/* * Adaptec AAC series RAID controller driver * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> * * based on the old aacraid driver that is.. * Adaptec aacraid device driver for Linux. * * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Module Name: * linit.c * * Abstract: Linux Driver entry module for Adaptec RAID Array Controller */ #include <linux/compat.h> #include <linux/blkdev.h> #include <linux/completion.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/syscalls.h> #include <linux/delay.h> #include <linux/kthread.h> #include <asm/semaphore.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_device.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsicam.h> #include <scsi/scsi_eh.h> #include "aacraid.h" #define AAC_DRIVER_VERSION "1.1-5" #ifndef AAC_DRIVER_BRANCH #define AAC_DRIVER_BRANCH "" #endif #define AAC_DRIVER_BUILD_DATE __DATE__ " " __TIME__ #define AAC_DRIVERNAME "aacraid" #ifdef AAC_DRIVER_BUILD #define _str(x) #x #define str(x) _str(x) #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH #else #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH " " AAC_DRIVER_BUILD_DATE #endif MODULE_AUTHOR("Red Hat Inc and Adaptec"); MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " "Adaptec Advanced Raid Products, " "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(AAC_DRIVER_FULL_VERSION); static LIST_HEAD(aac_devices); static int aac_cfg_major = -1; char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; /* * Because of the way Linux names scsi devices, the order in this table has * become important. Check for on-board Raid first, add-in cards second. * * Note: The last field is used to index into aac_drivers below. */ static struct pci_device_id aac_pci_tbl[] = { { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ { 0,} }; MODULE_DEVICE_TABLE(pci, aac_pci_tbl); /* * dmb - For now we add the number of channels to this structure. * In the future we should add a fib that reports the number of channels * for the card. At that time we can remove the channels from here */ static struct aac_driver_ident aac_drivers[] = { { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 2/Si (Iguana/PERC2Si) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Opal/PERC3Di) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Si (SlimFast/PERC3Si */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Viper/PERC3DiV) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Lexus/PERC3DiL) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Dagger/PERC3DiD) */ { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* PERC 3/Di (Boxster/PERC3DiB) */ { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* catapult */ { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* tomcat */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan-2m) */ { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend S220 (Legend Crusader) */ { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend S230 (Legend Vulcan) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Dell PERC2/QC */ { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Dell Catchall */ { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Legend Catchall */ { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec Catch All */ { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 } /* Adaptec NEMER/ARK Catch All */ }; /** * aac_queuecommand - queue a SCSI command * @cmd: SCSI command to queue * @done: Function to call on command completion * * Queues a command for execution by the associated Host Adapter. * * TODO: unify with aac_scsi_cmd(). */ static int aac_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) { struct Scsi_Host *host = cmd->device->host; struct aac_dev *dev = (struct aac_dev *)host->hostdata; u32 count = 0; cmd->scsi_done = done; for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct fib * fib = &dev->fibs[count]; struct scsi_cmnd * command; if (fib->hw_fib_va->header.XferState && ((command = fib->callback_data)) && (command == cmd) && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) return 0; /* Already owned by Adapter */ } cmd->SCp.phase = AAC_OWNER_LOWLEVEL; return (aac_scsi_cmd(cmd) ? FAILED : 0); } /** * aac_info - Returns the host adapter name * @shost: Scsi host to report on * * Returns a static string describing the device in question */ static const char *aac_info(struct Scsi_Host *shost) { struct aac_dev *dev = (struct aac_dev *)shost->hostdata; return aac_drivers[dev->cardtype].name; } /** * aac_get_driver_ident * @devtype: index into lookup table * * Returns a pointer to the entry in the driver lookup table. */ struct aac_driver_ident* aac_get_driver_ident(int devtype) { return &aac_drivers[devtype]; } /** * aac_biosparm - return BIOS parameters for disk * @sdev: The scsi device corresponding to the disk * @bdev: the block device corresponding to the disk * @capacity: the sector capacity of the disk * @geom: geometry block to fill in * * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. * The default disk geometry is 64 heads, 32 sectors, and the appropriate * number of cylinders so as not to exceed drive capacity. In order for * disks equal to or larger than 1 GB to be addressable by the BIOS * without exceeding the BIOS limitation of 1024 cylinders, Extended * Translation should be enabled. With Extended Translation enabled, * drives between 1 GB inclusive and 2 GB exclusive are given a disk * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive * are given a disk geometry of 255 heads and 63 sectors. However, if * the BIOS detects that the Extended Translation setting does not match * the geometry in the partition table, then the translation inferred * from the partition table will be used by the BIOS, and a warning may * be displayed. */ static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, sector_t capacity, int *geom) { struct diskparm *param = (struct diskparm *)geom; unsigned char *buf; dprintk((KERN_DEBUG "aac_biosparm.\n")); /* * Assuming extended translation is enabled - #REVISIT# */ if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ param->heads = 255; param->sectors = 63; } else { param->heads = 128; param->sectors = 32; } } else { param->heads = 64; param->sectors = 32; } param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); /* * Read the first 1024 bytes from the disk device, if the boot * sector partition table is valid, search for a partition table * entry whose end_head matches one of the standard geometry * translations ( 64/32, 128/32, 255/63 ). */ buf = scsi_bios_ptable(bdev); if (!buf) return 0; if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { struct partition *first = (struct partition * )buf; struct partition *entry = first; int saved_cylinders = param->cylinders; int num; unsigned char end_head, end_sec; for(num = 0; num < 4; num++) { end_head = entry->end_head; end_sec = entry->end_sector & 0x3f; if(end_head == 63) { param->heads = 64; param->sectors = 32; break; } else if(end_head == 127) { param->heads = 128; param->sectors = 32; break; } else if(end_head == 254) { param->heads = 255; param->sectors = 63; break; } entry++; } if (num == 4) { end_head = first->end_head; end_sec = first->end_sector & 0x3f; } param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); if (num < 4 && end_sec == param->sectors) { if (param->cylinders != saved_cylinders) dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", param->heads, param->sectors, num)); } else if (end_head > 0 || end_sec > 0) { dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", end_head + 1, end_sec, num)); dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", param->heads, param->sectors)); } } kfree(buf); return 0; } /** * aac_slave_configure - compute queue depths * @sdev: SCSI device we are considering * * Selects queue depths for each target device based on the host adapter's * total capacity and the queue depth supported by the target device. * A queue depth of one automatically disables tagged queueing. */ static int aac_slave_configure(struct scsi_device *sdev) { if ((sdev->type == TYPE_DISK) && (sdev_channel(sdev) != CONTAINER_CHANNEL)) { if (expose_physicals == 0) return -ENXIO; if (expose_physicals < 0) { struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; if (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) sdev->no_uld_attach = 1; } } if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && (sdev_channel(sdev) == CONTAINER_CHANNEL)) { struct scsi_device * dev; struct Scsi_Host *host = sdev->host; unsigned num_lsu = 0; unsigned num_one = 0; unsigned depth; __shost_for_each_device(dev, host) { if (dev->tagged_supported && (dev->type == TYPE_DISK) && (sdev_channel(dev) == CONTAINER_CHANNEL)) ++num_lsu; else ++num_one; } if (num_lsu == 0) ++num_lsu; depth = (host->can_queue - num_one) / num_lsu; if (depth > 256) depth = 256; else if (depth < 2) depth = 2; scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth); if (!(((struct aac_dev *)host->hostdata)->adapter_info.options & AAC_OPT_NEW_COMM)) blk_queue_max_segment_size(sdev->request_queue, 65536); } else scsi_adjust_queue_depth(sdev, 0, 1); return 0; } /** * aac_change_queue_depth - alter queue depths * @sdev: SCSI device we are considering * @depth: desired queue depth * * Alters queue depths for target device based on the host adapter's * total capacity and the queue depth supported by the target device. */ static int aac_change_queue_depth(struct scsi_device *sdev, int depth) { if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && (sdev_channel(sdev) == CONTAINER_CHANNEL)) { struct scsi_device * dev; struct Scsi_Host *host = sdev->host; unsigned num = 0; __shost_for_each_device(dev, host) { if (dev->tagged_supported && (dev->type == TYPE_DISK) && (sdev_channel(dev) == CONTAINER_CHANNEL)) ++num; ++num; } if (num >= host->can_queue) num = host->can_queue - 1; if (depth > (host->can_queue - num)) depth = host->can_queue - num; if (depth > 256) depth = 256; else if (depth < 2) depth = 2; scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth); } else scsi_adjust_queue_depth(sdev, 0, 1); return sdev->queue_depth; } static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) { struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; return aac_do_ioctl(dev, cmd, arg); } static int aac_eh_abort(struct scsi_cmnd* cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct aac_dev * aac = (struct aac_dev *)host->hostdata; int count; int ret = FAILED; printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n", AAC_DRIVERNAME, host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun); switch (cmd->cmnd[0]) { case SERVICE_ACTION_IN: if (!(aac->raw_io_interface) || !(aac->raw_io_64) || ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) break; case INQUIRY: case READ_CAPACITY: case TEST_UNIT_READY: /* Mark associated FIB to not complete, eh handler does this */ for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct fib * fib = &aac->fibs[count]; if (fib->hw_fib_va->header.XferState && (fib->callback_data == cmd)) { fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; ret = SUCCESS; } } } return ret; } /* * aac_eh_reset - Reset command handling * @scsi_cmd: SCSI command block causing the reset * */ static int aac_eh_reset(struct scsi_cmnd* cmd) { struct scsi_device * dev = cmd->device; struct Scsi_Host * host = dev->host; struct scsi_cmnd * command; int count; struct aac_dev * aac = (struct aac_dev *)host->hostdata; unsigned long flags; /* Mark the associated FIB to not complete, eh handler does this */ for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { struct fib * fib = &aac->fibs[count]; if (fib->hw_fib_va->header.XferState && (fib->callback_data == cmd)) { fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; } } printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); if ((count = aac_check_health(aac))) return count; /* * Wait for all commands to complete to this specific * target (block maximum 60 seconds). */ for (count = 60; count; --count) { int active = aac->in_reset; if (active == 0) __shost_for_each_device(dev, host) { spin_lock_irqsave(&dev->list_lock, flags); list_for_each_entry(command, &dev->cmd_list, list) { if ((command != cmd) && (command->SCp.phase == AAC_OWNER_FIRMWARE)) { active++; break; } } spin_unlock_irqrestore(&dev->list_lock, flags); if (active) break; } /* * We can exit If all the commands are complete */ if (active == 0) return SUCCESS; ssleep(1); } printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME); /* * This adapter needs a blind reset, only do so for Adapters that * support a register, instead of a commanded, reset. */ if ((aac->supplement_adapter_info.SupportedOptions2 & le32_to_cpu(AAC_OPTION_MU_RESET|AAC_OPTION_IGNORE_RESET)) == le32_to_cpu(AAC_OPTION_MU_RESET)) aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */ return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */ } /** * aac_cfg_open - open a configuration file * @inode: inode being opened * @file: file handle attached * * Called when the