/* * Common code for mac80211 Prism54 drivers * * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net> * Copyright (c) 2007, Christian Lamparter <chunkeey@web.de> * * Based on the islsm (softmac prism54) driver, which is: * Copyright 2004-2006 Jean-Baptiste Note <jbnote@gmail.com>, et al. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <linux/init.h> #include <linux/firmware.h> #include <linux/etherdevice.h> #include <net/mac80211.h> #include "p54.h" #include "p54common.h" MODULE_AUTHOR("Michael Wu <flamingice@sourmilk.net>"); MODULE_DESCRIPTION("Softmac Prism54 common code"); MODULE_LICENSE("GPL"); MODULE_ALIAS("prism54common"); static struct ieee80211_rate p54_rates[] = { { .bitrate = 10, .hw_value = 0, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 20, .hw_value = 1, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 55, .hw_value = 2, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 110, .hw_value = 3, .flags = IEEE80211_RATE_SHORT_PREAMBLE }, { .bitrate = 60, .hw_value = 4, }, { .bitrate = 90, .hw_value = 5, }, { .bitrate = 120, .hw_value = 6, }, { .bitrate = 180, .hw_value = 7, }, { .bitrate = 240, .hw_value = 8, }, { .bitrate = 360, .hw_value = 9, }, { .bitrate = 480, .hw_value = 10, }, { .bitrate = 540, .hw_value = 11, }, }; static struct ieee80211_channel p54_channels[] = { { .center_freq = 2412, .hw_value = 1, }, { .center_freq = 2417, .hw_value = 2, }, { .center_freq = 2422, .hw_value = 3, }, { .center_freq = 2427, .hw_value = 4, }, { .center_freq = 2432, .hw_value = 5, }, { .center_freq = 2437, .hw_value = 6, }, { .center_freq = 2442, .hw_value = 7, }, { .center_freq = 2447, .hw_value = 8, }, { .center_freq = 2452, .hw_value = 9, }, { .center_freq = 2457, .hw_value = 10, }, { .center_freq = 2462, .hw_value = 11, }, { .center_freq = 2467, .hw_value = 12, }, { .center_freq = 2472, .hw_value = 13, }, { .center_freq = 2484, .hw_value = 14, }, }; static struct ieee80211_supported_band band_2GHz = { .channels = p54_channels, .n_channels = ARRAY_SIZE(p54_channels), .bitrates = p54_rates, .n_bitrates = ARRAY_SIZE(p54_rates), }; void p54_parse_firmware(struct ieee80211_hw *dev, const struct firmware *fw) { struct p54_common *priv = dev->priv; struct bootrec_exp_if *exp_if; struct bootrec *bootrec; u32 *data = (u32 *)fw->data; u32 *end_data = (u32 *)fw->data + (fw->size >> 2); u8 *fw_version = NULL; size_t len; int i; if (priv->rx_start) return; while (data < end_data && *data) data++; while (data < end_data && !*data) data++; bootrec = (struct bootrec *) data; while (bootrec->data <= end_data && (bootrec->data + (len = le32_to_cpu(bootrec->len))) <= end_data) { u32 code = le32_to_cpu(bootrec->code); switch (code) { case BR_CODE_COMPONENT_ID: switch (be32_to_cpu(*(__be32 *)bootrec->data)) { case FW_FMAC: printk(KERN_INFO "p54: FreeMAC firmware\n"); break; case FW_LM20: printk(KERN_INFO "p54: LM20 firmware\n"); break; case FW_LM86: printk(KERN_INFO "p54: LM86 firmware\n"); break; case FW_LM87: printk(KERN_INFO "p54: LM87 firmware - not supported yet!