/* ** ccio-dma.c: ** DMA management routines for first generation cache-coherent machines. ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. ** ** (c) Copyright 2000 Grant Grundler ** (c) Copyright 2000 Ryan Bradetich ** (c) Copyright 2000 Hewlett-Packard Company ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** ** "Real Mode" operation refers to U2/Uturn chip operation. ** U2/Uturn were designed to perform coherency checks w/o using ** the I/O MMU - basically what x86 does. ** ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c ** ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. ** ** Drawbacks of using Real Mode are: ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. ** o Ability to do scatter/gather in HW is lost. ** o Doesn't work under PCX-U/U+ machines since they didn't follow ** the coherency design originally worked out. Only PCX-W does. */ #include <linux/types.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/pci.h> #include <linux/reboot.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/scatterlist.h> #include <asm/byteorder.h> #include <asm/cache.h> /* for L1_CACHE_BYTES */ #include <asm/uaccess.h> #include <asm/page.h> #include <asm/dma.h> #include <asm/io.h> #include <asm/hardware.h> /* for register_module() */ #include <asm/parisc-device.h> /* ** Choose "ccio" since that's what HP-UX calls it. ** Make it easier for folks to migrate from one to the other :^) */ #define MODULE_NAME "ccio" #undef DEBUG_CCIO_RES #undef DEBUG_CCIO_RUN #undef DEBUG_CCIO_INIT #undef DEBUG_CCIO_RUN_SG #ifdef CONFIG_PROC_FS /* * CCIO_SEARCH_TIME can help measure how fast the bitmap search is. * impacts performance though - ditch it if you don't use it. */ #define CCIO_SEARCH_TIME #undef CCIO_MAP_STATS #else #undef CCIO_SEARCH_TIME #undef CCIO_MAP_STATS #endif #include <linux/proc_fs.h> #include <asm/runway.h> /* for proc_runway_root */ #ifdef DEBUG_CCIO_INIT #define DBG_INIT(x...) printk(x) #else #define DBG_INIT(x...) #endif #ifdef DEBUG_CCIO_RUN #define DBG_RUN(x...) printk(x) #else #define DBG_RUN(x...) #endif #ifdef DEBUG_CCIO_RES #define DBG_RES(x...) printk(x) #else #define DBG_RES(x...) #endif #ifdef DEBUG_CCIO_RUN_SG #define DBG_RUN_SG(x...) printk(x) #else #define DBG_RUN_SG(x...) #endif #define CCIO_INLINE inline #define WRITE_U32(value, addr) __raw_writel(value, addr) #define READ_U32(addr) __raw_readl(addr) #define U2_IOA_RUNWAY 0x580 #define U2_BC_GSC 0x501 #define UTURN_IOA_RUNWAY 0x581 #define UTURN_BC_GSC 0x502 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ struct ioa_registers { /* Runway Supervisory Set */ int32_t unused1[12]; uint32_t io_command; /* Offset 12 */ uint32_t io_status; /* Offset 13 */ uint32_t io_control; /* Offset 14 */ int32_t unused2[1]; /* Runway Auxiliary Register Set */ uint32_t io_err_resp; /* Offset 0 */ uint32_t io_err_info; /* Offset 1 */ uint32_t io_err_req; /* Offset 2 */ uint32_t io_err_resp_hi; /* Offset 3 */ uint32_t io_tlb_entry_m; /* Offset 4 */ uint32_t io_tlb_entry_l; /* Offset 5 */ uint32_t unused3[1]; uint32_t io_pdir_base; /* Offset 7 */ uint32_t io_io_low_hv; /* Offset 8 */ uint32_t io_io_high_hv; /* Offset 9 */ uint32_t unused4[1]; uint32_t io_chain_id_mask; /* Offset 11 */ uint32_t unused5[2]; uint32_t io_io_low; /* Offset 14 */ uint32_t io_io_high; /* Offset 15 */ }; /* ** IOA Registers ** ------------- ** ** Runway IO_CONTROL Register (+0x38) ** ** The Runway IO_CONTROL register controls the forwarding of transactions. ** ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | ** | HV | TLB | reserved | HV | mode | reserved | ** ** o mode field indicates the address translation of transactions ** forwarded from Runway to GSC+: ** Mode Name Value Definition ** Off (default) 0 Opaque to matching addresses. ** Include 1 Transparent for matching addresses. ** Peek 3 Map matching addresses. ** ** + "Off" mode: Runway transactions which match the I/O range ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. ** + "Include" mode: all addresses within the I/O range specified ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently ** forwarded. This is the I/O Adapter's normal operating mode. ** + "Peek" mode: used during system configuration to initialize the ** GSC+ bus. Runway Write_Shorts in the address range specified by ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter ** *AND* the GSC+ address is remapped to the Broadcast Physical ** Address space by setting the 14 high order address bits of the ** 32 bit GSC+ address to ones. ** ** o TLB field affects transactions which are forwarded from GSC+ to Runway. ** "Real" mode is the poweron default. ** ** TLB Mode Value Description ** Real 0 No TLB translation. Address is directly mapped and the ** virtual address is composed of selected physical bits. ** Error 1 Software fills the TLB manually. ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). ** ** ** IO_IO_LOW_HV +0x60 (HV dependent) ** IO_IO_HIGH_HV +0x64 (HV dependent) ** IO_IO_LOW +0x78 (Architected register) ** IO_IO_HIGH +0x7c (Architected register) ** ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the ** I/O Adapter address space, respectively. ** ** 0 ... 7 | 8 ... 15 | 16 ... 