/* * pnpacpi -- PnP ACPI driver * * Copyright (c) 2004 Matthieu Castet * Copyright (c) 2004 Li Shaohua * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include "pnpacpi.h" #ifdef CONFIG_IA64 #define valid_IRQ(i) (1) #else #define valid_IRQ(i) (((i) != 0) && ((i) != 2)) #endif /* * Allocated Resources */ static int irq_flags(int triggering, int polarity) { if (triggering == ACPI_LEVEL_SENSITIVE) { if (polarity == ACPI_ACTIVE_LOW) return IORESOURCE_IRQ_LOWLEVEL; else return IORESOURCE_IRQ_HIGHLEVEL; } else { if (polarity == ACPI_ACTIVE_LOW) return IORESOURCE_IRQ_LOWEDGE; else return IORESOURCE_IRQ_HIGHEDGE; } } static void decode_irq_flags(int flag, int *triggering, int *polarity) { switch (flag) { case IORESOURCE_IRQ_LOWLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHLEVEL: *triggering = ACPI_LEVEL_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; case IORESOURCE_IRQ_LOWEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_LOW; break; case IORESOURCE_IRQ_HIGHEDGE: *triggering = ACPI_EDGE_SENSITIVE; *polarity = ACPI_ACTIVE_HIGH; break; } } static void pnpacpi_parse_allocated_irqresource(struct pnp_resource_table *res, u32 gsi, int triggering, int polarity, int shareable) { int i = 0; int irq; if (!valid_IRQ(gsi)) return; while (!(res->irq_resource[i].flags & IORESOURCE_UNSET) && i < PNP_MAX_IRQ) i++; if (i >= PNP_MAX_IRQ) return; res->irq_resource[i].flags = IORESOURCE_IRQ; // Also clears _UNSET flag res->irq_resource[i].flags |= irq_flags(triggering, polarity); irq = acpi_register_gsi(gsi, triggering, polarity); if (irq < 0) { res->irq_resource[i].flags |= IORESOURCE_DISABLED; return; } if (shareable) res->irq_resource[i].flags |= IORESOURCE_IRQ_SHAREABLE; res->irq_resource[i].start = irq; res->irq_resource[i].end = irq; pcibios_penalize_isa_irq(irq, 1); } static int dma_flags(int type, int bus_master, int transfer) { int flags = 0; if (bus_master) flags |= IORESOURCE_DMA_MASTER; switch (type) { case ACPI_COMPATIBILITY: flags |= IORESOURCE_DMA_COMPATIBLE; break; case ACPI_TYPE_A: flags |= IORESOURCE_DMA_TYPEA; break; case ACPI_TYPE_B: flags |= IORESOURCE_DMA_TYPEB; break; case ACPI_TYPE_F: flags |= IORESOURCE_DMA_TYPEF; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_COMPATIBLE; pnp_err("Invalid DMA type"); } switch (transfer) { case ACPI_TRANSFER_8: flags |= IORESOURCE_DMA_8BIT; break; case ACPI_TRANSFER_8_16: flags |= IORESOURCE_DMA_8AND16BIT; break; case ACPI_TRANSFER_16: flags |= IORESOURCE_DMA_16BIT; break; default: /* Set a default value ? */ flags |= IORESOURCE_DMA_8AND16BIT; pnp_err("Invalid DMA transfer type"); } return flags; } static void pnpacpi_parse_allocated_dmaresource(struct pnp_resource_table *res, u32 dma, int type, int bus_master, int transfer) { int i = 0; while (i < PNP_MAX_DMA && !(res->dma_resource[i].flags & IORESOURCE_UNSET)) i++; if (i < PNP_MAX_DMA) { res->dma_resource[i].flags = IORESOURCE_DMA; // Also clears _UNSET flag res->dma_resource[i].flags |= dma_flags(type, bus_master, transfer); if (dma == -1) { res->dma_resource[i].flags |= IORESOURCE_DISABLED; return; } res->dma_resource[i].start = dma; res->dma_resource[i].end = dma; } } static void pnpacpi_parse_allocated_ioresource(struct pnp_resource_table *res, u64 io, u64 len, int io_decode) { int i = 0; while (!(res->port_resource[i].flags & IORESOURCE_UNSET) && i < PNP_MAX_PORT) i++; if (i < PNP_MAX_PORT) { res->port_resource[i].flags = IORESOURCE_IO; // Also clears _UNSET flag if (io_decode == ACPI_DECODE_16) res->port_resource[i].flags |= PNP_PORT_FLAG_16BITADDR; if (len <= 0 || (io + len - 1) >= 0x10003) { res->port_resource[i].flags |= IORESOURCE_DISABLED; return; } res->port_resource[i].start = io; res->port_resource[i].end = io + len - 1; } } static void pnpacpi_parse_allocated_memresource(struct pnp_resource_table *res, u64 mem, u64 len, int write_protect) { int i = 0; while (!