/* Copyright (C) 2009 - 2010 Ivo van Doorn Copyright (C) 2009 Alban Browaeys Copyright (C) 2009 Felix Fietkau Copyright (C) 2009 Luis Correia Copyright (C) 2009 Mattias Nissler Copyright (C) 2009 Mark Asselstine Copyright (C) 2009 Xose Vazquez Perez Copyright (C) 2009 Bart Zolnierkiewicz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2800pci Abstract: rt2800pci device specific routines. Supported chipsets: RT2800E & RT2800ED. */ #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00pci.h" #include "rt2x00soc.h" #include "rt2800lib.h" #include "rt2800.h" #include "rt2800pci.h" /* * Allow hardware encryption to be disabled. */ static int modparam_nohwcrypt = 0; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) { unsigned int i; u32 reg; /* * SOC devices don't support MCU requests. */ if (rt2x00_is_soc(rt2x00dev)) return; for (i = 0; i < 200; i++) { rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) break; udelay(REGISTER_BUSY_DELAY); } if (i == 200) ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); } #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE); memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); iounmap(base_addr); } #else static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ #ifdef CONFIG_PCI static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); } static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, !!eeprom->reg_chip_select); rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); } static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt2800pci_eepromregister_read; eeprom.register_write = rt2800pci_eepromregister_write; switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE)) { case 0: eeprom.width = PCI_EEPROM_WIDTH_93C46; break; case 1: eeprom.width = PCI_EEPROM_WIDTH_93C66; break; default: eeprom.width = PCI_EEPROM_WIDTH_93C86; break; } eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); } static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) { return rt2800_efuse_detect(rt2x00dev); } static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { rt2800_read_eeprom_efuse(rt2x00dev); } #else static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { } static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) { return 0; } static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_PCI */ /* * Queue handlers. */ static void rt2800pci_start_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: /* * Allow beacon tasklets to be scheduled for periodic * beacon updates. */ tasklet_enable(&rt2x00dev->tbtt_tasklet); tasklet_enable(&rt2x00dev->pretbtt_tasklet); rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); break; default: break; } } static void rt2800pci_kick_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; struct queue_entry *entry; switch (queue->qid) { case QID_AC_VO: case QID_AC_VI: case QID_AC_BE: case QID_AC_BK: entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), entry->entry_idx); break; case QID_MGMT: entry = rt2x00queue_get_entry(queue, Q_INDEX); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5), entry->entry_idx); break; default: break; } } static void rt2800pci_stop_queue(struct data_queue *queue) { struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; u32 reg; switch (queue->qid) { case QID_RX: rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); break; case QID_BEACON: rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); /* * Wait for tbtt tasklets to finish. */ tasklet_disable(&rt2x00dev->tbtt_tasklet); tasklet_disable(&rt2x00dev->pretbtt_tasklet); break; default: break; } } /* * Firmware functions */ static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2860; } static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u32 reg; /* * enable Host program ram write selection */ reg = 0; rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg); /* * Write firmware to device. */ rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); return 0; } /* * Initialization functions. */ static bool rt2800pci_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); } } static void rt2800pci_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 0, word); rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); rt2x00_desc_write(entry_priv->desc, 1, word); /* * Set RX IDX in register to inform hardware that we have * handled this entry and it is available for reuse again. */ rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); rt2x00_desc_write(entry_priv->desc, 1, word); } } static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_pci *entry_priv; u32 reg; /* * Initialize registers. */ entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0); rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0); rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0); rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0); rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0); /* * Enable global DMA configuration */ rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0); return 0; } /* * Device state switch handlers. */ static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int mask = (state == STATE_RADIO_IRQ_ON); u32 reg; unsigned long flags; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); /* * Enable tasklets. The beacon related tasklets are * enabled when the beacon queue is started. */ tasklet_enable(&rt2x00dev->txstatus_tasklet); tasklet_enable(&rt2x00dev->rxdone_tasklet); tasklet_enable(&rt2x00dev->autowake_tasklet); } spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, 0); rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, 0); rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, 0); rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask); rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask); rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, 0); rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, 0); rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, 0); rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); if (state == STATE_RADIO_IRQ_OFF) { /* * Ensure that all tasklets are finished before * disabling the interrupts. */ tasklet_disable(&rt2x00dev->txstatus_tasklet); tasklet_disable(&rt2x00dev->rxdone_tasklet); tasklet_disable(&rt2x00dev->autowake_tasklet); } } static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev) { u32 reg; /* * Reset DMA indexes */ rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); if (rt2x00_rt(rt2x00dev, RT5390)) { rt2x00pci_register_read(rt2x00dev, AUX_CTRL, ®); rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg); } rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); return 0; } static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) { if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || rt2800pci_init_queues(rt2x00dev))) return -EIO; return rt2800_enable_radio(rt2x00dev); } static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) { if (rt2x00_is_soc(rt2x00dev)) { rt2800_disable_radio(rt2x00dev); rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0); rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0); } } static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { if (state == STATE_AWAKE) { rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02); rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP); } else if (state == STATE_SLEEP) { rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, 0xffffffff); rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, 0xffffffff); rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01); } return 0; } static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: /* * Before the radio can be enabled, the device first has * to be woken up. After that it needs a bit of time * to be fully awake and then the radio can be enabled. */ rt2800pci_set_state(rt2x00dev, STATE_AWAKE); msleep(1); retval = rt2800pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: /* * After the radio has been disabled, the device should * be put to sleep for powersaving. */ rt2800pci_disable_radio(rt2x00dev); rt2800pci_set_state(rt2x00dev, STATE_SLEEP); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: rt2800pci_toggle_irq(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2800pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static __le32 *rt2800pci_get_txwi(struct queue_entry *entry) { return (__le32 *) entry->skb->data; } static void rt2800pci_write_tx_desc(struct queue_entry *entry, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_pci *entry_priv = entry->priv_data; __le32 *txd = entry_priv->desc; u32 word; /* * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 * must contains a TXWI structure + 802.11 header + padding + 802.11 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 * data. It means that LAST_SEC0 is always 0. */ /* * Initialize TX descriptor */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); rt2x00_desc_write(txd, 0, word); rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE); rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_SD_PTR1, skbdesc->skb_dma + TXWI_DESC_SIZE); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 3, &word); rt2x00_set_field32(&word, TXD_W3_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W3_QSEL, 2); rt2x00_desc_write(txd, 