/* Copyright (C) 2004 - 2009 rt2x00 SourceForge Project This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2800pci Abstract: rt2800pci device specific routines. Supported chipsets: RT2800E & RT2800ED. */ #include #include #include #include #include #include #include #include #include #include "rt2x00.h" #include "rt2x00pci.h" #include "rt2x00soc.h" #include "rt2800lib.h" #include "rt2800.h" #include "rt2800pci.h" #ifdef CONFIG_RT2800PCI_PCI_MODULE #define CONFIG_RT2800PCI_PCI #endif #ifdef CONFIG_RT2800PCI_WISOC_MODULE #define CONFIG_RT2800PCI_WISOC #endif /* * Allow hardware encryption to be disabled. */ static int modparam_nohwcrypt = 1; module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) { unsigned int i; u32 reg; for (i = 0; i < 200; i++) { rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) break; udelay(REGISTER_BUSY_DELAY); } if (i == 200) ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); } #ifdef CONFIG_RT2800PCI_WISOC static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */ memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); } #else static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_RT2800PCI_WISOC */ #ifdef CONFIG_RT2800PCI_PCI static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg; rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); eeprom->reg_data_clock = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); eeprom->reg_chip_select = !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); } static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) { struct rt2x00_dev *rt2x00dev = eeprom->data; u32 reg = 0; rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, !!eeprom->reg_data_clock); rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, !!eeprom->reg_chip_select); rt2800_register_write(rt2x00dev, E2PROM_CSR, reg); } static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { struct eeprom_93cx6 eeprom; u32 reg; rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); eeprom.data = rt2x00dev; eeprom.register_read = rt2800pci_eepromregister_read; eeprom.register_write = rt2800pci_eepromregister_write; eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ? PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; eeprom.reg_data_in = 0; eeprom.reg_data_out = 0; eeprom.reg_data_clock = 0; eeprom.reg_chip_select = 0; eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, EEPROM_SIZE / sizeof(u16)); } static void rt2800pci_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) { u32 reg; rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); rt2800_register_write(rt2x00dev, EFUSE_CTRL, reg); /* Wait until the EEPROM has been loaded */ rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); /* Apparently the data is read from end to start */ rt2800_register_read(rt2x00dev, EFUSE_DATA3, (u32 *)&rt2x00dev->eeprom[i]); rt2800_register_read(rt2x00dev, EFUSE_DATA2, (u32 *)&rt2x00dev->eeprom[i + 2]); rt2800_register_read(rt2x00dev, EFUSE_DATA1, (u32 *)&rt2x00dev->eeprom[i + 4]); rt2800_register_read(rt2x00dev, EFUSE_DATA0, (u32 *)&rt2x00dev->eeprom[i + 6]); } static void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { unsigned int i; for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) rt2800pci_efuse_read(rt2x00dev, i); } #else static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) { } static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) { } #endif /* CONFIG_RT2800PCI_PCI */ /* * Firmware functions */ static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) { return FIRMWARE_RT2860; } static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { u16 fw_crc; u16 crc; /* * Only support 8kb firmware files. */ if (len != 8192) return FW_BAD_LENGTH; /* * The last 2 bytes in the firmware array are the crc checksum itself, * this means that we should never pass those 2 bytes to the crc * algorithm. */ fw_crc = (data[len - 2] << 8 | data[len - 1]); /* * Use the crc ccitt algorithm. * This will return the same value as the legacy driver which * used bit ordering reversion on the both the firmware bytes * before input input as well as on the final output. * Obviously using crc ccitt directly is much more efficient. */ crc = crc_ccitt(~0, data, len - 2); /* * There is a small difference between the crc-itu-t + bitrev and * the crc-ccitt crc calculation. In the latter method the 2 bytes * will be swapped, use swab16 to convert the crc to the correct * value. */ crc = swab16(crc); return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; } static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev, const u8 *data, const size_t len) { unsigned int i; u32 reg; /* * Wait for stable hardware. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, MAC_CSR0, ®); if (reg && reg != ~0) break; msleep(1); } if (i == REGISTER_BUSY_COUNT) { ERROR(rt2x00dev, "Unstable hardware.