/* * An rtc driver for the Dallas DS1553 * * Copyright (C) 2006 Atsushi Nemoto <anemo@mba.ocn.ne.jp> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/bcd.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/jiffies.h> #include <linux/interrupt.h> #include <linux/rtc.h> #include <linux/platform_device.h> #include <linux/io.h> #define DRV_VERSION "0.2" #define RTC_REG_SIZE 0x2000 #define RTC_OFFSET 0x1ff0 #define RTC_FLAGS (RTC_OFFSET + 0) #define RTC_SECONDS_ALARM (RTC_OFFSET + 2) #define RTC_MINUTES_ALARM (RTC_OFFSET + 3) #define RTC_HOURS_ALARM (RTC_OFFSET + 4) #define RTC_DATE_ALARM (RTC_OFFSET + 5) #define RTC_INTERRUPTS (RTC_OFFSET + 6) #define RTC_WATCHDOG (RTC_OFFSET + 7) #define RTC_CONTROL (RTC_OFFSET + 8) #define RTC_CENTURY (RTC_OFFSET + 8) #define RTC_SECONDS (RTC_OFFSET + 9) #define RTC_MINUTES (RTC_OFFSET + 10) #define RTC_HOURS (RTC_OFFSET + 11) #define RTC_DAY (RTC_OFFSET + 12) #define RTC_DATE (RTC_OFFSET + 13) #define RTC_MONTH (RTC_OFFSET + 14) #define RTC_YEAR (RTC_OFFSET + 15) #define RTC_CENTURY_MASK 0x3f #define RTC_SECONDS_MASK 0x7f #define RTC_DAY_MASK 0x07 /* Bits in the Control/Century register */ #define RTC_WRITE 0x80 #define RTC_READ 0x40 /* Bits in the Seconds register */ #define RTC_STOP 0x80 /* Bits in the Flags register */ #define RTC_FLAGS_AF 0x40 #define RTC_FLAGS_BLF 0x10 /* Bits in the Interrupts register */ #define RTC_INTS_AE 0x80 struct rtc_plat_data { struct rtc_device *rtc; void __iomem *ioaddr; unsigned long baseaddr; unsigned long last_jiffies; int irq; unsigned int irqen; int alrm_sec; int alrm_min; int alrm_hour; int alrm_mday; }; static int ds1553_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; u8 century; century = BIN2BCD((tm->tm_year + 1900) / 100); writeb(RTC_WRITE, pdata->ioaddr + RTC_CONTROL); writeb(BIN2BCD(tm->tm_year % 100), ioaddr + RTC_YEAR); writeb(BIN2BCD(tm->tm_mon + 1), ioaddr + RTC_MONTH); writeb(BIN2BCD(tm->tm_wday) & RTC_DAY_MASK, ioaddr + RTC_DAY); writeb(BIN2BCD(tm->tm_mday), ioaddr + RTC_DATE); writeb(BIN2BCD(tm->tm_hour), ioaddr + RTC_HOURS); writeb(BIN2BCD(tm->tm_min), ioaddr + RTC_MINUTES); writeb(BIN2BCD(tm->tm_sec) & RTC_SECONDS_MASK, ioaddr + RTC_SECONDS); /* RTC_CENTURY and RTC_CONTROL share same register */ writeb(RTC_WRITE | (century & RTC_CENTURY_MASK), ioaddr + RTC_CENTURY); writeb(century & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL); return 0; } static int ds1553_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; unsigned int year, month, day, hour, minute, second, week; unsigned int century; /* give enough time to update RTC in case of continuous read */ if (pdata->last_jiffies == jiffies) msleep(1); pdata->last_jiffies = jiffies; writeb(RTC_READ, ioaddr + RTC_CONTROL); second = readb(ioaddr + RTC_SECONDS) & RTC_SECONDS_MASK; minute = readb(ioaddr + RTC_MINUTES); hour = readb(ioaddr + RTC_HOURS); day = readb(ioaddr + RTC_DATE); week = readb(ioaddr + RTC_DAY) & RTC_DAY_MASK; month = readb(ioaddr + RTC_MONTH); year = readb(ioaddr + RTC_YEAR); century = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK; writeb(0, ioaddr + RTC_CONTROL); tm->tm_sec = BCD2BIN(second); tm->tm_min = BCD2BIN(minute); tm->tm_hour = BCD2BIN(hour); tm->tm_mday = BCD2BIN(day); tm->tm_wday = BCD2BIN(week); tm->tm_mon = BCD2BIN(month) - 1; /* year is 1900 + tm->tm_year */ tm->tm_year = BCD2BIN(year) + BCD2BIN(century) * 100 - 1900; if (rtc_valid_tm(tm) < 0) { dev_err(dev, "retrieved date/time is not valid.