(res->mem_resource[i].flags & IORESOURCE_UNSET) && (i < PNP_MAX_MEM)) i++; if (i < PNP_MAX_MEM) { res->mem_resource[i].flags = IORESOURCE_MEM; // Also clears _UNSET flag if (len <= 0) { res->mem_resource[i].flags |= IORESOURCE_DISABLED; return; } if (write_protect == ACPI_READ_WRITE_MEMORY) res->mem_resource[i].flags |= IORESOURCE_MEM_WRITEABLE; res->mem_resource[i].start = mem; res->mem_resource[i].end = mem + len - 1; } } static void pnpacpi_parse_allocated_address_space(struct pnp_resource_table *res_table, struct acpi_resource *res) { struct acpi_resource_address64 addr, *p = &addr; acpi_status status; status = acpi_resource_to_address64(res, p); if (!ACPI_SUCCESS(status)) { pnp_warn("PnPACPI: failed to convert resource type %d", res->type); return; } if (p->producer_consumer == ACPI_PRODUCER) return; if (p->resource_type == ACPI_MEMORY_RANGE) pnpacpi_parse_allocated_memresource(res_table, p->minimum, p->address_length, p->info.mem.write_protect); else if (p->resource_type == ACPI_IO_RANGE) pnpacpi_parse_allocated_ioresource(res_table, p->minimum, p->address_length, p->granularity == 0xfff ? ACPI_DECODE_10 : ACPI_DECODE_16); } static acpi_status pnpacpi_allocated_resource(struct acpi_resource *res, void *data) { struct pnp_resource_table *res_table = (struct pnp_resource_table *)data; int i; switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: /* * Per spec, only one interrupt per descriptor is allowed in * _CRS, but some firmware violates this, so parse them all. */ for (i = 0; i < res->data.irq.interrupt_count; i++) { pnpacpi_parse_allocated_irqresource(res_table, res->data.irq.interrupts[i], res->data.irq.triggering, res->data.irq.polarity, res->data.irq.sharable); } break; case ACPI_RESOURCE_TYPE_DMA: if (res->data.dma.channel_count > 0) pnpacpi_parse_allocated_dmaresource(res_table, res->data.dma.channels[0], res->data.dma.type, res->data.dma.bus_master, res->data.dma.transfer); break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_parse_allocated_ioresource(res_table, res->data.io.minimum, res->data.io.address_length, res->data.io.io_decode); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_parse_allocated_ioresource(res_table, res->data.fixed_io.address, res->data.fixed_io.address_length, ACPI_DECODE_10); break; case ACPI_RESOURCE_TYPE_VENDOR: break; case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_parse_allocated_memresource(res_table, res->data.memory24.minimum, res->data.memory24.address_length, res->data.memory24.write_protect); break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_parse_allocated_memresource(res_table, res->data.memory32.minimum, res->data.memory32.address_length, res->data.memory32.write_protect); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_parse_allocated_memresource(res_table, res->data.fixed_memory32.address, res->data.fixed_memory32.address_length, res->data.fixed_memory32.write_protect); break; case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: pnpacpi_parse_allocated_address_space(res_table, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: if (res->data.ext_address64.producer_consumer == ACPI_PRODUCER) return AE_OK; break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: if (res->data.extended_irq.producer_consumer == ACPI_PRODUCER) return AE_OK; for (i = 0; i < res->data.extended_irq.interrupt_count; i++) { pnpacpi_parse_allocated_irqresource(res_table, res->data.extended_irq.interrupts[i], res->data.extended_irq.triggering, res->data.extended_irq.polarity, res->data.extended_irq.sharable); } break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; default: pnp_warn("PnPACPI: unknown resource type %d", res->type); return AE_ERROR; } return AE_OK; } acpi_status pnpacpi_parse_allocated_resource(acpi_handle