/* * probe.c - PCI detection and setup code */ #include <linux/kernel.h> #include <linux/delay.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/cpumask.h> #include "pci.h" #define CARDBUS_LATENCY_TIMER 176 /* secondary latency timer */ #define CARDBUS_RESERVE_BUSNR 3 #define PCI_CFG_SPACE_SIZE 256 #define PCI_CFG_SPACE_EXP_SIZE 4096 /* Ugh. Need to stop exporting this to modules. */ LIST_HEAD(pci_root_buses); EXPORT_SYMBOL(pci_root_buses); LIST_HEAD(pci_devices); /* * Some device drivers need know if pci is initiated. * Basically, we think pci is not initiated when there * is no device in list of pci_devices. */ int no_pci_devices(void) { return list_empty(&pci_devices); } EXPORT_SYMBOL(no_pci_devices); #ifdef HAVE_PCI_LEGACY /** * pci_create_legacy_files - create legacy I/O port and memory files * @b: bus to create files under * * Some platforms allow access to legacy I/O port and ISA memory space on * a per-bus basis. This routine creates the files and ties them into * their associated read, write and mmap files from pci-sysfs.c */ static void pci_create_legacy_files(struct pci_bus *b) { b->legacy_io = kzalloc(sizeof(struct bin_attribute) * 2, GFP_ATOMIC); if (b->legacy_io) { b->legacy_io->attr.name = "legacy_io"; b->legacy_io->size = 0xffff; b->legacy_io->attr.mode = S_IRUSR | S_IWUSR; b->legacy_io->read = pci_read_legacy_io; b->legacy_io->write = pci_write_legacy_io; class_device_create_bin_file(&b->class_dev, b->legacy_io); /* Allocated above after the legacy_io struct */ b->legacy_mem = b->legacy_io + 1; b->legacy_mem->attr.name = "legacy_mem"; b->legacy_mem->size = 1024*1024; b->legacy_mem->attr.mode = S_IRUSR | S_IWUSR; b->legacy_mem->mmap = pci_mmap_legacy_mem; class_device_create_bin_file(&b->class_dev, b->legacy_mem); } } void pci_remove_legacy_files(struct pci_bus *b) { if (b->legacy_io) { class_device_remove_bin_file(&b->class_dev, b->legacy_io); class_device_remove_bin_file(&b->class_dev, b->legacy_mem); kfree(b->legacy_io); /* both are allocated here */ } } #else /* !HAVE_PCI_LEGACY */ static inline void pci_create_legacy_files(struct pci_bus *bus) { return; } void pci_remove_legacy_files(struct pci_bus *bus) { return; } #endif /* HAVE_PCI_LEGACY */ /* * PCI Bus Class Devices */ static ssize_t pci_bus_show_cpuaffinity(struct class_device *class_dev, char *buf) { int ret; cpumask_t cpumask; cpumask = pcibus_to_cpumask(to_pci_bus(class_dev)); ret = cpumask_scnprintf(buf, PAGE_SIZE, cpumask); if (ret < PAGE_SIZE) buf[ret++] = '\n'; return ret; } CLASS_DEVICE_ATTR(cpuaffinity, S_IRUGO, pci_bus_show_cpuaffinity, NULL); /* * PCI Bus Class */ static void release_pcibus_dev(struct class_device *class_dev) { struct pci_bus *pci_bus = to_pci_bus(class_dev); if (pci_bus->bridge) put_device(pci_bus->bridge); kfree(pci_bus); } static struct class pcibus_class = { .name = "pci_bus", .release = &release_pcibus_dev, }; static int __init pcibus_class_init(void) { return class_register(&pcibus_class); } postcore_initcall(pcibus_class_init); /* * Translate the low bits of the PCI base * to the resource type */ static inline unsigned int pci_calc_resource_flags(unsigned int flags) { if (flags & PCI_BASE_ADDRESS_SPACE_IO) return IORESOURCE_IO; if (flags & PCI_BASE_ADDRESS_MEM_PREFETCH) return IORESOURCE_MEM | IORESOURCE_PREFETCH; return IORESOURCE_MEM; } /* * Find the extent of a PCI decode.. */ static u32 pci_size(u32 base, u32 maxbase, u32 mask) { u32 size = mask & maxbase; /* Find the significant bits */ if (!size) return 0; /* Get the lowest of them to find the decode size, and from that the extent. */ size = (size & ~(size-1)) - 1; /* base == maxbase can be valid only if the BAR has already been programmed with all 1s. */ if (base == maxbase && ((base | size) & mask) != mask) return 0; return size; } static u64 pci_size64(u64 base, u64 maxbase, u64 mask) { u64 size = mask & maxbase; /* Find the significant bits */ if (!size) return 0; /* Get the lowest of them to find the decode size, and from that the extent. */ size = (size & ~(size-1)) - 1; /* base == maxbase can be valid only if the BAR has already been programmed with all 1s. */ if (base == maxbase && ((base | size) & mask) != mask) return 0; return size; } static inline int is_64bit_memory(u32 mask) { if ((mask & (PCI_BASE_ADDRESS_SPACE|PCI_BASE_ADDRESS_MEM_TYPE_MASK)) == (PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64)) return 1; return 0; } static void pci_read_bases(struct pci_dev *dev, unsigned int howmany, int rom) { unsigned int pos, reg, next; u32 l, sz; struct resource *res; for(pos=0; pos<howmany; pos = next) { u64 l64; u64 sz64; u32 raw_sz; next = pos+1; res = &dev->resource[pos]; res->name = pci_name(dev); reg = PCI_BASE_ADDRESS_0 + (pos << 2); pci_read_config_dword(dev, reg, &l); pci_write_config_dword(dev, reg, ~0); pci_read_config_dword(dev, reg, &sz); pci_write_config_dword(dev, reg, l); if (!sz || sz == 0xffffffff) continue; if (l == 0xffffffff) l = 0; raw_sz = sz; if ((l & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_MEMORY) { sz = pci_size(l, sz, (u32)PCI_BASE_ADDRESS_MEM_MASK); /* * For 64bit prefetchable memory sz could be 0, if the * real size is bigger than 4G, so we need to check * szhi for that. */ if (!is_64bit_memory(l) && !sz) continue; res->start = l & PCI_BASE_ADDRESS_MEM_MASK; res->flags |= l & ~PCI_BASE_ADDRESS_MEM_MASK; } else { sz = pci_size(l, sz, PCI_BASE_ADDRESS_IO_MASK & 0xffff); if (!sz) continue; res->start = l & PCI_BASE_ADDRESS_IO_MASK; res->flags |= l & ~PCI_BASE_ADDRESS_IO_MASK; } res->end = res->start + (unsigned long) sz; res->flags |= pci_calc_resource_flags(l); if (is_64bit_memory(l)) { u32 szhi, lhi; pci_read_config_dword(dev, reg+4, &lhi); pci_write_config_dword(dev, reg+4, ~0); pci_read_config_dword(dev, reg+4, &szhi); pci_write_config_dword(dev, reg+4, lhi); sz64 = ((u64)szhi << 32) | raw_sz; l64 = ((u64)lhi << 32) | l; sz64 = pci_size64(l64, sz64, PCI_BASE_ADDRESS_MEM_MASK); next++; #if BITS_PER_LONG == 64 if (!sz64) { res->start = 0; res->end = 0; res->flags = 0; continue; } res->start = l64 & PCI_BASE_ADDRESS_MEM_MASK; res->end = res->start + sz64; #else if (sz64 > 0x100000000ULL) { printk(KERN_ERR "PCI: Unable to handle 64-bit " "BAR for device %s\n", pci_name(dev)); res->start = 0; res->flags = 0; } else if (lhi) { /* 64-bit wide address, treat as disabled */ pci_write_config_dword(dev, reg, l & ~(u32)PCI_BASE_ADDRESS_MEM_MASK); pci_write_config_dword(dev, reg+4, 0); res->start = 0; res->end = sz; } #endif } } if (rom) { dev->rom_base_reg = rom; res = &dev->resource[PCI_ROM_RESOURCE]; res->name = pci_name(dev); pci_read_config_dword(dev, rom, &l); pci_write_config_dword(dev, rom, ~PCI_ROM_ADDRESS_ENABLE); pci_read_config_dword(dev, rom, &sz); pci_write_config_dword(dev, rom, l); if (l == 0xffffffff) l = 0; if (sz && sz != 0xffffffff) { sz = pci_size(l, sz, (u32)PCI_ROM_ADDRESS_MASK); if (sz) { res->flags = (l & IORESOURCE_ROM_ENABLE) | IORESOURCE_MEM | IORESOURCE_PREFETCH | IORESOURCE_READONLY | IORESOURCE_CACHEABLE; res->start = l & PCI_ROM_ADDRESS_MASK; res->end = res->start + (unsigned long) sz; } } } } void pci_read_bridge_bases(struct pci_bus *child) { struct pci_dev *dev = child->self; u8 io_base_lo, io_limit_lo; u16 mem_base_lo, mem_limit_lo; unsigned long base, limit; struct resource *res; int i; if (!dev) /* It's a host bus, nothing to read */ return; if (dev->transparent) { printk(KERN_INFO "PCI: Transparent bridge - %s\n", pci_name(dev)); for(i = 3; i < PCI_BUS_NUM_RESOURCES; i++) child->resource[i] = child->parent->resource[i - 3]; } for(i=0; i<3; i++) child->resource[i] = &dev->resource[PCI_BRIDGE_RESOURCES+i]; res = child->resource[0]; pci_read_config_byte(dev, PCI_IO_BASE, &io_base_lo); pci_read_config_byte(dev, PCI_IO_LIMIT, &io_limit_lo); base = (io_base_lo & PCI_IO_RANGE_MASK) << 8; limit = (io_limit_lo & PCI_IO_RANGE_MASK) << 8; if ((io_base_lo & PCI_IO_RANGE_TYPE_MASK) == PCI_IO_RANGE_TYPE_32) { u16 io_base_hi, io_limit_hi; pci_read_config_word(dev, PCI_IO_BASE_UPPER16, &io_base_hi); pci_read_config_word(dev, PCI_IO_LIMIT_UPPER16, &io_limit_hi); base |= (io_base_hi << 16); limit |= (io_limit_hi << 16); } if (base <= limit) { res->flags = (io_base_lo & PCI_IO_RANGE_TYPE_MASK) | IORESOURCE_IO; if (!res->start) res->start = base; if (!res->end) res->end = limit + 0xfff; } res = child->resource[1]; pci_read_config_word(dev, PCI_MEMORY_BASE, &mem_base_lo); pci_read_config_word(dev, PCI_MEMORY_LIMIT, &mem_limit_lo); base = (mem_base_lo & PCI_MEMORY_RANGE_MASK) << 16; limit = (mem_limit_lo & PCI_MEMORY_RANGE_MASK) << 16; if (base <= limit) { res->flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM; res->start = base; res->end = limit + 0xfffff; } res = child->resource[2]; pci_read_config_word(dev, PCI_PREF_MEMORY_BASE, &mem_base_lo); pci_read_config_word(dev, PCI_PREF_MEMORY_LIMIT, &mem_limit_lo); base = (mem_base_lo & PCI_PREF_RANGE_MASK) << 16; limit = (mem_limit_lo & PCI_PREF_RANGE_MASK) << 16; if ((mem_base_lo & PCI_PREF_RANGE_TYPE_MASK) == PCI_PREF_RANGE_TYPE_64) { u32 mem_base_hi, mem_limit_hi; pci_read_config_dword(dev, PCI_PREF_BASE_UPPER32, &mem_base_hi); pci_read_config_dword(dev, PCI_PREF_LIMIT_UPPER32, &mem_limit_hi); /* * Some bridges set the base > limit by default, and some * (broken) BIOSes do not initialize them. If we find * this, just assume they are not being used. */ if (mem_base_hi <= mem_limit_hi) { #if BITS_PER_LONG == 64 base |= ((long) mem_base_hi) << 32; limit |= ((long) mem_limit_hi) << 32; #else if (mem_base_hi || mem_limit_hi) { printk(KERN_ERR "PCI: Unable to handle 64-bit address space for bridge %s\n", pci_name(dev)); return; } #endif } } if (base <= limit) { res->flags = (mem_base_lo & PCI_MEMORY_RANGE_TYPE_MASK) | IORESOURCE_MEM | IORESOURCE_PREFETCH; res->start = base; res->end = limit + 0xfffff; } } static struct pci_bus * pci_alloc_bus(void) { struct pci_bus *b; b = kzalloc(sizeof(*b), GFP_KERNEL); if (b) { INIT_LIST_HEAD(&b->node); INIT_LIST_HEAD(&b->children); INIT_LIST_HEAD(&b->devices); } return b; } static struct pci_bus * __devinit pci_alloc_child_bus(struct pci_bus *parent, struct pci_dev *bridge, int busnr) { struct pci_bus *child; int i; int retval; /* * Allocate a new bus, and inherit stuff from the parent.. */ child = pci_alloc_bus(); if (!child) return NULL; child->self = bridge; child->parent = parent; child->ops = parent->ops; child->sysdata = parent->sysdata; child->bus_flags = parent->bus_flags; child->bridge = get_device(&bridge->dev); child->class_dev.class = &pcibus_class; sprintf(child->class_dev.class_id, "%04x:%02x", pci_domain_nr(child), busnr); retval = class_device_register(&child->class_dev); if (retval) goto error_register; retval = class_device_create_file(&child->class_dev, &class_device_attr_cpuaffinity); if (retval) goto error_file_create; /* * Set up the primary, secondary and subordinate * bus numbers. */ child->number = child->secondary = busnr; child->primary = parent->secondary; child->subordinate = 0xff; /* Set up default resource pointers and names.. */ for (i = 0; i < 4; i++) { child->resource[i] = &bridge->resource[PCI_BRIDGE_RESOURCES+i]; child->resource[i]->name = child->name; } bridge->subordinate = child; return child; error_file_create: class_device_unregister(&child->class_dev); error_register: kfree(child); return NULL; } struct pci_bus *pci_add_new_bus(struct pci_bus *parent, struct pci_dev *dev, int busnr) { struct pci_bus *child; child = pci_alloc_child_bus(parent, dev, busnr); if (child) { down_write(&pci_bus_sem); list_add_tail(&child->node, &parent->children); up_write(&pci_bus_sem); } return child; } static void pci_enable_crs(struct pci_dev *dev) { u16 cap, rpctl; int rpcap = pci_find_capability(dev, PCI_CAP_ID_EXP); if (!rpcap) return; pci_read_config_word(dev, rpcap + PCI_CAP_FLAGS, &cap); if (((cap & PCI_EXP_FLAGS_TYPE) >> 4) != PCI_EXP_TYPE_ROOT_PORT) return; pci_read_config_word(dev, rpcap + PCI_EXP_RTCTL, &rpctl); rpctl |= PCI_EXP_RTCTL_CRSSVE; pci_write_config_word(dev, rpcap + PCI_EXP_RTCTL, rpctl); } static void