configuration device is opened. Does the needed * set up on the handle and then returns * * Bugs: This needs extending to check a given adapter is present * so we can support hot plugging, and to ref count adapters. */ static int aac_cfg_open(struct inode *inode, struct file *file) { struct aac_dev *aac; unsigned minor_number = iminor(inode); int err = -ENODEV; list_for_each_entry(aac, &aac_devices, entry) { if (aac->id == minor_number) { file->private_data = aac; err = 0; break; } } return err; } /** * aac_cfg_ioctl - AAC configuration request * @inode: inode of device * @file: file handle * @cmd: ioctl command code * @arg: argument * * Handles a configuration ioctl. Currently this involves wrapping it * up and feeding it into the nasty windowsalike glue layer. * * Bugs: Needs locking against parallel ioctls lower down * Bugs: Needs to handle hot plugging */ static int aac_cfg_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return aac_do_ioctl(file->private_data, cmd, (void __user *)arg); } #ifdef CONFIG_COMPAT static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) { long ret; lock_kernel(); switch (cmd) { case FSACTL_MINIPORT_REV_CHECK: case FSACTL_SENDFIB: case FSACTL_OPEN_GET_ADAPTER_FIB: case FSACTL_CLOSE_GET_ADAPTER_FIB: case FSACTL_SEND_RAW_SRB: case FSACTL_GET_PCI_INFO: case FSACTL_QUERY_DISK: case FSACTL_DELETE_DISK: case FSACTL_FORCE_DELETE_DISK: case FSACTL_GET_CONTAINERS: case FSACTL_SEND_LARGE_FIB: ret = aac_do_ioctl(dev, cmd, (void __user *)arg); break; case FSACTL_GET_NEXT_ADAPTER_FIB: { struct fib_ioctl __user *f; f = compat_alloc_user_space(sizeof(*f)); ret = 0; if (clear_user(f, sizeof(*f))) ret = -EFAULT; if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) ret = -EFAULT; if (!ret) ret = aac_do_ioctl(dev, cmd, f); break; } default: ret = -ENOIOCTLCMD; break; } unlock_kernel(); return ret; } static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) { struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); } static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) { return aac_compat_do_ioctl((struct aac_dev *)file->private_data, cmd, arg); } #endif static ssize_t aac_show_model(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len; if (dev->supplement_adapter_info.AdapterTypeText[0]) { char * cp = dev->supplement_adapter_info.AdapterTypeText; while (*cp && *cp != ' ') ++cp; while (*cp == ' ') ++cp; len = snprintf(buf, PAGE_SIZE, "%s\n", cp); } else len = snprintf(buf, PAGE_SIZE, "%s\n", aac_drivers[dev->cardtype].model); return len; } static ssize_t aac_show_vendor(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len; if (dev->supplement_adapter_info.AdapterTypeText[0]) { char * cp = dev->supplement_adapter_info.AdapterTypeText; while (*cp && *cp != ' ') ++cp; len = snprintf(buf, PAGE_SIZE, "%.*s\n", (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText), dev->supplement_adapter_info.AdapterTypeText); } else len = snprintf(buf, PAGE_SIZE, "%s\n", aac_drivers[dev->cardtype].vname); return len; } static ssize_t aac_show_kernel_version(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.kernelrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.kernelbuild)); return len; } static ssize_t aac_show_monitor_version(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.monitorrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.monitorbuild)); return len; } static ssize_t aac_show_bios_version(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len, tmp; tmp = le32_to_cpu(dev->adapter_info.biosrev); len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, le32_to_cpu(dev->adapter_info.biosbuild)); return len; } static ssize_t aac_show_serial_number(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len = 0; if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) len = snprintf(buf, PAGE_SIZE, "%x\n", le32_to_cpu(dev->adapter_info.serial[0])); return len; } static ssize_t aac_show_max_channel(struct class_device *class_dev, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", class_to_shost(class_dev)->max_channel); } static ssize_t aac_show_max_id(struct class_device *class_dev, char *buf) { return snprintf(buf, PAGE_SIZE, "%d\n", class_to_shost(class_dev)->max_id); } static ssize_t aac_store_reset_adapter(struct class_device *class_dev, const char *buf, size_t count) { int retval = -EACCES; if (!capable(CAP_SYS_ADMIN)) return retval; retval = aac_reset_adapter((struct aac_dev*)class_to_shost(class_dev)->hostdata, buf[0] == '!'); if (retval >= 0) retval = count; return retval; } static ssize_t aac_show_reset_adapter(struct class_device *class_dev, char *buf) { struct aac_dev *dev = (struct aac_dev*)class_to_shost(class_dev)->hostdata; int len, tmp; tmp = aac_adapter_check_health(dev); if ((tmp == 0) && dev->in_reset) tmp = -EBUSY; len = snprintf(buf, PAGE_SIZE, "0x%x", tmp); return len; } static struct class_device_attribute aac_model = { .attr = { .name = "model", .mode = S_IRUGO, }, .show = aac_show_model, }; static struct class_device_attribute aac_vendor = { .attr = { .name = "vendor", .mode = S_IRUGO, }, .show = aac_show_vendor, }; static struct class_device_attribute aac_kernel_version = { .attr = { .name = "hba_kernel_version", .mode = S_IRUGO, }, .show = aac_show_kernel_version, }; static struct class_device_attribute aac_monitor_version = { .attr = { .name = "hba_monitor_version", .mode = S_IRUGO, }, .show = aac_show_monitor_version, }; static struct class_device_attribute aac_bios_version = { .attr = { .name = "hba_bios_version", .mode = S_IRUGO, }, .show = aac_show_bios_version, }; static struct class_device_attribute aac_serial_number = { .attr = { .name = "serial_number", .mode = S_IRUGO, }, .show = aac_show_serial_number, }; static struct class_device_attribute aac_max_channel = { .attr = { .name = "max_channel", .mode = S_IRUGO, }, .show = aac_show_max_channel, }; static struct class_device_attribute aac_max_id = { .attr = { .name = "max_id", .mode = S_IRUGO, }, .show = aac_show_max_id, }; static struct class_device_attribute aac_reset = { .attr = { .name = "reset_host", .mode = S_IWUSR|S_IRUGO, }, .store = aac_store_reset_adapter, .show = aac_show_reset_adapter, }; static struct class_device_attribute *aac_attrs[] = { &aac_model, &aac_vendor, &aac_kernel_version, &aac_monitor_version, &aac_bios_version, &aac_serial_number, &aac_max_channel, &aac_max_id, &aac_reset, NULL }; static const struct file_operations aac_cfg_fops = { .owner = THIS_MODULE, .ioctl = aac_cfg_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = aac_compat_cfg_ioctl, #endif .open = aac_cfg_open, }; static struct scsi_host_template aac_driver_template = { .module = THIS_MODULE, .name = "AAC", .proc_name = AAC_DRIVERNAME, .info = aac_info, .ioctl = aac_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = aac_compat_ioctl, #endif .queuecommand = aac_queuecommand, .bios_param = aac_biosparm, .shost_attrs = aac_attrs, .slave_configure = aac_slave_configure, .change_queue_depth = aac_change_queue_depth, .eh_abort_handler = aac_eh_abort, .eh_host_reset_handler = aac_eh_reset, .can_queue = AAC_NUM_IO_FIB, .this_id = MAXIMUM_NUM_CONTAINERS, .sg_tablesize = 16, .max_sectors = 128, #if (AAC_NUM_IO_FIB > 256) .cmd_per_lun = 256, #else .cmd_per_lun = AAC_NUM_IO_FIB, #endif .use_clustering = ENABLE_CLUSTERING, .emulated = 1, }; static int __devinit aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) { unsigned index = id->driver_data; struct Scsi_Host *shost; struct aac_dev *aac; struct list_head *insert = &aac_devices; int error = -ENODEV; int unique_id = 0; list_for_each_entry(aac, &aac_devices, entry) { if (aac->id > unique_id) break; insert = &aac->entry; unique_id++; } error = pci_enable_device(pdev); if (error) goto out; error = -ENODEV; if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) || pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK)) goto out_disable_pdev; /* * If the quirk31 bit is set, the adapter needs adapter * to driver communication memory to be allocated below 2gig */ if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) if (pci_set_dma_mask(pdev, DMA_31BIT_MASK) || pci_set_consistent_dma_mask(pdev, DMA_31BIT_MASK)) goto out_disable_pdev; pci_set_master(pdev); shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); if (!shost) goto out_disable_pdev; shost->irq = pdev->irq; shost->base = pci_resource_start(pdev, 0); shost->unique_id = unique_id; shost->max_cmd_len = 16; aac = (struct aac_dev *)shost->hostdata; aac->scsi_host_ptr = shost; aac->pdev = pdev; aac->name = aac_driver_template.name; aac->id = shost->unique_id; aac->cardtype = index; INIT_LIST_HEAD(&aac->entry); aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); if (!aac->fibs) goto out_free_host; spin_lock_init(&aac->fib_lock); /* * Map in the registers from the adapter. */ aac->base_size = AAC_MIN_FOOTPRINT_SIZE; if ((*aac_drivers[index].init)(aac)) goto out_unmap; /* * Start any kernel threads needed */ aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); if (IS_ERR(aac->thread)) { printk(KERN_ERR "aacraid: Unable to create command thread.