/** * @file buffer_sync.c * * @remark Copyright 2002 OProfile authors * @remark Read the file COPYING * * @author John Levon <levon@movementarian.org> * * This is the core of the buffer management. Each * CPU buffer is processed and entered into the * global event buffer. Such processing is necessary * in several circumstances, mentioned below. * * The processing does the job of converting the * transitory EIP value into a persistent dentry/offset * value that the profiler can record at its leisure. * * See fs/dcookies.c for a description of the dentry/offset * objects. */ #include <linux/mm.h> #include <linux/workqueue.h> #include <linux/notifier.h> #include <linux/dcookies.h> #include <linux/profile.h> #include <linux/module.h> #include <linux/fs.h> #include "oprofile_stats.h" #include "event_buffer.h" #include "cpu_buffer.h" #include "buffer_sync.h" static LIST_HEAD(dying_tasks); static LIST_HEAD(dead_tasks); static cpumask_t marked_cpus = CPU_MASK_NONE; static DEFINE_SPINLOCK(task_mortuary); static void process_task_mortuary(void); /* Take ownership of the task struct and place it on the * list for processing. Only after two full buffer syncs * does the task eventually get freed, because by then * we are sure we will not reference it again. */ static int task_free_notify(struct notifier_block * self, unsigned long val, void * data) { struct task_struct * task = data; spin_lock(&task_mortuary); list_add(&task->tasks, &dying_tasks); spin_unlock(&task_mortuary); return NOTIFY_OK; } /* The task is on its way out. A sync of the buffer means we can catch * any remaining samples for this task. */ static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data) { /* To avoid latency problems, we only process the current CPU, * hoping that most samples for the task are on this CPU */ sync_buffer(raw_smp_processor_id()); return 0; } /* The task is about to try a do_munmap(). We peek at what it's going to * do, and if it's an executable region, process the samples first, so * we don't lose any. This does not have to be exact, it's a QoI issue * only. */ static int munmap_notify(struct notifier_block * self, unsigned long val, void * data) { unsigned long addr = (unsigned long)data; struct mm_struct * mm = current->mm; struct vm_area_struct * mpnt; down_read(&mm->mmap_sem); mpnt = find_vma(mm, addr); if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { up_read(&mm->mmap_sem); /* To avoid latency problems, we only process the current CPU, * hoping that most samples for the task are on this CPU */ sync_buffer(raw_smp_processor_id()); return 0; } up_read(&mm->mmap_sem); return 0; } /* We need to be told about new modules so we don't attribute to a previously * loaded module, or drop the samples on the floor. */ static int module_load_notify(struct notifier_block * self, unsigned long val, void * data) { #ifdef CONFIG_MODULES if (val != MODULE_STATE_COMING) return 0; /* FIXME: should we process all CPU buffers ? */ down(&buffer_sem); add_event_entry(ESCAPE_CODE); add_event_entry(MODULE_LOADED_CODE); up(&buffer_sem); #endif return 0; } static struct notifier_block task_free_nb = { .notifier_call = task_free_notify, }; static struct notifier_block task_exit_nb = { .notifier_call = task_exit_notify, }; static struct notifier_block munmap_nb = { .notifier_call = munmap_notify, }; static struct notifier_block module_load_nb = { .notifier_call = module_load_notify, }; static void end_sync(void) { end_cpu_work(); /* make sure we don't leak task structs */ process_task_mortuary(); process_task_mortuary(); } int sync_start(void) { int err; start_cpu_work(); err = task_handoff_register(&task_free_nb); if (err) goto out1; err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); if (err) goto out2; err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); if (err) goto out3; err = register_module_notifier(&module_load_nb); if (err) goto out4; out: return err; out4: profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); out3: profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); out2: task_handoff_unregister(&task_free_nb); out1: end_sync(); goto out; } void sync_stop(void) { unregister_module_notifier(&module_load_nb); profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); task_handoff_unregister(&task_free_nb); end_sync(); } /* Optimisation. We can manage without taking the dcookie sem * because we cannot reach this code without at least one * dcookie user still being registered (namely, the reader * of the event buffer). */ static inline unsigned long fast_get_dcookie(struct dentry * dentry, struct vfsmount * vfsmnt) { unsigned long cookie; if (dentry->d_cookie) return (unsigned long)dentry; get_dcookie(dentry, vfsmnt, &cookie); return cookie; } /* Look up the dcookie for the task's first VM_EXECUTABLE mapping, * which corresponds loosely to "application name". This is * not strictly necessary but allows oprofile to associate * shared-library samples with particular applications */ static unsigned long get_exec_dcookie(struct mm_struct * mm) { unsigned long cookie = NO_COOKIE; struct vm_area_struct * vma; if (!mm) goto out; for (vma = mm->mmap; vma; vma = vma->vm_next) { if (!vma->vm_file) continue; if (!(vma->vm_flags & VM_EXECUTABLE)) continue; cookie = fast_get_dcookie(vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt); break; } out: return cookie; } /* Convert the EIP value of a sample into a persistent dentry/offset * pair that can then be added to the global event buffer. We make * sure to do this lookup before a mm->mmap modification happens so * we don't lose track. */ static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset) { unsigned long cookie = NO_COOKIE; struct vm_area_struct * vma; for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { if (addr < vma->vm_start || addr >= vma->vm_end) continue; if (vma->vm_file) { cookie = fast_get_dcookie(vma->vm_file->f_dentry, vma->vm_file->f_vfsmnt); *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - vma->vm_start; } else { /* must be an anonymous map */ *offset = addr; } break; } if (!vma) cookie = INVALID_COOKIE; return cookie; } static unsigned long last_cookie = INVALID_COOKIE; static void add_cpu_switch(int i) { add_event_entry(ESCAPE_CODE); add_event_entry(CPU_SWITCH_CODE); add_event_entry(i); last_cookie = INVALID_COOKIE; } static void add_kernel_ctx_switch(unsigned int in_kernel) { add_event_entry(ESCAPE_CODE); if (in_kernel) add_event_entry(KERNEL_ENTER_SWITCH_CODE); else add_event_entry(KERNEL_EXIT_SWITCH_CODE); } static void add_user_ctx_switch(struct task_struct const * task, unsigned long cookie) { add_event_entry(ESCAPE_CODE); add_event_entry(CTX_SWITCH_CODE); add_event_entry(task->pid); add_event_entry(cookie); /* Another code for daemon back-compat */ add_event_entry(ESCAPE_CODE); add_event_entry(CTX_TGID_CODE); add_event_entry(task->tgid); } static void add_cookie_switch(unsigned long cookie) { add_event_entry(ESCAPE_CODE); add_event_entry(COOKIE_SWITCH_CODE); add_event_entry(cookie); } static void add_trace_begin(void) { add_event_entry(ESCAPE_CODE); add_event_entry(TRACE_BEGIN_CODE); } static void add_sample_entry(unsigned long offset, unsigned long event) { add_event_entry(offset); add_event_entry(event); } static int add_us_sample(struct mm_struct * mm, struct op_sample * s) { unsigned long cookie; off_t offset; cookie = lookup_dcookie(mm, s->eip, &offset); if (cookie == INVALID_COOKIE) { atomic_inc(&oprofile_stats.sample_lost_no_mapping); return 0; } if (cookie != last_cookie) { add_cookie_switch(cookie); last_cookie = cookie; } add_sample_entry(offset, s->event); return 1; } /* Add a sample to the global event buffer. If possible the * sample is converted into a persistent dentry/offset pair * for later lookup from userspace. */ static int add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel) { if (in_kernel) { add_sample_entry(s->eip, s->event); return 1; } else if (mm) { return add_us_sample(mm, s); } else { atomic_inc(&oprofile_stats.sample_lost_no_mm); } return 0; } static void release_mm(struct mm_struct * mm) { if (!mm) return; up_read(&mm->mmap_sem); mmput(mm); } static struct mm_struct * take_tasks_mm(struct task_struct * task) { struct mm_struct * mm = get_task_mm(task); if (mm) down_read(&mm->mmap_sem); return mm; } static inline int is_code(unsigned long val) { return val == ESCAPE_CODE; } /* "acquire" as many cpu buffer slots as we can */ static unsigned long get_slots(struct oprofile_cpu_buffer * b) { unsigned long head = b->head_pos; unsigned long tail = b->tail_pos; /* * Subtle. This resets the persistent last_task * and in_kernel values used for switching notes. * BUT, there is a small window between reading * head_pos, and this call, that means samples * can appear at the new head position, but not * be prefixed with the notes for switching * kernel mode or a task switch. This small hole * can lead to mis-attribution or samples where * we don't know if it's in the kernel or not, * at the start of an event buffer. */ cpu_buffer_reset(b); if (head >= tail) return head - tail; return head + (b->buffer_size - tail); } static void increment_tail(struct oprofile_cpu_buffer * b) { unsigned long new_tail = b->tail_pos + 1; rmb(); if (new_tail < b->buffer_size) b->tail_pos = new_tail; else b->tail_pos = 0; } /* Move tasks along towards death. Any tasks on dead_tasks * will definitely have no remaining references in any * CPU buffers at this point, because we use two lists, * and to have reached the list, it must have gone through * one full sync already. */ static void process_task_mortuary(void) { struct list_head * pos; struct list_head * pos2; struct task_struct * task; spin_lock(&task_mortuary); list_for_each_safe(pos, pos2, &dead_tasks) { task = list_entry(pos, struct task_struct, tasks); list_del(&task->tasks); free_task(task); } list_for_each_safe(pos, pos2, &dying_tasks) { task = list_entry(pos, struct task_struct, tasks); list_del(&task->tasks); list_add_tail(&task->tasks, &dead_tasks); } spin_unlock(&task_mortuary); } static void mark_done(int cpu) { int i; cpu_set(cpu, marked_cpus); for_each_online_cpu(i) { if (!cpu_isset(i, marked_cpus)) return; } /* All CPUs have been processed at least once, * we can process the mortuary once */ process_task_mortuary(); cpus_clear(marked_cpus); } /* FIXME: this is not sufficient if we implement syscall barrier backtrace * traversal, the code switch to sb_sample_start at first kernel enter/exit * switch so we need a fifth state and some special handling in sync_buffer() */ typedef enum { sb_bt_ignore = -2, sb_buffer_start, sb_bt_start, sb_sample_start, } sync_buffer_state; /* Sync one of the CPU's buffers into the global event buffer. * Here we need to go through each batch of samples punctuated * by context switch notes, taking the task's mmap_sem and doing * lookup in task->mm->mmap to convert EIP into dcookie/offset * value. */ void sync_buffer(int cpu) { struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu]; struct mm_struct *mm = NULL; struct task_struct * new; unsigned long cookie = 0; int in_kernel = 1; unsigned int i; sync_buffer_state state = sb_buffer_start; unsigned long available; down(&buffer_sem); add_cpu_switch(cpu); /* Remember, only we can modify tail_pos */ available = get_slots(cpu_buf); for (i = 0; i < available; ++i) { struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos]; if (is_code(s->eip)) { if (s->event <= CPU_IS_KERNEL) { /* kernel/userspace switch */ in_kernel = s->event; if (state == sb_buffer_start) state = sb_sample_start; add_kernel_ctx_switch(s->event); } else if (s->event == CPU_TRACE_BEGIN) { state = sb_bt_start; add_trace_begin(); } else { struct mm_struct * oldmm = mm; /* userspace context switch */ new = (struct task_struct *)s->event; release_mm(oldmm); mm = take_tasks_mm(new); if (mm != oldmm) cookie = get_exec_dcookie(mm); add_user_ctx_switch(new, cookie); } } else { if (state >= sb_bt_start && !add_sample(mm, s, in_kernel)) { if (state == sb_bt_start) { state = sb_bt_ignore; atomic_inc(&oprofile_stats.bt_lost_no_mapping); } } } increment_tail(cpu_buf); } release_mm(mm); mark_done(cpu); up(&buffer_sem); }