31 | ** 11111111 | 11111111 | address | ** ** Each LOW/HIGH pair describes a disjoint address space region. ** (2 per GSC+ port). Each incoming Runway transaction address is compared ** with both sets of LOW/HIGH registers. If the address is in the range ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction ** for forwarded to the respective GSC+ bus. ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying ** an address space region. ** ** In order for a Runway address to reside within GSC+ extended address space: ** Runway Address [0:7] must identically compare to 8'b11111111 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] ** Runway Address [12:23] must be greater than or equal to ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. ** Runway Address [24:39] is not used in the comparison. ** ** When the Runway transaction is forwarded to GSC+, the GSC+ address is ** as follows: ** GSC+ Address[0:3] 4'b1111 ** GSC+ Address[4:29] Runway Address[12:37] ** GSC+ Address[30:31] 2'b00 ** ** All 4 Low/High registers must be initialized (by PDC) once the lower bus ** is interrogated and address space is defined. The operating system will ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following ** the PDC initialization. However, the hardware version dependent IO_IO_LOW ** and IO_IO_HIGH registers should not be subsequently altered by the OS. ** ** Writes to both sets of registers will take effect immediately, bypassing ** the queues, which ensures that subsequent Runway transactions are checked ** against the updated bounds values. However reads are queued, introducing ** the possibility of a read being bypassed by a subsequent write to the same ** register. This sequence can be avoided by having software wait for read ** returns before issuing subsequent writes. */ struct ioc { struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ u8 *res_map; /* resource map, bit == pdir entry */ u64 *pdir_base; /* physical base address */ u32 pdir_size; /* bytes, function of IOV Space size */ u32 res_hint; /* next available IOVP - circular search */ u32 res_size; /* size of resource map in bytes */ spinlock_t res_lock; #ifdef CCIO_SEARCH_TIME #define CCIO_SEARCH_SAMPLE 0x100 unsigned long avg_search[CCIO_SEARCH_SAMPLE]; unsigned long avg_idx; /* current index into avg_search */ #endif #ifdef CCIO_MAP_STATS unsigned long used_pages; unsigned long msingle_calls; unsigned long msingle_pages; unsigned long msg_calls; unsigned long msg_pages; unsigned long usingle_calls; unsigned long usingle_pages; unsigned long usg_calls; unsigned long usg_pages; #endif unsigned short cujo20_bug; /* STUFF We don't need in performance path */ u32 chainid_shift; /* specify bit location of chain_id */ struct ioc *next; /* Linked list of discovered iocs */ const char *name; /* device name from firmware */ unsigned int hw_path; /* the hardware path this ioc is associatd with */ struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ struct resource mmio_region[2]; /* The "routed" MMIO regions */ }; static struct ioc *ioc_list; static int ioc_count; /************************************************************** * * I/O Pdir Resource Management * * Bits set in the resource map are in use. * Each bit can represent a number of pages. * LSbs represent lower addresses (IOVA's). * * This was was copied from sba_iommu.c. Don't try to unify * the two resource managers unless a way to have different * allocation policies is also adjusted. We'd like to avoid * I/O TLB thrashing by having resource allocation policy * match the I/O TLB replacement policy. * ***************************************************************/ #define IOVP_SIZE PAGE_SIZE #define IOVP_SHIFT PAGE_SHIFT #define IOVP_MASK PAGE_MASK /* Convert from IOVP to IOVA and vice versa. */ #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) #define CCIO_IOVP(iova) ((iova) & IOVP_MASK) #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) /* ** Don't worry about the 150% average search length on a miss. ** If the search wraps around, and passes the res_hint, it will ** cause the kernel to panic anyhow. */ #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ for(; res_ptr < res_end; ++res_ptr) { \ if(0 == (*res_ptr & mask)) { \ *res_ptr |= mask; \ res_idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ ioc->res_hint = res_idx + (size >> 3); \ goto resource_found; \ } \ } #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ res_ptr = (u##size *)&(ioc)->res_map[0]; \ CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); /* ** Find available bit in this ioa's resource map. ** Use a "circular" search: ** o Most IOVA's are "temporary" - avg search time should be small. ** o keep a history of what happened for debugging ** o KISS. ** ** Perf optimizations: ** o search for log2(size) bits at a time. ** o search for available resource bits using byte/word/whatever. ** o use different search for "large" (eg > 4 pages) or "very large" ** (eg > 16 pages) mappings. */ /** * ccio_alloc_range - Allocate pages in the ioc's resource map. * @ioc: The I/O Controller. * @pages_needed: The requested number of pages to be mapped into the * I/O Pdir... * * This function searches the resource map of the ioc to locate a range * of available pages for the requested size. */ static int ccio_alloc_range(struct ioc *ioc, size_t size) { unsigned int pages_needed = size >> IOVP_SHIFT; unsigned int res_idx; #ifdef CCIO_SEARCH_TIME unsigned long cr_start = mfctl(16); #endif