handle, struct pnp_resource_table * res) { /* Blank the resource table values */ pnp_init_resource_table(res); return acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_allocated_resource, res); } static void pnpacpi_parse_dma_option(struct pnp_option *option, struct acpi_resource_dma *p) { int i; struct pnp_dma *dma; if (p->channel_count == 0) return; dma = kzalloc(sizeof(struct pnp_dma), GFP_KERNEL); if (!dma) return; for (i = 0; i < p->channel_count; i++) dma->map |= 1 << p->channels[i]; dma->flags = dma_flags(p->type, p->bus_master, p->transfer); pnp_register_dma_resource(option, dma); } static void pnpacpi_parse_irq_option(struct pnp_option *option, struct acpi_resource_irq *p) { int i; struct pnp_irq *irq; if (p->interrupt_count == 0) return; irq = kzalloc(sizeof(struct pnp_irq), GFP_KERNEL); if (!irq) return; for (i = 0; i < p->interrupt_count; i++) if (p->interrupts[i]) __set_bit(p->interrupts[i], irq->map); irq->flags = irq_flags(p->triggering, p->polarity); pnp_register_irq_resource(option, irq); } static void pnpacpi_parse_ext_irq_option(struct pnp_option *option, struct acpi_resource_extended_irq *p) { int i; struct pnp_irq *irq; if (p->interrupt_count == 0) return; irq = kzalloc(sizeof(struct pnp_irq), GFP_KERNEL); if (!irq) return; for (i = 0; i < p->interrupt_count; i++) if (p->interrupts[i]) __set_bit(p->interrupts[i], irq->map); irq->flags = irq_flags(p->triggering, p->polarity); pnp_register_irq_resource(option, irq); } static void pnpacpi_parse_port_option(struct pnp_option *option, struct acpi_resource_io *io) { struct pnp_port *port; if (io->address_length == 0) return; port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL); if (!port) return; port->min = io->minimum; port->max = io->maximum; port->align = io->alignment; port->size = io->address_length; port->flags = ACPI_DECODE_16 == io->io_decode ? PNP_PORT_FLAG_16BITADDR : 0; pnp_register_port_resource(option, port); } static void pnpacpi_parse_fixed_port_option(struct pnp_option *option, struct acpi_resource_fixed_io *io) { struct pnp_port *port; if (io->address_length == 0) return; port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL); if (!port) return; port->min = port->max = io->address; port->size = io->address_length; port->align = 0; port->flags = PNP_PORT_FLAG_FIXED; pnp_register_port_resource(option, port); } static void pnpacpi_parse_mem24_option(struct pnp_option *option, struct acpi_resource_memory24 *p) { struct pnp_mem *mem; if (p->address_length == 0) return; mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL); if (!mem) return; mem->min = p->minimum; mem->max = p->maximum; mem->align = p->alignment; mem->size = p->address_length; mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ? IORESOURCE_MEM_WRITEABLE : 0; pnp_register_mem_resource(option, mem); } static void pnpacpi_parse_mem32_option(struct pnp_option *option, struct acpi_resource_memory32 *p) { struct pnp_mem *mem; if (p->address_length == 0) return; mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL); if (!mem) return; mem->min = p->minimum; mem->max = p->maximum; mem->align = p->alignment; mem->size = p->address_length; mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ? IORESOURCE_MEM_WRITEABLE : 0; pnp_register_mem_resource(option, mem); } static void pnpacpi_parse_fixed_mem32_option(struct pnp_option *option, struct acpi_resource_fixed_memory32 *p) { struct pnp_mem *mem; if (p->address_length == 0) return; mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL); if (!mem) return; mem->min = mem->max = p->address; mem->size = p->address_length; mem->align = 0; mem->flags = (ACPI_READ_WRITE_MEMORY == p->write_protect) ? IORESOURCE_MEM_WRITEABLE : 0; pnp_register_mem_resource(option, mem); } static void pnpacpi_parse_address_option(struct pnp_option *option, struct