3, word); /* * Register descriptor details in skb frame descriptor. */ skbdesc->desc = txd; skbdesc->desc_len = TXD_DESC_SIZE; } /* * RX control handlers */ static void rt2800pci_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; __le32 *rxd = entry_priv->desc; u32 word; rt2x00_desc_read(rxd, 3, &word); if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; /* * Unfortunately we don't know the cipher type used during * decryption. This prevents us from correct providing * correct statistics through debugfs. */ rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; /* * The hardware has already checked the Michael Mic and has * stripped it from the frame. Signal this to mac80211. */ rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(word, RXD_W3_L2PAD)) rxdesc->dev_flags |= RXDONE_L2PAD; /* * Process the RXWI structure that is at the start of the buffer. */ rt2800_process_rxwi(entry, rxdesc); } /* * Interrupt functions. */ static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev) { struct ieee80211_conf conf = { .flags = 0 }; struct rt2x00lib_conf libconf = { .conf = &conf }; rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); } static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; struct queue_entry *entry; u32 status; u8 qid; int max_tx_done = 16; while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); if (unlikely(qid >= QID_RX)) { /* * Unknown queue, this shouldn't happen. Just drop * this tx status. */ WARNING(rt2x00dev, "Got TX status report with " "unexpected pid %u, dropping\n", qid); break; } queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); if (unlikely(queue == NULL)) { /* * The queue is NULL, this shouldn't happen. Stop * processing here and drop the tx status */ WARNING(rt2x00dev, "Got TX status for an unavailable " "queue %u, dropping\n", qid); break; } if (unlikely(rt2x00queue_empty(queue))) { /* * The queue is empty. Stop processing here * and drop the tx status. */ WARNING(rt2x00dev, "Got TX status for an empty " "queue %u, dropping\n", qid); break; } entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); rt2800_txdone_entry(entry, status); if (--max_tx_done == 0) break; } return !max_tx_done; } static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, struct rt2x00_field32 irq_field) { u32 reg; /* * Enable a single interrupt. The interrupt mask register * access needs locking. */ spin_lock_irq(&rt2x00dev->irqmask_lock); rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, irq_field, 1); rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock_irq(&rt2x00dev->irqmask_lock); } static void rt2800pci_txstatus_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; if (rt2800pci_txdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->txstatus_tasklet); /* * No need to enable the tx status interrupt here as we always * leave it enabled to minimize the possibility of a tx status * register overflow. See comment in interrupt handler. */ } static void rt2800pci_pretbtt_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2x00lib_pretbtt(rt2x00dev); rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); } static void rt2800pci_tbtt_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2x00lib_beacondone(rt2x00dev); rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); } static void rt2800pci_rxdone_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; if (rt2x00pci_rxdone(rt2x00dev)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); else rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); } static void rt2800pci_autowake_tasklet(unsigned long data) { struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; rt2800pci_wakeup(rt2x00dev); rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP); } static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) { u32 status; int i; /* * The TX_FIFO_STATUS interrupt needs special care. We should * read TX_STA_FIFO but we should do it immediately as otherwise * the register can overflow and we would lose status reports. * * Hence, read the TX_STA_FIFO register and copy all tx status * reports into a kernel FIFO which is handled in the txstatus * tasklet. We use a tasklet to process the tx status reports * because we can schedule the tasklet multiple times (when the * interrupt fires again during tx status processing). * * Furthermore we don't disable the TX_FIFO_STATUS * interrupt here but leave it enabled so that the TX_STA_FIFO * can also be read while the tx status tasklet gets executed. * * Since we have only one producer and one consumer we don't * need to lock the kfifo. */ for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) { rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status); if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) break; if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) { WARNING(rt2x00dev, "TX status FIFO overrun," "drop tx status report.