/* * Real Time Clock interface for XScale PXA27x and PXA3xx * * Copyright (C) 2008 Robert Jarzmik * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/init.h> #include <linux/platform_device.h> #include <linux/module.h> #include <linux/rtc.h> #include <linux/seq_file.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/slab.h> #include <mach/hardware.h> #define TIMER_FREQ CLOCK_TICK_RATE #define RTC_DEF_DIVIDER (32768 - 1) #define RTC_DEF_TRIM 0 #define MAXFREQ_PERIODIC 1000 /* * PXA Registers and bits definitions */ #define RTSR_PICE (1 << 15) /* Periodic interrupt count enable */ #define RTSR_PIALE (1 << 14) /* Periodic interrupt Alarm enable */ #define RTSR_PIAL (1 << 13) /* Periodic interrupt detected */ #define RTSR_SWALE2 (1 << 11) /* RTC stopwatch alarm2 enable */ #define RTSR_SWAL2 (1 << 10) /* RTC stopwatch alarm2 detected */ #define RTSR_SWALE1 (1 << 9) /* RTC stopwatch alarm1 enable */ #define RTSR_SWAL1 (1 << 8) /* RTC stopwatch alarm1 detected */ #define RTSR_RDALE2 (1 << 7) /* RTC alarm2 enable */ #define RTSR_RDAL2 (1 << 6) /* RTC alarm2 detected */ #define RTSR_RDALE1 (1 << 5) /* RTC alarm1 enable */ #define RTSR_RDAL1 (1 << 4) /* RTC alarm1 detected */ #define RTSR_HZE (1 << 3) /* HZ interrupt enable */ #define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */ #define RTSR_HZ (1 << 1) /* HZ rising-edge detected */ #define RTSR_AL (1 << 0) /* RTC alarm detected */ #define RTSR_TRIG_MASK (RTSR_AL | RTSR_HZ | RTSR_RDAL1 | RTSR_RDAL2\ | RTSR_SWAL1 | RTSR_SWAL2) #define RYxR_YEAR_S 9 #define RYxR_YEAR_MASK (0xfff << RYxR_YEAR_S) #define RYxR_MONTH_S 5 #define RYxR_MONTH_MASK (0xf << RYxR_MONTH_S) #define RYxR_DAY_MASK 0x1f #define RDxR_HOUR_S 12 #define RDxR_HOUR_MASK (0x1f << RDxR_HOUR_S) #define RDxR_MIN_S 6 #define RDxR_MIN_MASK (0x3f << RDxR_MIN_S) #define RDxR_SEC_MASK 0x3f #define RTSR 0x08 #define RTTR 0x0c #define RDCR 0x10 #define RYCR 0x14 #define RDAR1 0x18 #define RYAR1 0x1c #define RTCPICR 0x34 #define PIAR 0x38 #define rtc_readl(pxa_rtc, reg) \ __raw_readl((pxa_rtc)->base + (reg)) #define rtc_writel(pxa_rtc, reg, value) \ __raw_writel((value), (pxa_rtc)->base + (reg)) struct pxa_rtc { struct resource *ress; void __iomem *base; int irq_1Hz; int irq_Alrm; struct rtc_device *rtc; spinlock_t lock; /* Protects this structure */ struct rtc_time rtc_alarm; }; static u32 ryxr_calc(struct rtc_time *tm) { return ((tm->tm_year + 1900) << RYxR_YEAR_S) | ((tm->tm_mon + 1) << RYxR_MONTH_S) | tm->tm_mday; } static u32 rdxr_calc(struct rtc_time *tm) { return (tm->tm_hour << RDxR_HOUR_S) | (tm->tm_min << RDxR_MIN_S) | tm->tm_sec; } static void tm_calc(u32 rycr, u32 rdcr, struct rtc_time *tm) { tm->tm_year = ((rycr & RYxR_YEAR_MASK) >> RYxR_YEAR_S) - 1900; tm->tm_mon = (((rycr & RYxR_MONTH_MASK) >> RYxR_MONTH_S)) - 1; tm->tm_mday = (rycr & RYxR_DAY_MASK); tm->tm_hour = (rdcr & RDxR_HOUR_MASK) >> RDxR_HOUR_S; tm->tm_min = (rdcr & RDxR_MIN_MASK) >> RDxR_MIN_S; tm->tm_sec = rdcr & RDxR_SEC_MASK; } static void rtsr_clear_bits(struct pxa_rtc *pxa_rtc, u32 mask) { u32 rtsr; rtsr = rtc_readl(pxa_rtc, RTSR); rtsr &= ~RTSR_TRIG_MASK; rtsr &= ~mask; rtc_writel(pxa_rtc, RTSR, rtsr); } static void rtsr_set_bits(struct pxa_rtc *pxa_rtc, u32 mask) { u32 rtsr; rtsr = rtc_readl(pxa_rtc, RTSR); rtsr &= ~RTSR_TRIG_MASK; rtsr |= mask; rtc_writel(pxa_rtc, RTSR, rtsr); } static irqreturn_t pxa_rtc_irq(int irq, void *dev_id) { struct platform_device *pdev = to_platform_device(dev_id); struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev); u32 rtsr; unsigned long events = 0; spin_lock(&pxa_rtc->lock); /* clear interrupt sources */ rtsr = rtc_readl(pxa_rtc, RTSR); rtc_writel(pxa_rtc, RTSR, rtsr); /* temporary