BUG_ON(pages_needed == 0); BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); DBG_RES("%s() size: %d pages_needed %d\n", __FUNCTION__, size, pages_needed); /* ** "seek and ye shall find"...praying never hurts either... ** ggg sacrifices another 710 to the computer gods. */ if (pages_needed <= 8) { /* * LAN traffic will not thrash the TLB IFF the same NIC * uses 8 adjacent pages to map separate payload data. * ie the same byte in the resource bit map. */ #if 0 /* FIXME: bit search should shift it's way through * an unsigned long - not byte at a time. As it is now, * we effectively allocate this byte to this mapping. */ unsigned long mask = ~(~0UL >> pages_needed); CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); #else CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); #endif } else if (pages_needed <= 16) { CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); } else if (pages_needed <= 32) { CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); #ifdef __LP64__ } else if (pages_needed <= 64) { CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); #endif } else { panic("%s: %s() Too many pages to map. pages_needed: %u\n", __FILE__, __FUNCTION__, pages_needed); } panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, __FUNCTION__); resource_found: DBG_RES("%s() res_idx %d res_hint: %d\n", __FUNCTION__, res_idx, ioc->res_hint); #ifdef CCIO_SEARCH_TIME { unsigned long cr_end = mfctl(16); unsigned long tmp = cr_end - cr_start; /* check for roll over */ cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); } ioc->avg_search[ioc->avg_idx++] = cr_start; ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; #endif #ifdef CCIO_MAP_STATS ioc->used_pages += pages_needed; #endif /* ** return the bit address. */ return res_idx << 3; } #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ BUG_ON((*res_ptr & mask) != mask); \ *res_ptr &= ~(mask); /** * ccio_free_range - Free pages from the ioc's resource map. * @ioc: The I/O Controller. * @iova: The I/O Virtual Address. * @pages_mapped: The requested number of pages to be freed from the * I/O Pdir. * * This function frees the resouces allocated for the iova. */ static void ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) { unsigned long iovp = CCIO_IOVP(iova); unsigned int res_idx = PDIR_INDEX(iovp) >> 3; BUG_ON(pages_mapped == 0); BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); BUG_ON(pages_mapped > BITS_PER_LONG); DBG_RES("%s(): res_idx: %d pages_mapped %d\n", __FUNCTION__, res_idx, pages_mapped); #ifdef CCIO_MAP_STATS ioc->used_pages -= pages_mapped; #endif if(pages_mapped <= 8) { #if 0 /* see matching comments in alloc_range */ unsigned long mask = ~(~0UL >> pages_mapped); CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); #else CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8); #endif } else if(pages_mapped <= 16) { CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16); } else if(pages_mapped <= 32) { CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); #ifdef __LP64__ } else if(pages_mapped <= 64) { CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); #endif } else { panic("%s:%s() Too many pages to unmap.\n", __FILE__, __FUNCTION__); } } /**************************************************************** ** ** CCIO dma_ops support routines ** *****************************************************************/ typedef unsigned long space_t; #define KERNEL_SPACE 0 /* ** DMA "Page Type" and Hints ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be ** set for subcacheline DMA transfers since we don't want to damage the ** other part of a cacheline. ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" ** data can avoid this if the mapping covers full cache lines. ** o STOP_MOST is needed for atomicity across cachelines. ** Apparently only "some EISA devices" need this. ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs ** to use this hint iff the EISA devices needs this feature. ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. ** o PREFETCH should *not* be set for cases like Multiple PCI devices ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC ** device can be fetched and multiply DMA streams will thrash the ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules ** and Invalidation of Prefetch Entries". ** ** FIXME: the default hints need to be per GSC device - not global. ** ** HP-UX dorks: linux device driver programming model is totally different ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers ** do special things to work on non-coherent platforms...linux has to ** be much more careful with this. */ #define IOPDIR_VALID 0x01UL #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ #ifdef CONFIG_EISA #define HINT_STOP_MOST 0x04UL /* LSL support */ #else #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ #endif #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ /* ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. ** ccio_alloc_consistent() depends on this to get SAFE_DMA ** when it passes in BIDIRECTIONAL flag. */ static u32 hint_lookup[] = { [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, }; /** * ccio_io_pdir_entry - Initialize an I/O Pdir. * @pdir_ptr: A pointer into I/O Pdir. * @sid: The Space Identifier. * @vba: The virtual address. * @hints: The DMA Hint. * * Given a