pci_fixup_parent_subordinate_busnr(struct pci_bus *child, int max) { struct pci_bus *parent = child->parent; /* Attempts to fix that up are really dangerous unless we're going to re-assign all bus numbers. */ if (!pcibios_assign_all_busses()) return; while (parent->parent && parent->subordinate < max) { parent->subordinate = max; pci_write_config_byte(parent->self, PCI_SUBORDINATE_BUS, max); parent = parent->parent; } } unsigned int pci_scan_child_bus(struct pci_bus *bus); /* * If it's a bridge, configure it and scan the bus behind it. * For CardBus bridges, we don't scan behind as the devices will * be handled by the bridge driver itself. * * We need to process bridges in two passes -- first we scan those * already configured by the BIOS and after we are done with all of * them, we proceed to assigning numbers to the remaining buses in * order to avoid overlaps between old and new bus numbers. */ int pci_scan_bridge(struct pci_bus *bus, struct pci_dev * dev, int max, int pass) { struct pci_bus *child; int is_cardbus = (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS); u32 buses, i, j = 0; u16 bctl; pci_read_config_dword(dev, PCI_PRIMARY_BUS, &buses); pr_debug("PCI: Scanning behind PCI bridge %s, config %06x, pass %d\n", pci_name(dev), buses & 0xffffff, pass); /* Disable MasterAbortMode during probing to avoid reporting of bus errors (in some architectures) */ pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &bctl); pci_write_config_word(dev, PCI_BRIDGE_CONTROL, bctl & ~PCI_BRIDGE_CTL_MASTER_ABORT); pci_enable_crs(dev); if ((buses & 0xffff00) && !pcibios_assign_all_busses() && !is_cardbus) { unsigned int cmax, busnr; /* * Bus already configured by firmware, process it in the first * pass and just note the configuration. */ if (pass) goto out; busnr = (buses >> 8) & 0xFF; /* * If we already got to this bus through a different bridge, * ignore it. This can happen with the i450NX chipset. */ if (pci_find_bus(pci_domain_nr(bus), busnr)) { printk(KERN_INFO "PCI: Bus %04x:%02x already known\n", pci_domain_nr(bus), busnr); goto out; } child = pci_add_new_bus(bus, dev, busnr); if (!child) goto out; child->primary = buses & 0xFF; child->subordinate = (buses >> 16) & 0xFF; child->bridge_ctl = bctl; cmax = pci_scan_child_bus(child); if (cmax > max) max = cmax; if (child->subordinate > max) max = child->subordinate; } else { /* * We need to assign a number to this bus which we always * do in the second pass. */ if (!pass) { if (pcibios_assign_all_busses()) /* Temporarily disable forwarding of the configuration cycles on all bridges in this bus segment to avoid possible conflicts in the second pass between two bridges programmed with overlapping bus ranges. */ pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses & ~0xffffff); goto out; } /* Clear errors */ pci_write_config_word(dev, PCI_STATUS, 0xffff); /* Prevent assigning a bus number that already exists. * This can happen when a bridge is hot-plugged */ if (pci_find_bus(pci_domain_nr(bus), max+1)) goto out; child = pci_add_new_bus(bus, dev, ++max); buses = (buses & 0xff000000) | ((unsigned int)(child->primary) << 0) | ((unsigned int)(child->secondary) << 8) | ((unsigned int)(child->subordinate) << 16); /* * yenta.c forces a secondary latency timer of 176. * Copy that behaviour here. */ if (is_cardbus) { buses &= ~0xff000000; buses |= CARDBUS_LATENCY_TIMER << 24; } /* * We need to blast all three values with a single write. */ pci_write_config_dword(dev, PCI_PRIMARY_BUS, buses); if (!is_cardbus) { child->bridge_ctl = bctl | PCI_BRIDGE_CTL_NO_ISA; /* * Adjust subordinate busnr in parent buses. * We do this before scanning for children because * some devices may not be detected if the bios * was lazy. */ pci_fixup_parent_subordinate_busnr(child, max); /* Now we can scan all subordinate buses... */ max = pci_scan_child_bus(child); /* * now fix it up again since we have found * the real value of max. */ pci_fixup_parent_subordinate_busnr(child, max); } else { /* * For CardBus