\n"); return -EBUSY; } rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002); rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000); /* * Disable DMA, will be reenabled later when enabling * the radio. */ rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); /* * enable Host program ram write selection */ reg = 0; rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg); /* * Write firmware to device. */ rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); /* * Wait for device to stabilize. */ for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) break; msleep(1); } if (i == REGISTER_BUSY_COUNT) { ERROR(rt2x00dev, "PBF system register not ready.\n"); return -EBUSY; } /* * Disable interrupts */ rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); /* * Initialize BBP R/W access agent */ rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); return 0; } /* * Initialization functions. */ static bool rt2800pci_get_entry_state(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); } } static void rt2800pci_clear_entry(struct queue_entry *entry) { struct queue_entry_priv_pci *entry_priv = entry->priv_data; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); u32 word; if (entry->queue->qid == QID_RX) { rt2x00_desc_read(entry_priv->desc, 0, &word); rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); rt2x00_desc_write(entry_priv->desc, 0, word); rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); rt2x00_desc_write(entry_priv->desc, 1, word); } else { rt2x00_desc_read(entry_priv->desc, 1, &word); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); rt2x00_desc_write(entry_priv->desc, 1, word); } } static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) { struct queue_entry_priv_pci *entry_priv; u32 reg; rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); /* * Initialize registers. */ entry_priv = rt2x00dev->tx[0].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0); entry_priv = rt2x00dev->tx[1].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0); entry_priv = rt2x00dev->tx[2].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0); entry_priv = rt2x00dev->tx[3].entries[0].priv_data; rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit); rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0); rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0); entry_priv = rt2x00dev->rx->entries[0].priv_data; rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit); rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1); rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0); /* * Enable global DMA configuration */ rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0); return 0; } /* * Device state switch handlers. */ static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) { u32 reg; rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, (state == STATE_RADIO_RX_ON) || (state == STATE_RADIO_RX_ON_LINK)); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); } static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int mask = (state == STATE_RADIO_IRQ_ON); u32 reg; /* * When interrupts are being enabled, the interrupt registers * should clear the register to assure a clean state. */ if (state == STATE_RADIO_IRQ_ON) { rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); } rt2800_register_read(rt2x00dev, INT_MASK_CSR, ®); rt2x00_set_field32(®, INT_MASK_CSR_RXDELAYINT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TXDELAYINT, mask); rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC0_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC1_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC2_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_AC3_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_HCCA_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_MGMT_DMA_DONE, mask); rt2x00_set_field32(®, INT_MASK_CSR_MCU_COMMAND, mask); rt2x00_set_field32(®, INT_MASK_CSR_RXTX_COHERENT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, mask); rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, mask); rt2x00_set_field32(®, INT_MASK_CSR_GPTIMER, mask); rt2x00_set_field32(®, INT_MASK_CSR_RX_COHERENT, mask); rt2x00_set_field32(®, INT_MASK_CSR_TX_COHERENT, mask); rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg); } static int rt2800pci_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) { unsigned int i; u32 reg; for (i = 0; i < REGISTER_BUSY_COUNT; i++) { rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) return 0; msleep(1); } ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); return -EACCES; } static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 word; /* * Initialize all registers. */ if (unlikely(rt2800pci_wait_wpdma_ready(rt2x00dev) || rt2800pci_init_queues(rt2x00dev) || rt2800_init_registers(rt2x00dev) || rt2800pci_wait_wpdma_ready(rt2x00dev) || rt2800_init_bbp(rt2x00dev) || rt2800_init_rfcsr(rt2x00dev))) return -EIO; /* * Send signal to firmware during boot time. */ rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0); /* * Enable RX. */ rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); /* * Initialize LED control */ rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff, word & 0xff, (word >> 8) & 0xff); rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff, word & 0xff, (word >> 8) & 0xff); rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word); rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff, word & 0xff, (word >> 8) & 0xff); return 0; } static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) { u32 reg; rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0); rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0); rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280); rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); /* Wait for DMA, ignore error */ rt2800pci_wait_wpdma_ready(rt2x00dev); } static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { /* * Always put the device to sleep (even when we intend to wakeup!) * if the device is booting and wasn't asleep it will return * failure when attempting to wakeup. */ rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2); if (state == STATE_AWAKE) { rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0); rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP); } return 0; } static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) { int retval = 0; switch (state) { case STATE_RADIO_ON: /* * Before the radio can be enabled, the device first has * to be woken up. After that it needs a bit of time * to be fully awake and then the radio can be enabled. */ rt2800pci_set_state(rt2x00dev, STATE_AWAKE); msleep(1); retval = rt2800pci_enable_radio(rt2x00dev); break; case STATE_RADIO_OFF: /* * After the radio has been disabled, the device should * be put to sleep for powersaving. */ rt2800pci_disable_radio(rt2x00dev); rt2800pci_set_state(rt2x00dev, STATE_SLEEP); break; case STATE_RADIO_RX_ON: case STATE_RADIO_RX_ON_LINK: case STATE_RADIO_RX_OFF: case STATE_RADIO_RX_OFF_LINK: rt2800pci_toggle_rx(rt2x00dev, state); break; case STATE_RADIO_IRQ_ON: case STATE_RADIO_IRQ_OFF: rt2800pci_toggle_irq(rt2x00dev, state); break; case STATE_DEEP_SLEEP: case STATE_SLEEP: case STATE_STANDBY: case STATE_AWAKE: retval = rt2800pci_set_state(rt2x00dev, state); break; default: retval = -ENOTSUPP; break; } if (unlikely(retval)) ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", state, retval); return retval; } /* * TX descriptor initialization */ static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb, struct txentry_desc *txdesc) { struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb); __le32 *txd = skbdesc->desc; __le32 *txwi = (__le32 *)(skb->data - rt2x00dev->hw->extra_tx_headroom); u32 word; /* * Initialize TX Info descriptor */ rt2x00_desc_read(txwi, 0, &word); rt2x00_set_field32(&word, TXWI_W0_FRAG, test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0); rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); rt2x00_set_field32(&word, TXWI_W0_TS, test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_AMPDU, test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density); rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs); rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs); rt2x00_set_field32(&word, TXWI_W0_BW, test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc); rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); rt2x00_desc_write(txwi, 0, word); rt2x00_desc_read(txwi, 1, &word); rt2x00_set_field32(&word, TXWI_W1_ACK, test_bit(ENTRY_TXD_ACK, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W1_NSEQ, test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size); rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? txdesc->key_idx : 0xff); rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, skb->len - txdesc->l2pad); rt2x00_set_field32(&word, TXWI_W1_PACKETID, skbdesc->entry->queue->qid + 1); rt2x00_desc_write(txwi, 1, word); /* * Always write 0 to IV/EIV fields, hardware will insert the IV * from the IVEIV register when TXD_W3_WIV is set to 0. * When TXD_W3_WIV is set to 1 it will use the IV data * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which * crypto entry in the registers should be used to encrypt the frame. */ _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); /* * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 * must contains a TXWI structure + 802.11 header + padding + 802.11 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 * data. It means that LAST_SEC0 is always 0. */ /* * Initialize TX descriptor */ rt2x00_desc_read(txd, 0, &word); rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); rt2x00_desc_write(txd, 0, word); rt2x00_desc_read(txd, 1, &word); rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len); rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_BURST, test_bit(ENTRY_TXD_BURST, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W1_SD_LEN0, rt2x00dev->hw->extra_tx_headroom); rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); rt2x00_desc_write(txd, 1, word); rt2x00_desc_read(txd, 2, &word); rt2x00_set_field32(&word, TXD_W2_SD_PTR1, skbdesc->skb_dma + rt2x00dev->hw->extra_tx_headroom); rt2x00_desc_write(txd, 2, word); rt2x00_desc_read(txd, 3, &word); rt2x00_set_field32(&word, TXD_W3_WIV, !