virtual address (vba, arg2) and space id, (sid, arg1), * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir * entry consists of 8 bytes as shown below (MSB == bit 0): * * * WORD 0: * +------+----------------+-----------------------------------------------+ * | Phys | Virtual Index | Phys | * | 0:3 | 0:11 | 4:19 | * |4 bits| 12 bits | 16 bits | * +------+----------------+-----------------------------------------------+ * WORD 1: * +-----------------------+-----------------------------------------------+ * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | * | 20:39 | | Enable |Enable | |Enable|DMA | | * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | * +-----------------------+-----------------------------------------------+ * * The virtual index field is filled with the results of the LCI * (Load Coherence Index) instruction. The 8 bits used for the virtual * index are bits 12:19 of the value returned by LCI. */ void CCIO_INLINE ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, unsigned long hints) { register unsigned long pa; register unsigned long ci; /* coherent index */ /* We currently only support kernel addresses */ BUG_ON(sid != KERNEL_SPACE); mtsp(sid,1); /* ** WORD 1 - low order word ** "hints" parm includes the VALID bit! ** "dep" clobbers the physical address offset bits as well. */ pa = virt_to_phys(vba); asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); ((u32 *)pdir_ptr)[1] = (u32) pa; /* ** WORD 0 - high order word */ #ifdef __LP64__ /* ** get bits 12:15 of physical address ** shift bits 16:31 of physical address ** and deposit them */ asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); #else pa = 0; #endif /* ** get CPU coherency index bits ** Grab virtual index [0:11] ** Deposit virt_idx bits into I/O PDIR word */ asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); ((u32 *)pdir_ptr)[0] = (u32) pa; /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) ** PCX-U/U+ do. (eg C200/C240) ** PCX-T'? Don't know. (eg C110 or similar K-class) ** ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". ** Hopefully we can patch (NOP) these out at boot time somehow. ** ** "Since PCX-U employs an offset hash that is incompatible with ** the real mode coherence index generation of U2, the PDIR entry ** must be flushed to memory to retain coherence." */ asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); asm volatile("sync"); } /** * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. * @ioc: The I/O Controller. * @iovp: The I/O Virtual Page. * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. * * Purge invalid I/O PDIR entries from the I/O TLB. * * FIXME: Can we change the byte_cnt to pages_mapped? */ static CCIO_INLINE void ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) { u32 chain_size = 1 << ioc->chainid_shift; iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ byte_cnt += chain_size; while(byte_cnt > chain_size) { WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); iovp += chain_size; byte_cnt -= chain_size; } } /** * ccio_mark_invalid - Mark the I/O Pdir entries invalid. * @ioc: The I/O Controller. * @iova: The I/O Virtual Address. * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. * * Mark the I/O Pdir entries invalid and blow away the corresponding I/O * TLB entries. * * FIXME: at some threshhold it might be "cheaper" to just blow * away the entire I/O TLB instead of individual entries. * * FIXME: Uturn has 256 TLB entries. We don't need to purge every * PDIR entry - just once for each possible TLB entry. * (We do need to maker I/O PDIR entries invalid regardless). * * FIXME: Can we change byte_cnt to pages_mapped? */ static CCIO_INLINE void ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) { u32 iovp = (u32)CCIO_IOVP(iova); size_t saved_byte_cnt; /* round up to nearest page size */ saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); while(byte_cnt > 0) { /* invalidate one page at a time */ unsigned int idx = PDIR_INDEX(iovp); char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); pdir_ptr[7] = 0; /* clear only VALID bit */ /* ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) ** PCX-U/U+ do. (eg C200/C240) ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". ** ** Hopefully someone figures out how to patch (NOP) the ** FDC/SYNC out at boot time. */ asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); iovp += IOVP_SIZE; byte_cnt -= IOVP_SIZE; } asm volatile("sync"); ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); } /**************************************************************** ** ** CCIO dma_ops ** *****************************************************************/ /** * ccio_dma_supported - Verify the IOMMU supports the DMA address range. * @dev: The PCI device. * @mask: A bit mask describing the DMA address range of the device. * * This function implements the pci_dma_supported function. */ static int ccio_dma_supported(struct device *dev, u64 mask) { if(dev == NULL) { printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); BUG(); return 0; } /* only support 32-bit devices (ie PCI/GSC) */ return (int)(mask == 0xffffffffUL); } /** * ccio_map_single - Map an address range into the IOMMU. * @dev: The PCI device. * @addr: The start address of the DMA region. * @size: The length of the DMA region. * @direction: The direction