\n"); break; default: printk(KERN_INFO "p54: unknown firmware\n"); break; } break; case BR_CODE_COMPONENT_VERSION: /* 24 bytes should be enough for all firmwares */ if (strnlen((unsigned char*)bootrec->data, 24) < 24) fw_version = (unsigned char*)bootrec->data; break; case BR_CODE_DESCR: priv->rx_start = le32_to_cpu(((__le32 *)bootrec->data)[1]); /* FIXME add sanity checking */ priv->rx_end = le32_to_cpu(((__le32 *)bootrec->data)[2]) - 0x3500; break; case BR_CODE_EXPOSED_IF: exp_if = (struct bootrec_exp_if *) bootrec->data; for (i = 0; i < (len * sizeof(*exp_if) / 4); i++) if (exp_if[i].if_id == cpu_to_le16(0x1a)) priv->fw_var = le16_to_cpu(exp_if[i].variant); break; case BR_CODE_DEPENDENT_IF: break; case BR_CODE_END_OF_BRA: case LEGACY_BR_CODE_END_OF_BRA: end_data = NULL; break; default: break; } bootrec = (struct bootrec *)&bootrec->data[len]; } if (fw_version) printk(KERN_INFO "p54: FW rev %s - Softmac protocol %x.%x\n", fw_version, priv->fw_var >> 8, priv->fw_var & 0xff); if (priv->fw_var >= 0x300) { /* Firmware supports QoS, use it! */ priv->tx_stats[0].limit = 3; priv->tx_stats[1].limit = 4; priv->tx_stats[2].limit = 3; priv->tx_stats[3].limit = 1; dev->queues = 4; } } EXPORT_SYMBOL_GPL(p54_parse_firmware); static int p54_convert_rev0_to_rev1(struct ieee80211_hw *dev, struct pda_pa_curve_data *curve_data) { struct p54_common *priv = dev->priv; struct pda_pa_curve_data_sample_rev1 *rev1; struct pda_pa_curve_data_sample_rev0 *rev0; size_t cd_len = sizeof(*curve_data) + (curve_data->points_per_channel*sizeof(*rev1) + 2) * curve_data->channels; unsigned int i, j; void *source, *target; priv->curve_data = kmalloc(cd_len, GFP_KERNEL); if (!priv->curve_data) return -ENOMEM; memcpy(priv->curve_data, curve_data, sizeof(*curve_data)); source = curve_data->data; target = priv->curve_data->data; for (i = 0; i < curve_data->channels; i++) { __le16 *freq = source; source += sizeof(__le16); *((__le16 *)target) = *freq; target += sizeof(__le16); for (j = 0; j < curve_data->points_per_channel; j++) { rev1 = target; rev0 = source; rev1->rf_power = rev0->rf_power; rev1->pa_detector = rev0->pa_detector; rev1->data_64qam = rev0->pcv; /* "invent" the points for the other modulations */ #define SUB(x,y) (u8)((x) - (y)) > (x) ? 0 : (x) - (y) rev1->data_16qam = SUB(rev0->pcv, 12); rev1->data_qpsk = SUB(rev1->data_16qam, 12); rev1->data_bpsk = SUB(rev1->data_qpsk, 12); rev1->data_barker= SUB(rev1->data_bpsk, 14); #undef SUB target += sizeof(*rev1); source += sizeof(*rev0); } } return 0; } int p54_parse_eeprom(struct ieee80211_hw *dev, void *eeprom, int len) { struct p54_common *priv = dev->priv; struct eeprom_pda_wrap *wrap = NULL; struct pda_entry *entry; unsigned int data_len, entry_len; void *tmp; int err; u8 *end = (u8 *)eeprom + len; wrap = (struct eeprom_pda_wrap *) eeprom; entry = (void *)wrap->data + le16_to_cpu(wrap->len); /* verify that at least the entry length/code fits */ while ((u8 *)entry <= end - sizeof(*entry)) { entry_len = le16_to_cpu(entry->len); data_len = ((entry_len - 1) << 1); /* abort if entry exceeds whole structure */ if ((u8 *)entry + sizeof(*entry) + data_len > end) break; switch (le16_to_cpu(entry->code)) { case PDR_MAC_ADDRESS: SET_IEEE80211_PERM_ADDR(dev, entry->data); break; case PDR_PRISM_PA_CAL_OUTPUT_POWER_LIMITS: if (data_len < 2) { err = -EINVAL; goto err; } if (2 + entry->data[1]*sizeof(*priv->output_limit) > data_len) { err = -EINVAL; goto err; } priv->output_limit = kmalloc(entry->data[1] * sizeof(*priv->output_limit), GFP_KERNEL); if (!priv->output_limit) { err = -ENOMEM; goto err; } memcpy(priv->output_limit, &entry->data[2], entry->data[1]*sizeof(*priv->output_limit)); priv->output_limit_len = entry->data[1]; break; case PDR_PRISM_PA_CAL_CURVE_DATA: if (data_len < sizeof(struct pda_pa_curve_data)) { err = -EINVAL; goto err; } if (((struct pda_pa_curve_data *)entry->data)->cal_method_rev) { priv->curve_data = kmalloc(data_len, GFP_KERNEL); if (!priv->curve_data) { err = -ENOMEM; goto err; } memcpy(priv->curve_data, entry->data, data_len); } else { err = p54_convert_rev0_to_rev1(dev, (struct pda_pa_curve_data *)entry->data); if (err) goto err; } break; case PDR_PRISM_ZIF_TX_IQ_CALIBRATION: priv->iq_autocal = kmalloc(data_len, GFP_KERNEL); if (!priv->iq_autocal) { err = -ENOMEM; goto err; } memcpy(priv->iq_autocal, entry->data, data_len); priv->iq_autocal_len = data_len / sizeof(struct pda_iq_autocal_entry); break; case PDR_INTERFACE_LIST: tmp = entry->data; while ((u8 *)tmp < entry->data + data_len) { struct bootrec_exp_if *exp_if = tmp; if (le16_to_cpu(exp_if->if_id) == 0xF) priv->rxhw = exp_if->variant & cpu_to_le16(0x07); tmp += sizeof(struct bootrec_exp_if); } break; case PDR_HARDWARE_PLATFORM_COMPONENT_ID: priv->version = *(u8 *)(entry->data + 1); break; case PDR_END: /* make it overrun */ entry_len = len; break; default: printk(KERN_INFO "p54: unknown eeprom code : 0x%x\n", le16_to_cpu(entry->code)); break; } entry = (void *)entry + (entry_len + 1)*2; } if (!priv->iq_autocal || !priv->output_limit || !priv->curve_data) { printk(KERN_ERR "p54: not all required entries found in eeprom!\n"); err = -EINVAL; goto err; } return 0; err: if (priv->iq_autocal) { kfree(priv->iq_autocal); priv->iq_autocal = NULL; } if (priv->output_limit) { kfree(priv->output_limit); priv->output_limit = NULL; } if (priv->curve_data) { kfree(priv->curve_data); priv->curve_data = NULL; } printk(KERN_ERR "p54: eeprom parse failed!\n"); return err; } EXPORT_SYMBOL_GPL(p54_parse_eeprom); void p54_fill_eeprom_readback(struct p54_control_hdr *hdr) { struct p54_eeprom_lm86 *eeprom_hdr; hdr->magic1 = cpu_to_le16(0x8000); hdr->len = cpu_to_le16(sizeof(*eeprom_hdr) + 0x2000); hdr->type = cpu_to_le16(P54_CONTROL_TYPE_EEPROM_READBACK); hdr->retry1 = hdr->retry2 = 0; eeprom_hdr = (struct p54_eeprom_lm86 *) hdr->data; eeprom_hdr->offset = 0x0; eeprom_hdr->len = cpu_to_le16(0x2000); } EXPORT_SYMBOL_GPL(p54_fill_eeprom_readback); static void p54_rx_data(struct ieee80211_hw *dev, struct sk_buff *skb) { struct p54_rx_hdr *hdr = (struct p54_rx_hdr *) skb->data; struct ieee80211_rx_status rx_status = {0}; u16 freq = le16_to_cpu(hdr->freq); rx_status.signal = hdr->rssi; /* XX correct? */ rx_status.qual = (100 * hdr->rssi) / 127; rx_status.rate_idx = hdr->rate & 0xf; rx_status.freq = freq; rx_status.band = IEEE80211_BAND_2GHZ; rx_status.antenna = hdr->antenna; rx_status.mactime = le64_to_cpu(hdr->timestamp); rx_status.flag |= RX_FLAG_TSFT; skb_pull(skb, sizeof(*hdr)); skb_trim(skb, le16_to_cpu(hdr->len)); ieee80211_rx_irqsafe(dev, skb, &rx_status); } static void inline p54_wake_free_queues(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; int i; for (i = 0; i < dev->queues; i++) if (priv->tx_stats[i].len < priv->tx_stats[i].limit) ieee80211_wake_queue(dev, i); } static void p54_rx_frame_sent(struct