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); rt2x00_set_field32(&word, TXD_W3_QSEL, 2); rt2x00_desc_write(txd, 3, word); } /* * TX data initialization */ static void rt2800pci_write_beacon(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); unsigned int beacon_base; u32 reg; /* * Disable beaconing while we are reloading the beacon data, * otherwise we might be sending out invalid data. */ rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); /* * Write entire beacon with descriptor to register. */ beacon_base = HW_BEACON_OFFSET(entry->entry_idx); rt2800_register_multiwrite(rt2x00dev, beacon_base, skbdesc->desc, skbdesc->desc_len); rt2800_register_multiwrite(rt2x00dev, beacon_base + skbdesc->desc_len, entry->skb->data, entry->skb->len); /* * Clean up beacon skb. */ dev_kfree_skb_any(entry->skb); entry->skb = NULL; } static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue_idx) { struct data_queue *queue; unsigned int idx, qidx = 0; u32 reg; if (queue_idx == QID_BEACON) { rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) { rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); } return; } if (queue_idx > QID_HCCA && queue_idx != QID_MGMT) return; queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); idx = queue->index[Q_INDEX]; if (queue_idx == QID_MGMT) qidx = 5; else qidx = queue_idx; rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx); } static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid qid) { u32 reg; if (qid == QID_BEACON) { rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0); return; } rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, ®); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI)); rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO)); rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg); } /* * RX control handlers */ static void rt2800pci_fill_rxdone(struct queue_entry *entry, struct rxdone_entry_desc *rxdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); struct queue_entry_priv_pci *entry_priv = entry->priv_data; __le32 *rxd = entry_priv->desc; __le32 *rxwi = (__le32 *)entry->skb->data; u32 rxd3; u32 rxwi0; u32 rxwi1; u32 rxwi2; u32 rxwi3; rt2x00_desc_read(rxd, 3, &rxd3); rt2x00_desc_read(rxwi, 0, &rxwi0); rt2x00_desc_read(rxwi, 1, &rxwi1); rt2x00_desc_read(rxwi, 2, &rxwi2); rt2x00_desc_read(rxwi, 3, &rxwi3); if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR)) rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { /* * Unfortunately we don't know the cipher type used during * decryption. This prevents us from correct providing * correct statistics through debugfs. */ rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF); rxdesc->cipher_status = rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR); } if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) { /* * Hardware has stripped IV/EIV data from 802.11 frame during * decryption. Unfortunately the descriptor doesn't contain * any fields with the EIV/IV data either, so they can't * be restored by rt2x00lib. */ rxdesc->flags |= RX_FLAG_IV_STRIPPED; if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) rxdesc->flags |= RX_FLAG_DECRYPTED; else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) rxdesc->flags |= RX_FLAG_MMIC_ERROR; } if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS)) rxdesc->dev_flags |= RXDONE_MY_BSS; if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD)) { rxdesc->dev_flags |= RXDONE_L2PAD; skbdesc->flags |= SKBDESC_L2_PADDED; } if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI)) rxdesc->flags |= RX_FLAG_SHORT_GI; if (rt2x00_get_field32(rxwi1, RXWI_W1_BW)) rxdesc->flags |= RX_FLAG_40MHZ; /* * Detect RX rate, always use MCS as signal type. */ rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE); rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS); /* * Mask of 0x8 bit to remove the short preamble flag. */ if (rxdesc->rate_mode == RATE_MODE_CCK) rxdesc->signal &= ~0x8; rxdesc->rssi = (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) + rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2; rxdesc->noise = (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) + rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2; rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); /* * Set RX IDX in register to inform hardware that we have handled * this entry and it is available for reuse again. */ rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx); /* * Remove TXWI descriptor from start of buffer. */ skb_pull(entry->skb, RXWI_DESC_SIZE); skb_trim(entry->skb, rxdesc->size); } /* * Interrupt functions. */ static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; struct queue_entry *entry; struct queue_entry *entry_done; struct queue_entry_priv_pci *entry_priv; struct txdone_entry_desc txdesc; u32 word; u32 reg; u32 old_reg; unsigned int type; unsigned int index; u16 mcs, real_mcs; /* * During each loop we will compare the freshly read * TX_STA_FIFO register value with the value read from * the previous loop. If the 2 values are equal then * we should stop processing because the chance it * quite big that the device has been unplugged and * we risk going into an endless loop. */ old_reg = 0; while (1) { rt2800_register_read(rt2x00dev, TX_STA_FIFO, ®); if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID)) break; if (old_reg == reg) break; old_reg = reg; /* * Skip this entry when it contains an invalid * queue identication number. */ type = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE) - 1; if (type >= QID_RX) continue; queue = rt2x00queue_get_queue(rt2x00dev, type); if (unlikely(!queue)) continue; /* * Skip this entry when it contains an invalid * index number. */ index = rt2x00_get_field32(reg, TX_STA_FIFO_WCID) - 1; if (unlikely(index >= queue->limit)) continue; entry = &queue->entries[index]; entry_priv = entry->priv_data; rt2x00_desc_read((__le32 *)entry->skb->data, 0, &word); entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); while (entry != entry_done) { /* * Catch up. * Just report any entries we missed as failed. */ WARNING(rt2x00dev, "TX status report missed for entry %d\n", entry_done->entry_idx); txdesc.flags = 0; __set_bit(TXDONE_UNKNOWN, &txdesc.flags); txdesc.retry = 0; rt2x00lib_txdone(entry_done, &txdesc); entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); } /* * Obtain the status about this packet. */ txdesc.flags = 0; if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) __set_bit(TXDONE_SUCCESS, &txdesc.flags); else __set_bit(TXDONE_FAILURE, &txdesc.flags); /* * Ralink has a retry mechanism using a global fallback * table. We setup this fallback table to try immediate * lower rate for all rates. In the TX_STA_FIFO, * the MCS field contains the MCS used for the successfull * transmission. If the first transmission succeed, * we have mcs == tx_mcs. On the second transmission, * we have mcs = tx_mcs - 1. So the number of * retry is (tx_mcs - mcs). */ mcs = rt2x00_get_field32(word, TXWI_W0_MCS); real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS); __set_bit(TXDONE_FALLBACK, &txdesc.flags); txdesc.retry = mcs - min(mcs, real_mcs); rt2x00lib_txdone(entry, &txdesc); } } static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) { struct rt2x00_dev *rt2x00dev = dev_instance; u32 reg; /* Read status and ACK all interrupts */ rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, ®); rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg); if (!reg) return IRQ_NONE; if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) return IRQ_HANDLED; /* * 1 - Rx ring done interrupt. */ if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) rt2x00pci_rxdone(rt2x00dev); if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) rt2800pci_txdone(rt2x00dev); return IRQ_HANDLED; } /* * Device probe functions. */ static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) { u16 word; u8 *mac; u8 default_lna_gain; /* * Read EEPROM into buffer */ switch(rt2x00dev->chip.rt) { case RT2880: case RT3052: rt2800pci_read_eeprom_soc(rt2x00dev); break; case RT3090: rt2800pci_read_eeprom_efuse(rt2x00dev); break; default: rt2800pci_read_eeprom_pci(rt2x00dev); break; } /* * Start validation of the data that has been read. */ mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); if (!is_valid_ether_addr(mac)) { random_ether_addr(mac); EEPROM(rt2x00dev, "MAC: %pM\n", mac); } rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1); rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) { /* * There is a max of 2 RX streams for RT2860 series */ if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2) rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); if (word == 0xffff) { rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0); rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0); rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0); rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); } rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); if ((word & 0x00ff) == 0x00ff) { rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, LED_MODE_TXRX_ACTIVITY); rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221); rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8); EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); } /* * During the LNA validation we are going to use * lna0 as correct value. Note that EEPROM_LNA * is never validated. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, default_lna_gain); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, default_lna_gain); rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); return 0; } static int rt2800pci_init_eeprom(struct rt2x00_dev *rt2x00dev) { u32 reg; u16 value; u16 eeprom; /* * Read EEPROM word for configuration. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Identify RF chipset. */ value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); rt2800_register_read(rt2x00dev, MAC_CSR0, ®); rt2x00_set_chip_rf(rt2x00dev, value, reg); if (!rt2x00_rf(&rt2x00dev->chip, RF2820) && !rt2x00_rf(&rt2x00dev->chip, RF2850) && !rt2x00_rf(&rt2x00dev->chip, RF2720) && !rt2x00_rf(&rt2x00dev->chip, RF2750) && !rt2x00_rf(&rt2x00dev->chip, RF3020) && !rt2x00_rf(&rt2x00dev->chip, RF2020) && !rt2x00_rf(&rt2x00dev->chip, RF3021) && !rt2x00_rf(&rt2x00dev->chip, RF3022)) { ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); return -ENODEV; } /* * Identify default antenna configuration. */ rt2x00dev->default_ant.tx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH); rt2x00dev->default_ant.rx = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH); /* * Read frequency offset and RF programming sequence. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); /* * Read external LNA informations. */ rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); /* * Detect if this device has an hardware controlled radio. */ if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO)) __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); /* * Store led settings, for correct led behaviour. */ #ifdef CONFIG_RT2X00_LIB_LEDS rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg); #endif /* CONFIG_RT2X00_LIB_LEDS */ return 0; } /* * RF value list for rt2860 * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) */ static const struct rf_channel rf_vals[] = { { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, /* 802.11 UNI / HyperLan 2 */ { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, /* 802.11 HyperLan 2 */ { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, /* 802.11 UNII */ { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, /* 802.11 Japan */ { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, }; static int rt2800pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) { struct hw_mode_spec *spec = &rt2x00dev->spec; struct channel_info *info; char *tx_power1; char *tx_power2; unsigned int i; u16 eeprom; /* * Initialize all hw fields. */ rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; rt2x00dev->hw->extra_tx_headroom = TXWI_DESC_SIZE; SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0)); rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); /* * Initialize hw_mode information. */ spec->supported_bands = SUPPORT_BAND_2GHZ; spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; if (rt2x00_rf(&rt2x00dev->chip, RF2820) || rt2x00_rf(&rt2x00dev->chip, RF2720) || rt2x00_rf(&rt2x00dev->chip, RF3020) || rt2x00_rf(&rt2x00dev->chip, RF3021) || rt2x00_rf(&rt2x00dev->chip, RF3022) || rt2x00_rf(&rt2x00dev->chip, RF2020) || rt2x00_rf(&rt2x00dev->chip, RF3052)) { spec->num_channels = 14; spec->channels = rf_vals; } else if (rt2x00_rf(&rt2x00dev->chip, RF2850) || rt2x00_rf(&rt2x00dev->chip, RF2750)) { spec->supported_bands |= SUPPORT_BAND_5GHZ; spec->num_channels = ARRAY_SIZE(rf_vals); spec->channels = rf_vals; } /* * Initialize HT information. */ spec->ht.ht_supported = true; spec->ht.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_GRN_FLD | IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_TX_STBC | IEEE80211_HT_CAP_RX_STBC | IEEE80211_HT_CAP_PSMP_SUPPORT; spec->ht.ampdu_factor = 3; spec->ht.ampdu_density = 4; spec->ht.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED | IEEE80211_HT_MCS_TX_RX_DIFF | ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) { case 3: spec->ht.mcs.rx_mask[2] = 0xff; case 2: spec->ht.mcs.rx_mask[1] = 0xff; case 1: spec->ht.mcs.rx_mask[0] = 0xff; spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ break; } /* * Create channel information array */ info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; spec->channels_info = info; tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); for (i = 0; i < 14; i++) { info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]); info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]); } if (spec->num_channels > 14) { tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); for (i = 14; i < spec->num_channels; i++) { info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]); info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]); } } return 0; } static const struct rt2800_ops rt2800pci_rt2800_ops = { .register_read = rt2x00pci_register_read, .register_write = rt2x00pci_register_write, .register_write_lock = rt2x00pci_register_write, /* same for PCI */ .register_multiread = rt2x00pci_register_multiread, .register_multiwrite = rt2x00pci_register_multiwrite, .regbusy_read = rt2x00pci_regbusy_read, }; static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) { int retval; rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops; /* * Allocate eeprom data. */ retval = rt2800pci_validate_eeprom(rt2x00dev); if (retval) return retval; retval = rt2800pci_init_eeprom(rt2x00dev); if (retval) return retval; /* * Initialize hw specifications. */ retval = rt2800pci_probe_hw_mode(rt2x00dev); if (retval) return retval; /* * This device has multiple filters for control frames * and has a separate filter for PS Poll frames. */ __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags); __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags); /* * This device requires firmware. */ if (!rt2x00_rt(&rt2x00dev->chip, RT2880) && !rt2x00_rt(&rt2x00dev->chip, RT3052)) __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags); __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags); if (!modparam_nohwcrypt) __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags); /* * Set the rssi offset. */ rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; return 0; } static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { .irq_handler = rt2800pci_interrupt, .probe_hw = rt2800pci_probe_hw, .get_firmware_name = rt2800pci_get_firmware_name, .check_firmware = rt2800pci_check_firmware, .load_firmware = rt2800pci_load_firmware, .initialize = rt2x00pci_initialize, .uninitialize = rt2x00pci_uninitialize, .get_entry_state = rt2800pci_get_entry_state, .clear_entry = rt2800pci_clear_entry, .set_device_state = rt2800pci_set_device_state, .rfkill_poll = rt2800_rfkill_poll, .link_stats = rt2800_link_stats, .reset_tuner = rt2800_reset_tuner, .link_tuner = rt2800_link_tuner, .write_tx_desc = rt2800pci_write_tx_desc, .write_tx_data = rt2x00pci_write_tx_data, .write_beacon = rt2800pci_write_beacon, .kick_tx_queue = rt2800pci_kick_tx_queue, .kill_tx_queue = rt2800pci_kill_tx_queue, .fill_rxdone = rt2800pci_fill_rxdone, .config_shared_key = rt2800_config_shared_key, .config_pairwise_key = rt2800_config_pairwise_key, .config_filter = rt2800_config_filter, .config_intf = rt2800_config_intf, .config_erp = rt2800_config_erp, .config_ant = rt2800_config_ant, .config = rt2800_config, }; static const struct data_queue_desc rt2800pci_queue_rx = { .entry_num = RX_ENTRIES, .data_size = AGGREGATION_SIZE, .desc_size = RXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_tx = { .entry_num = TX_ENTRIES, .data_size = AGGREGATION_SIZE, .desc_size = TXD_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct data_queue_desc rt2800pci_queue_bcn = { .entry_num = 8 * BEACON_ENTRIES, .data_size = 0, /* No DMA required for beacons */ .desc_size = TXWI_DESC_SIZE, .priv_size = sizeof(struct queue_entry_priv_pci), }; static const struct rt2x00_ops rt2800pci_ops = { .name = KBUILD_MODNAME, .max_sta_intf = 1, .max_ap_intf = 8, .eeprom_size = EEPROM_SIZE, .rf_size = RF_SIZE, .tx_queues = NUM_TX_QUEUES, .rx = &rt2800pci_queue_rx, .tx = &rt2800pci_queue_tx, .bcn = &rt2800pci_queue_bcn, .lib = &rt2800pci_rt2x00_ops, .hw = &rt2800_mac80211_ops, #ifdef CONFIG_RT2X00_LIB_DEBUGFS .debugfs = &rt2800_rt2x00debug, #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ }; /* * RT2800pci module information. */ static struct pci_device_id rt2800pci_device_table[] = { { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) }, { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) }, { 0, } }; MODULE_AUTHOR(DRV_PROJECT); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); #ifdef CONFIG_RT2800PCI_PCI MODULE_FIRMWARE(FIRMWARE_RT2860); MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); #endif /* CONFIG_RT2800PCI_PCI */ MODULE_LICENSE("GPL"); #ifdef CONFIG_RT2800PCI_WISOC #if defined(CONFIG_RALINK_RT288X) __rt2x00soc_probe(RT2880, &rt2800pci_ops); #elif defined(CONFIG_RALINK_RT305X) __rt2x00soc_probe(RT3052, &rt2800pci_ops); #endif static struct platform_driver rt2800soc_driver = { .driver = { .name = "rt2800_wmac", .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, }, .probe = __rt2x00soc_probe, .remove = __devexit_p(rt2x00soc_remove), .suspend = rt2x00soc_suspend, .resume = rt2x00soc_resume, }; #endif /* CONFIG_RT2800PCI_WISOC */ #ifdef CONFIG_RT2800PCI_PCI static struct pci_driver rt2800pci_driver = { .name = KBUILD_MODNAME, .id_table = rt2800pci_device_table, .probe = rt2x00pci_probe, .remove = __devexit_p(rt2x00pci_remove), .suspend = rt2x00pci_suspend, .resume = rt2x00pci_resume, }; #endif /* CONFIG_RT2800PCI_PCI */ static int __init rt2800pci_init(void) { int ret = 0; #ifdef CONFIG_RT2800PCI_WISOC ret = platform_driver_register(&rt2800soc_driver); if (ret) return ret; #endif #ifdef CONFIG_RT2800PCI_PCI ret = pci_register_driver(&rt2800pci_driver); if (ret) { #ifdef CONFIG_RT2800PCI_WISOC platform_driver_unregister(&rt2800soc_driver); #endif return ret; } #endif return ret; } static void __exit rt2800pci_exit(void) { #ifdef CONFIG_RT2800PCI_PCI pci_unregister_driver(&rt2800pci_driver); #endif #ifdef CONFIG_RT2800PCI_WISOC platform_driver_unregister(&rt2800soc_driver); #endif } module_init(rt2800pci_init); module_exit(rt2800pci_exit);