acpi_resource *r) { struct acpi_resource_address64 addr, *p = &addr; acpi_status status; struct pnp_mem *mem; struct pnp_port *port; status = acpi_resource_to_address64(r, p); if (!ACPI_SUCCESS(status)) { pnp_warn("PnPACPI: failed to convert resource type %d", r->type); return; } if (p->address_length == 0) return; if (p->resource_type == ACPI_MEMORY_RANGE) { mem = kzalloc(sizeof(struct pnp_mem), GFP_KERNEL); if (!mem) return; mem->min = mem->max = p->minimum; mem->size = p->address_length; mem->align = 0; mem->flags = (p->info.mem.write_protect == ACPI_READ_WRITE_MEMORY) ? IORESOURCE_MEM_WRITEABLE : 0; pnp_register_mem_resource(option, mem); } else if (p->resource_type == ACPI_IO_RANGE) { port = kzalloc(sizeof(struct pnp_port), GFP_KERNEL); if (!port) return; port->min = port->max = p->minimum; port->size = p->address_length; port->align = 0; port->flags = PNP_PORT_FLAG_FIXED; pnp_register_port_resource(option, port); } } struct acpipnp_parse_option_s { struct pnp_option *option; struct pnp_option *option_independent; struct pnp_dev *dev; }; static acpi_status pnpacpi_option_resource(struct acpi_resource *res, void *data) { int priority = 0; struct acpipnp_parse_option_s *parse_data = (struct acpipnp_parse_option_s *)data; struct pnp_dev *dev = parse_data->dev; struct pnp_option *option = parse_data->option; switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: pnpacpi_parse_irq_option(option, &res->data.irq); break; case ACPI_RESOURCE_TYPE_DMA: pnpacpi_parse_dma_option(option, &res->data.dma); break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: switch (res->data.start_dpf.compatibility_priority) { case ACPI_GOOD_CONFIGURATION: priority = PNP_RES_PRIORITY_PREFERRED; break; case ACPI_ACCEPTABLE_CONFIGURATION: priority = PNP_RES_PRIORITY_ACCEPTABLE; break; case ACPI_SUB_OPTIMAL_CONFIGURATION: priority = PNP_RES_PRIORITY_FUNCTIONAL; break; default: priority = PNP_RES_PRIORITY_INVALID; break; } /* TBD: Consider performance/robustness bits */ option = pnp_register_dependent_option(dev, priority); if (!option) return AE_ERROR; parse_data->option = option; break; case ACPI_RESOURCE_TYPE_END_DEPENDENT: /*only one EndDependentFn is allowed */ if (!parse_data->option_independent) { pnp_warn("PnPACPI: more than one EndDependentFn"); return AE_ERROR; } parse_data->option = parse_data->option_independent; parse_data->option_independent = NULL; break; case ACPI_RESOURCE_TYPE_IO: pnpacpi_parse_port_option(option, &res->data.io); break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnpacpi_parse_fixed_port_option(option, &res->data.fixed_io); break; case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: break; case ACPI_RESOURCE_TYPE_MEMORY24: pnpacpi_parse_mem24_option(option, &res->data.memory24); break; case ACPI_RESOURCE_TYPE_MEMORY32: pnpacpi_parse_mem32_option(option, &res->data.memory32); break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnpacpi_parse_fixed_mem32_option(option, &res->data.fixed_memory32); break; case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: pnpacpi_parse_address_option(option, res); break; case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnpacpi_parse_ext_irq_option(option, &res->data.extended_irq); break; case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: break; default: pnp_warn("PnPACPI: unknown resource type %d", res->type); return AE_ERROR; } return AE_OK; } acpi_status pnpacpi_parse_resource_option_data(acpi_handle handle, struct pnp_dev * dev) { acpi_status status; struct acpipnp_parse_option_s parse_data; parse_data.option = pnp_register_independent_option(dev); if (!parse_data.option) return AE_ERROR; parse_data.option_independent = parse_data.option; parse_data.dev = dev; status = acpi_walk_resources(handle, METHOD_NAME__PRS, pnpacpi_option_resource, &parse_data); return