of the DMA transaction (to/from device). * * This function implements the pci_map_single function. */ static dma_addr_t ccio_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction) { int idx; struct ioc *ioc; unsigned long flags; dma_addr_t iovp; dma_addr_t offset; u64 *pdir_start; unsigned long hint = hint_lookup[(int)direction]; BUG_ON(!dev); ioc = GET_IOC(dev); BUG_ON(size <= 0); /* save offset bits */ offset = ((unsigned long) addr) & ~IOVP_MASK; /* round up to nearest IOVP_SIZE */ size = ALIGN(size + offset, IOVP_SIZE); spin_lock_irqsave(&ioc->res_lock, flags); #ifdef CCIO_MAP_STATS ioc->msingle_calls++; ioc->msingle_pages += size >> IOVP_SHIFT; #endif idx = ccio_alloc_range(ioc, size); iovp = (dma_addr_t)MKIOVP(idx); pdir_start = &(ioc->pdir_base[idx]); DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", __FUNCTION__, addr, (long)iovp | offset, size); /* If not cacheline aligned, force SAFE_DMA on the whole mess */ if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) hint |= HINT_SAFE_DMA; while(size > 0) { ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); DBG_RUN(" pdir %p %08x%08x\n", pdir_start, (u32) (((u32 *) pdir_start)[0]), (u32) (((u32 *) pdir_start)[1])); ++pdir_start; addr += IOVP_SIZE; size -= IOVP_SIZE; } spin_unlock_irqrestore(&ioc->res_lock, flags); /* form complete address */ return CCIO_IOVA(iovp, offset); } /** * ccio_unmap_single - Unmap an address range from the IOMMU. * @dev: The PCI device. * @addr: The start address of the DMA region. * @size: The length of the DMA region. * @direction: The direction of the DMA transaction (to/from device). * * This function implements the pci_unmap_single function. */ static void ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size, enum dma_data_direction direction) { struct ioc *ioc; unsigned long flags; dma_addr_t offset = iova & ~IOVP_MASK; BUG_ON(!dev); ioc = GET_IOC(dev); DBG_RUN("%s() iovp 0x%lx/%x\n", __FUNCTION__, (long)iova, size); iova ^= offset; /* clear offset bits */ size += offset; size = ALIGN(size, IOVP_SIZE); spin_lock_irqsave(&ioc->res_lock, flags); #ifdef CCIO_MAP_STATS ioc->usingle_calls++; ioc->usingle_pages += size >> IOVP_SHIFT; #endif ccio_mark_invalid(ioc, iova, size); ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); spin_unlock_irqrestore(&ioc->res_lock, flags); } /** * ccio_alloc_consistent - Allocate a consistent DMA mapping. * @dev: The PCI device. * @size: The length of the DMA region. * @dma_handle: The DMA address handed back to the device (not the cpu). * * This function implements the pci_alloc_consistent function. */ static void * ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag) { void *ret; #if 0 /* GRANT Need to establish hierarchy for non-PCI devs as well ** and then provide matching gsc_map_xxx() functions for them as well. */ if(!hwdev) { /* only support PCI */ *dma_handle = 0; return 0; } #endif ret = (void *) __get_free_pages(flag, get_order(size)); if (ret) { memset(ret, 0, size); *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); } return ret; } /** * ccio_free_consistent - Free a consistent DMA mapping. * @dev: The PCI device. * @size: The length of the DMA region. * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. * @dma_handle: The device address returned from the ccio_alloc_consistent. * * This function implements the pci_free_consistent function. */ static void ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle) { ccio_unmap_single(dev, dma_handle, size, 0); free_pages((unsigned long)cpu_addr, get_order(size)); } /* ** Since 0 is a valid pdir_base index value, can't use that ** to determine if a value is valid or not. Use a flag to indicate ** the SG list entry contains a valid pdir index. */ #define PIDE_FLAG 0x80000000UL #ifdef CCIO_MAP_STATS #define IOMMU_MAP_STATS #endif #include "iommu-helpers.h" /** * ccio_map_sg - Map the scatter/gather list into the IOMMU. * @dev: The PCI device. * @sglist: The scatter/gather list to be mapped in the IOMMU. * @nents: The number of entries in the scatter/gather list. * @direction: The direction of the DMA transaction (to/from device). * * This function implements the pci_map_sg function. */ static int ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { struct ioc *ioc; int coalesced, filled = 0; unsigned long flags; unsigned long hint = hint_lookup[(int)direction]; unsigned long prev_len = 0, current_len = 0; int i; BUG_ON(!dev); ioc = GET_IOC(dev); DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents); /* Fast path single entry scatterlists. */ if (nents == 1) { sg_dma_address(sglist) = ccio_map_single(dev, (void *)sg_virt_addr(sglist), sglist->length, direction); sg_dma_len(sglist) = sglist->length; return 1; } for(i = 0; i < nents; i++) prev_len += sglist[i].length; spin_lock_irqsave(&ioc->res_lock, flags); #ifdef CCIO_MAP_STATS ioc->msg_calls++; #endif /* ** First coalesce the chunks and allocate I/O pdir space ** ** If this is one DMA stream, we can properly map using the ** correct virtual address associated with each DMA page. ** w/o this association, we wouldn't have coherent DMA! ** Access to the virtual address is what forces a two pass algorithm. */ coalesced = iommu_coalesce_chunks(ioc, sglist, nents, ccio_alloc_range); /* ** Program the I/O Pdir ** ** map the virtual addresses to the I/O Pdir ** o dma_address