\n"); error = PTR_ERR(aac->thread); goto out_deinit; } /* * If we had set a smaller DMA mask earlier, set it to 4gig * now since the adapter can dma data to at least a 4gig * address space. */ if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) goto out_deinit; aac->maximum_num_channels = aac_drivers[index].channels; error = aac_get_adapter_info(aac); if (error < 0) goto out_deinit; /* * Lets override negotiations and drop the maximum SG limit to 34 */ if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && (aac->scsi_host_ptr->sg_tablesize > 34)) { aac->scsi_host_ptr->sg_tablesize = 34; aac->scsi_host_ptr->max_sectors = (aac->scsi_host_ptr->sg_tablesize * 8) + 112; } if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && (aac->scsi_host_ptr->sg_tablesize > 17)) { aac->scsi_host_ptr->sg_tablesize = 17; aac->scsi_host_ptr->max_sectors = (aac->scsi_host_ptr->sg_tablesize * 8) + 112; } /* * Firware printf works only with older firmware. */ if (aac_drivers[index].quirks & AAC_QUIRK_34SG) aac->printf_enabled = 1; else aac->printf_enabled = 0; /* * max channel will be the physical channels plus 1 virtual channel * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) * physical channels are address by their actual physical number+1 */ if ((aac->nondasd_support == 1) || expose_physicals) shost->max_channel = aac->maximum_num_channels; else shost->max_channel = 0; aac_get_config_status(aac, 0); aac_get_containers(aac); list_add(&aac->entry, insert); shost->max_id = aac->maximum_num_containers; if (shost->max_id < aac->maximum_num_physicals) shost->max_id = aac->maximum_num_physicals; if (shost->max_id < MAXIMUM_NUM_CONTAINERS) shost->max_id = MAXIMUM_NUM_CONTAINERS; else shost->this_id = shost->max_id; /* * dmb - we may need to move the setting of these parms somewhere else once * we get a fib that can report the actual numbers */ shost->max_lun = AAC_MAX_LUN; pci_set_drvdata(pdev, shost); error = scsi_add_host(shost, &pdev->dev); if (error) goto out_deinit; scsi_scan_host(shost); return 0; out_deinit: kthread_stop(aac->thread); aac_send_shutdown(aac); aac_adapter_disable_int(aac); free_irq(pdev->irq, aac); out_unmap: aac_fib_map_free(aac); pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); kfree(aac->queues); aac_adapter_ioremap(aac, 0); kfree(aac->fibs); kfree(aac->fsa_dev); out_free_host: scsi_host_put(shost); out_disable_pdev: pci_disable_device(pdev); out: return error; } static void aac_shutdown(struct pci_dev *dev) { struct Scsi_Host *shost = pci_get_drvdata(dev); struct aac_dev *aac = (struct aac_dev *)shost->hostdata; aac_send_shutdown(aac); } static void __devexit aac_remove_one(struct pci_dev *pdev) { struct Scsi_Host *shost = pci_get_drvdata(pdev); struct aac_dev *aac = (struct aac_dev *)shost->hostdata; scsi_remove_host(shost); kthread_stop(aac->thread); aac_send_shutdown(aac); aac_adapter_disable_int(aac); aac_fib_map_free(aac); pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); kfree(aac->queues); free_irq(pdev->irq, aac); aac_adapter_ioremap(aac, 0); kfree(aac->fibs); kfree(aac->fsa_dev); list_del(&aac->entry); scsi_host_put(shost); pci_disable_device(pdev); if (list_empty(&aac_devices)) { unregister_chrdev(aac_cfg_major, "aac"); aac_cfg_major = -1; } } static struct pci_driver aac_pci_driver = { .name = AAC_DRIVERNAME, .id_table = aac_pci_tbl, .probe = aac_probe_one, .remove = __devexit_p(aac_remove_one), .shutdown = aac_shutdown, }; static int __init aac_init(void) { int error; printk(KERN_INFO "Adaptec %s driver %s\n", AAC_DRIVERNAME, aac_driver_version); error = pci_register_driver(&aac_pci_driver); if (error < 0) return error; aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops); if (aac_cfg_major < 0) { printk(KERN_WARNING "aacraid: unable to register \"aac\" device.\n"); } return 0; } static void __exit aac_exit(void) { if (aac_cfg_major > -1) unregister_chrdev(aac_cfg_major, "aac"); pci_unregister_driver(&aac_pci_driver); } module_init(aac_init); module_exit(aac_exit);