status; } static int pnpacpi_supported_resource(struct acpi_resource *res) { switch (res->type) { case ACPI_RESOURCE_TYPE_IRQ: case ACPI_RESOURCE_TYPE_DMA: case ACPI_RESOURCE_TYPE_IO: case ACPI_RESOURCE_TYPE_FIXED_IO: case ACPI_RESOURCE_TYPE_MEMORY24: case ACPI_RESOURCE_TYPE_MEMORY32: case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: return 1; } return 0; } /* * Set resource */ static acpi_status pnpacpi_count_resources(struct acpi_resource *res, void *data) { int *res_cnt = (int *)data; if (pnpacpi_supported_resource(res)) (*res_cnt)++; return AE_OK; } static acpi_status pnpacpi_type_resources(struct acpi_resource *res, void *data) { struct acpi_resource **resource = (struct acpi_resource **)data; if (pnpacpi_supported_resource(res)) { (*resource)->type = res->type; (*resource)->length = sizeof(struct acpi_resource); (*resource)++; } return AE_OK; } int pnpacpi_build_resource_template(acpi_handle handle, struct acpi_buffer *buffer) { struct acpi_resource *resource; int res_cnt = 0; acpi_status status; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_count_resources, &res_cnt); if (ACPI_FAILURE(status)) { pnp_err("Evaluate _CRS failed"); return -EINVAL; } if (!res_cnt) return -EINVAL; buffer->length = sizeof(struct acpi_resource) * (res_cnt + 1) + 1; buffer->pointer = kzalloc(buffer->length - 1, GFP_KERNEL); if (!buffer->pointer) return -ENOMEM; pnp_dbg("Res cnt %d", res_cnt); resource = (struct acpi_resource *)buffer->pointer; status = acpi_walk_resources(handle, METHOD_NAME__CRS, pnpacpi_type_resources, &resource); if (ACPI_FAILURE(status)) { kfree(buffer->pointer); pnp_err("Evaluate _CRS failed"); return -EINVAL; } /* resource will pointer the end resource now */ resource->type = ACPI_RESOURCE_TYPE_END_TAG; return 0; } static void pnpacpi_encode_irq(struct acpi_resource *resource, struct resource *p) { int triggering, polarity; decode_irq_flags(p->flags & IORESOURCE_BITS, &triggering, &polarity); resource->data.irq.triggering = triggering; resource->data.irq.polarity = polarity; if (triggering == ACPI_EDGE_SENSITIVE) resource->data.irq.sharable = ACPI_EXCLUSIVE; else resource->data.irq.sharable = ACPI_SHARED; resource->data.irq.interrupt_count = 1; resource->data.irq.interrupts[0] = p->start; } static void pnpacpi_encode_ext_irq(struct acpi_resource *resource, struct resource *p) { int triggering, polarity; decode_irq_flags(p->flags & IORESOURCE_BITS, &triggering, &polarity); resource->data.extended_irq.producer_consumer = ACPI_CONSUMER; resource->data.extended_irq.triggering = triggering; resource->data.extended_irq.polarity = polarity; if (triggering == ACPI_EDGE_SENSITIVE) resource->data.irq.sharable = ACPI_EXCLUSIVE; else resource->data.irq.sharable = ACPI_SHARED; resource->data.extended_irq.interrupt_count = 1; resource->data.extended_irq.interrupts[0] = p->start; } static void pnpacpi_encode_dma(struct acpi_resource *resource, struct resource *p) { /* Note: pnp_assign_dma will copy pnp_dma->flags into p->flags */ switch (p->flags & IORESOURCE_DMA_SPEED_MASK) { case IORESOURCE_DMA_TYPEA: resource->data.dma.type = ACPI_TYPE_A; break; case IORESOURCE_DMA_TYPEB: resource->data.dma.type = ACPI_TYPE_B; break; case IORESOURCE_DMA_TYPEF: resource->data.dma.type = ACPI_TYPE_F; break; default: resource->data.dma.type = ACPI_COMPATIBILITY; } switch (p->flags & IORESOURCE_DMA_TYPE_MASK) { case IORESOURCE_DMA_8BIT: resource->data.dma.transfer = ACPI_TRANSFER_8; break; case IORESOURCE_DMA_8AND16BIT: resource->data.dma.transfer = ACPI_TRANSFER_8_16; break; default: resource->data.dma.transfer = ACPI_TRANSFER_16; } resource->data.dma.bus_master = !!