disable rtc interrupts */ rtsr_clear_bits(pxa_rtc, RTSR_RDALE1 | RTSR_PIALE | RTSR_HZE); /* clear alarm interrupt if it has occurred */ if (rtsr & RTSR_RDAL1) rtsr &= ~RTSR_RDALE1; /* update irq data & counter */ if (rtsr & RTSR_RDAL1) events |= RTC_AF | RTC_IRQF; if (rtsr & RTSR_HZ) events |= RTC_UF | RTC_IRQF; if (rtsr & RTSR_PIAL) events |= RTC_PF | RTC_IRQF; rtc_update_irq(pxa_rtc->rtc, 1, events); /* enable back rtc interrupts */ rtc_writel(pxa_rtc, RTSR, rtsr & ~RTSR_TRIG_MASK); spin_unlock(&pxa_rtc->lock); return IRQ_HANDLED; } static int pxa_rtc_open(struct device *dev) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); int ret; ret = request_irq(pxa_rtc->irq_1Hz, pxa_rtc_irq, IRQF_DISABLED, "rtc 1Hz", dev); if (ret < 0) { dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_1Hz, ret); goto err_irq_1Hz; } ret = request_irq(pxa_rtc->irq_Alrm, pxa_rtc_irq, IRQF_DISABLED, "rtc Alrm", dev); if (ret < 0) { dev_err(dev, "can't get irq %i, err %d\n", pxa_rtc->irq_Alrm, ret); goto err_irq_Alrm; } return 0; err_irq_Alrm: free_irq(pxa_rtc->irq_1Hz, dev); err_irq_1Hz: return ret; } static void pxa_rtc_release(struct device *dev) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); spin_lock_irq(&pxa_rtc->lock); rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE); spin_unlock_irq(&pxa_rtc->lock); free_irq(pxa_rtc->irq_Alrm, dev); free_irq(pxa_rtc->irq_1Hz, dev); } static int pxa_periodic_irq_set_freq(struct device *dev, int freq) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); int period_ms; if (freq < 1 || freq > MAXFREQ_PERIODIC) return -EINVAL; period_ms = 1000 / freq; rtc_writel(pxa_rtc, PIAR, period_ms); return 0; } static int pxa_periodic_irq_set_state(struct device *dev, int enabled) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); if (enabled) rtsr_set_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE); else rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_PICE); return 0; } static int pxa_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); int ret = 0; spin_lock_irq(&pxa_rtc->lock); switch (cmd) { case RTC_AIE_OFF: rtsr_clear_bits(pxa_rtc, RTSR_RDALE1); break; case RTC_AIE_ON: rtsr_set_bits(pxa_rtc, RTSR_RDALE1); break; case RTC_UIE_OFF: rtsr_clear_bits(pxa_rtc, RTSR_HZE); break; case RTC_UIE_ON: rtsr_set_bits(pxa_rtc, RTSR_HZE); break; default: ret = -ENOIOCTLCMD; } spin_unlock_irq(&pxa_rtc->lock); return ret; } static int pxa_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); u32 rycr, rdcr; rycr = rtc_readl(pxa_rtc, RYCR); rdcr = rtc_readl(pxa_rtc, RDCR); tm_calc(rycr, rdcr, tm); return 0; } static int pxa_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); rtc_writel(pxa_rtc, RYCR, ryxr_calc(tm)); rtc_writel(pxa_rtc, RDCR, rdxr_calc(tm)); return 0; } static int pxa_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); u32 rtsr, ryar, rdar; ryar = rtc_readl(pxa_rtc, RYAR1); rdar = rtc_readl(pxa_rtc, RDAR1); tm_calc(ryar, rdar, &alrm->time); rtsr = rtc_readl(pxa_rtc, RTSR); alrm->enabled = (rtsr & RTSR_RDALE1) ? 1 : 0; alrm->pending = (rtsr & RTSR_RDAL1) ? 1 : 0; return 0; } static int pxa_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); u32 rtsr; spin_lock_irq(&pxa_rtc->lock); rtc_writel(pxa_rtc, RYAR1, ryxr_calc(&alrm->time)); rtc_writel(pxa_rtc, RDAR1, rdxr_calc(&alrm->time)); rtsr = rtc_readl(pxa_rtc, RTSR); if (alrm->enabled) rtsr |= RTSR_RDALE1; else rtsr &= ~RTSR_RDALE1; rtc_writel(pxa_rtc, RTSR, rtsr); spin_unlock_irq(&pxa_rtc->lock); return 0; } static int pxa_rtc_proc(struct device *dev, struct seq_file *seq) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); seq_printf(seq, "trim/divider\t: 