_tmp->list, &acb->ccb_free_list); dma_addr = dma_addr + sizeof(struct CommandControlBlock); ccb_tmp++; } acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr; for (i = 0; i < ARCMSR_MAX_TARGETID; i++) for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++) acb->devstate[i][j] = ARECA_RAID_GONE; /* ** here we need to tell iop 331 our ccb_tmp.HighPart ** if ccb_tmp.HighPart is not zero */ intmask_org = arcmsr_disable_outbound_ints(acb); } break; case ACB_ADAPTER_TYPE_B: { struct pci_dev *pdev = acb->pdev; struct MessageUnit_B *reg; void *mem_base0, *mem_base1; void *dma_coherent; dma_addr_t dma_coherent_handle, dma_addr; uint32_t intmask_org; struct CommandControlBlock *ccb_tmp; int i, j; dma_coherent = dma_alloc_coherent(&pdev->dev, ((ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock) + 0x20) + sizeof(struct MessageUnit_B)), &dma_coherent_handle, GFP_KERNEL); if (!dma_coherent) return -ENOMEM; acb->dma_coherent = dma_coherent; acb->dma_coherent_handle = dma_coherent_handle; if (((unsigned long)dma_coherent & 0x1F)) { dma_coherent = dma_coherent + (0x20 - ((unsigned long)dma_coherent & 0x1F)); dma_coherent_handle = dma_coherent_handle + (0x20 - ((unsigned long)dma_coherent_handle & 0x1F)); } reg = (struct MessageUnit_B *)(dma_coherent + ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock)); dma_addr = dma_coherent_handle; ccb_tmp = (struct CommandControlBlock *)dma_coherent; for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { ccb_tmp->cdb_shifted_phyaddr = dma_addr >> 5; ccb_tmp->acb = acb; acb->pccb_pool[i] = ccb_tmp; list_add_tail(&ccb_tmp->list, &acb->ccb_free_list); dma_addr = dma_addr + sizeof(struct CommandControlBlock); ccb_tmp++; } reg = (struct MessageUnit_B *)(dma_coherent + ARCMSR_MAX_FREECCB_NUM * sizeof(struct CommandControlBlock)); acb->pmu = (struct MessageUnit_B *)reg; mem_base0 = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); mem_base1 = ioremap(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); reg->drv2iop_doorbell_reg = (uint32_t *)((char *)mem_base0 + ARCMSR_DRV2IOP_DOORBELL); reg->drv2iop_doorbell_mask_reg = (uint32_t *)((char *)mem_base0 + ARCMSR_DRV2IOP_DOORBELL_MASK); reg->iop2drv_doorbell_reg = (uint32_t *)((char *)mem_base0 + ARCMSR_IOP2DRV_DOORBELL); reg->iop2drv_doorbell_mask_reg = (uint32_t *)((char *)mem_base0 + ARCMSR_IOP2DRV_DOORBELL_MASK); reg->ioctl_wbuffer_reg = (uint32_t *)((char *)mem_base1 + ARCMSR_IOCTL_WBUFFER); reg->ioctl_rbuffer_reg = (uint32_t *)((char *)mem_base1 + ARCMSR_IOCTL_RBUFFER); reg->msgcode_rwbuffer_reg = (uint32_t *)((char *)mem_base1 + ARCMSR_MSGCODE_RWBUFFER); acb->vir2phy_offset = (unsigned long)ccb_tmp -(unsigned long)dma_addr; for (i = 0; i < ARCMSR_MAX_TARGETID; i++) for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++) acb->devstate[i][j] = ARECA_RAID_GOOD; /* ** here we need to tell iop 331 our ccb_tmp.HighPart ** if ccb_tmp.HighPart is not zero */ intmask_org = arcmsr_disable_outbound_ints(acb); } break; } return 0; } static int arcmsr_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct Scsi_Host *host; struct AdapterControlBlock *acb; uint8_t bus, dev_fun; int error; error = pci_enable_device(pdev); if (error) goto out; pci_set_master(pdev); host = scsi_host_alloc(&arcmsr_scsi_host_template, sizeof(struct AdapterControlBlock)); if (!host) { error = -ENOMEM; goto out_disable_device; } acb = (struct AdapterControlBlock *)host->hostdata; memset(acb, 0, sizeof (struct AdapterControlBlock)); error = pci_set_dma_mask(pdev, DMA_64BIT_MASK); if (error) { error = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (error) { printk(KERN_WARNING "scsi%d: No suitable DMA mask available\n", host->host_no); goto out_host_put; } } bus = pdev->bus->number; dev_fun = pdev->devfn; acb->host = host; acb->pdev = pdev; host->max_sectors = ARCMSR_MAX_XFER_SECTORS; host->max_lun = ARCMSR_MAX_TARGETLUN; host->max_id = ARCMSR_MAX_TARGETID;/*16:8*/ host->max_cmd_len = 16; /*this is issue of 64bit LBA, over 2T byte*/ host->sg_tablesize = ARCMSR_MAX_SG_ENTRIES; host->can_queue = ARCMSR_MAX_FREECCB_NUM; /* max simultaneous cmds */ host->cmd_per_lun = ARCMSR_MAX_CMD_PERLUN; host->this_id = ARCMSR_SCSI_INITIATOR_ID; host->unique_id = (bus << 8) | dev_fun; host->irq = pdev->irq; error = pci_request_regions(pdev, "arcmsr"); if (error) { goto out_host_put; } arcmsr_define_adapter_type(acb); acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER; INIT_LIST_HEAD(&acb->ccb_free_list); error = arcmsr_alloc_ccb_pool(acb); if (error) goto out_release_regions; error = request_irq(pdev->irq, arcmsr_do_interrupt, IRQF_SHARED, "arcmsr", acb); if (error) goto out_free_ccb_pool; arcmsr_iop_init(acb); pci_set_drvdata(pdev, host); if (strncmp(acb->firm_version, "V1.42", 5) >= 0) host->max_sectors= ARCMSR_MAX_XFER_SECTORS_B; error = scsi_add_host(host, &pdev->dev); if (error) goto out_free_irq; error = arcmsr_alloc_sysfs_attr(acb); if (error) goto out_free_sysfs; scsi_scan_host(host); #ifdef CONFIG_SCSI_ARCMSR_AER pci_enable_pcie_error_reporting(pdev); #endif return 0; out_free_sysfs: out_free_irq: free_irq(pdev->irq, acb); out_free_ccb_pool: arcmsr_free_ccb_pool(acb); iounmap(acb->pmu); out_release_regions: pci_release_regions(pdev); out_host_put: scsi_host_put(host); out_disable_device: pci_disable_device(pdev); out: return error; } static uint8_t arcmsr_hba_wait_msgint_ready(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; uint32_t Index; uint8_t Retries = 0x00; do { for (Index = 0; Index < 100; Index++) { if (readl(®->outbound_intstatus) & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) { writel(ARCMSR_MU_OUTBOUND_MESSAGE0_INT, ®->outbound_intstatus); return 0x00; } msleep(10); }/*max 1 seconds*/ } while (Retries++ < 20);/*max 20 sec*/ return 0xff; } static uint8_t arcmsr_hbb_wait_msgint_ready(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; uint32_t Index; uint8_t Retries = 0x00; do { for (Index = 0; Index < 100; Index++) { if (readl(reg->iop2drv_doorbell_reg) & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) { writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN , reg->iop2drv_doorbell_reg); return 0x00; } msleep(10); }/*max 1 seconds*/ } while (Retries++ < 20);/*max 20 sec*/ return 0xff; } static void arcmsr_abort_hba_allcmd(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; writel(ARCMSR_INBOUND_MESG0_ABORT_CMD, ®->inbound_msgaddr0); if (arcmsr_hba_wait_msgint_ready(acb)) printk(KERN_NOTICE "arcmsr%d: wait 'abort all outstanding command' timeout \n" , acb->host->host_no); } static void arcmsr_abort_hbb_allcmd(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; writel(ARCMSR_MESSAGE_ABORT_CMD, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) printk(KERN_NOTICE "arcmsr%d: wait 'abort all outstanding command' timeout \n" , acb->host->host_no); } static void arcmsr_abort_allcmd(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_abort_hba_allcmd(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_abort_hbb_allcmd(acb); } } } static void arcmsr_pci_unmap_dma(struct CommandControlBlock *ccb) { struct scsi_cmnd *pcmd = ccb->pcmd; scsi_dma_unmap(pcmd); } static void arcmsr_ccb_complete(struct CommandControlBlock *ccb, int stand_flag) { struct AdapterControlBlock *acb = ccb->acb; struct scsi_cmnd *pcmd = ccb->pcmd; arcmsr_pci_unmap_dma(ccb); if (stand_flag == 1) atomic_dec(&acb->ccboutstandingcount); ccb->startdone = ARCMSR_CCB_DONE; ccb->ccb_flags = 0; list_add_tail(&ccb->list, &acb->ccb_free_list); pcmd->scsi_done(pcmd); } static void arcmsr_flush_hba_cache(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; int retry_count = 30; writel(ARCMSR_INBOUND_MESG0_FLUSH_CACHE, ®->inbound_msgaddr0); do { if (!arcmsr_hba_wait_msgint_ready(acb)) break; else { retry_count--; printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \ timeout, retry count down = %d \n", acb->host->host_no, retry_count); } } while (retry_count != 0); } static void arcmsr_flush_hbb_cache(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; int retry_count = 30; writel(ARCMSR_MESSAGE_FLUSH_CACHE, reg->drv2iop_doorbell_reg); do { if (!arcmsr_hbb_wait_msgint_ready(acb)) break; else { retry_count--; printk(KERN_NOTICE "arcmsr%d: wait 'flush adapter cache' \ timeout,retry count down = %d \n", acb->host->host_no, retry_count); } } while (retry_count != 0); } static void arcmsr_flush_adapter_cache(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_flush_hba_cache(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_flush_hbb_cache(acb); } } } static void arcmsr_report_sense_info(struct CommandControlBlock *ccb) { struct scsi_cmnd *pcmd = ccb->pcmd; struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)pcmd->sense_buffer; pcmd->result = DID_OK << 16; if (sensebuffer) { int sense_data_length = sizeof(struct SENSE_DATA) < sizeof(pcmd->sense_buffer) ? sizeof(struct SENSE_DATA) : sizeof(pcmd->sense_buffer); memset(sensebuffer, 0, sizeof(pcmd->sense_buffer)); memcpy(sensebuffer, ccb->arcmsr_cdb.SenseData, sense_data_length); sensebuffer->ErrorCode = SCSI_SENSE_CURRENT_ERRORS; sensebuffer->Valid = 1; } } static u32 arcmsr_disable_outbound_ints(struct AdapterControlBlock *acb) { u32 orig_mask = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A : { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; orig_mask = readl(®->outbound_intmask)|\ ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE; writel(orig_mask|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE, \ ®->outbound_intmask); } break; case ACB_ADAPTER_TYPE_B : { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; orig_mask = readl(reg->iop2drv_doorbell_mask_reg) & \ (~ARCMSR_IOP2DRV_MESSAGE_CMD_DONE); writel(0, reg->iop2drv_doorbell_mask_reg); } break; } return orig_mask; } static void arcmsr_report_ccb_state(struct AdapterControlBlock *acb, \ struct CommandControlBlock *ccb, uint32_t flag_ccb) { uint8_t id, lun; id = ccb->pcmd->device->id; lun = ccb->pcmd->device->lun; if (!(flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR)) { if (acb->devstate[id][lun] == ARECA_RAID_GONE) acb->devstate[id][lun] = ARECA_RAID_GOOD; ccb->pcmd->result = DID_OK << 16; arcmsr_ccb_complete(ccb, 1); } else { switch (ccb->arcmsr_cdb.DeviceStatus) { case ARCMSR_DEV_SELECT_TIMEOUT: { acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_NO_CONNECT << 16; arcmsr_ccb_complete(ccb, 1); } break; case ARCMSR_DEV_ABORTED: case ARCMSR_DEV_INIT_FAIL: { acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_BAD_TARGET << 16; arcmsr_ccb_complete(ccb, 1); } break; case ARCMSR_DEV_CHECK_CONDITION: { acb->devstate[id][lun] = ARECA_RAID_GOOD; arcmsr_report_sense_info(ccb); arcmsr_ccb_complete(ccb, 1); } break; default: printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d" " isr get command error done, " "but got unknown DeviceStatus = 0x%x \n" , acb->host->host_no , id , lun , ccb->arcmsr_cdb.DeviceStatus); acb->devstate[id][lun] = ARECA_RAID_GONE; ccb->pcmd->result = DID_NO_CONNECT << 16; arcmsr_ccb_complete(ccb, 1); break; } } } static void arcmsr_drain_donequeue(struct AdapterControlBlock *acb, uint32_t flag_ccb) { struct CommandControlBlock *ccb; ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5)); if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) { if (ccb->startdone == ARCMSR_CCB_ABORTED) { struct scsi_cmnd *abortcmd = ccb->pcmd; if (abortcmd) { abortcmd->result |= DID_ABORT << 16; arcmsr_ccb_complete(ccb, 1); printk(KERN_NOTICE "arcmsr%d: ccb ='0x%p' \ isr got aborted command \n", acb->host->host_no, ccb); } } printk(KERN_NOTICE "arcmsr%d: isr get an illegal ccb command \ done acb = '0x%p'" "ccb = '0x%p' ccbacb = '0x%p' startdone = 0x%x" " ccboutstandingcount = %d \n" , acb->host->host_no , acb , ccb , ccb->acb , ccb->startdone , atomic_read(&acb->ccboutstandingcount)); } arcmsr_report_ccb_state(acb, ccb, flag_ccb); } static void arcmsr_done4abort_postqueue(struct AdapterControlBlock *acb) { int i = 0; uint32_t flag_ccb; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = \ (struct MessageUnit_A *)acb->pmu; uint32_t outbound_intstatus; outbound_intstatus = readl(®->outbound_intstatus) & \ acb->outbound_int_enable; /*clear and abort all outbound posted Q*/ writel(outbound_intstatus, ®->outbound_intstatus);/*clear interrupt*/ while (((flag_ccb = readl(®->outbound_queueport)) != 0xFFFFFFFF) \ && (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) { arcmsr_drain_donequeue(acb, flag_ccb); } } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; /*clear all outbound posted Q*/ for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) { if ((flag_ccb = readl(®->done_qbuffer[i])) != 0) { writel(0, ®->done_qbuffer[i]); arcmsr_drain_donequeue(acb, flag_ccb); } writel(0, ®->post_qbuffer[i]); } reg->doneq_index = 0; reg->postq_index = 0; } break; } } static void