(p->flags & IORESOURCE_DMA_MASTER); resource->data.dma.channel_count = 1; resource->data.dma.channels[0] = p->start; } static void pnpacpi_encode_io(struct acpi_resource *resource, struct resource *p) { /* Note: pnp_assign_port will copy pnp_port->flags into p->flags */ resource->data.io.io_decode = (p->flags & PNP_PORT_FLAG_16BITADDR) ? ACPI_DECODE_16 : ACPI_DECODE_10; resource->data.io.minimum = p->start; resource->data.io.maximum = p->end; resource->data.io.alignment = 0; /* Correct? */ resource->data.io.address_length = p->end - p->start + 1; } static void pnpacpi_encode_fixed_io(struct acpi_resource *resource, struct resource *p) { resource->data.fixed_io.address = p->start; resource->data.fixed_io.address_length = p->end - p->start + 1; } static void pnpacpi_encode_mem24(struct acpi_resource *resource, struct resource *p) { /* Note: pnp_assign_mem will copy pnp_mem->flags into p->flags */ resource->data.memory24.write_protect = (p->flags & IORESOURCE_MEM_WRITEABLE) ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; resource->data.memory24.minimum = p->start; resource->data.memory24.maximum = p->end; resource->data.memory24.alignment = 0; resource->data.memory24.address_length = p->end - p->start + 1; } static void pnpacpi_encode_mem32(struct acpi_resource *resource, struct resource *p) { resource->data.memory32.write_protect = (p->flags & IORESOURCE_MEM_WRITEABLE) ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; resource->data.memory32.minimum = p->start; resource->data.memory32.maximum = p->end; resource->data.memory32.alignment = 0; resource->data.memory32.address_length = p->end - p->start + 1; } static void pnpacpi_encode_fixed_mem32(struct acpi_resource *resource, struct resource *p) { resource->data.fixed_memory32.write_protect = (p->flags & IORESOURCE_MEM_WRITEABLE) ? ACPI_READ_WRITE_MEMORY : ACPI_READ_ONLY_MEMORY; resource->data.fixed_memory32.address = p->start; resource->data.fixed_memory32.address_length = p->end - p->start + 1; } int pnpacpi_encode_resources(struct pnp_resource_table *res_table, struct acpi_buffer *buffer) { int i = 0; /* pnpacpi_build_resource_template allocates extra mem */ int res_cnt = (buffer->length - 1) / sizeof(struct acpi_resource) - 1; struct acpi_resource *resource = (struct acpi_resource *)buffer->pointer; int port = 0, irq = 0, dma = 0, mem = 0; pnp_dbg("res cnt %d", res_cnt); while (i < res_cnt) { switch (resource->type) { case ACPI_RESOURCE_TYPE_IRQ: pnp_dbg("Encode irq"); pnpacpi_encode_irq(resource, &res_table->irq_resource[irq]); irq++; break; case ACPI_RESOURCE_TYPE_DMA: pnp_dbg("Encode dma"); pnpacpi_encode_dma(resource, &res_table->dma_resource[dma]); dma++; break; case ACPI_RESOURCE_TYPE_IO: pnp_dbg("Encode io"); pnpacpi_encode_io(resource, &res_table->port_resource[port]); port++; break; case ACPI_RESOURCE_TYPE_FIXED_IO: pnp_dbg("Encode fixed io"); pnpacpi_encode_fixed_io(resource, &res_table-> port_resource[port]); port++; break; case ACPI_RESOURCE_TYPE_MEMORY24: pnp_dbg("Encode mem24"); pnpacpi_encode_mem24(resource, &res_table->mem_resource[mem]); mem++; break; case ACPI_RESOURCE_TYPE_MEMORY32: pnp_dbg("Encode mem32"); pnpacpi_encode_mem32(resource, &res_table->mem_resource[mem]); mem++; break; case ACPI_RESOURCE_TYPE_FIXED_MEMORY32: pnp_dbg("Encode fixed mem32"); pnpacpi_encode_fixed_mem32(resource, &res_table-> mem_resource[mem]); mem++; break; case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: pnp_dbg("Encode ext irq"); pnpacpi_encode_ext_irq(resource, &res_table->irq_resource[irq]); irq++; break; case ACPI_RESOURCE_TYPE_START_DEPENDENT: case ACPI_RESOURCE_TYPE_END_DEPENDENT: case ACPI_RESOURCE_TYPE_VENDOR: case ACPI_RESOURCE_TYPE_END_TAG: case ACPI_RESOURCE_TYPE_ADDRESS16: case ACPI_RESOURCE_TYPE_ADDRESS32: case ACPI_RESOURCE_TYPE_ADDRESS64: case ACPI_RESOURCE_TYPE_EXTENDED_ADDRESS64: case ACPI_RESOURCE_TYPE_GENERIC_REGISTER: default: /* other type */ pnp_warn("unknown resource type %d", resource->type); return -EINVAL; } resource++; i++; } return 0; }