will contain the pdir index ** o dma_len will contain the number of bytes to map ** o page/offset contain the virtual address. */ filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); spin_unlock_irqrestore(&ioc->res_lock, flags); BUG_ON(coalesced != filled); DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled); for (i = 0; i < filled; i++) current_len += sg_dma_len(sglist + i); BUG_ON(current_len != prev_len); return filled; } /** * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. * @dev: The PCI device. * @sglist: The scatter/gather list to be unmapped from the IOMMU. * @nents: The number of entries in the scatter/gather list. * @direction: The direction of the DMA transaction (to/from device). * * This function implements the pci_unmap_sg function. */ static void ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction) { struct ioc *ioc; BUG_ON(!dev); ioc = GET_IOC(dev); DBG_RUN_SG("%s() START %d entries, %08lx,%x\n", __FUNCTION__, nents, sg_virt_addr(sglist), sglist->length); #ifdef CCIO_MAP_STATS ioc->usg_calls++; #endif while(sg_dma_len(sglist) && nents--) { #ifdef CCIO_MAP_STATS ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; #endif ccio_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction); ++sglist; } DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents); } static struct hppa_dma_ops ccio_ops = { .dma_supported = ccio_dma_supported, .alloc_consistent = ccio_alloc_consistent, .alloc_noncoherent = ccio_alloc_consistent, .free_consistent = ccio_free_consistent, .map_single = ccio_map_single, .unmap_single = ccio_unmap_single, .map_sg = ccio_map_sg, .unmap_sg = ccio_unmap_sg, .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */ .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */ .dma_sync_sg_for_cpu = NULL, /* ditto */ .dma_sync_sg_for_device = NULL, /* ditto */ }; #ifdef CONFIG_PROC_FS static int ccio_proc_info(struct seq_file *m, void *p) { int len = 0; struct ioc *ioc = ioc_list; while (ioc != NULL) { unsigned int total_pages = ioc->res_size << 3; unsigned long avg = 0, min, max; int j; len += seq_printf(m, "%s\n", ioc->name); len += seq_printf(m, "Cujo 2.0 bug : %s\n", (ioc->cujo20_bug ? "yes" : "no")); len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", total_pages * 8, total_pages); #ifdef CCIO_MAP_STATS len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", total_pages - ioc->used_pages, ioc->used_pages, (int)(ioc->used_pages * 100 / total_pages)); #endif len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", ioc->res_size, total_pages); #ifdef CCIO_SEARCH_TIME min = max = ioc->avg_search[0]; for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { avg += ioc->avg_search[j]; if(ioc->avg_search[j] > max) max = ioc->avg_search[j]; if(ioc->avg_search[j] < min) min = ioc->avg_search[j]; } avg /= CCIO_SEARCH_SAMPLE; len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", min, avg, max); #endif #ifdef CCIO_MAP_STATS len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", ioc->msingle_calls, ioc->msingle_pages, (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); /* KLUGE - unmap_sg calls unmap_single for each mapped page */ min = ioc->usingle_calls - ioc->usg_calls; max = ioc->usingle_pages - ioc->usg_pages; len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", min, max, (int)((max * 1000)/min)); len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", ioc->msg_calls, ioc->msg_pages, (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", ioc->usg_calls, ioc->usg_pages, (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); #endif /* CCIO_MAP_STATS */ ioc = ioc->next; } return 0; } static int ccio_proc_info_open(struct inode *inode, struct file *file) { return single_open(file, &ccio_proc_info, NULL); } static const struct file_operations ccio_proc_info_fops = { .owner = THIS_MODULE, .open = ccio_proc_info_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int ccio_proc_bitmap_info(struct seq_file *m, void *p) { int len = 0; struct ioc *ioc = ioc_list; while (ioc != NULL) { u32 *res_ptr = (u32 *)ioc->res_map; int j; for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) { if ((j & 7) == 0) len += seq_puts(m, "\n "); len += seq_printf(m, "%08x", *res_ptr); res_ptr++; } len += seq_puts(m, "\n\n"); ioc = ioc->next; break; /* XXX - remove me */ } return 0; } static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) { return single_open(file, &ccio_proc_bitmap_info, NULL); } static const struct file_operations ccio_proc_bitmap_fops = { .owner = THIS_MODULE, .open = ccio_proc_bitmap_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #endif /** * ccio_find_ioc - Find the ioc in the ioc_list * @hw_path: The hardware path of the ioc. * * This function searches the ioc_list for an ioc that matches * the provide hardware path. */ static struct ioc * ccio_find_ioc(int hw_path) { int i; struct ioc *ioc; ioc = ioc_list; for (i = 0; i < ioc_count; i++) { if (ioc->hw_path == hw_path) return ioc; ioc = ioc->next; } return NULL; } /** * ccio_get_iommu - Find the iommu which controls this device * @dev: The parisc device. * * This function searches through the registered IOMMU's and returns * the appropriate IOMMU for the device based on its hardware path. */ void * ccio_get_iommu(const struct parisc_device *dev) { dev = find_pa_parent_type(dev, HPHW_IOA); if (!dev) return NULL; return ccio_find_ioc(dev->hw_path); } #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ /* Cujo 2.0 has a bug which will silently corrupt data being transferred * to/from certain pages. To avoid this happening, we mark these pages * as `used', and ensure that nothing will try to allocate from them. */ void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) { unsigned int idx; struct parisc_device *dev = parisc_parent(cujo); struct ioc *ioc = ccio_get_iommu(dev); u8 *res_ptr; ioc->cujo20_bug = 1; res_ptr = ioc->res_map; idx = PDIR_INDEX(iovp) >> 3; while (idx < ioc->res_size) { res_ptr[idx] |= 0xff; idx += PDIR_INDEX(CUJO_20_STEP) >> 3; } } #if 0 /* GRANT - is this needed for U2 or not? */ /* ** Get the size of the I/O TLB for this I/O MMU. ** ** If spa_shift is non-zero (ie probably U2), ** then calculate the I/O TLB size using spa_shift. ** ** Otherwise we are supposed to get the IODC entry point ENTRY TLB ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. ** I think only Java (K/D/R-class too?) systems don't do this. */ static int ccio_get_iotlb_size(struct parisc_device *dev) { if (dev->spa_shift == 0) { panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__); } return (1 << dev->spa_shift); } #else /* Uturn supports 256 TLB entries */ #define CCIO_CHAINID_SHIFT 8 #define CCIO_CHAINID_MASK 0xff #endif /* 0 */ /* We *can't* support JAVA (T600). Venture there at your own risk. */ static const struct parisc_device_id ccio_tbl[] = { { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ { 0, } }; static int ccio_probe(struct parisc_device *dev); static struct parisc_driver ccio_driver = { .name = "ccio", .id_table = ccio_tbl, .probe = ccio_probe, }; /** * ccio_ioc_init - Initalize the I/O Controller * @ioc: The I/O Controller. * * Initalize the I/O Controller which includes setting up the * I/O Page Directory, the resource map, and initalizing the * U2/Uturn chip into virtual mode. */ static void ccio_ioc_init(struct ioc *ioc) { int i; unsigned int iov_order; u32 iova_space_size; /* ** Determine IOVA Space size from memory size. ** ** Ideally, PCI drivers would register the maximum number ** of DMA they can have outstanding for each device they ** own. Next best thing would be to guess how much DMA ** can be outstanding based on PCI Class/sub-class. Both ** methods still require some "extra" to support PCI ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). */ iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver)); /* limit IOVA space size to 1MB-1GB */ if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { iova_space_size = 1 << (20 - PAGE_SHIFT); #ifdef __LP64__ } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { iova_space_size = 1 << (30 - PAGE_SHIFT); #endif } /* ** iova space must be log2() in size. ** thus, pdir/res_map will also be log2(). */ /* We could use larger page sizes in order to *decrease* the number ** of mappings needed. (ie 8k pages means 1/2 the mappings). ** ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either ** since the pages must also be physically contiguous - typically ** this is the case under linux." */ iov_order = get_order(iova_space_size << PAGE_SHIFT); /* iova_space_size is now bytes, not pages */ iova_space_size = 1 << (iov_order + PAGE_SHIFT); ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ /* Verify it's a power of two */ BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", __FUNCTION__, ioc->ioc_regs, (unsigned long) num_physpages >> (20 - PAGE_SHIFT), iova_space_size>>20, iov_order + PAGE_SHIFT); ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, get_order(ioc->pdir_size)); if(NULL == ioc->pdir_base) { panic("%s() could not allocate I/O Page Table\n", __FUNCTION__); } memset(ioc->pdir_base, 0, ioc->pdir_size); BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); DBG_INIT(" base %p\n", ioc->pdir_base); /* resource map size dictated by pdir_size */ ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size); ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, get_order(ioc->res_size)); if(NULL == ioc->res_map) { panic("%s() could not allocate resource map\n", __FUNCTION__); } memset(ioc->res_map, 0, ioc->res_size); /* Initialize the res_hint to 16 */ ioc->res_hint = 16; /* Initialize the spinlock */ spin_lock_init(&ioc->res_lock); /* ** Chainid is the upper most bits of an IOVP used to determine ** which TLB entry an IOVP will use. */ ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); /* ** Initialize IOA hardware */ WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, &ioc->ioc_regs->io_chain_id_mask); WRITE_U32(virt_to_phys(ioc->pdir_base), &ioc->ioc_regs->io_pdir_base); /* ** Go to "Virtual Mode" */ WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); /* ** Initialize all I/O TLB entries to 0 (Valid bit off). */ WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), &ioc->ioc_regs->io_command); } } static void __init ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) { int result; res->parent = NULL; res->flags = IORESOURCE_MEM; /* * bracing ((signed) ...) are required for 64bit kernel because * we only want to sign extend the lower 16 bits of the register. * The upper 16-bits of range registers are hardcoded to 0xffff. */ res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); res->name = name; /* * Check