arcmsr_remove(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; int poll_count = 0; arcmsr_free_sysfs_attr(acb); scsi_remove_host(host); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); arcmsr_disable_outbound_ints(acb); acb->acb_flags |= ACB_F_SCSISTOPADAPTER; acb->acb_flags &= ~ACB_F_IOP_INITED; for (poll_count = 0; poll_count < ARCMSR_MAX_OUTSTANDING_CMD; poll_count++) { if (!atomic_read(&acb->ccboutstandingcount)) break; arcmsr_interrupt(acb);/* FIXME: need spinlock */ msleep(25); } if (atomic_read(&acb->ccboutstandingcount)) { int i; arcmsr_abort_allcmd(acb); arcmsr_done4abort_postqueue(acb); for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { struct CommandControlBlock *ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { ccb->startdone = ARCMSR_CCB_ABORTED; ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb, 1); } } } free_irq(pdev->irq, acb); iounmap(acb->pmu); arcmsr_free_ccb_pool(acb); pci_release_regions(pdev); scsi_host_put(host); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static void arcmsr_shutdown(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata; arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); } static int arcmsr_module_init(void) { int error = 0; error = pci_register_driver(&arcmsr_pci_driver); return error; } static void arcmsr_module_exit(void) { pci_unregister_driver(&arcmsr_pci_driver); } module_init(arcmsr_module_init); module_exit(arcmsr_module_exit); static void arcmsr_enable_outbound_ints(struct AdapterControlBlock *acb, \ u32 intmask_org) { u32 mask; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A : { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; mask = intmask_org & ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE | ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE); writel(mask, ®->outbound_intmask); acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff; } break; case ACB_ADAPTER_TYPE_B : { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; mask = intmask_org | (ARCMSR_IOP2DRV_DATA_WRITE_OK | \ ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE); writel(mask, reg->iop2drv_doorbell_mask_reg); acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f; } } } static void arcmsr_build_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb, struct scsi_cmnd *pcmd) { struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb; int8_t *psge = (int8_t *)&arcmsr_cdb->u; uint32_t address_lo, address_hi; int arccdbsize = 0x30; int nseg; ccb->pcmd = pcmd; memset(arcmsr_cdb, 0, sizeof(struct ARCMSR_CDB)); arcmsr_cdb->Bus = 0; arcmsr_cdb->TargetID = pcmd->device->id; arcmsr_cdb->LUN = pcmd->device->lun; arcmsr_cdb->Function = 1; arcmsr_cdb->CdbLength = (uint8_t)pcmd->cmd_len; arcmsr_cdb->Context = (unsigned long)arcmsr_cdb; memcpy(arcmsr_cdb->Cdb, pcmd->cmnd, pcmd->cmd_len); nseg = scsi_dma_map(pcmd); BUG_ON(nseg < 0); if (nseg) { int length, i, cdb_sgcount = 0; struct scatterlist *sg; /* map stor port SG list to our iop SG List. */ scsi_for_each_sg(pcmd, sg, nseg, i) { /* Get the physical address of the current data pointer */ length = cpu_to_le32(sg_dma_len(sg)); address_lo = cpu_to_le32(dma_addr_lo32(sg_dma_address(sg))); address_hi = cpu_to_le32(dma_addr_hi32(sg_dma_address(sg))); if (address_hi == 0) { struct SG32ENTRY *pdma_sg = (struct SG32ENTRY *)psge; pdma_sg->address = address_lo; pdma_sg->length = length; psge += sizeof (struct SG32ENTRY); arccdbsize += sizeof (struct SG32ENTRY); } else { struct SG64ENTRY *pdma_sg = (struct SG64ENTRY *)psge; pdma_sg->addresshigh = address_hi; pdma_sg->address = address_lo; pdma_sg->length = length|IS_SG64_ADDR; psge += sizeof (struct SG64ENTRY); arccdbsize += sizeof (struct SG64ENTRY); } cdb_sgcount++; } arcmsr_cdb->sgcount = (uint8_t)cdb_sgcount; arcmsr_cdb->DataLength = scsi_bufflen(pcmd); if ( arccdbsize > 256) arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE; } if (pcmd->sc_data_direction == DMA_TO_DEVICE ) { arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE; ccb->ccb_flags |= CCB_FLAG_WRITE; } } static void arcmsr_post_ccb(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb) { uint32_t cdb_shifted_phyaddr = ccb->cdb_shifted_phyaddr; struct ARCMSR_CDB *arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb; atomic_inc(&acb->ccboutstandingcount); ccb->startdone = ARCMSR_CCB_START; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A *reg = (struct MessageUnit_A *)acb->pmu; if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE, ®->inbound_queueport); else { writel(cdb_shifted_phyaddr, ®->inbound_queueport); } } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; uint32_t ending_index, index = reg->postq_index; ending_index = ((index + 1) % ARCMSR_MAX_HBB_POSTQUEUE); writel(0, ®->post_qbuffer[ending_index]); if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) { writel(cdb_shifted_phyaddr | ARCMSR_CCBPOST_FLAG_SGL_BSIZE,\ ®->post_qbuffer[index]); } else { writel(cdb_shifted_phyaddr, ®->post_qbuffer[index]); } index++; index %= ARCMSR_MAX_HBB_POSTQUEUE;/*if last index number set it to 0 */ reg->postq_index = index; writel(ARCMSR_DRV2IOP_CDB_POSTED, reg->drv2iop_doorbell_reg); } break; } } static void arcmsr_stop_hba_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_STOP_BGRB, ®->inbound_msgaddr0); if (arcmsr_hba_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'stop adapter background rebulid' timeout \n" , acb->host->host_no); } } static void arcmsr_stop_hbb_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; writel(ARCMSR_MESSAGE_STOP_BGRB, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'stop adapter background rebulid' timeout \n" , acb->host->host_no); } } static void arcmsr_stop_adapter_bgrb(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_stop_hba_bgrb(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_stop_hbb_bgrb(acb); } break; } } static void arcmsr_free_ccb_pool(struct AdapterControlBlock *acb) { dma_free_coherent(&acb->pdev->dev, ARCMSR_MAX_FREECCB_NUM * sizeof (struct CommandControlBlock) + 0x20, acb->dma_coherent, acb->dma_coherent_handle); } void arcmsr_iop_message_read(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg); } break; } } static void arcmsr_iop_message_wrote(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; /* ** push inbound doorbell tell iop, driver data write ok ** and wait reply on next hwinterrupt for next Qbuffer post */ writel(ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; /* ** push inbound doorbell tell iop, driver data write ok ** and wait reply on next hwinterrupt for next Qbuffer post */ writel(ARCMSR_DRV2IOP_DATA_WRITE_OK, reg->drv2iop_doorbell_reg); } break; } } struct QBUFFER *arcmsr_get_iop_rqbuffer(struct AdapterControlBlock *acb) { static struct QBUFFER *qbuffer; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; qbuffer = (struct QBUFFER __iomem *) ®->message_rbuffer; } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; qbuffer = (struct QBUFFER __iomem *) reg->ioctl_rbuffer_reg; } break; } return qbuffer; } static struct QBUFFER *arcmsr_get_iop_wqbuffer(struct AdapterControlBlock *acb) { static struct QBUFFER *pqbuffer; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; pqbuffer = (struct QBUFFER *) ®->message_wbuffer; } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; pqbuffer = (struct QBUFFER __iomem *)reg->ioctl_wbuffer_reg; } break; } return pqbuffer; } static void arcmsr_iop2drv_data_wrote_handle(struct AdapterControlBlock *acb) { struct QBUFFER *prbuffer; struct QBUFFER *pQbuffer; uint8_t *iop_data; int32_t my_empty_len, iop_len, rqbuf_firstindex, rqbuf_lastindex; rqbuf_lastindex = acb->rqbuf_lastindex; rqbuf_firstindex = acb->rqbuf_firstindex; prbuffer = arcmsr_get_iop_rqbuffer(acb); iop_data = (uint8_t *)prbuffer->data; iop_len = prbuffer->data_len; my_empty_len = (rqbuf_firstindex - rqbuf_lastindex -1)&(ARCMSR_MAX_QBUFFER -1); if (my_empty_len >= iop_len) { while (iop_len > 0) { pQbuffer = (struct QBUFFER *)&acb->rqbuffer[rqbuf_lastindex]; memcpy(pQbuffer, iop_data,1); rqbuf_lastindex++; rqbuf_lastindex %= ARCMSR_MAX_QBUFFER; iop_data++; iop_len--; } acb->rqbuf_lastindex = rqbuf_lastindex; arcmsr_iop_message_read(acb); } else { acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW; } } static void arcmsr_iop2drv_data_read_handle(struct AdapterControlBlock *acb) { acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READED; if (acb->wqbuf_firstindex != acb->wqbuf_lastindex) { uint8_t *pQbuffer; struct QBUFFER *pwbuffer; uint8_t *iop_data; int32_t allxfer_len = 0; acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED); pwbuffer = arcmsr_get_iop_wqbuffer(acb); iop_data = (uint8_t __iomem *)pwbuffer->data; while ((acb->wqbuf_firstindex != acb->wqbuf_lastindex) && \ (allxfer_len < 124)) { pQbuffer = &acb->wqbuffer[acb->wqbuf_firstindex]; memcpy(iop_data, pQbuffer, 1); acb->wqbuf_firstindex++; acb->wqbuf_firstindex %= ARCMSR_MAX_QBUFFER; iop_data++; allxfer_len++; } pwbuffer->data_len = allxfer_len; arcmsr_iop_message_wrote(acb); } if (acb->wqbuf_firstindex == acb->wqbuf_lastindex) { acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED; } } static void arcmsr_hba_doorbell_isr(struct AdapterControlBlock *acb) { uint32_t outbound_doorbell; struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; outbound_doorbell = readl(®->outbound_doorbell); writel(outbound_doorbell, ®->outbound_doorbell); if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) { arcmsr_iop2drv_data_wrote_handle(acb); } if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) { arcmsr_iop2drv_data_read_handle(acb); } } static void arcmsr_hba_postqueue_isr(struct AdapterControlBlock *acb) { uint32_t flag_ccb; struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; while ((flag_ccb = readl(®->outbound_queueport)) != 0xFFFFFFFF) { arcmsr_drain_donequeue(acb, flag_ccb); } } static void arcmsr_hbb_postqueue_isr(struct AdapterControlBlock *acb) { uint32_t index; uint32_t flag_ccb; struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; index = reg->doneq_index; while ((flag_ccb = readl(®->done_qbuffer[index])) != 0) { writel(0, ®->done_qbuffer[index]); arcmsr_drain_donequeue(acb, flag_ccb); index++; index %= ARCMSR_MAX_HBB_POSTQUEUE; reg->doneq_index = index; } } static int arcmsr_handle_hba_isr(struct AdapterControlBlock *acb) { uint32_t outbound_intstatus; struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; outbound_intstatus = readl(®->outbound_intstatus) & \ acb->outbound_int_enable; if (!(outbound_intstatus & ARCMSR_MU_OUTBOUND_HANDLE_INT)) { return 1; } writel(outbound_intstatus, ®->outbound_intstatus); if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) { arcmsr_hba_doorbell_isr(acb); } if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) { arcmsr_hba_postqueue_isr(acb); } return 0; } static int arcmsr_handle_hbb_isr(struct AdapterControlBlock *acb) { uint32_t outbound_doorbell; struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; outbound_doorbell = readl(reg->iop2drv_doorbell_reg) & \ acb->outbound_int_enable; if (!outbound_doorbell) return 1; writel(~outbound_doorbell, reg->iop2drv_doorbell_reg); if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) { arcmsr_iop2drv_data_wrote_handle(acb); } if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) { arcmsr_iop2drv_data_read_handle(acb); } if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) { arcmsr_hbb_postqueue_isr(acb); } return 0; } static irqreturn_t arcmsr_interrupt(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { if (arcmsr_handle_hba_isr(acb)) { return IRQ_NONE; } } break; case ACB_ADAPTER_TYPE_B: { if (arcmsr_handle_hbb_isr(acb)) { return IRQ_NONE; } } break; } return IRQ_HANDLED; } static void arcmsr_iop_parking(struct AdapterControlBlock *acb) { if (acb) { /* stop adapter background rebuild */ if (acb->acb_flags & ACB_F_MSG_START_BGRB) { uint32_t intmask_org; acb->acb_flags &= ~ACB_F_MSG_START_BGRB; intmask_org = arcmsr_disable_outbound_ints(acb); arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); arcmsr_enable_outbound_ints(acb, intmask_org); } } } void arcmsr_post_ioctldata2iop(struct AdapterControlBlock *acb) { int32_t wqbuf_firstindex, wqbuf_lastindex; uint8_t *pQbuffer; struct QBUFFER *pwbuffer; uint8_t *iop_data; int32_t allxfer_len = 0; pwbuffer = arcmsr_get_iop_wqbuffer(acb); iop_data = (uint8_t __iomem *)pwbuffer->data; if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READED) { acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READED); wqbuf_firstindex = acb->wqbuf_firstindex; wqbuf_lastindex = acb->wqbuf_lastindex; while ((wqbuf_firstindex != wqbuf_lastindex) && (allxfer_len < 124)) { pQbuffer = &acb->wqbuffer[wqbuf_firstindex]; memcpy(iop_data, pQbuffer, 1); wqbuf_firstindex++; wqbuf_firstindex %= ARCMSR_MAX_QBUFFER; iop_data++; allxfer_len++; } acb->wqbuf_firstindex = wqbuf_firstindex; pwbuffer->data_len = allxfer_len; arcmsr_iop_message_wrote(acb); } } static int arcmsr_iop_message_xfer(struct AdapterControlBlock *acb, \ struct scsi_cmnd *cmd) { struct CMD_MESSAGE_FIELD *pcmdmessagefld; int retvalue = 0, transfer_len = 0; char *buffer; struct scatterlist *sg; uint32_t controlcode = (uint32_t ) cmd->cmnd[5] << 24 | (uint32_t ) cmd->cmnd[6] << 16 | (uint32_t ) cmd->cmnd[7] << 8 | (uint32_t ) cmd->cmnd[8]; /* 4 bytes: Areca io control code */ sg = scsi_sglist(cmd); buffer = kmap_atomic(sg->page, KM_IRQ0) + sg->offset; if (scsi_sg_count(cmd) > 1) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } transfer_len += sg->length; if (transfer_len > sizeof(struct CMD_MESSAGE_FIELD)) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } pcmdmessagefld = (struct CMD_MESSAGE_FIELD *) buffer; switch(controlcode) { case ARCMSR_MESSAGE_READ_RQBUFFER: { unsigned long *ver_addr; dma_addr_t buf_handle; uint8_t *pQbuffer, *ptmpQbuffer; int32_t allxfer_len = 0; ver_addr = pci_alloc_consistent(acb->pdev, 1032, &buf_handle); if (!ver_addr) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } ptmpQbuffer = (uint8_t *) ver_addr; while ((acb->rqbuf_firstindex != acb->rqbuf_lastindex) && (allxfer_len < 1031)) { pQbuffer = &acb->rqbuffer[acb->rqbuf_firstindex]; memcpy(ptmpQbuffer, pQbuffer, 1); acb->rqbuf_firstindex++; acb->rqbuf_firstindex %= ARCMSR_MAX_QBUFFER; ptmpQbuffer++; allxfer_len++; } if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { struct QBUFFER *prbuffer; uint8_t *iop_data; int32_t iop_len; acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; prbuffer = arcmsr_get_iop_rqbuffer(acb); iop_data = (uint8_t *)prbuffer->data; iop_len = readl(&prbuffer->data_len); while (iop_len > 0) { acb->rqbuffer[acb->rqbuf_lastindex] = readb(iop_data); acb->rqbuf_lastindex++; acb->rqbuf_lastindex %= ARCMSR_MAX_QBUFFER; iop_data++; iop_len--; } arcmsr_iop_message_read(acb); } memcpy(pcmdmessagefld->messagedatabuffer, (uint8_t *)ver_addr, allxfer_len); pcmdmessagefld->cmdmessage.Length = allxfer_len; pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; pci_free_consistent(acb->pdev, 1032, ver_addr, buf_handle); } break; case ARCMSR_MESSAGE_WRITE_WQBUFFER: { unsigned long *ver_addr; dma_addr_t buf_handle; int32_t my_empty_len, user_len, wqbuf_firstindex, wqbuf_lastindex; uint8_t *pQbuffer, *ptmpuserbuffer; ver_addr = pci_alloc_consistent(acb->pdev, 1032, &buf_handle); if (!ver_addr) { retvalue = ARCMSR_MESSAGE_FAIL; goto message_out; } ptmpuserbuffer = (uint8_t *)ver_addr; user_len = pcmdmessagefld->cmdmessage.Length; memcpy(ptmpuserbuffer, pcmdmessagefld->messagedatabuffer, user_len); wqbuf_lastindex = acb->wqbuf_lastindex; wqbuf_firstindex = acb->wqbuf_firstindex; if (wqbuf_lastindex != wqbuf_firstindex) { struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)cmd->sense_buffer; arcmsr_post_ioctldata2iop(acb); /* has error report sensedata */ sensebuffer->ErrorCode = 0x70; sensebuffer->SenseKey = ILLEGAL_REQUEST; sensebuffer->AdditionalSenseLength = 0x0A; sensebuffer->AdditionalSenseCode = 0x20; sensebuffer->Valid = 1; retvalue = ARCMSR_MESSAGE_FAIL; } else { my_empty_len = (wqbuf_firstindex-wqbuf_lastindex - 1) &(ARCMSR_MAX_QBUFFER - 1); if (my_empty_len >= user_len) { while (user_len > 0) { pQbuffer = &acb->wqbuffer[acb->wqbuf_lastindex]; memcpy(pQbuffer, ptmpuserbuffer, 1); acb->wqbuf_lastindex++; acb->wqbuf_lastindex %= ARCMSR_MAX_QBUFFER; ptmpuserbuffer++; user_len--; } if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_CLEARED) { acb->acb_flags &= ~ACB_F_MESSAGE_WQBUFFER_CLEARED; arcmsr_post_ioctldata2iop(acb); } } else { /* has error report sensedata */ struct SENSE_DATA *sensebuffer = (struct SENSE_DATA *)cmd->sense_buffer; sensebuffer->ErrorCode = 0x70; sensebuffer->SenseKey = ILLEGAL_REQUEST; sensebuffer->AdditionalSenseLength = 0x0A; sensebuffer->AdditionalSenseCode = 0x20; sensebuffer->Valid = 1; retvalue = ARCMSR_MESSAGE_FAIL; } } pci_free_consistent(acb->pdev, 1032, ver_addr, buf_handle); } break; case ARCMSR_MESSAGE_CLEAR_RQBUFFER: { uint8_t *pQbuffer = acb->rqbuffer; if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; arcmsr_iop_message_read(acb); } acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED; acb->rqbuf_firstindex = 0; acb->rqbuf_lastindex = 0; memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; } break; case ARCMSR_MESSAGE_CLEAR_WQBUFFER: { uint8_t *pQbuffer = acb->wqbuffer; if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; arcmsr_iop_message_read(acb); } acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->wqbuf_firstindex = 0; acb->wqbuf_lastindex = 0; memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; } break; case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: { uint8_t *pQbuffer; if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; arcmsr_iop_message_read(acb); } acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->rqbuf_firstindex = 0; acb->rqbuf_lastindex = 0; acb->wqbuf_firstindex = 0; acb->wqbuf_lastindex = 0; pQbuffer = acb->rqbuffer; memset(pQbuffer, 0, sizeof(struct QBUFFER)); pQbuffer = acb->wqbuffer; memset(pQbuffer, 0, sizeof(struct QBUFFER)); pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; } break; case ARCMSR_MESSAGE_RETURN_CODE_3F: { pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_3F; } break; case ARCMSR_MESSAGE_SAY_HELLO: { int8_t *hello_string = "Hello! I am ARCMSR"; memcpy(pcmdmessagefld->messagedatabuffer, hello_string , (int16_t)strlen(hello_string)); pcmdmessagefld->cmdmessage.ReturnCode = ARCMSR_MESSAGE_RETURNCODE_OK; } break; case ARCMSR_MESSAGE_SAY_GOODBYE: arcmsr_iop_parking(acb); break; case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE: arcmsr_flush_adapter_cache(acb); break; default: retvalue = ARCMSR_MESSAGE_FAIL; } message_out: sg = scsi_sglist(cmd); kunmap_atomic(buffer - sg->offset, KM_IRQ0); return retvalue; } static struct CommandControlBlock *arcmsr_get_freeccb(struct AdapterControlBlock *acb) { struct list_head *head = &acb->ccb_free_list; struct CommandControlBlock *ccb = NULL; if (!list_empty(head)) { ccb = list_entry(head->next, struct CommandControlBlock, list); list_del(head->next); } return ccb; } static void arcmsr_handle_virtual_command(struct AdapterControlBlock *acb, struct scsi_cmnd *cmd) { switch (cmd->cmnd[0]) { case INQUIRY: { unsigned