bridges, we leave 4 bus numbers * as cards with a PCI-to-PCI bridge can be * inserted later. */ for (i=0; i<CARDBUS_RESERVE_BUSNR; i++) { struct pci_bus *parent = bus; if (pci_find_bus(pci_domain_nr(bus), max+i+1)) break; while (parent->parent) { if ((!pcibios_assign_all_busses()) && (parent->subordinate > max) && (parent->subordinate <= max+i)) { j = 1; } parent = parent->parent; } if (j) { /* * Often, there are two cardbus bridges * -- try to leave one valid bus number * for each one. */ i /= 2; break; } } max += i; pci_fixup_parent_subordinate_busnr(child, max); } /* * Set the subordinate bus number to its real value. */ child->subordinate = max; pci_write_config_byte(dev, PCI_SUBORDINATE_BUS, max); } sprintf(child->name, (is_cardbus ? "PCI CardBus #%02x" : "PCI Bus #%02x"), child->number); /* Has only triggered on CardBus, fixup is in yenta_socket */ while (bus->parent) { if ((child->subordinate > bus->subordinate) || (child->number > bus->subordinate) || (child->number < bus->number) || (child->subordinate < bus->number)) { pr_debug("PCI: Bus #%02x (-#%02x) is %s" "hidden behind%s bridge #%02x (-#%02x)\n", child->number, child->subordinate, (bus->number > child->subordinate && bus->subordinate < child->number) ? "wholly " : " partially", bus->self->transparent ? " transparent" : " ", bus->number, bus->subordinate); } bus = bus->parent; } out: pci_write_config_word(dev, PCI_BRIDGE_CONTROL, bctl); return max; } /* * Read interrupt line and base address registers. * The architecture-dependent code can tweak these, of course. */ static void pci_read_irq(struct pci_dev *dev) { unsigned char irq; pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &irq); dev->pin = irq; if (irq) pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &irq); dev->irq = irq; } #define LEGACY_IO_RESOURCE (IORESOURCE_IO | IORESOURCE_PCI_FIXED) /** * pci_setup_device - fill in class and map information of a device * @dev: the device structure to fill * * Initialize the device structure with information about the device's * vendor,class,memory and IO-space addresses,IRQ lines etc. * Called at initialisation of the PCI subsystem and by CardBus services. * Returns 0 on success and -1 if unknown type of device (not normal, bridge * or CardBus). */ static int pci_setup_device(struct pci_dev * dev) { u32 class; sprintf(pci_name(dev), "%04x:%02x:%02x.%d", pci_domain_nr(dev->bus), dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn)); pci_read_config_dword(dev, PCI_CLASS_REVISION, &class); dev->revision = class & 0xff; class >>= 8; /* upper 3 bytes */ dev->class = class; class >>= 8; pr_debug("PCI: Found %s [%04x/%04x] %06x %02x\n", pci_name(dev), dev->vendor, dev->device, class, dev->hdr_type); /* "Unknown power state" */ dev->current_state = PCI_UNKNOWN; /* Early fixups, before probing the BARs */ pci_fixup_device(pci_fixup_early, dev); class = dev->class >> 8; switch (dev->hdr_type) { /* header type */ case PCI_HEADER_TYPE_NORMAL: /* standard header */ if (class == PCI_CLASS_BRIDGE_PCI) goto bad; pci_read_irq(dev); pci_read_bases(dev, 6, PCI_ROM_ADDRESS); pci_read_config_word(dev, PCI_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor); pci_read_config_word(dev, PCI_SUBSYSTEM_ID, &dev->subsystem_device); /* * Do the ugly legacy mode stuff here rather than broken chip * quirk code. Legacy mode ATA controllers have fixed * addresses. These are not always echoed in BAR0-3, and * BAR0-3 in a few cases contain junk! */ if (class == PCI_CLASS_STORAGE_IDE) { u8 progif; pci_read_config_byte(dev, PCI_CLASS_PROG, &progif); if ((progif & 1) == 0) { dev->resource[0].start = 0x1F0; dev->resource[0].end = 0x1F7; dev->resource[0].flags = LEGACY_IO_RESOURCE; dev->resource[1].start = 0x3F6; dev->resource[1].end = 0x3F6; dev->resource[1].flags = LEGACY_IO_RESOURCE; } if ((progif & 4) == 0) { dev->resource[2].start = 0x170; dev->resource[2].end = 0x177; dev->resource[2].flags = LEGACY_IO_RESOURCE; dev->resource[3].start = 0x376; dev->resource[3].end = 0x376; dev->resource[3].flags = LEGACY_IO_RESOURCE; } } break; case PCI_HEADER_TYPE_BRIDGE: /* bridge header */ if (class != PCI_CLASS_BRIDGE_PCI) goto bad; /* The PCI-to-PCI bridge spec requires that subtractive decoding (i.e. transparent) bridge must have programming interface code of 0x01. */ pci_read_irq(dev); dev->transparent = ((dev->class & 0xff) == 1); pci_read_bases(dev, 2, PCI_ROM_ADDRESS1); break; case PCI_HEADER_TYPE_CARDBUS: /* CardBus bridge header */ if (class != PCI_CLASS_BRIDGE_CARDBUS) goto bad; pci_read_irq(dev); pci_read_bases(dev, 1, 0); pci_read_config_word(dev, PCI_CB_SUBSYSTEM_VENDOR_ID, &dev->subsystem_vendor); pci_read_config_word(dev, PCI_CB_SUBSYSTEM_ID, &dev->subsystem_device); break; default: /* unknown header */ printk(KERN_ERR "PCI: device %s has unknown header type %02x, ignoring.\n", pci_name(dev), dev->hdr_type); return -1; bad: printk(KERN_ERR "PCI: %s: class %x doesn't match header type %02x. Ignoring class.\n", pci_name(dev), class, dev->hdr_type); dev->class = PCI_CLASS_NOT_DEFINED; } /* We found a fine healthy device, go go go... */ return 0; } /** * pci_release_dev - free a pci device structure when all users of it are finished. * @dev: device that's been disconnected * * Will be called only by the device core when all users of this pci device are * done. */ static void pci_release_dev(struct device *dev) { struct pci_dev *pci_dev; pci_dev = to_pci_dev(dev); kfree(pci_dev); } /** * pci_cfg_space_size - get the configuration space size of the PCI device. * @dev: PCI device * * Regular PCI devices have 256 bytes, but PCI-X 2 and PCI Express devices * have 4096 bytes. Even if the device is capable, that doesn't mean we can * access it. Maybe we don't have a way to generate extended config space * accesses, or the device is behind a reverse Express bridge. So we try * reading the dword at 0x100 which must either be 0 or a valid extended * capability header. */ int pci_cfg_space_size(struct pci_dev *dev) { int pos; u32 status; pos = pci_find_capability(dev, PCI_CAP_ID_EXP); if (!pos) { pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); if (!pos) goto fail; pci_read_config_dword(dev, pos + PCI_X_STATUS, &status); if (!(status & (PCI_X_STATUS_266MHZ | PCI_X_STATUS_533MHZ))) goto fail; } if (pci_read_config_dword(dev, 256, &status) != PCIBIOS_SUCCESSFUL) goto fail; if (status == 0xffffffff) goto fail; return PCI_CFG_SPACE_EXP_SIZE; fail: return PCI_CFG_SPACE_SIZE; } static void pci_release_bus_bridge_dev(struct device *dev) { kfree(dev); } struct pci_dev *alloc_pci_dev(void) { struct pci_dev *dev; dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL); if (!dev) return NULL; INIT_LIST_HEAD(&dev->global_list); INIT_LIST_HEAD(&dev->bus_list); pci_msi_init_pci_dev(dev); return dev; } EXPORT_SYMBOL(alloc_pci_dev); /* * Read the config data for a PCI device, sanity-check it * and fill in the dev structure... */ static struct pci_dev * __devinit pci_scan_device(struct pci_bus *bus, int devfn) { struct pci_dev *dev; u32 l; u8 hdr_type; int delay = 1; if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l)) return NULL; /* some broken boards return 0 or ~0 if a slot is empty: */ if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || l == 0xffff0000) return NULL; /* Configuration request Retry Status */ while (l == 0xffff0001) { msleep(delay); delay *= 2; if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &l)) return NULL; /* Card hasn't responded in 60 seconds? Must be stuck. */ if (delay > 60 * 1000) { printk(KERN_WARNING "Device %04x:%02x:%02x.%d not " "responding\n", pci_domain_nr(bus), bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn)); return NULL; } } if (pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type)) return NULL; dev = alloc_pci_dev(); if (!dev) return NULL; dev->bus = bus; dev->sysdata = bus->sysdata; dev->dev.parent = bus->bridge; dev->dev.bus = &pci_bus_type; dev->devfn = devfn; dev->hdr_type = hdr_type & 0x7f; dev->multifunction = !!