if this MMIO range is disable */ if (res->end + 1 == res->start) return; /* On some platforms (e.g. K-Class), we have already registered * resources for devices reported by firmware. Some are children * of ccio. * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). */ result = insert_resource(&iomem_resource, res); if (result < 0) { printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", __FUNCTION__, res->start, res->end); } } static void __init ccio_init_resources(struct ioc *ioc) { struct resource *res = ioc->mmio_region; char *name = kmalloc(14, GFP_KERNEL); snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); } static int new_ioc_area(struct resource *res, unsigned long size, unsigned long min, unsigned long max, unsigned long align) { if (max <= min) return -EBUSY; res->start = (max - size + 1) &~ (align - 1); res->end = res->start + size; /* We might be trying to expand the MMIO range to include * a child device that has already registered it's MMIO space. * Use "insert" instead of request_resource(). */ if (!insert_resource(&iomem_resource, res)) return 0; return new_ioc_area(res, size, min, max - size, align); } static int expand_ioc_area(struct resource *res, unsigned long size, unsigned long min, unsigned long max, unsigned long align) { unsigned long start, len; if (!res->parent) return new_ioc_area(res, size, min, max, align); start = (res->start - size) &~ (align - 1); len = res->end - start + 1; if (start >= min) { if (!adjust_resource(res, start, len)) return 0; } start = res->start; len = ((size + res->end + align) &~ (align - 1)) - start; if (start + len <= max) { if (!adjust_resource(res, start, len)) return 0; } return -EBUSY; } /* * Dino calls this function. Beware that we may get called on systems * which have no IOC (725, B180, C160L, etc) but do have a Dino. * So it's legal to find no parent IOC. * * Some other issues: one of the resources in the ioc may be unassigned. */ int ccio_allocate_resource(const struct parisc_device *dev, struct resource *res, unsigned long size, unsigned long min, unsigned long max, unsigned long align) { struct resource *parent = &iomem_resource; struct ioc *ioc = ccio_get_iommu(dev); if (!ioc) goto out; parent = ioc->mmio_region; if (parent->parent && !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) return 0; if ((parent + 1)->parent && !allocate_resource(parent + 1, res, size, min, max, align, NULL, NULL)) return 0; if (!expand_ioc_area(parent, size, min, max, align)) { __raw_writel(((parent->start)>>16) | 0xffff0000, &ioc->ioc_regs->io_io_low); __raw_writel(((parent->end)>>16) | 0xffff0000, &ioc->ioc_regs->io_io_high); } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { parent++; __raw_writel(((parent->start)>>16) | 0xffff0000, &ioc->ioc_regs->io_io_low_hv); __raw_writel(((parent->end)>>16) | 0xffff0000, &ioc->ioc_regs->io_io_high_hv); } else { return -EBUSY; } out: return allocate_resource(parent, res, size, min, max, align, NULL,NULL); } int ccio_request_resource(const struct parisc_device *dev, struct resource *res) { struct resource *parent; struct ioc *ioc = ccio_get_iommu(dev); if (!ioc) { parent = &iomem_resource; } else if ((ioc->mmio_region->start <= res->start) && (res->end <= ioc->mmio_region->end)) { parent = ioc->mmio_region; } else if (((ioc->mmio_region + 1)->start <= res->start) && (res->end <= (ioc->mmio_region + 1)->end)) { parent = ioc->mmio_region + 1; } else { return -EBUSY; } /* "transparent" bus bridges need to register MMIO resources * firmware assigned them. e.g. children of hppb.c (e.g. K-class) * registered their resources in the PDC "bus walk" (See * arch/parisc/kernel/inventory.c). */ return insert_resource(parent, res); } /** * ccio_probe - Determine if ccio should claim this device. * @dev: The device which has been found * * Determine if ccio should claim this chip (return 0) or not (return 1). * If so, initialize the chip and tell other partners in crime they * have work to do. */ static int __init ccio_probe(struct parisc_device *dev) { int i; struct ioc *ioc, **ioc_p = &ioc_list; struct proc_dir_entry *info_entry, *bitmap_entry; ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); if (ioc == NULL) { printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); return 1; } ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start); for (i = 0; i < ioc_count; i++) { ioc_p = &(*ioc_p)->next; } *ioc_p = ioc; ioc->hw_path = dev->hw_path; ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); ccio_ioc_init(ioc); ccio_init_resources(ioc); hppa_dma_ops = &ccio_ops; dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); /* if this fails, no I/O cards will work, so may as well bug */ BUG_ON(dev->dev.platform_data == NULL); HBA_DATA(dev->dev.platform_data)->iommu = ioc; if (ioc_count == 0) { info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root); if (info_entry) info_entry->proc_fops = &ccio_proc_info_fops; bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root); if (bitmap_entry) bitmap_entry->proc_fops = &ccio_proc_bitmap_fops; } ioc_count++; parisc_vmerge_boundary = IOVP_SIZE; parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE; parisc_has_iommu(); return 0; } /** * ccio_init - ccio initialization procedure. * * Register this driver. */ void __init ccio_init(void) { register_parisc_driver(&ccio_driver); }