char inqdata[36]; char *buffer; struct scatterlist *sg; if (cmd->device->lun) { cmd->result = (DID_TIME_OUT << 16); cmd->scsi_done(cmd); return; } inqdata[0] = TYPE_PROCESSOR; /* Periph Qualifier & Periph Dev Type */ inqdata[1] = 0; /* rem media bit & Dev Type Modifier */ inqdata[2] = 0; /* ISO, ECMA, & ANSI versions */ inqdata[4] = 31; /* length of additional data */ strncpy(&inqdata[8], "Areca ", 8); /* Vendor Identification */ strncpy(&inqdata[16], "RAID controller ", 16); /* Product Identification */ strncpy(&inqdata[32], "R001", 4); /* Product Revision */ sg = scsi_sglist(cmd); buffer = kmap_atomic(sg->page, KM_IRQ0) + sg->offset; memcpy(buffer, inqdata, sizeof(inqdata)); sg = scsi_sglist(cmd); kunmap_atomic(buffer - sg->offset, KM_IRQ0); cmd->scsi_done(cmd); } break; case WRITE_BUFFER: case READ_BUFFER: { if (arcmsr_iop_message_xfer(acb, cmd)) cmd->result = (DID_ERROR << 16); cmd->scsi_done(cmd); } break; default: cmd->scsi_done(cmd); } } static int arcmsr_queue_command(struct scsi_cmnd *cmd, void (* done)(struct scsi_cmnd *)) { struct Scsi_Host *host = cmd->device->host; struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; struct CommandControlBlock *ccb; int target = cmd->device->id; int lun = cmd->device->lun; cmd->scsi_done = done; cmd->host_scribble = NULL; cmd->result = 0; if (acb->acb_flags & ACB_F_BUS_RESET) { printk(KERN_NOTICE "arcmsr%d: bus reset" " and return busy \n" , acb->host->host_no); return SCSI_MLQUEUE_HOST_BUSY; } if (target == 16) { /* virtual device for iop message transfer */ arcmsr_handle_virtual_command(acb, cmd); return 0; } if (acb->devstate[target][lun] == ARECA_RAID_GONE) { uint8_t block_cmd; block_cmd = cmd->cmnd[0] & 0x0f; if (block_cmd == 0x08 || block_cmd == 0x0a) { printk(KERN_NOTICE "arcmsr%d: block 'read/write'" "command with gone raid volume" " Cmd = %2x, TargetId = %d, Lun = %d \n" , acb->host->host_no , cmd->cmnd[0] , target, lun); cmd->result = (DID_NO_CONNECT << 16); cmd->scsi_done(cmd); return 0; } } if (atomic_read(&acb->ccboutstandingcount) >= ARCMSR_MAX_OUTSTANDING_CMD) return SCSI_MLQUEUE_HOST_BUSY; ccb = arcmsr_get_freeccb(acb); if (!ccb) return SCSI_MLQUEUE_HOST_BUSY; arcmsr_build_ccb(acb, ccb, cmd); arcmsr_post_ccb(acb, ccb); return 0; } static void arcmsr_get_hba_config(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; char *acb_firm_model = acb->firm_model; char *acb_firm_version = acb->firm_version; char *iop_firm_model = (char *) (®->message_rwbuffer[15]); char *iop_firm_version = (char *) (®->message_rwbuffer[17]); int count; writel(ARCMSR_INBOUND_MESG0_GET_CONFIG, ®->inbound_msgaddr0); if (arcmsr_hba_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \ miscellaneous data' timeout \n", acb->host->host_no); } count = 8; while (count) { *acb_firm_model = readb(iop_firm_model); acb_firm_model++; iop_firm_model++; count--; } count = 16; while (count) { *acb_firm_version = readb(iop_firm_version); acb_firm_version++; iop_firm_version++; count--; } printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n" , acb->host->host_no , acb->firm_version); acb->firm_request_len = readl(®->message_rwbuffer[1]); acb->firm_numbers_queue = readl(®->message_rwbuffer[2]); acb->firm_sdram_size = readl(®->message_rwbuffer[3]); acb->firm_hd_channels = readl(®->message_rwbuffer[4]); } static void arcmsr_get_hbb_config(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; uint32_t *lrwbuffer = reg->msgcode_rwbuffer_reg; char *acb_firm_model = acb->firm_model; char *acb_firm_version = acb->firm_version; char *iop_firm_model = (char *) (&lrwbuffer[15]); /*firm_model,15,60-67*/ char *iop_firm_version = (char *) (&lrwbuffer[17]); /*firm_version,17,68-83*/ int count; writel(ARCMSR_MESSAGE_GET_CONFIG, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'get adapter firmware \ miscellaneous data' timeout \n", acb->host->host_no); } count = 8; while (count) { *acb_firm_model = readb(iop_firm_model); acb_firm_model++; iop_firm_model++; count--; } count = 16; while (count) { *acb_firm_version = readb(iop_firm_version); acb_firm_version++; iop_firm_version++; count--; } printk(KERN_INFO "ARECA RAID ADAPTER%d: FIRMWARE VERSION %s \n", acb->host->host_no, acb->firm_version); lrwbuffer++; acb->firm_request_len = readl(lrwbuffer++); /*firm_request_len,1,04-07*/ acb->firm_numbers_queue = readl(lrwbuffer++); /*firm_numbers_queue,2,08-11*/ acb->firm_sdram_size = readl(lrwbuffer++); /*firm_sdram_size,3,12-15*/ acb->firm_hd_channels = readl(lrwbuffer); /*firm_ide_channels,4,16-19*/ } static void arcmsr_get_firmware_spec(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_get_hba_config(acb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_get_hbb_config(acb); } break; } } static void arcmsr_polling_hba_ccbdone(struct AdapterControlBlock *acb, struct CommandControlBlock *poll_ccb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; struct CommandControlBlock *ccb; uint32_t flag_ccb, outbound_intstatus, poll_ccb_done = 0, poll_count = 0; polling_hba_ccb_retry: poll_count++; outbound_intstatus = readl(®->outbound_intstatus) & acb->outbound_int_enable; writel(outbound_intstatus, ®->outbound_intstatus);/*clear interrupt*/ while (1) { if ((flag_ccb = readl(®->outbound_queueport)) == 0xFFFFFFFF) { if (poll_ccb_done) break; else { msleep(25); if (poll_count > 100) break; goto polling_hba_ccb_retry; } } ccb = (struct CommandControlBlock *)(acb->vir2phy_offset + (flag_ccb << 5)); poll_ccb_done = (ccb == poll_ccb) ? 1:0; if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) { if ((ccb->startdone == ARCMSR_CCB_ABORTED) || (ccb == poll_ccb)) { printk(KERN_NOTICE "arcmsr%d: scsi id = %d lun = %d ccb = '0x%p'" " poll command abort successfully \n" , acb->host->host_no , ccb->pcmd->device->id , ccb->pcmd->device->lun , ccb); ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb, 1); poll_ccb_done = 1; continue; } printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb" " command done ccb = '0x%p'" "ccboutstandingcount = %d \n" , acb->host->host_no , ccb , atomic_read(&acb->ccboutstandingcount)); continue; } arcmsr_report_ccb_state(acb, ccb, flag_ccb); } } static void arcmsr_polling_hbb_ccbdone(struct AdapterControlBlock *acb, \ struct CommandControlBlock *poll_ccb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; struct CommandControlBlock *ccb; uint32_t flag_ccb, poll_ccb_done = 0, poll_count = 0; int index; polling_hbb_ccb_retry: poll_count++; /* clear doorbell interrupt */ writel(ARCMSR_DOORBELL_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg); while (1) { index = reg->doneq_index; if ((flag_ccb = readl(®->done_qbuffer[index])) == 0) { if (poll_ccb_done) break; else { msleep(25); if (poll_count > 100) break; goto polling_hbb_ccb_retry; } } writel(0, ®->done_qbuffer[index]); index++; /*if last index number set it to 0 */ index %= ARCMSR_MAX_HBB_POSTQUEUE; reg->doneq_index = index; /* check ifcommand done with no error*/ ccb = (struct CommandControlBlock *)\ (acb->vir2phy_offset + (flag_ccb << 5));/*frame must be 32 bytes aligned*/ poll_ccb_done = (ccb == poll_ccb) ? 