ieee80211_hw *dev, struct sk_buff *skb) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data; struct p54_frame_sent_hdr *payload = (struct p54_frame_sent_hdr *) hdr->data; struct sk_buff *entry = (struct sk_buff *) priv->tx_queue.next; u32 addr = le32_to_cpu(hdr->req_id) - 0x70; struct memrecord *range = NULL; u32 freed = 0; u32 last_addr = priv->rx_start; while (entry != (struct sk_buff *)&priv->tx_queue) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry); range = (void *)info->driver_data; if (range->start_addr == addr) { struct p54_control_hdr *entry_hdr; struct p54_tx_control_allocdata *entry_data; int pad = 0; if (entry->next != (struct sk_buff *)&priv->tx_queue) { struct ieee80211_tx_info *ni; struct memrecord *mr; ni = IEEE80211_SKB_CB(entry->next); mr = (struct memrecord *)ni->driver_data; freed = mr->start_addr - last_addr; } else freed = priv->rx_end - last_addr; last_addr = range->end_addr; __skb_unlink(entry, &priv->tx_queue); memset(&info->status, 0, sizeof(info->status)); entry_hdr = (struct p54_control_hdr *) entry->data; entry_data = (struct p54_tx_control_allocdata *) entry_hdr->data; if ((entry_hdr->magic1 & cpu_to_le16(0x4000)) != 0) pad = entry_data->align[0]; priv->tx_stats[entry_data->hw_queue - 4].len--; if (!(info->flags & IEEE80211_TX_CTL_NO_ACK)) { if (!(payload->status & 0x01)) info->flags |= IEEE80211_TX_STAT_ACK; else info->status.excessive_retries = 1; } info->status.retry_count = payload->retries - 1; info->status.ack_signal = le16_to_cpu(payload->ack_rssi); skb_pull(entry, sizeof(*hdr) + pad + sizeof(*entry_data)); ieee80211_tx_status_irqsafe(dev, entry); break; } else last_addr = range->end_addr; entry = entry->next; } if (freed >= IEEE80211_MAX_RTS_THRESHOLD + 0x170 + sizeof(struct p54_control_hdr)) p54_wake_free_queues(dev); } static void p54_rx_control(struct ieee80211_hw *dev, struct sk_buff *skb) { struct p54_control_hdr *hdr = (struct p54_control_hdr *) skb->data; switch (le16_to_cpu(hdr->type)) { case P54_CONTROL_TYPE_TXDONE: p54_rx_frame_sent(dev, skb); break; case P54_CONTROL_TYPE_BBP: break; default: printk(KERN_DEBUG "%s: not handling 0x%02x type control frame\n", wiphy_name(dev->wiphy), le16_to_cpu(hdr->type)); break; } } /* returns zero if skb can be reused */ int p54_rx(struct ieee80211_hw *dev, struct sk_buff *skb) { u8 type = le16_to_cpu(*((__le16 *)skb->data)) >> 8; switch (type) { case 0x00: case 0x01: p54_rx_data(dev, skb); return -1; case 0x4d: /* TODO: do something better... but then again, I've never seen this happen */ printk(KERN_ERR "%s: Received fault. Probably need to restart hardware now..\n", wiphy_name(dev->wiphy)); break; case 0x80: p54_rx_control(dev, skb); break; default: printk(KERN_ERR "%s: unknown frame RXed (0x%02x)\n", wiphy_name(dev->wiphy), type); break; } return 0; } EXPORT_SYMBOL_GPL(p54_rx); /* * So, the firmware is somewhat stupid and doesn't know what places in its * memory incoming data should go to. By poking around in the firmware, we * can find some unused memory to upload our packets to. However, data that we * want the card to TX needs to stay intact until the card has told us that * it is done with it. This function finds empty places we can upload to and * marks allocated areas as reserved if necessary. p54_rx_frame_sent