\n"); rtc_time_to_tm(0, tm); } return 0; } static void ds1553_rtc_update_alarm(struct rtc_plat_data *pdata) { void __iomem *ioaddr = pdata->ioaddr; unsigned long flags; spin_lock_irqsave(&pdata->rtc->irq_lock, flags); writeb(pdata->alrm_mday < 0 || (pdata->irqen & RTC_UF) ? 0x80 : BIN2BCD(pdata->alrm_mday), ioaddr + RTC_DATE_ALARM); writeb(pdata->alrm_hour < 0 || (pdata->irqen & RTC_UF) ? 0x80 : BIN2BCD(pdata->alrm_hour), ioaddr + RTC_HOURS_ALARM); writeb(pdata->alrm_min < 0 || (pdata->irqen & RTC_UF) ? 0x80 : BIN2BCD(pdata->alrm_min), ioaddr + RTC_MINUTES_ALARM); writeb(pdata->alrm_sec < 0 || (pdata->irqen & RTC_UF) ? 0x80 : BIN2BCD(pdata->alrm_sec), ioaddr + RTC_SECONDS_ALARM); writeb(pdata->irqen ? RTC_INTS_AE : 0, ioaddr + RTC_INTERRUPTS); readb(ioaddr + RTC_FLAGS); /* clear interrupts */ spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags); } static int ds1553_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); if (pdata->irq < 0) return -EINVAL; pdata->alrm_mday = alrm->time.tm_mday; pdata->alrm_hour = alrm->time.tm_hour; pdata->alrm_min = alrm->time.tm_min; pdata->alrm_sec = alrm->time.tm_sec; if (alrm->enabled) pdata->irqen |= RTC_AF; ds1553_rtc_update_alarm(pdata); return 0; } static int ds1553_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); if (pdata->irq < 0) return -EINVAL; alrm->time.tm_mday = pdata->alrm_mday < 0 ? 0 : pdata->alrm_mday; alrm->time.tm_hour = pdata->alrm_hour < 0 ? 0 : pdata->alrm_hour; alrm->time.tm_min = pdata->alrm_min < 0 ? 0 : pdata->alrm_min; alrm->time.tm_sec = pdata->alrm_sec < 0 ? 0 : pdata->alrm_sec; alrm->enabled = (pdata->irqen & RTC_AF) ? 1 : 0; return 0; } static irqreturn_t ds1553_rtc_interrupt(int irq, void *dev_id) { struct platform_device *pdev = dev_id; struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; unsigned long events = RTC_IRQF; /* read and clear interrupt */ if (!(readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_AF)) return IRQ_NONE; if (readb(ioaddr + RTC_SECONDS_ALARM) & 0x80) events |= RTC_UF; else events |= RTC_AF; rtc_update_irq(&pdata->rtc->class_dev, 1, events); return IRQ_HANDLED; } static void ds1553_rtc_release(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); if (pdata->irq >= 0) { pdata->irqen = 0; ds1553_rtc_update_alarm(pdata); } } static int ds1553_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct platform_device *pdev = to_platform_device(dev); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); if (pdata->irq < 0) return -ENOIOCTLCMD; /* fall back into rtc-dev's emulation */ switch (cmd) { case RTC_AIE_OFF: pdata->irqen &= ~RTC_AF; ds1553_rtc_update_alarm(pdata); break; case RTC_AIE_ON: pdata->irqen |= RTC_AF; ds1553_rtc_update_alarm(pdata); break; case RTC_UIE_OFF: pdata->irqen &= ~RTC_UF; ds1553_rtc_update_alarm(pdata); break; case RTC_UIE_ON: pdata->irqen |= RTC_UF; ds1553_rtc_update_alarm(pdata); break; default: return -ENOIOCTLCMD; } return 0; } static const struct rtc_class_ops ds1553_rtc_ops = { .read_time = ds1553_rtc_read_time, .set_time = ds1553_rtc_set_time, .read_alarm = ds1553_rtc_read_alarm, .set_alarm = ds1553_rtc_set_alarm, .release = ds1553_rtc_release, .ioctl = ds1553_rtc_ioctl, }; static ssize_t ds1553_nvram_read(struct kobject *kobj, char *buf, loff_t pos, size_t size) { struct platform_device *pdev = to_platform_device(container_of(kobj, struct device, kobj)); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; ssize_t count; for (count = 