1:0; if ((ccb->acb != acb) || (ccb->startdone != ARCMSR_CCB_START)) { if (ccb->startdone == ARCMSR_CCB_ABORTED) { printk(KERN_NOTICE "arcmsr%d: \ scsi id = %d lun = %d ccb = '0x%p' poll command abort successfully \n" ,acb->host->host_no ,ccb->pcmd->device->id ,ccb->pcmd->device->lun ,ccb); ccb->pcmd->result = DID_ABORT << 16; arcmsr_ccb_complete(ccb, 1); continue; } printk(KERN_NOTICE "arcmsr%d: polling get an illegal ccb" " command done ccb = '0x%p'" "ccboutstandingcount = %d \n" , acb->host->host_no , ccb , atomic_read(&acb->ccboutstandingcount)); continue; } arcmsr_report_ccb_state(acb, ccb, flag_ccb); } /*drain reply FIFO*/ } static void arcmsr_polling_ccbdone(struct AdapterControlBlock *acb, \ struct CommandControlBlock *poll_ccb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { arcmsr_polling_hba_ccbdone(acb,poll_ccb); } break; case ACB_ADAPTER_TYPE_B: { arcmsr_polling_hbb_ccbdone(acb,poll_ccb); } } } static int arcmsr_iop_confirm(struct AdapterControlBlock *acb) { uint32_t cdb_phyaddr, ccb_phyaddr_hi32; dma_addr_t dma_coherent_handle; /* ******************************************************************** ** here we need to tell iop 331 our freeccb.HighPart ** if freeccb.HighPart is not zero ******************************************************************** */ dma_coherent_handle = acb->dma_coherent_handle; cdb_phyaddr = (uint32_t)(dma_coherent_handle); ccb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16); /* *********************************************************************** ** if adapter type B, set window of "post command Q" *********************************************************************** */ switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { if (ccb_phyaddr_hi32 != 0) { struct MessageUnit_A __iomem *reg = \ (struct MessageUnit_A *)acb->pmu; uint32_t intmask_org; intmask_org = arcmsr_disable_outbound_ints(acb); writel(ARCMSR_SIGNATURE_SET_CONFIG, \ ®->message_rwbuffer[0]); writel(ccb_phyaddr_hi32, ®->message_rwbuffer[1]); writel(ARCMSR_INBOUND_MESG0_SET_CONFIG, \ ®->inbound_msgaddr0); if (arcmsr_hba_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: ""set ccb high \ part physical address timeout\n", acb->host->host_no); return 1; } arcmsr_enable_outbound_ints(acb, intmask_org); } } break; case ACB_ADAPTER_TYPE_B: { unsigned long post_queue_phyaddr; uint32_t *rwbuffer; struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; uint32_t intmask_org; intmask_org = arcmsr_disable_outbound_ints(acb); reg->postq_index = 0; reg->doneq_index = 0; writel(ARCMSR_MESSAGE_SET_POST_WINDOW, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d:can not set diver mode\n", \ acb->host->host_no); return 1; } post_queue_phyaddr = cdb_phyaddr + ARCMSR_MAX_FREECCB_NUM * \ sizeof(struct CommandControlBlock) + offsetof(struct MessageUnit_B, post_qbuffer) ; rwbuffer = reg->msgcode_rwbuffer_reg; /* driver "set config" signature */ writel(ARCMSR_SIGNATURE_SET_CONFIG, rwbuffer++); /* normal should be zero */ writel(ccb_phyaddr_hi32, rwbuffer++); /* postQ size (256 + 8)*4 */ writel(post_queue_phyaddr, rwbuffer++); /* doneQ size (256 + 8)*4 */ writel(post_queue_phyaddr + 1056, rwbuffer++); /* ccb maxQ size must be --> [(256 + 8)*4]*/ writel(1056, rwbuffer); writel(ARCMSR_MESSAGE_SET_CONFIG, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: 'set command Q window' \ timeout \n",acb->host->host_no); return 1; } writel(ARCMSR_MESSAGE_START_DRIVER_MODE, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: 'can not set diver mode \n"\ ,acb->host->host_no); return 1; } arcmsr_enable_outbound_ints(acb, intmask_org); } break; } return 0; } static void arcmsr_wait_firmware_ready(struct AdapterControlBlock *acb) { uint32_t firmware_state = 0; switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; do { firmware_state = readl(®->outbound_msgaddr1); } while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; do { firmware_state = readl(reg->iop2drv_doorbell_reg); } while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0); } break; } } static void arcmsr_start_hba_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_A __iomem *reg = (struct MessageUnit_A *)acb->pmu; acb->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_INBOUND_MESG0_START_BGRB, ®->inbound_msgaddr0); if (arcmsr_hba_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \ rebulid' timeout \n", acb->host->host_no); } } static void arcmsr_start_hbb_bgrb(struct AdapterControlBlock *acb) { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; acb->acb_flags |= ACB_F_MSG_START_BGRB; writel(ARCMSR_MESSAGE_START_BGRB, reg->drv2iop_doorbell_reg); if (arcmsr_hbb_wait_msgint_ready(acb)) { printk(KERN_NOTICE "arcmsr%d: wait 'start adapter background \ rebulid' timeout \n",acb->host->host_no); } } static void arcmsr_start_adapter_bgrb(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: arcmsr_start_hba_bgrb(acb); break; case ACB_ADAPTER_TYPE_B: arcmsr_start_hbb_bgrb(acb); break; } } static void arcmsr_clear_doorbell_queue_buffer(struct AdapterControlBlock *acb) { switch (acb->adapter_type) { case ACB_ADAPTER_TYPE_A: { struct MessageUnit_A *reg = (struct MessageUnit_A *)acb->pmu; uint32_t outbound_doorbell; /* empty doorbell Qbuffer if door bell ringed */ outbound_doorbell = readl(®->outbound_doorbell); /*clear doorbell interrupt */ writel(outbound_doorbell, ®->outbound_doorbell); writel(ARCMSR_INBOUND_DRIVER_DATA_READ_OK, ®->inbound_doorbell); } break; case ACB_ADAPTER_TYPE_B: { struct MessageUnit_B *reg = (struct MessageUnit_B *)acb->pmu; /*clear interrupt and message state*/ writel(ARCMSR_MESSAGE_INT_CLEAR_PATTERN, reg->iop2drv_doorbell_reg); writel(ARCMSR_DRV2IOP_DATA_READ_OK, reg->drv2iop_doorbell_reg); /* let IOP know data