frees * allocated areas. */ static void p54_assign_address(struct ieee80211_hw *dev, struct sk_buff *skb, struct p54_control_hdr *data, u32 len) { struct p54_common *priv = dev->priv; struct sk_buff *entry = priv->tx_queue.next; struct sk_buff *target_skb = NULL; u32 last_addr = priv->rx_start; u32 largest_hole = 0; u32 target_addr = priv->rx_start; unsigned long flags; unsigned int left; len = (len + 0x170 + 3) & ~0x3; /* 0x70 headroom, 0x100 tailroom */ spin_lock_irqsave(&priv->tx_queue.lock, flags); left = skb_queue_len(&priv->tx_queue); while (left--) { u32 hole_size; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(entry); struct memrecord *range = (void *)info->driver_data; hole_size = range->start_addr - last_addr; if (!target_skb && hole_size >= len) { target_skb = entry->prev; hole_size -= len; target_addr = last_addr; } largest_hole = max(largest_hole, hole_size); last_addr = range->end_addr; entry = entry->next; } if (!target_skb && priv->rx_end - last_addr >= len) { target_skb = priv->tx_queue.prev; largest_hole = max(largest_hole, priv->rx_end - last_addr - len); if (!skb_queue_empty(&priv->tx_queue)) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(target_skb); struct memrecord *range = (void *)info->driver_data; target_addr = range->end_addr; } } else largest_hole = max(largest_hole, priv->rx_end - last_addr); if (skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct memrecord *range = (void *)info->driver_data; range->start_addr = target_addr; range->end_addr = target_addr + len; __skb_queue_after(&priv->tx_queue, target_skb, skb); if (largest_hole < IEEE80211_MAX_RTS_THRESHOLD + 0x170 + sizeof(struct p54_control_hdr)) ieee80211_stop_queues(dev); } spin_unlock_irqrestore(&priv->tx_queue.lock, flags); data->req_id = cpu_to_le32(target_addr + 0x70); } static int p54_tx(struct ieee80211_hw *dev, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_queue_stats *current_queue; struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct ieee80211_hdr *ieee80211hdr = (struct ieee80211_hdr *)skb->data; struct p54_tx_control_allocdata *txhdr; size_t padding, len; u8 rate; u8 cts_rate = 0x20; current_queue = &priv->tx_stats[skb_get_queue_mapping(skb)]; if (unlikely(current_queue->len > current_queue->limit)) return NETDEV_TX_BUSY; current_queue->len++; current_queue->count++; if (current_queue->len == current_queue->limit) ieee80211_stop_queue(dev, skb_get_queue_mapping(skb)); padding = (unsigned long)(skb->data - (sizeof(*hdr) + sizeof(*txhdr))) & 3; len = skb->len; txhdr = (struct p54_tx_control_allocdata *) skb_push(skb, sizeof(*txhdr) + padding); hdr = (struct p54_control_hdr *) skb_push(skb, sizeof(*hdr)); if (padding) hdr->magic1 = cpu_to_le16(0x4010); else hdr->magic1 = cpu_to_le16(0x0010); hdr->len = cpu_to_le16(len); hdr->type = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cpu_to_le16(1); hdr->retry1 = hdr->retry2 = info->control.retry_limit; /* TODO: add support for alternate retry TX rates */ rate = ieee80211_get_tx_rate(dev, info)->hw_value; if (info->flags & IEEE80211_TX_CTL_SHORT_PREAMBLE) { rate |= 0x10; cts_rate |= 0x10; } if (info->flags & IEEE80211_TX_CTL_USE_RTS_CTS) { rate |= 0x40; cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value; } else if (info->flags & IEEE80211_TX_CTL_USE_CTS_PROTECT) { rate |= 0x20; cts_rate |= ieee80211_get_rts_cts_rate(dev, info)->hw_value; } memset(txhdr->rateset, rate, 8); txhdr->key_type = 0; txhdr->key_len = 0; txhdr->hw_queue = skb_get_queue_mapping(skb) + 4; txhdr->tx_antenna = (info->antenna_sel_tx == 0) ? 