(hdr_type & 0x80); dev->vendor = l & 0xffff; dev->device = (l >> 16) & 0xffff; dev->cfg_size = pci_cfg_space_size(dev); dev->error_state = pci_channel_io_normal; /* Assume 32-bit PCI; let 64-bit PCI cards (which are far rarer) set this higher, assuming the system even supports it. */ dev->dma_mask = 0xffffffff; if (pci_setup_device(dev) < 0) { kfree(dev); return NULL; } return dev; } void pci_device_add(struct pci_dev *dev, struct pci_bus *bus) { device_initialize(&dev->dev); dev->dev.release = pci_release_dev; pci_dev_get(dev); set_dev_node(&dev->dev, pcibus_to_node(bus)); dev->dev.dma_mask = &dev->dma_mask; dev->dev.coherent_dma_mask = 0xffffffffull; /* Fix up broken headers */ pci_fixup_device(pci_fixup_header, dev); /* * Add the device to our list of discovered devices * and the bus list for fixup functions, etc. */ INIT_LIST_HEAD(&dev->global_list); down_write(&pci_bus_sem); list_add_tail(&dev->bus_list, &bus->devices); up_write(&pci_bus_sem); } struct pci_dev *pci_scan_single_device(struct pci_bus *bus, int devfn) { struct pci_dev *dev; dev = pci_scan_device(bus, devfn); if (!dev) return NULL; pci_device_add(dev, bus); return dev; } /** * pci_scan_slot - scan a PCI slot on a bus for devices. * @bus: PCI bus to scan * @devfn: slot number to scan (must have zero function.) * * Scan a PCI slot on the specified PCI bus for devices, adding * discovered devices to the @bus->devices list. New devices * will have an empty dev->global_list head. */ int pci_scan_slot(struct pci_bus *bus, int devfn) { int func, nr = 0; int scan_all_fns; scan_all_fns = pcibios_scan_all_fns(bus, devfn); for (func = 0; func < 8; func++, devfn++) { struct pci_dev *dev; dev = pci_scan_single_device(bus, devfn); if (dev) { nr++; /* * If this is a single function device, * don't scan past the first function. */ if (!dev->multifunction) { if (func > 0) { dev->multifunction = 1; } else { break; } } } else { if (func == 0 && !scan_all_fns) break; } } return nr; } unsigned int pci_scan_child_bus(struct pci_bus *bus) { unsigned int devfn, pass, max = bus->secondary; struct pci_dev *dev; pr_debug("PCI: Scanning bus %04x:%02x\n", pci_domain_nr(bus), bus->number); /* Go find them, Rover! */ for (devfn = 0; devfn < 0x100; devfn += 8) pci_scan_slot(bus, devfn); /* * After performing arch-dependent fixup of the bus, look behind * all PCI-to-PCI bridges on this bus. */ pr_debug("PCI: Fixups for bus %04x:%02x\n", pci_domain_nr(bus), bus->number); pcibios_fixup_bus(bus); for (pass=0; pass < 2; pass++) list_for_each_entry(dev, &bus->devices, bus_list) { if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE || dev->hdr_type == PCI_HEADER_TYPE_CARDBUS) max = pci_scan_bridge(bus, dev, max, pass); } /* * We've scanned the bus and so we know all about what's on * the other side of any bridges that may be on this bus plus * any devices. * * Return how far we've got finding sub-buses. */ pr_debug("PCI: Bus scan for %04x:%02x returning with max=%02x\n", pci_domain_nr(bus), bus->number, max); return max; } unsigned int __devinit pci_do_scan_bus(struct pci_bus *bus) { unsigned int max; max = pci_scan_child_bus(bus); /* * Make the discovered devices available. */ pci_bus_add_devices(bus); return max; } struct pci_bus * pci_create_bus(struct device *parent, int bus, struct pci_ops *ops, void *sysdata) { int error; struct pci_bus *b; struct device *dev; b = pci_alloc_bus(); if (!b) return NULL; dev = kmalloc(sizeof(*dev), GFP_KERNEL); if (!dev){ kfree(b); return NULL; } b->sysdata = sysdata; b->ops = ops; if (pci_find_bus(pci_domain_nr(b), bus)) { /* If we already got to this bus through a different bridge, ignore it */ pr_debug("PCI: Bus %04x:%02x already known\n", pci_domain_nr(b), bus); goto err_out; } down_write(&pci_bus_sem); list_add_tail(&b->node, &pci_root_buses); up_write(&pci_bus_sem); memset(dev, 0, sizeof(*dev)); dev->parent = parent; dev->release = pci_release_bus_bridge_dev; sprintf(dev->bus_id, "pci%04x:%02x", pci_domain_nr(b), bus); error = device_register(dev); if (error) goto dev_reg_err; b->bridge = get_device(dev); b->class_dev.class = &pcibus_class; sprintf(b->class_dev.class_id, "%04x:%02x", pci_domain_nr(b), bus); error = class_device_register(&b->class_dev); if (error) goto class_dev_reg_err; error = class_device_create_file(&b->class_dev, &class_device_attr_cpuaffinity); if (error) goto class_dev_create_file_err; /* Create legacy_io and legacy_mem files for this bus */ pci_create_legacy_files(b); error = sysfs_create_link(&b->class_dev.kobj, &b->bridge->kobj, "bridge"); if (error) goto sys_create_link_err; b->number = b->secondary = bus; b->resource[0] = &ioport_resource; b->resource[1] = &iomem_resource; return b; sys_create_link_err: class_device_remove_file(&b->class_dev, &class_device_attr_cpuaffinity); class_dev_create_file_err: class_device_unregister(&b->class_dev); class_dev_reg_err: device_unregister(dev); dev_reg_err: down_write(&pci_bus_sem); list_del(&b->node); up_write(&pci_bus_sem); err_out: kfree(dev); kfree(b); return NULL; } EXPORT_SYMBOL_GPL(pci_create_bus); struct pci_bus *pci_scan_bus_parented(struct device *parent, int bus, struct pci_ops *ops, void *sysdata) { struct pci_bus *b; b = pci_create_bus(parent, bus, ops, sysdata); if (b) b->subordinate = pci_scan_child_bus(b); return b; } EXPORT_SYMBOL(pci_scan_bus_parented); #ifdef CONFIG_HOTPLUG EXPORT_SYMBOL(pci_add_new_bus); EXPORT_SYMBOL(pci_do_scan_bus); EXPORT_SYMBOL(pci_scan_slot); EXPORT_SYMBOL(pci_scan_bridge); EXPORT_SYMBOL(pci_scan_single_device); EXPORT_SYMBOL_GPL(pci_scan_child_bus); #endif static int __init pci_sort_bf_cmp(const struct pci_dev *a, const struct pci_dev *b) { if (pci_domain_nr(a->bus) < pci_domain_nr(b->bus)) return -1; else if (pci_domain_nr(a->bus) > pci_domain_nr(b->bus)) return 1; if (a->bus->number < b->bus->number) return -1; else if (a->bus->number > b->bus->number) return 1; if (a->devfn < b->devfn) return -1; else if (a->devfn > b->devfn) return 1; return 0; } /* * Yes, this forcably breaks the klist abstraction temporarily. It * just wants to sort the klist, not change reference counts and * take/drop locks rapidly in the process. It does all this while * holding the lock for the list, so objects can't otherwise be * added/removed while we're swizzling. */ static void __init pci_insertion_sort_klist(struct pci_dev *a, struct list_head *list) { struct list_head *pos; struct klist_node *n; struct device *dev; struct pci_dev *b; list_for_each(pos, list) { n = container_of(pos, struct klist_node, n_node); dev = container_of(n, struct device, knode_bus); b = to_pci_dev(dev); if (pci_sort_bf_cmp(a, b) <= 0) { list_move_tail(&a->dev.knode_bus.n_node, &b->dev.knode_bus.n_node); return; } } list_move_tail(&a->dev.knode_bus.n_node, list); } static void __init pci_sort_breadthfirst_klist(void) { LIST_HEAD(sorted_devices); struct list_head *pos, *tmp; struct klist_node *n; struct device *dev; struct pci_dev *pdev; spin_lock(&pci_bus_type.klist_devices.k_lock); list_for_each_safe(pos, tmp, &pci_bus_type.klist_devices.k_list) { n = container_of(pos, struct klist_node, n_node); dev = container_of(n, struct device, knode_bus); pdev = to_pci_dev(dev); pci_insertion_sort_klist(pdev, &sorted_devices); } list_splice(&sorted_devices, &pci_bus_type.klist_devices.k_list); spin_unlock(&pci_bus_type.klist_devices.k_lock); } static void __init pci_insertion_sort_devices(struct pci_dev *a, struct list_head *list) { struct pci_dev *b; list_for_each_entry(b, list, global_list) { if (pci_sort_bf_cmp(a, b) <= 0) { list_move_tail(&a->global_list, &b->global_list); return; } } list_move_tail(&a->global_list, list); } static void __init pci_sort_breadthfirst_devices(void) { LIST_HEAD(sorted_devices); struct pci_dev *dev, *tmp; down_write(&pci_bus_sem); list_for_each_entry_safe(dev, tmp, &pci_devices, global_list) { pci_insertion_sort_devices(dev, &sorted_devices); } list_splice(&sorted_devices, &pci_devices); up_write(&pci_bus_sem); } void __init pci_sort_breadthfirst(void) { pci_sort_breadthfirst_devices(); pci_sort_breadthfirst_klist(); }