\n"); break; } } /* Schedule the tasklet for processing the tx status. */ tasklet_schedule(&rt2x00dev->txstatus_tasklet); } static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg, mask; /* Read status and ACK all interrupts */ rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits * for interrupts and interrupt masks we can just use the value of * INT_SOURCE_CSR to create the interrupt mask. */ mask = ~reg; if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { rt2800pci_txstatus_interrupt(rt2x00dev); /* * Never disable the TX_FIFO_STATUS interrupt. */ rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); } if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) tasklet_schedule(&rt2x00dev->rxdone_tasklet); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) tasklet_schedule(&rt2x00dev->autowake_tasklet); /* * Disable all interrupts for which a tasklet was scheduled right now, * the tasklet will reenable the appropriate interrupts. */ spin_lock(&rt2x00dev->irqmask_lock); rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); reg &= mask; rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); spin_unlock(&rt2x00dev->irqmask_lock); return IRQ_HANDLED; } /* * Device probe functions. */ static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) { /* * Read EEPROM into buffer */ if (rt2x00_is_soc(rt2x00dev)) rt2800pci_read_eeprom_soc(rt2x00dev); else if (rt2800pci_efuse_detect(rt2x00dev)) rt2800pci_read_eeprom_efuse(rt2x00dev); else rt2800pci_read_eeprom_pci(rt2x00dev); return rt2800_validate_eeprom(rt2x00dev); } static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; /* * Allocate eeprom data. */ retval = rt2800pci_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2800_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt2800_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames * and has a separate filter for PS Poll frames. */ __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags); /* * This device has a pre tbtt interrupt and thus fetches * a new beacon directly prior to transmission. */ __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags); /* * This device requires firmware. */ if (!rt2x00_is_soc(rt2x00dev)) __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags); __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags); __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags); if (!modparam_nohwcrypt) __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } static const struct ieee80211_ops rt2800pci_mac80211_ops = { .tx = rt2x00mac_tx, .start = rt2x00mac_start, .stop = rt2x00mac_stop, .add_interface = rt2x00mac_add_interface, .remove_interface = rt2x00mac_remove_interface, .config = rt2x00mac_config, .configure_filter = rt2x00mac_configure_filter, .set_key = rt2x00mac_set_key, .sw_scan_start = rt2x00mac_sw_scan_start, .sw_scan_complete = rt2x00mac_sw_scan_complete, .get_stats = rt2x00mac_get_stats, .get_tkip_seq = rt2800_get_tkip_seq, .set_rts_threshold = rt2800_set_rts_threshold, .bss_info_changed = rt2x00mac_bss_info_changed, .conf_tx = rt2800_conf_tx, .get_tsf = rt2800_get_tsf, .rfkill_poll = rt2x00mac_rfkill_poll, .ampdu_action = rt2800_ampdu_action, .flush = rt2x00mac_flush, .get_survey = rt2800_get_survey, .get_ringparam = rt2x00mac_get_ringparam, }; static const struct rt2800_ops rt2800pci_rt2800_ops = { .register_read = rt2x00pci_register_read, .register_read_lock = rt2x00pci_register_read, /* same for PCI */ .register_write = rt2x00pci_register_write, .register_write_lock = rt2x00pci_register_write, /* same for PCI */ .register_multiread = rt2x00pci_register_multiread, .register_multiwrite = rt2x00pci_register_multiwrite, .regbusy_read = rt2x00pci_regbusy_read, .drv_write_firmware = rt2800pci_write_firmware, .drv_init_registers = rt2800pci_init_registers, .drv_get_txwi = rt2800pci_get_txwi, }; static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { .irq_handler = rt2800pci_interrupt, .txstatus_tasklet = rt2800pci_txstatus_tasklet, .pretbtt_tasklet = rt2800pci_pretbtt_tasklet, .tbtt_tasklet = rt2800pci_tbtt_tasklet, .rxdone_tasklet = rt2800pci_rxdone_tasklet, .autowake_tasklet = rt2800pci_autowake_tasklet, .probe_hw = rt2800pci_probe_hw, .get_firmware_name = rt2800pci_get_firmware_name, .check_firmware = rt2800_check_firmware, .load_firmware = rt2800_load_firmware, .initialize = rt2x00pci_initialize, .uninitialize = rt2x00pci_uninitialize, .get_entry_state = rt2800pci_get_entry_state, .clear_entry = rt2800pci_clear_entry, .set_device_state = rt2800pci_set_device_state, .rfkill_poll = rt2800_rfkill_poll, .link_stats = rt2800_link_stats, .reset_tuner = rt2800_reset_tuner, .link_tuner = rt2800_link_tuner, .gain_calibration = rt2800_gain_calibration, .start_queue = rt2800pci_start_queue, .kick_queue = rt2800pci_kick_queue, .stop_queue = rt2800pci_stop_queue, .flush_queue = rt2x00pci_flush_queue, .write_tx_desc = rt2800pci_write_tx_desc, .write_tx_data = rt2800_write_tx_data, .write_beacon = rt2800_write_beacon, .clear_beacon = rt2800_clear_beacon, .fill_rxdone = rt2800pci_fill_rxdone, .config_shared_key = rt2800_config_shared_key, .config_pairwise_key = rt2800_config_pairwise_key, .config_filter = rt2800_config_filter, .config_intf = rt2800_config_intf, .config_erp = rt2800_config_erp, .config_ant = rt2800_config_ant, .config = rt2800_config, }; static const struct data_queue_desc rt2800pci_queue_rx = { .entry_num = 128, .data_size = AGGREGATION_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_tx = { .entry_num = 64, .data_size = AGGREGATION_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_bcn = { .entry_num = 8, .data_size = 0, /* No DMA required for beacons */ .desc_size = TXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct rt2x00_ops rt2800pci_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 8, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .extra_tx_headroom = TXWI_DESC_SIZE, .rx = &rt2800pci_queue_rx, .tx = &rt2800pci_queue_tx, .bcn = &rt2800pci_queue_bcn, .lib = &rt2800pci_rt2x00_ops, .drv = &rt2800pci_rt2800_ops, .hw = &rt2800pci_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2800_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT2800pci module information. */ #ifdef CONFIG_PCI static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = { { PCI_DEVICE(0x1814, 0x0601) }, { PCI_DEVICE(0x1814, 0x0681) }, { PCI_DEVICE(0x1814, 0x0701) }, { PCI_DEVICE(0x1814, 0x0781) }, { PCI_DEVICE(0x1814, 0x3090) }, { PCI_DEVICE(0x1814, 0x3091) }, { PCI_DEVICE(0x1814, 0x3092) }, { PCI_DEVICE(0x1432, 0x7708) }, { PCI_DEVICE(0x1432, 0x7727) }, { PCI_DEVICE(0x1432, 0x7728) }, { PCI_DEVICE(0x1432, 0x7738) }, { PCI_DEVICE(0x1432, 0x7748) }, { PCI_DEVICE(0x1432, 0x7758) }, { PCI_DEVICE(0x1432, 0x7768) }, { PCI_DEVICE(0x1462, 0x891a) }, { PCI_DEVICE(0x1a3b, 0x1059) }, #ifdef CONFIG_RT2800PCI_RT33XX { PCI_DEVICE(0x1814, 0x3390) }, #endif #ifdef CONFIG_RT2800PCI_RT35XX { PCI_DEVICE(0x1432, 0x7711) }, { PCI_DEVICE(0x1432, 0x7722) }, { PCI_DEVICE(0x1814, 0x3060) }, { PCI_DEVICE(0x1814, 0x3062) }, { PCI_DEVICE(0x1814, 0x3562) }, { PCI_DEVICE(0x1814, 0x3592) }, { PCI_DEVICE(0x1814, 0x3593) }, #endif #ifdef CONFIG_RT2800PCI_RT53XX { PCI_DEVICE(0x1814, 0x5390) }, #endif { 0, } }; #endif /* CONFIG_PCI */ MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); #ifdef CONFIG_PCI MODULE_FIRMWARE(FIRMWARE_RT2860); MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); #endif /* CONFIG_PCI */ MODULE_LICENSE("GPL"); #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) static int rt2800soc_probe(struct platform_device *pdev) { return rt2x00soc_probe(pdev, &rt2800pci_ops); } static struct platform_driver rt2800soc_driver = { .driver = { .name = "rt2800_wmac", .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, }, .probe = rt2800soc_probe, .remove = __devexit_p(rt2x00soc_remove), .suspend = rt2x00soc_suspend, .resume = rt2x00soc_resume, }; #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ #ifdef CONFIG_PCI static int rt2800pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { return rt2x00pci_probe(pci_dev, &rt2800pci_ops); } static struct pci_driver rt2800pci_driver = { .name = KBUILD_MODNAME, .id_table = rt2800pci_device_table, .probe = rt2800pci_probe, .remove = __devexit_p(rt2x00pci_remove), .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, }; #endif /* CONFIG_PCI */ static int __init rt2800pci_init(void) { int ret = 0; #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) ret = platform_driver_register(&rt2800soc_driver); if (ret) return ret; #endif #ifdef CONFIG_PCI ret = pci_register_driver(&rt2800pci_driver); if (ret) { #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) platform_driver_unregister(&rt2800soc_driver); #endif return ret; } #endif return ret; } static void __exit rt2800pci_exit(void) { #ifdef CONFIG_PCI pci_unregister_driver(&rt2800pci_driver); #endif #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) platform_driver_unregister(&rt2800soc_driver); #endif } module_init(rt2800pci_init); module_exit(rt2800pci_exit);