0x%08x\n", rtc_readl(pxa_rtc, RTTR)); seq_printf(seq, "update_IRQ\t: %s\n", (rtc_readl(pxa_rtc, RTSR) & RTSR_HZE) ? "yes" : "no"); seq_printf(seq, "periodic_IRQ\t: %s\n", (rtc_readl(pxa_rtc, RTSR) & RTSR_PIALE) ? "yes" : "no"); seq_printf(seq, "periodic_freq\t: %u\n", rtc_readl(pxa_rtc, PIAR)); return 0; } static const struct rtc_class_ops pxa_rtc_ops = { .open = pxa_rtc_open, .release = pxa_rtc_release, .ioctl = pxa_rtc_ioctl, .read_time = pxa_rtc_read_time, .set_time = pxa_rtc_set_time, .read_alarm = pxa_rtc_read_alarm, .set_alarm = pxa_rtc_set_alarm, .proc = pxa_rtc_proc, .irq_set_state = pxa_periodic_irq_set_state, .irq_set_freq = pxa_periodic_irq_set_freq, }; static int __init pxa_rtc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct pxa_rtc *pxa_rtc; int ret; u32 rttr; pxa_rtc = kzalloc(sizeof(struct pxa_rtc), GFP_KERNEL); if (!pxa_rtc) return -ENOMEM; spin_lock_init(&pxa_rtc->lock); platform_set_drvdata(pdev, pxa_rtc); ret = -ENXIO; pxa_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!pxa_rtc->ress) { dev_err(dev, "No I/O memory resource defined\n"); goto err_ress; } pxa_rtc->irq_1Hz = platform_get_irq(pdev, 0); if (pxa_rtc->irq_1Hz < 0) { dev_err(dev, "No 1Hz IRQ resource defined\n"); goto err_ress; } pxa_rtc->irq_Alrm = platform_get_irq(pdev, 1); if (pxa_rtc->irq_Alrm < 0) { dev_err(dev, "No alarm IRQ resource defined\n"); goto err_ress; } ret = -ENOMEM; pxa_rtc->base = ioremap(pxa_rtc->ress->start, resource_size(pxa_rtc->ress)); if (!pxa_rtc->base) { dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n"); goto err_map; } /* * If the clock divider is uninitialized then reset it to the * default value to get the 1Hz clock. */ if (rtc_readl(pxa_rtc, RTTR) == 0) { rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16); rtc_writel(pxa_rtc, RTTR, rttr); dev_warn(dev, "warning: initializing default clock" " divider/trim value\n"); } rtsr_clear_bits(pxa_rtc, RTSR_PIALE | RTSR_RDALE1 | RTSR_HZE); pxa_rtc->rtc = rtc_device_register("pxa-rtc", &pdev->dev, &pxa_rtc_ops, THIS_MODULE); ret = PTR_ERR(pxa_rtc->rtc); if (IS_ERR(pxa_rtc->rtc)) { dev_err(dev, "Failed to register RTC device -> %d\n", ret); goto err_rtc_reg; } device_init_wakeup(dev, 1); return 0; err_rtc_reg: iounmap(pxa_rtc->base); err_ress: err_map: kfree(pxa_rtc); return ret; } static int __exit pxa_rtc_remove(struct platform_device *pdev) { struct pxa_rtc *pxa_rtc = platform_get_drvdata(pdev); rtc_device_unregister(pxa_rtc->rtc); spin_lock_irq(&pxa_rtc->lock); iounmap(pxa_rtc->base); spin_unlock_irq(&pxa_rtc->lock); kfree(pxa_rtc); return 0; } #ifdef CONFIG_PM static int pxa_rtc_suspend(struct device *dev) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(pxa_rtc->irq_Alrm); return 0; } static int pxa_rtc_resume(struct device *dev) { struct pxa_rtc *pxa_rtc = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(pxa_rtc->irq_Alrm); return 0; } static const struct dev_pm_ops pxa_rtc_pm_ops = { .suspend = pxa_rtc_suspend, .resume = pxa_rtc_resume, }; #endif static struct platform_driver pxa_rtc_driver = { .remove = __exit_p(pxa_rtc_remove), .driver = { .name = "pxa-rtc", #ifdef CONFIG_PM .pm = &pxa_rtc_pm_ops, #endif }, }; static int __init pxa_rtc_init(void) { if (cpu_is_pxa27x() || cpu_is_pxa3xx()) return platform_driver_probe(&pxa_rtc_driver, pxa_rtc_probe); return -ENODEV; } static void __exit pxa_rtc_exit(void) { platform_driver_unregister(&pxa_rtc_driver); } module_init(pxa_rtc_init); module_exit(pxa_rtc_exit); MODULE_AUTHOR("Robert Jarzmik <robert.jarzmik@free.fr>"); MODULE_DESCRIPTION("PXA27x/PXA3xx Realtime Clock Driver (RTC)"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:pxa-rtc");