has been read */ } break; } } static void arcmsr_iop_init(struct AdapterControlBlock *acb) { uint32_t intmask_org; arcmsr_wait_firmware_ready(acb); arcmsr_iop_confirm(acb); /* disable all outbound interrupt */ intmask_org = arcmsr_disable_outbound_ints(acb); arcmsr_get_firmware_spec(acb); /*start background rebuild*/ arcmsr_start_adapter_bgrb(acb); /* empty doorbell Qbuffer if door bell ringed */ arcmsr_clear_doorbell_queue_buffer(acb); /* enable outbound Post Queue,outbound doorbell Interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); acb->acb_flags |= ACB_F_IOP_INITED; } static void arcmsr_iop_reset(struct AdapterControlBlock *acb) { struct CommandControlBlock *ccb; uint32_t intmask_org; int i = 0; if (atomic_read(&acb->ccboutstandingcount) != 0) { /* talk to iop 331 outstanding command aborted */ arcmsr_abort_allcmd(acb); /* wait for 3 sec for all command aborted*/ ssleep(3); /* disable all outbound interrupt */ intmask_org = arcmsr_disable_outbound_ints(acb); /* clear all outbound posted Q */ arcmsr_done4abort_postqueue(acb); for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { ccb->startdone = ARCMSR_CCB_ABORTED; arcmsr_ccb_complete(ccb, 1); } } /* enable all outbound interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); } } static int arcmsr_bus_reset(struct scsi_cmnd *cmd) { struct AdapterControlBlock *acb = (struct AdapterControlBlock *)cmd->device->host->hostdata; int i; acb->num_resets++; acb->acb_flags |= ACB_F_BUS_RESET; for (i = 0; i < 400; i++) { if (!atomic_read(&acb->ccboutstandingcount)) break; arcmsr_interrupt(acb);/* FIXME: need spinlock */ msleep(25); } arcmsr_iop_reset(acb); acb->acb_flags &= ~ACB_F_BUS_RESET; return SUCCESS; } static void arcmsr_abort_one_cmd(struct AdapterControlBlock *acb, struct CommandControlBlock *ccb) { u32 intmask; ccb->startdone = ARCMSR_CCB_ABORTED; /* ** Wait for 3 sec for all command done. */ ssleep(3); intmask = arcmsr_disable_outbound_ints(acb); arcmsr_polling_ccbdone(acb, ccb); arcmsr_enable_outbound_ints(acb, intmask); } static int arcmsr_abort(struct scsi_cmnd *cmd) { struct AdapterControlBlock *acb = (struct AdapterControlBlock *)cmd->device->host->hostdata; int i = 0; printk(KERN_NOTICE "arcmsr%d: abort device command of scsi id = %d lun = %d \n", acb->host->host_no, cmd->device->id, cmd->device->lun); acb->num_aborts++; /* ************************************************ ** the all interrupt service routine is locked ** we need to handle it as soon as possible and exit ************************************************ */ if (!atomic_read(&acb->ccboutstandingcount)) return SUCCESS; for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { struct CommandControlBlock *ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START && ccb->pcmd == cmd) { arcmsr_abort_one_cmd(acb, ccb); break; } } return SUCCESS; } static const char *arcmsr_info(struct Scsi_Host *host) { struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; static char buf[256]; char *type; int raid6 = 1; switch (acb->pdev->device) { case PCI_DEVICE_ID_ARECA_1110: case PCI_DEVICE_ID_ARECA_1200: case PCI_DEVICE_ID_ARECA_1202: case PCI_DEVICE_ID_ARECA_1210: raid6 = 0; /*FALLTHRU*/ case PCI_DEVICE_ID_ARECA_1120: case PCI_DEVICE_ID_ARECA_1130: case PCI_DEVICE_ID_ARECA_1160: case PCI_DEVICE_ID_ARECA_1170: case PCI_DEVICE_ID_ARECA_1201: case PCI_DEVICE_ID_ARECA_1220: case PCI_DEVICE_ID_ARECA_1230: case PCI_DEVICE_ID_ARECA_1260: case PCI_DEVICE_ID_ARECA_1270: case PCI_DEVICE_ID_ARECA_1280: type = "SATA"; break; case PCI_DEVICE_ID_ARECA_1380: case PCI_DEVICE_ID_ARECA_1381: case PCI_DEVICE_ID_ARECA_1680: case PCI_DEVICE_ID_ARECA_1681: type = "SAS"; break; default: type = "X-TYPE"; break; } sprintf(buf, "Areca %s Host Adapter RAID Controller%s\n %s", type, raid6 ? "( RAID6 capable)" : "", ARCMSR_DRIVER_VERSION); return buf; } #ifdef CONFIG_SCSI_ARCMSR_AER static pci_ers_result_t arcmsr_pci_slot_reset(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *) host->hostdata; uint32_t intmask_org; int i, j; if (pci_enable_device(pdev)) { return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); intmask_org = arcmsr_disable_outbound_ints(acb); acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READED); acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER; for (i = 0; i < ARCMSR_MAX_TARGETID; i++) for (j = 0; j < ARCMSR_MAX_TARGETLUN; j++) acb->devstate[i][j] = ARECA_RAID_GONE; arcmsr_wait_firmware_ready(acb); arcmsr_iop_confirm(acb); /* disable all outbound interrupt */ arcmsr_get_firmware_spec(acb); /*start background rebuild*/ arcmsr_start_adapter_bgrb(acb); /* empty doorbell Qbuffer if door bell ringed */ arcmsr_clear_doorbell_queue_buffer(acb); /* enable outbound Post Queue,outbound doorbell Interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); acb->acb_flags |= ACB_F_IOP_INITED; pci_enable_pcie_error_reporting(pdev); return PCI_ERS_RESULT_RECOVERED; } static void arcmsr_pci_ers_need_reset_forepart(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = (struct AdapterControlBlock *)host->hostdata; struct CommandControlBlock *ccb; uint32_t intmask_org; int i = 0; if (atomic_read(&acb->ccboutstandingcount) != 0) { /* talk to iop 331 outstanding command aborted */ arcmsr_abort_allcmd(acb); /* wait for 3 sec for all command aborted*/ ssleep(3); /* disable all outbound interrupt */ intmask_org = arcmsr_disable_outbound_ints(acb); /* clear all outbound posted Q */ arcmsr_done4abort_postqueue(acb); for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { ccb = acb->pccb_pool[i]; if (ccb->startdone == ARCMSR_CCB_START) { ccb->startdone = ARCMSR_CCB_ABORTED; arcmsr_ccb_complete(ccb, 1); } } /* enable all outbound interrupt */ arcmsr_enable_outbound_ints(acb, intmask_org); } pci_disable_device(pdev); } static void arcmsr_pci_ers_disconnect_forepart(struct pci_dev *pdev) { struct Scsi_Host *host = pci_get_drvdata(pdev); struct AdapterControlBlock *acb = \ (struct AdapterControlBlock *)host->hostdata; arcmsr_stop_adapter_bgrb(acb); arcmsr_flush_adapter_cache(acb); } static pci_ers_result_t arcmsr_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { switch (state) { case pci_channel_io_frozen: arcmsr_pci_ers_need_reset_forepart(pdev); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: arcmsr_pci_ers_disconnect_forepart(pdev); return PCI_ERS_RESULT_DISCONNECT; break; default: return PCI_ERS_RESULT_NEED_RESET; } } #endif