/* * RTC driver for Maxim MAX77686 * * Copyright (C) 2012 Samsung Electronics Co.Ltd * * based on rtc-max8997.c * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * */ #include <linux/slab.h> #include <linux/rtc.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/mfd/max77686-private.h> #include <linux/irqdomain.h> #include <linux/regmap.h> /* RTC Control Register */ #define BCD_EN_SHIFT 0 #define BCD_EN_MASK (1 << BCD_EN_SHIFT) #define MODEL24_SHIFT 1 #define MODEL24_MASK (1 << MODEL24_SHIFT) /* RTC Update Register1 */ #define RTC_UDR_SHIFT 0 #define RTC_UDR_MASK (1 << RTC_UDR_SHIFT) #define RTC_RBUDR_SHIFT 4 #define RTC_RBUDR_MASK (1 << RTC_RBUDR_SHIFT) /* WTSR and SMPL Register */ #define WTSRT_SHIFT 0 #define SMPLT_SHIFT 2 #define WTSR_EN_SHIFT 6 #define SMPL_EN_SHIFT 7 #define WTSRT_MASK (3 << WTSRT_SHIFT) #define SMPLT_MASK (3 << SMPLT_SHIFT) #define WTSR_EN_MASK (1 << WTSR_EN_SHIFT) #define SMPL_EN_MASK (1 << SMPL_EN_SHIFT) /* RTC Hour register */ #define HOUR_PM_SHIFT 6 #define HOUR_PM_MASK (1 << HOUR_PM_SHIFT) /* RTC Alarm Enable */ #define ALARM_ENABLE_SHIFT 7 #define ALARM_ENABLE_MASK (1 << ALARM_ENABLE_SHIFT) #define MAX77686_RTC_UPDATE_DELAY 16 #undef MAX77686_RTC_WTSR_SMPL enum { RTC_SEC = 0, RTC_MIN, RTC_HOUR, RTC_WEEKDAY, RTC_MONTH, RTC_YEAR, RTC_DATE, RTC_NR_TIME }; struct max77686_rtc_info { struct device *dev; struct max77686_dev *max77686; struct i2c_client *rtc; struct rtc_device *rtc_dev; struct mutex lock; struct regmap *regmap; int virq; int rtc_24hr_mode; }; enum MAX77686_RTC_OP { MAX77686_RTC_WRITE, MAX77686_RTC_READ, }; static inline int max77686_rtc_calculate_wday(u8 shifted) { int counter = -1; while (shifted) { shifted >>= 1; counter++; } return counter; } static void max77686_rtc_data_to_tm(u8 *data, struct rtc_time *tm, int rtc_24hr_mode) { tm->tm_sec = data[RTC_SEC] & 0x7f; tm->tm_min = data[RTC_MIN] & 0x7f; if (rtc_24hr_mode) tm->tm_hour = data[RTC_HOUR] & 0x1f; else { tm->tm_hour = data[RTC_HOUR] & 0x0f; if (data[RTC_HOUR] & HOUR_PM_MASK) tm->tm_hour += 12; } tm->tm_wday = max77686_rtc_calculate_wday(data[RTC_WEEKDAY] & 0x7f); tm->tm_mday = data[RTC_DATE] & 0x1f; tm->tm_mon = (data[RTC_MONTH] & 0x0f) - 1; tm->tm_year = (data[RTC_YEAR] & 0x7f) + 100; tm->tm_yday = 0; tm->tm_isdst = 0; } static int max77686_rtc_tm_to_data(struct rtc_time *tm, u8 *data) { data[RTC_SEC] = tm->tm_sec; data[RTC_MIN] = tm->tm_min; data[RTC_HOUR] = tm->tm_hour; data[RTC_WEEKDAY] = 1 << tm->tm_wday; data[RTC_DATE] = tm->tm_mday; data[RTC_MONTH] = tm->tm_mon + 1; data[RTC_YEAR] = tm->tm_year > 100 ? (tm->tm_year - 100) : 0 ; if (tm->tm_year < 100) { pr_warn("%s: MAX77686 RTC cannot handle the year %d." "Assume it's 2000.\n", __func__, 1900 + tm->tm_year); return -EINVAL; } return 0; } static int max77686_rtc_update(struct max77686_rtc_info *info, enum MAX77686_RTC_OP op) { int ret; unsigned int data; if (op == MAX77686_RTC_WRITE) data = 1 << RTC_UDR_SHIFT; else data = 1 << RTC_RBUDR_SHIFT; ret = regmap_update_bits(info->max77686->rtc_regmap, MAX77686_RTC_UPDATE0, data, data); if (ret < 0) dev_err(info->dev, "%s: fail to write update reg(ret=%d, data=0x%x)\n", __func__, ret, data); else { /* Minimum 16ms delay required before RTC update. */ msleep(MAX77686_RTC_UPDATE_DELAY); } return ret; } static int max77686_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct max77686_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_NR_TIME]; int ret; mutex_lock(&info->lock); ret = max77686_rtc_update(info, MAX77686_RTC_READ); if (ret < 0) goto out; ret = regmap_bulk_read(info->max77686->rtc_regmap, MAX77686_RTC_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to read time reg(%d)\n", __func__, ret); goto out; } max77686_rtc_data_to_tm(data, tm, info->rtc_24hr_mode); ret = rtc_valid_tm(tm); out: mutex_unlock(&info->lock); return ret; } static int max77686_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct max77686_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_NR_TIME]; int ret; ret = max77686_rtc_tm_to_data(tm, data); if (ret < 0) return ret; mutex_lock(&info->lock); ret = regmap_bulk_write(info->max77686->rtc_regmap, MAX77686_RTC_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to write time reg(%d)\n", __func__, ret); goto out; } ret = max77686_rtc_update(info, MAX77686_RTC_WRITE); out: mutex_unlock(&info->lock); return ret; } static int max77686_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct max77686_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_NR_TIME]; unsigned int val; int i, ret; mutex_lock(&info->lock); ret = max77686_rtc_update(info, MAX77686_RTC_READ); if (ret < 0) goto out; ret = regmap_bulk_read(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s:%d fail to read alarm reg(%d)\n", __func__, __LINE__, ret); goto out; } max77686_rtc_data_to_tm(data, &alrm->time, info->rtc_24hr_mode); alrm->enabled = 0; for (i = 0; i < RTC_NR_TIME; i++) { if (data[i] & ALARM_ENABLE_MASK) { alrm->enabled = 1; break; } } alrm->pending = 0; ret = regmap_read(info->max77686->regmap, MAX77686_REG_STATUS1, &val); if (ret < 0) { dev_err(info->dev, "%s:%d fail to read status1 reg(%d)\n", __func__, __LINE__, ret); goto out; } if (val & (1 << 4)) /* RTCA1 */ alrm->pending = 1; out: mutex_unlock(&info->lock); return 0; } static int max77686_rtc_stop_alarm(struct max77686_rtc_info *info) { u8 data[RTC_NR_TIME]; int ret, i; struct rtc_time tm; if (!mutex_is_locked(&info->lock)) dev_warn(info->dev, "%s: should have mutex locked\n", __func__); ret = max77686_rtc_update(info, MAX77686_RTC_READ); if (ret < 0) goto out; ret = regmap_bulk_read(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to read alarm reg(%d)\n", __func__, ret); goto out; } max77686_rtc_data_to_tm(data, &tm, info->rtc_24hr_mode); for (i = 0; i < RTC_NR_TIME; i++) data[i] &= ~ALARM_ENABLE_MASK; ret = regmap_bulk_write(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to write alarm reg(%d)\n", __func__, ret); goto out; } ret = max77686_rtc_update(info, MAX77686_RTC_WRITE); out: return ret; } static int max77686_rtc_start_alarm(struct max77686_rtc_info *info) { u8 data[RTC_NR_TIME]; int ret; struct rtc_time tm; if (!mutex_is_locked(&info->lock)) dev_warn(info->dev, "%s: should have mutex locked\n", __func__); ret = max77686_rtc_update(info, MAX77686_RTC_READ); if (ret < 0) goto out; ret = regmap_bulk_read(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to read alarm reg(%d)\n", __func__, ret); goto out; } max77686_rtc_data_to_tm(data, &tm, info->rtc_24hr_mode); data[RTC_SEC] |= (1 << ALARM_ENABLE_SHIFT); data[RTC_MIN] |= (1 << ALARM_ENABLE_SHIFT); data[RTC_HOUR] |= (1 << ALARM_ENABLE_SHIFT); data[RTC_WEEKDAY] &= ~ALARM_ENABLE_MASK; if (data[RTC_MONTH] & 