0; size > 0 && pos < RTC_OFFSET; count++, size--) *buf++ = readb(ioaddr + pos++); return count; } static ssize_t ds1553_nvram_write(struct kobject *kobj, char *buf, loff_t pos, size_t size) { struct platform_device *pdev = to_platform_device(container_of(kobj, struct device, kobj)); struct rtc_plat_data *pdata = platform_get_drvdata(pdev); void __iomem *ioaddr = pdata->ioaddr; ssize_t count; for (count = 0; size > 0 && pos < RTC_OFFSET; count++, size--) writeb(*buf++, ioaddr + pos++); return count; } static struct bin_attribute ds1553_nvram_attr = { .attr = { .name = "nvram", .mode = S_IRUGO | S_IWUGO, .owner = THIS_MODULE, }, .size = RTC_OFFSET, .read = ds1553_nvram_read, .write = ds1553_nvram_write, }; static int __devinit ds1553_rtc_probe(struct platform_device *pdev) { struct rtc_device *rtc; struct resource *res; unsigned int cen, sec; struct rtc_plat_data *pdata = NULL; void __iomem *ioaddr = NULL; int ret = 0; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdata->irq = -1; if (!request_mem_region(res->start, RTC_REG_SIZE, pdev->name)) { ret = -EBUSY; goto out; } pdata->baseaddr = res->start; ioaddr = ioremap(pdata->baseaddr, RTC_REG_SIZE); if (!ioaddr) { ret = -ENOMEM; goto out; } pdata->ioaddr = ioaddr; pdata->irq = platform_get_irq(pdev, 0); /* turn RTC on if it was not on */ sec = readb(ioaddr + RTC_SECONDS); if (sec & RTC_STOP) { sec &= RTC_SECONDS_MASK; cen = readb(ioaddr + RTC_CENTURY) & RTC_CENTURY_MASK; writeb(RTC_WRITE, ioaddr + RTC_CONTROL); writeb(sec, ioaddr + RTC_SECONDS); writeb(cen & RTC_CENTURY_MASK, ioaddr + RTC_CONTROL); } if (readb(ioaddr + RTC_FLAGS) & RTC_FLAGS_BLF) dev_warn(&pdev->dev, "voltage-low detected.\n"); if (pdata->irq >= 0) { writeb(0, ioaddr + RTC_INTERRUPTS); if (request_irq(pdata->irq, ds1553_rtc_interrupt, IRQF_DISABLED | IRQF_SHARED, pdev->name, pdev) < 0) { dev_warn(&pdev->dev, "interrupt not available.\n"); pdata->irq = -1; } } rtc = rtc_device_register(pdev->name, &pdev->dev, &ds1553_rtc_ops, THIS_MODULE); if (IS_ERR(rtc)) { ret = PTR_ERR(rtc); goto out; } pdata->rtc = rtc; pdata->last_jiffies = jiffies; platform_set_drvdata(pdev, pdata); ret = sysfs_create_bin_file(&pdev->dev.kobj, &ds1553_nvram_attr); if (ret) goto out; return 0; out: if (pdata->rtc) rtc_device_unregister(pdata->rtc); if (pdata->irq >= 0) free_irq(pdata->irq, pdev); if (ioaddr) iounmap(ioaddr); if (pdata->baseaddr) release_mem_region(pdata->baseaddr, RTC_REG_SIZE); kfree(pdata); return ret; } static int __devexit ds1553_rtc_remove(struct platform_device *pdev) { struct rtc_plat_data *pdata = platform_get_drvdata(pdev); sysfs_remove_bin_file(&pdev->dev.kobj, &ds1553_nvram_attr); rtc_device_unregister(pdata->rtc); if (pdata->irq >= 0) { writeb(0, pdata->ioaddr + RTC_INTERRUPTS); free_irq(pdata->irq, pdev); } iounmap(pdata->ioaddr); release_mem_region(pdata->baseaddr, RTC_REG_SIZE); kfree(pdata); return 0; } static struct platform_driver ds1553_rtc_driver = { .probe = ds1553_rtc_probe, .remove = __devexit_p(ds1553_rtc_remove), .driver = { .name = "ds1553", .owner = THIS_MODULE, }, }; static __init int ds1553_init(void) { return platform_driver_register(&ds1553_rtc_driver); } static __exit void ds1553_exit(void) { return platform_driver_unregister(&ds1553_rtc_driver); } module_init(ds1553_init); module_exit(ds1553_exit); MODULE_AUTHOR("Atsushi Nemoto <anemo@mba.ocn.ne.jp>"); MODULE_DESCRIPTION("Dallas DS1553 RTC driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION);