/* * Copyright (C) 2003,2004 Aurelien Alleaume * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include "prismcompat.h" #include "islpci_dev.h" #include "islpci_mgt.h" #include "isl_oid.h" #include "oid_mgt.h" #include "isl_ioctl.h" /* to convert between channel and freq */ static const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484 }; int channel_of_freq(int f) { int c = 0; if ((f >= 2412) && (f <= 2484)) { while ((c < 14) && (f != frequency_list_bg[c])) c++; return (c >= 14) ? 0 : ++c; } else if ((f >= (int) 5000) && (f <= (int) 6000)) { return ( (f - 5000) / 5 ); } else return 0; } #define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t} #define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED) #define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32) #define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32) #define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME) #define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX) #define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0) struct oid_t isl_oid[] = { OID_STRUCT(GEN_OID_MACADDRESS, 0x00000000, u8[6], OID_TYPE_ADDR), OID_U32(GEN_OID_LINKSTATE, 0x00000001), OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002), OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003), OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004), OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005), /* 802.11 */ OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000), OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW), OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid, OID_TYPE_SSID), OID_U32(DOT11_OID_STATE, 0x10000003), OID_U32(DOT11_OID_AID, 0x10000004), OID_STRUCT(DOT11_OID_COUNTRYSTRING, 0x10000005, u8[4], OID_TYPE_RAW), OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid, OID_TYPE_SSID), OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000), OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001), OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002), OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003), OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004), OID_U32(DOT11_OID_CFPPERIOD, 0x11000005), OID_U32(DOT11_OID_CFPDURATION, 0x11000006), OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000), OID_U32_C(DOT11_OID_PRIVACYINVOKED, 0x12000001), OID_U32_C(DOT11_OID_EXUNENCRYPTED, 0x12000002), OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003), [DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key), OID_FLAG_CACHED | OID_TYPE_KEY}, /* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */ OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008), OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009), OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a), OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000), OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001), OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002), OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003), OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000), OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001), OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002), OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003), OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004), OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005), OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006), OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007), OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000), OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001), OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002), OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003), OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004), OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005), OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006), [DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0}, OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008), OID_U32(DOT11_OID_PSM, 0x14000000), OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001), OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002), OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003), OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000), OID_U32(DOT11_OID_CLIENTS, 0x15000001), OID_U32(DOT11_OID_CLIENTSASSOCIATED, 0x15000002), [DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0}, /* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */ OID_STRUCT(DOT11_OID_CLIENTFIND, 0x150007DB, u8[6], OID_TYPE_ADDR), OID_STRUCT(DOT11_OID_WDSLINKADD, 0x150007DC, u8[6], OID_TYPE_ADDR), OID_STRUCT(DOT11_OID_WDSLINKREMOVE, 0x150007DD, u8[6], OID_TYPE_ADDR), OID_STRUCT(DOT11_OID_EAPAUTHSTA, 0x150007DE, u8[6], OID_TYPE_ADDR), OID_STRUCT(DOT11_OID_EAPUNAUTHSTA, 0x150007DF, u8[6], OID_TYPE_ADDR), OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0), OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1), OID_UNKNOWN(DOT11_OID_REKEYINDICATE, 0x150007E2), OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000), OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001), OID_U32(DOT11_OID_MPDUTXMULTIPLERETRIES, 0x16000002), OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003), OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004), OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005), OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006), OID_U32(DOT11_OID_RTSFAILED, 0x16000007), OID_U32(DOT11_OID_ACKFAILED, 0x16000008), OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009), OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A), OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B), OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C), OID_U32(DOT11_OID_SLOTTIME, 0x17000000), OID_U32(DOT11_OID_CWMIN, 0x17000001), OID_U32(DOT11_OID_CWMAX, 0x17000002), OID_U32(DOT11_OID_ACKWINDOW, 0x17000003), OID_U32(DOT11_OID_ANTENNARX, 0x17000004), OID_U32(DOT11_OID_ANTENNATX, 0x17000005), OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006), OID_U32_C(DOT11_OID_CHANNEL, 0x17000007), OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008), OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009), OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1], OID_TYPE_RAW), OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B), OID_U32(DOT11_OID_CCAMODE, 0x1700000C), OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D), OID_UNKNOWN(DOT11_OID_OUTPUTPOWERTABLE, 0x1700000E), OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F), OID_STRUCT(DOT11_OID_SUPPORTEDRATES, 0x17000010, u8[IWMAX_BITRATES + 1], OID_TYPE_RAW), OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011), [DOT11_OID_SUPPORTEDFREQUENCIES] = {0x17000012, 0, sizeof (struct obj_frequencies) + sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES}, OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013), OID_STRUCT(DOT11_OID_FREQUENCYACTIVITY, 0x17000014, u8[IWMAX_FREQ + 1], OID_TYPE_RAW), OID_UNKNOWN(DOT11_OID_IQCALIBRATIONTABLE, 0x17000015), OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016), OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017), OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018), OID_U32(DOT11_OID_PROFILES, 0x17000019), OID_STRUCT(DOT11_OID_EXTENDEDRATES, 0x17000020, u8[IWMAX_BITRATES + 1], OID_TYPE_RAW), OID_STRUCT_MLME(DOT11_OID_DEAUTHENTICATE, 0x18000000), OID_STRUCT_MLME(DOT11_OID_AUTHENTICATE, 0x18000001), OID_STRUCT_MLME(DOT11_OID_DISASSOCIATE, 0x18000002), OID_STRUCT_MLME(DOT11_OID_ASSOCIATE, 0x18000003), OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004), OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005), OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006), OID_STRUCT_MLMEEX(DOT11_OID_DEAUTHENTICATEEX, 0x18000007), OID_STRUCT_MLMEEX(DOT11_OID_AUTHENTICATEEX, 0x18000008), OID_STRUCT_MLMEEX(DOT11_OID_DISASSOCIATEEX, 0x18000009), OID_STRUCT_MLMEEX(DOT11_OID_ASSOCIATEEX, 0x1800000A), OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATE, 0x1800000B), OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATEEX, 0x1800000C), OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000), OID_U32(DOT11_OID_STATIMEOUT, 0x19000000), OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001), OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002), [DOT11_OID_ATTACHMENT] = {0x19000003, 0, sizeof(struct obj_attachment), OID_TYPE_ATTACH}, OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer, OID_TYPE_BUFFER), OID_U32(DOT11_OID_BSSS, 0x1C000000), [DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss), OID_TYPE_BSS}, /*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */ OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS), [DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct obj_bsslist) + sizeof (struct obj_bss[IWMAX_BSS]), OID_TYPE_BSSLIST}, OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000), OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001), OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002), OID_U32_C(OID_INL_MODE, 0xFF020003), OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004), OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW), OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006), OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007), OID_U32_C(OID_INL_CONFIG, 0xFF020008), OID_U32_C(OID_INL_DOT11D_CONFORMANCE, 0xFF02000C), OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D), OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F), }; int mgt_init(islpci_private *priv) { int i; priv->mib = kcalloc(OID_NUM_LAST, sizeof (void *), GFP_KERNEL); if (!priv->mib) return -ENOMEM; /* Alloc the cache */ for (i = 0; i < OID_NUM_LAST; i++) { if (isl_oid[i].flags & OID_FLAG_CACHED) { priv->mib[i] = kzalloc(isl_oid[i].size * (isl_oid[i].range + 1), GFP_KERNEL); if (!priv->mib[i]) return -ENOMEM; } else priv->mib[i] = NULL; } init_rwsem(&priv->mib_sem); prism54_mib_init(priv); return 0; } void mgt_clean(islpci_private *priv) { int i; if (!priv->mib) return; for (i = 0; i < OID_NUM_LAST; i++) { kfree(priv->mib[i]); priv->mib[i] = NULL; } kfree(priv->mib); priv->mib = NULL; } void mgt_le_to_cpu(int type, void *data) { switch (type) { case OID_TYPE_U32: *(u32 *) data = le32_to_cpu(*(u32 *) data); break; case OID_TYPE_BUFFER:{ struct obj_buffer *buff = data; buff->size = le32_to_cpu(buff->size); buff->addr = le32_to_cpu(buff->addr); break; } case OID_TYPE_BSS:{ struct obj_bss *bss = data; bss->age = le16_to_cpu(bss->age); bss->channel = le16_to_cpu(bss->channel); bss->capinfo = le16_to_cpu(bss->capinfo); bss->rates = le16_to_cpu(bss->rates); bss->basic_rates = le16_to_cpu(bss->basic_rates); break; } case OID_TYPE_BSSLIST:{ struct obj_bsslist *list = data; int i; list->nr = le32_to_cpu(list->nr); for (i = 0; i < list->nr; i++) mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]); break; } case OID_TYPE_FREQUENCIES:{ struct obj_frequencies *freq = data; int i; freq->nr = le16_to_cpu(freq->nr); for (i = 0; i < freq->nr; i++) freq->mhz[i] = le16_to_cpu(freq->mhz[i]); break; } case OID_TYPE_MLME:{ struct obj_mlme *mlme = data; mlme->id = le16_to_cpu(mlme->id); mlme->state = le16_to_cpu(mlme->state); mlme->code = le16_to_cpu(mlme->code); break; } case OID_TYPE_MLMEEX:{ struct obj_mlmeex *mlme = data; mlme->id = le16_to_cpu(mlme->id); mlme->state = le16_to_cpu(mlme->state); mlme->code = le16_to_cpu(mlme->code); mlme->size = le16_to_cpu(mlme->size); break; } case OID_TYPE_ATTACH:{ struct obj_attachment *attach = data; attach->id = le16_to_cpu(attach->id); attach->size = le16_to_cpu(attach->size); break; } case OID_TYPE_SSID: case OID_TYPE_KEY: case OID_TYPE_ADDR: case OID_TYPE_RAW: break; default: BUG(); } } static void mgt_cpu_to_le(int type, void *data) { switch (type) { case OID_TYPE_U32: *(u32 *) data = cpu_to_le32(*(u32 *) data); break; case OID_TYPE_BUFFER:{ struct obj_buffer *buff = data; buff->size = cpu_to_le32(buff->size); buff->addr = cpu_to_le32(buff->addr); break; } case OID_TYPE_BSS:{ struct obj_bss *bss = data; bss->age = cpu_to_le16(bss->age); bss->channel = cpu_to_le16(bss->channel); bss->capinfo = cpu_to_le16(bss->capinfo); bss->rates = cpu_to_le16(bss->rates); bss->basic_rates = cpu_to_le16(bss->basic_rates); break; } case OID_TYPE_BSSLIST:{ struct obj_bsslist *list = data; int i; list->nr = cpu_to_le32(list->nr); for (i = 0; i < list->nr; i++) mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]); break; } case OID_TYPE_FREQUENCIES:{ struct obj_frequencies *freq = data; int i; freq->nr = cpu_to_le16(freq->nr); for (i = 0; i < freq->nr; i++) freq->mhz[i] = cpu_to_le16(freq->mhz[i]); break; } case OID_TYPE_MLME:{ struct obj_mlme *mlme = data; mlme->id = cpu_to_le16(mlme->id); mlme->state = cpu_to_le16(mlme->state); mlme->code = cpu_to_le16(mlme->code); break; } case OID_TYPE_MLMEEX:{ struct obj_mlmeex *mlme = data; mlme->id = cpu_to_le16(mlme->id); mlme->state = cpu_to_le16(mlme->state); mlme->code = cpu_to_le16(mlme->code); mlme->size = cpu_to_le16(mlme->size); break; } case OID_TYPE_ATTACH:{ struct obj_attachment *attach = data; attach->id = cpu_to_le16(attach->id); attach->size = cpu_to_le16(attach->size); break; } case OID_TYPE_SSID: case OID_TYPE_KEY: case OID_TYPE_ADDR: case OID_TYPE_RAW: break; default: BUG(); } } /* Note : data is modified during this function */ int mgt_set_request(islpci_private *priv, enum oid_num_t n, int extra, void *data) { int ret = 0; struct islpci_mgmtframe *response = NULL; int response_op = PIMFOR_OP_ERROR; int dlen; void *cache, *_data = data; u32 oid; BUG_ON(OID_NUM_LAST <= n); BUG_ON(extra > isl_oid[n].range); if (!priv->mib) /* memory has been freed */ return -1; dlen = isl_oid[n].size; cache = priv->mib[n]; cache += (cache ? extra * dlen : 0); oid = isl_oid[n].oid + extra; if (_data == NULL) /* we are requested to re-set a cached value */ _data = cache; else mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data); /* If we are going to write to the cache, we don't want anyone to read * it -> acquire write lock. * Else we could acquire a read lock to be sure we don't bother the * commit process (which takes a write lock). But I'm not sure if it's * needed. */ if (cache) down_write(&priv->mib_sem); if (islpci_get_state(priv) >= PRV_STATE_READY) { ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid, _data, dlen, &response); if (!ret) { response_op = response->header->operation; islpci_mgt_release(response); } if (ret || response_op == PIMFOR_OP_ERROR) ret = -EIO; } else if (!cache) ret = -EIO; if (cache) { if (!ret && data) memcpy(cache, _data, dlen); up_write(&priv->mib_sem); } /* re-set given data to what it was */ if (data) mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data); return ret; } /* None of these are cached */ int mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len) { int ret = 0; struct islpci_mgmtframe *response; int response_op = PIMFOR_OP_ERROR; int dlen; u32 oid; BUG_ON(OID_NUM_LAST <= n); dlen = isl_oid[n].size; oid = isl_oid[n].oid; mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data); if (islpci_get_state(priv) >= PRV_STATE_READY) { ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid, data, dlen + extra_len, &response); if (!ret) { response_op = response->header->operation; islpci_mgt_release(response); } if (ret || response_op == PIMFOR_OP_ERROR) ret = -EIO; } else ret = -EIO; /* re-set given data to what it was */ if (data) mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data); return ret; } int mgt_get_request(islpci_private *priv, enum oid_num_t n, int extra, void *data, union oid_res_t *res) { int ret = -EIO; int reslen = 0; struct islpci_mgmtframe *response = NULL; int dlen; void *cache, *_res = NULL; u32 oid; BUG_ON(OID_NUM_LAST <= n); BUG_ON(extra > isl_oid[n].range); res->ptr = NULL; if (!priv->mib) /* memory has been freed */ return -1; dlen = isl_oid[n].size; cache = priv->mib[n]; cache += cache ? extra * dlen : 0; oid = isl_oid[n].oid + extra; reslen = dlen; if (cache) down_read(&priv->mib_sem); if (islpci_get_state(priv) >= PRV_STATE_READY) { ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET, oid, data, dlen, &response); if (ret || !response || response->header->operation == PIMFOR_OP_ERROR) { if (response) islpci_mgt_release(response); ret = -EIO; } if (!ret) { _res = response->data; reslen = response->header->length; } } else if (cache) { _res = cache; ret = 0; } if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32) res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res); else { res->ptr = kmalloc(reslen, GFP_KERNEL); BUG_ON(res->ptr == NULL); if (ret) memset(res->ptr, 0, reslen); else { memcpy(res->ptr, _res, reslen); mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res->ptr); } } if (cache) up_read(&priv->mib_sem); if (response && !ret) islpci_mgt_release(response); if (reslen > isl_oid[n].size) printk(KERN_DEBUG "mgt_get_request(0x%x): received data length was bigger " "than expected (%d > %d). Memory is probably corrupted...", oid, reslen, isl_oid[n].size); return ret; } /* lock outside */ int mgt_commit_list(islpci_private *priv, enum oid_num_t *l, int n) { int i, ret = 0; struct islpci_mgmtframe *response; for (i = 0; i < n; i++) { struct oid_t *t = &(isl_oid[l[i]]); void *data = priv->mib[l[i]]; int j = 0; u32 oid = t->oid; BUG_ON(data == NULL); while (j <= t->range) { int r = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid, data, t->size, &response); if (response) { r |= (response->header->operation == PIMFOR_OP_ERROR); islpci_mgt_release(response); } if (r) printk(KERN_ERR "%s: mgt_commit_list: failure. " "oid=%08x err=%d\n", priv->ndev->name, oid, r); ret |= r; j++; oid++; data += t->size; } } return ret; } /* Lock outside */ void mgt_set(islpci_private *priv, enum oid_num_t n, void *data) { BUG_ON(OID_NUM_LAST <= n); BUG_ON(priv->mib[n] == NULL); memcpy(priv->mib[n], data, isl_oid[n].size); mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]); } void mgt_get(islpci_private *priv, enum oid_num_t n, void *res) { BUG_ON(OID_NUM_LAST <= n); BUG_ON(priv->mib[n] == NULL); BUG_ON(res == NULL); memcpy(res, priv->mib[n], isl_oid[n].size); mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res); } /* Commits the cache. Lock outside. */ static enum oid_num_t commit_part1[] = { OID_INL_CONFIG, OID_INL_MODE, DOT11_OID_BSSTYPE, DOT11_OID_CHANNEL, DOT11_OID_MLMEAUTOLEVEL }; static enum oid_num_t commit_part2[] = { DOT11_OID_SSID, DOT11_OID_PSMBUFFER, DOT11_OID_AUTHENABLE, DOT11_OID_PRIVACYINVOKED, DOT11_OID_EXUNENCRYPTED, DOT11_OID_DEFKEYX, /* MULTIPLE */ DOT11_OID_DEFKEYID, DOT11_OID_DOT1XENABLE, OID_INL_DOT11D_CONFORMANCE, /* Do not initialize this - fw < 1.0.4.3 rejects it OID_INL_OUTPUTPOWER, */ }; /* update the MAC addr. */ static int mgt_update_addr(islpci_private *priv) { struct islpci_mgmtframe *res; int ret; ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET, isl_oid[GEN_OID_MACADDRESS].oid, NULL, isl_oid[GEN_OID_MACADDRESS].size, &res); if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR)) memcpy(priv->ndev->dev_addr, res->data, 6); else ret = -EIO; if (res) islpci_mgt_release(res); if (ret) printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name); return ret; } #define VEC_SIZE(a) ARRAY_SIZE(a) int mgt_commit(islpci_private *priv) { int rvalue; enum oid_num_t u; if (islpci_get_state(priv) < PRV_STATE_INIT) return 0; rvalue = mgt_commit_list(priv, commit_part1, VEC_SIZE(commit_part1)); if (priv->iw_mode != IW_MODE_MONITOR) rvalue |= mgt_commit_list(priv, commit_part2, VEC_SIZE(commit_part2)); u = OID_INL_MODE; rvalue |= mgt_commit_list(priv, &u, 1); rvalue |= mgt_update_addr(priv); if (rvalue) { /* some request have failed. The device might be in an incoherent state. We should reset it ! */ printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name); } return rvalue; } /* The following OIDs need to be "unlatched": * * MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL * FREQUENCY,EXTENDEDRATES. * * The way to do this is to set ESSID. Note