0xf) data[RTC_MONTH] |= (1 << ALARM_ENABLE_SHIFT); if (data[RTC_YEAR] & 0x7f) data[RTC_YEAR] |= (1 << ALARM_ENABLE_SHIFT); if (data[RTC_DATE] & 0x1f) data[RTC_DATE] |= (1 << ALARM_ENABLE_SHIFT); ret = regmap_bulk_write(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to write alarm reg(%d)\n", __func__, ret); goto out; } ret = max77686_rtc_update(info, MAX77686_RTC_WRITE); out: return ret; } static int max77686_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct max77686_rtc_info *info = dev_get_drvdata(dev); u8 data[RTC_NR_TIME]; int ret; ret = max77686_rtc_tm_to_data(&alrm->time, data); if (ret < 0) return ret; mutex_lock(&info->lock); ret = max77686_rtc_stop_alarm(info); if (ret < 0) goto out; ret = regmap_bulk_write(info->max77686->rtc_regmap, MAX77686_ALARM1_SEC, data, RTC_NR_TIME); if (ret < 0) { dev_err(info->dev, "%s: fail to write alarm reg(%d)\n", __func__, ret); goto out; } ret = max77686_rtc_update(info, MAX77686_RTC_WRITE); if (ret < 0) goto out; if (alrm->enabled) ret = max77686_rtc_start_alarm(info); out: mutex_unlock(&info->lock); return ret; } static int max77686_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct max77686_rtc_info *info = dev_get_drvdata(dev); int ret; mutex_lock(&info->lock); if (enabled) ret = max77686_rtc_start_alarm(info); else ret = max77686_rtc_stop_alarm(info); mutex_unlock(&info->lock); return ret; } static irqreturn_t max77686_rtc_alarm_irq(int irq, void *data) { struct max77686_rtc_info *info = data; dev_info(info->dev, "%s:irq(%d)\n", __func__, irq); rtc_update_irq(info->rtc_dev, 1, RTC_IRQF | RTC_AF); return IRQ_HANDLED; } static const struct rtc_class_ops max77686_rtc_ops = { .read_time = max77686_rtc_read_time, .set_time = max77686_rtc_set_time, .read_alarm = max77686_rtc_read_alarm, .set_alarm = max77686_rtc_set_alarm, .alarm_irq_enable = max77686_rtc_alarm_irq_enable, }; #ifdef MAX77686_RTC_WTSR_SMPL static void max77686_rtc_enable_wtsr(struct max77686_rtc_info *info, bool enable) { int ret; unsigned int val, mask; if (enable) val = (1 << WTSR_EN_SHIFT) | (3 << WTSRT_SHIFT); else val = 0; mask = WTSR_EN_MASK | WTSRT_MASK; dev_info(info->dev, "%s: %s WTSR\n", __func__, enable ? "enable" : "disable"); ret = regmap_update_bits(info->max77686->rtc_regmap, MAX77686_WTSR_SMPL_CNTL, mask, val); if (ret < 0) { dev_err(info->dev, "%s: fail to update WTSR reg(%d)\n", __func__, ret); return; } max77686_rtc_update(info, MAX77686_RTC_WRITE); } static void max77686_rtc_enable_smpl(struct max77686_rtc_info *info, bool enable) { int ret; unsigned int val, mask; if (enable) val = (1 << SMPL_EN_SHIFT) | (0 << SMPLT_SHIFT); else val = 0; mask = SMPL_EN_MASK | SMPLT_MASK; dev_info(info->dev, "%s: %s SMPL\n", __func__, enable ? "enable" : "disable"); ret = regmap_update_bits(info->max77686->rtc_regmap, MAX77686_WTSR_SMPL_CNTL, mask, val); if (ret < 0) { dev_err(info->dev, "%s: fail to update SMPL reg(%d)\n", __func__, ret); return; } max77686_rtc_update(info, MAX77686_RTC_WRITE); val = 0; regmap_read(info->max77686->rtc_regmap, MAX77686_WTSR_SMPL_CNTL, &val); dev_info(info->dev, "%s: WTSR_SMPL(0x%02x)\n", __func__, val); } #endif /* MAX77686_RTC_WTSR_SMPL */ static int max77686_rtc_init_reg(struct max77686_rtc_info *info) { u8 data[2]; int ret; /* Set RTC control register : Binary mode, 24hour mdoe */ data[0] = (1 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); data[1] = (0 << BCD_EN_SHIFT) | (1 << MODEL24_SHIFT); info->rtc_24hr_mode = 1; ret = regmap_bulk_write(info->max77686->rtc_regmap, MAX77686_RTC_CONTROLM, data, 2); if (ret < 0) { dev_err(info->dev, "%s: fail to write controlm reg(%d)\n", __func__, ret); return ret; } ret = max77686_rtc_update(info, MAX77686_RTC_WRITE); return ret; } static struct regmap_config max77686_rtc_regmap_config = { .reg_bits = 8, .val_bits = 8, }; static int max77686_rtc_probe(struct platform_device *pdev) { struct max77686_dev *max77686 = dev_get_drvdata(pdev->dev.parent); struct max77686_rtc_info *info; int ret, virq; dev_info(&pdev->dev, "%s\n", __func__); info = devm_kzalloc(&pdev->dev, sizeof(struct max77686_rtc_info), GFP_KERNEL); if (!info) return -ENOMEM; mutex_init(&info->lock); info->dev = &pdev->dev; info->max77686 = max77686; info->rtc = max77686->rtc; info->max77686->rtc_regmap = devm_regmap_init_i2c(info->max77686->rtc, &max77686_rtc_regmap_config); if (IS_ERR(info->max77686->rtc_regmap)) { ret = PTR_ERR(info->max77686->rtc_regmap); dev_err(info->max77686->dev, "Failed to allocate register map: %d\n", ret); return ret; } platform_set_drvdata(pdev, info); ret = max77686_rtc_init_reg(info); if (ret < 0) { dev_err(&pdev->dev, "Failed to initialize RTC reg:%d\n", ret); goto err_rtc; } #ifdef MAX77686_RTC_WTSR_SMPL max77686_rtc_enable_wtsr(info, true); max77686_rtc_enable_smpl(info, true); #endif device_init_wakeup(&pdev->dev, 1); info->rtc_dev = devm_rtc_device_register(&pdev->dev, "max77686-rtc", &max77686_rtc_ops, THIS_MODULE); if (IS_ERR(info->rtc_dev)) { dev_info(&pdev->dev, "%s: fail\n", __func__); ret = PTR_ERR(info->rtc_dev); dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret); if (ret == 0) ret = -EINVAL; goto err_rtc; } virq = irq_create_mapping(max77686->irq_domain, MAX77686_RTCIRQ_RTCA1); if (!virq) { ret = -ENXIO; goto err_rtc; } info->virq = virq; ret = devm_request_threaded_irq(&pdev->dev, virq, NULL, max77686_rtc_alarm_irq, 0, "rtc-alarm0", info); if (ret < 0) dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n", info->virq, ret); err_rtc: return ret; } static int max77686_rtc_remove(struct platform_device *pdev) { return 0; } static void max77686_rtc_shutdown(struct platform_device *pdev) { #ifdef MAX77686_RTC_WTSR_SMPL struct max77686_rtc_info *info = platform_get_drvdata(pdev); int i; u8 val = 0; for (i = 0; i < 3; i++) { max77686_rtc_enable_wtsr(info, false); regmap_read(info->max77686->rtc_regmap, MAX77686_WTSR_SMPL_CNTL, &val); dev_info(info->dev, "%s: WTSR_SMPL reg(0x%02x)\n", __func__, val); if (val & WTSR_EN_MASK) { dev_emerg(info->dev, "%s: fail to disable WTSR\n", __func__); } else { dev_info(info->dev, "%s: success to disable WTSR\n", __func__); break; } } /* Disable SMPL when power off */ max77686_rtc_enable_smpl(info, false); #endif /* MAX77686_RTC_WTSR_SMPL */ } static const struct platform_device_id rtc_id[] = { { "max77686-rtc", 0 }, {}, }; static struct platform_driver max77686_rtc_driver = { .driver = { .name = "max77686-rtc", .owner = THIS_MODULE, }, .probe = max77686_rtc_probe, .remove = max77686_rtc_remove, .shutdown = max77686_rtc_shutdown, .id_table = rtc_id, }; module_platform_driver(max77686_rtc_driver); MODULE_DESCRIPTION("Maxim MAX77686 RTC driver"); MODULE_AUTHOR("Chiwoong Byun <woong.byun@samsung.com>"); MODULE_LICENSE("GPL");