though that they may get * unlatch before though by setting another OID. */ #if 0 void mgt_unlatch_all(islpci_private *priv) { u32 u; int rvalue = 0; if (islpci_get_state(priv) < PRV_STATE_INIT) return; u = DOT11_OID_SSID; rvalue = mgt_commit_list(priv, &u, 1); /* Necessary if in MANUAL RUN mode? */ #if 0 u = OID_INL_MODE; rvalue |= mgt_commit_list(priv, &u, 1); u = DOT11_OID_MLMEAUTOLEVEL; rvalue |= mgt_commit_list(priv, &u, 1); u = OID_INL_MODE; rvalue |= mgt_commit_list(priv, &u, 1); #endif if (rvalue) printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name); } #endif /* This will tell you if you are allowed to answer a mlme(ex) request .*/ int mgt_mlme_answer(islpci_private *priv) { u32 mlmeautolevel; /* Acquire a read lock because if we are in a mode change, it's * possible to answer true, while the card is leaving master to managed * mode. Answering to a mlme in this situation could hang the card. */ down_read(&priv->mib_sem); mlmeautolevel = le32_to_cpu(*(u32 *) priv->mib[DOT11_OID_MLMEAUTOLEVEL]); up_read(&priv->mib_sem); return ((priv->iw_mode == IW_MODE_MASTER) && (mlmeautolevel >= DOT11_MLME_INTERMEDIATE)); } enum oid_num_t mgt_oidtonum(u32 oid) { int i; for (i = 0; i < OID_NUM_LAST; i++) if (isl_oid[i].oid == oid) return i; printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid); return OID_NUM_LAST; } int mgt_response_to_str(enum oid_num_t n, union oid_res_t *r, char *str) { switch (isl_oid[n].flags & OID_FLAG_TYPE) { case OID_TYPE_U32: return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u); break; case OID_TYPE_BUFFER:{ struct obj_buffer *buff = r->ptr; return snprintf(str, PRIV_STR_SIZE, "size=%u\naddr=0x%X\n", buff->size, buff->addr); } break; case OID_TYPE_BSS:{ struct obj_bss *bss = r->ptr; return snprintf(str, PRIV_STR_SIZE, "age=%u\nchannel=%u\n" "capinfo=0x%X\nrates=0x%X\n" "basic_rates=0x%X\n", bss->age, bss->channel, bss->capinfo, bss->rates, bss->basic_rates); } break; case OID_TYPE_BSSLIST:{ struct obj_bsslist *list = r->ptr; int i, k; k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr); for (i = 0; i < list->nr; i++) k += snprintf(str + k, PRIV_STR_SIZE - k, "bss[%u] :\nage=%u\nchannel=%u\n" "capinfo=0x%X\nrates=0x%X\n" "basic_rates=0x%X\n", i, list->bsslist[i].age, list->bsslist[i].channel, list->bsslist[i].capinfo, list->bsslist[i].rates, list->bsslist[i].basic_rates); return k; } break; case OID_TYPE_FREQUENCIES:{ struct obj_frequencies *freq = r->ptr; int i, t; printk("nr : %u\n", freq->nr); t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr); for (i = 0; i < freq->nr; i++) t += snprintf(str + t, PRIV_STR_SIZE - t, "mhz[%u]=%u\n", i, freq->mhz[i]); return t; } break; case OID_TYPE_MLME:{ struct obj_mlme *mlme = r->ptr; return snprintf(str, PRIV_STR_SIZE, "id=0x%X\nstate=0x%X\ncode=0x%X\n", mlme->id, mlme->state, mlme->code); } break; case OID_TYPE_MLMEEX:{ struct obj_mlmeex *mlme = r->ptr; return snprintf(str, PRIV_STR_SIZE, "id=0x%X\nstate=0x%X\n" "code=0x%X\nsize=0x%X\n", mlme->id, mlme->state, mlme->code, mlme->size); } break; case OID_TYPE_ATTACH:{ struct obj_attachment *attach = r->ptr; return snprintf(str, PRIV_STR_SIZE, "id=%d\nsize=%d\n", attach->id, attach->size); } break; case OID_TYPE_SSID:{ struct obj_ssid *ssid = r->ptr; return snprintf(str, PRIV_STR_SIZE, "length=%u\noctets=%.*s\n", ssid->length, ssid->length, ssid->octets); } break; case OID_TYPE_KEY:{ struct obj_key *key = r->ptr; int t, i; t = snprintf(str, PRIV_STR_SIZE, "type=0x%X\nlength=0x%X\nkey=0x", key->type, key->length); for (i = 0; i < key->length; i++) t += snprintf(str + t, PRIV_STR_SIZE - t, "%02X:", key->key[i]); t += snprintf(str + t, PRIV_STR_SIZE - t, "\n"); return t; } break; case OID_TYPE_RAW: case OID_TYPE_ADDR:{ unsigned char *buff = r->ptr; int t, i; t = snprintf(str, PRIV_STR_SIZE, "hex data="); for (i = 0; i < isl_oid[n].size; i++) t += snprintf(str + t, PRIV_STR_SIZE - t, "%02X:", buff[i]); t += snprintf(str + t, PRIV_STR_SIZE - t, "\n"); return t; } break; default: BUG(); } return 0; }