2 : info->antenna_sel_tx - 1; txhdr->output_power = 0x7f; // HW Maximum txhdr->cts_rate = (info->flags & IEEE80211_TX_CTL_NO_ACK) ? 0 : cts_rate; if (padding) txhdr->align[0] = padding; /* FIXME: The sequence that follows is needed for this driver to * work with mac80211 since "mac80211: fix TX sequence numbers". * As with the temporary code in rt2x00, changes will be needed * to get proper sequence numbers on beacons. In addition, this * patch places the sequence number in the hardware state, which * limits us to a single virtual state. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) priv->seqno += 0x10; ieee80211hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); ieee80211hdr->seq_ctrl |= cpu_to_le16(priv->seqno); } /* modifies skb->cb and with it info, so must be last! */ p54_assign_address(dev, skb, hdr, skb->len); priv->tx(dev, hdr, skb->len, 0); return 0; } static int p54_set_filter(struct ieee80211_hw *dev, u16 filter_type, const u8 *dst, const u8 *src, u8 antenna, u32 magic3, u32 magic8, u32 magic9) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct p54_tx_control_filter *filter; hdr = kzalloc(sizeof(*hdr) + sizeof(*filter) + priv->tx_hdr_len, GFP_ATOMIC); if (!hdr) return -ENOMEM; hdr = (void *)hdr + priv->tx_hdr_len; filter = (struct p54_tx_control_filter *) hdr->data; hdr->magic1 = cpu_to_le16(0x8001); hdr->len = cpu_to_le16(sizeof(*filter)); p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*filter)); hdr->type = cpu_to_le16(P54_CONTROL_TYPE_FILTER_SET); filter->filter_type = cpu_to_le16(filter_type); memcpy(filter->dst, dst, ETH_ALEN); if (!src) memset(filter->src, ~0, ETH_ALEN); else memcpy(filter->src, src, ETH_ALEN); filter->antenna = antenna; filter->magic3 = cpu_to_le32(magic3); filter->rx_addr = cpu_to_le32(priv->rx_end); filter->max_rx = cpu_to_le16(0x0620); /* FIXME: for usb ver 1.. maybe */ filter->rxhw = priv->rxhw; filter->magic8 = cpu_to_le16(magic8); filter->magic9 = cpu_to_le16(magic9); priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*filter), 1); return 0; } static int p54_set_freq(struct ieee80211_hw *dev, __le16 freq) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct p54_tx_control_channel *chan; unsigned int i; size_t payload_len = sizeof(*chan) + sizeof(u32)*2 + sizeof(*chan->curve_data) * priv->curve_data->points_per_channel; void *entry; hdr = kzalloc(sizeof(*hdr) + payload_len + priv->tx_hdr_len, GFP_KERNEL); if (!hdr) return -ENOMEM; hdr = (void *)hdr + priv->tx_hdr_len; chan = (struct p54_tx_control_channel *) hdr->data; hdr->magic1 = cpu_to_le16(0x8001); hdr->len = cpu_to_le16(sizeof(*chan)); hdr->type = cpu_to_le16(P54_CONTROL_TYPE_CHANNEL_CHANGE); p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + payload_len); chan->magic1 = cpu_to_le16(0x1); chan->magic2 = cpu_to_le16(0x0); for (i = 0; i < priv->iq_autocal_len; i++) { if (priv->iq_autocal[i].freq != freq) continue; memcpy(&chan->iq_autocal, &priv->iq_autocal[i], sizeof(*priv->iq_autocal)); break; } if (i == priv->iq_autocal_len) goto err; for (i = 0; i < priv->output_limit_len; i++) { if (priv->output_limit[i].freq != freq) continue; chan->val_barker = 0x38; chan->val_bpsk = priv->output_limit[i].val_bpsk; chan->val_qpsk = priv->output_limit[i].val_qpsk; chan->val_16qam = priv->output_limit[i].val_16qam; chan->val_64qam = priv->output_limit[i].val_64qam; break; } if (i == priv->output_limit_len) goto err; chan->pa_points_per_curve = priv->curve_data->points_per_channel; entry = priv->curve_data->data; for (i = 0; i < priv->curve_data->channels; i++) { if (*((__le16 *)entry) != freq) { entry += sizeof(__le16); entry += sizeof(struct pda_pa_curve_data_sample_rev1) * chan->pa_points_per_curve; continue; } entry += sizeof(__le16); memcpy(chan->curve_data, entry, sizeof(*chan->curve_data) * chan->pa_points_per_curve); break; } memcpy(hdr->data + payload_len - 4, &chan->val_bpsk, 4); priv->tx(dev, hdr, sizeof(*hdr) + payload_len, 1); return 0; err: printk(KERN_ERR "%s: frequency change failed\n", wiphy_name(dev->wiphy)); kfree(hdr); return -EINVAL; } static int p54_set_leds(struct ieee80211_hw *dev, int mode, int link, int act) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct p54_tx_control_led *led; hdr = kzalloc(sizeof(*hdr) + sizeof(*led) + priv->tx_hdr_len, GFP_KERNEL); if (!hdr) return -ENOMEM; hdr = (void *)hdr + priv->tx_hdr_len; hdr->magic1 = cpu_to_le16(0x8001); hdr->len = cpu_to_le16(sizeof(*led)); hdr->type = cpu_to_le16(P54_CONTROL_TYPE_LED); p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*led)); led = (struct p54_tx_control_led *) hdr->data; led->mode = cpu_to_le16(mode); led->led_permanent = cpu_to_le16(link); led->led_temporary = cpu_to_le16(act); led->duration = cpu_to_le16(1000); priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*led), 1); return 0; } #define P54_SET_QUEUE(queue, ai_fs, cw_min, cw_max, _txop) \ do { \ queue.aifs = cpu_to_le16(ai_fs); \ queue.cwmin = cpu_to_le16(cw_min); \ queue.cwmax = cpu_to_le16(cw_max); \ queue.txop = cpu_to_le16(_txop); \ } while(0) static void p54_init_vdcf(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct p54_tx_control_vdcf *vdcf; /* all USB V1 adapters need a extra headroom */ hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len; hdr->magic1 = cpu_to_le16(0x8001); hdr->len = cpu_to_le16(sizeof(*vdcf)); hdr->type = cpu_to_le16(P54_CONTROL_TYPE_DCFINIT); hdr->req_id = cpu_to_le32(priv->rx_start); vdcf = (struct p54_tx_control_vdcf *) hdr->data; P54_SET_QUEUE(vdcf->queue[0], 0x0002, 0x0003, 0x0007, 47); P54_SET_QUEUE(vdcf->queue[1], 0x0002, 0x0007, 0x000f, 94); P54_SET_QUEUE(vdcf->queue[2], 0x0003, 0x000f, 0x03ff, 0); P54_SET_QUEUE(vdcf->queue[3], 0x0007, 0x000f, 0x03ff, 0); } static void p54_set_vdcf(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; struct p54_control_hdr *hdr; struct p54_tx_control_vdcf *vdcf; hdr = (void *)priv->cached_vdcf + priv->tx_hdr_len; p54_assign_address(dev, NULL, hdr, sizeof(*hdr) + sizeof(*vdcf)); vdcf = (struct p54_tx_control_vdcf *) hdr->data; if (dev->conf.flags & IEEE80211_CONF_SHORT_SLOT_TIME) { vdcf->slottime = 9; vdcf->magic1 = 0x10; vdcf->magic2 = 0x00; } else { vdcf->slottime = 20; vdcf->magic1 = 0x0a; vdcf->magic2 = 0x06; } /* (see prism54/isl_oid.h for further details) */ vdcf->frameburst = cpu_to_le16(0); priv->tx(dev, hdr, sizeof(*hdr) + sizeof(*vdcf), 0); } static int p54_start(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; int err; if (!priv->cached_vdcf) { priv->cached_vdcf = kzalloc(sizeof(struct p54_tx_control_vdcf)+ priv->tx_hdr_len + sizeof(struct p54_control_hdr), GFP_KERNEL); if (!priv->cached_vdcf) return -ENOMEM; } err = priv->open(dev); if (!err) priv->mode = IEEE80211_IF_TYPE_MNTR; p54_init_vdcf(dev); return err; } static void p54_stop(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; struct sk_buff *skb; while ((skb = skb_dequeue(&priv->tx_queue))) kfree_skb(skb); priv->stop(dev); priv->mode = IEEE80211_IF_TYPE_INVALID; } static int p54_add_interface(struct ieee80211_hw *dev, struct ieee80211_if_init_conf *conf) { struct p54_common *priv = dev->priv; if (priv->mode != IEEE80211_IF_TYPE_MNTR) return -EOPNOTSUPP; switch (conf->type) { case IEEE80211_IF_TYPE_STA: priv->mode = conf->type; break; default: return -EOPNOTSUPP; } memcpy(priv->mac_addr, conf->mac_addr, ETH_ALEN); p54_set_filter(dev, 0, priv->mac_addr, NULL, 0, 1, 0, 0xF642); p54_set_filter(dev, 0, priv->mac_addr, NULL, 1, 0, 0, 0xF642); switch (conf->type) { case IEEE80211_IF_TYPE_STA: p54_set_filter(dev, 1, priv->mac_addr, NULL, 0, 0x15F, 0x1F4, 0); break; default: BUG(); /* impossible */ break; } p54_set_leds(dev, 1, 0, 0); return 0; } static void p54_remove_interface(struct ieee80211_hw *dev, struct ieee80211_if_init_conf *conf) { struct p54_common *priv = dev->priv; priv->mode = IEEE80211_IF_TYPE_MNTR; memset(priv->mac_addr, 0, ETH_ALEN); p54_set_filter(dev, 0, priv->mac_addr, NULL, 2, 0, 0, 0); } static int p54_config(struct ieee80211_hw *dev, struct ieee80211_conf *conf) { int ret; struct p54_common *priv = dev->priv; mutex_lock(&priv->conf_mutex); ret = p54_set_freq(dev, cpu_to_le16(conf->channel->center_freq)); p54_set_vdcf(dev); mutex_unlock(&priv->conf_mutex); return ret; } static int p54_config_interface(struct ieee80211_hw *dev, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf) { struct p54_common *priv = dev->priv; mutex_lock(&priv->conf_mutex); p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 0, 1, 0, 0xF642); p54_set_filter(dev, 0, priv->mac_addr, conf->bssid, 2, 0, 0, 0); p54_set_leds(dev, 1, !is_multicast_ether_addr(conf->bssid), 0); memcpy(priv->bssid, conf->bssid, ETH_ALEN); mutex_unlock(&priv->conf_mutex); return 0; } static void p54_configure_filter(struct ieee80211_hw *dev, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_mc_list *mclist) { struct p54_common *priv = dev->priv; *total_flags &= FIF_BCN_PRBRESP_PROMISC; if (changed_flags & FIF_BCN_PRBRESP_PROMISC) { if (*total_flags & FIF_BCN_PRBRESP_PROMISC) p54_set_filter(dev, 0, priv->mac_addr, NULL, 2, 0, 0, 0); else p54_set_filter(dev, 0, priv->mac_addr, priv->bssid, 2, 0, 0, 0); } } static int p54_conf_tx(struct ieee80211_hw *dev, u16 queue, const struct ieee80211_tx_queue_params *params) { struct p54_common *priv = dev->priv; struct p54_tx_control_vdcf *vdcf; vdcf = (struct p54_tx_control_vdcf *)(((struct p54_control_hdr *) ((void *)priv->cached_vdcf + priv->tx_hdr_len))->data); if ((params) && !(queue > 4)) { P54_SET_QUEUE(vdcf->queue[queue], params->aifs, params->cw_min, params->cw_max, params->txop); } else return -EINVAL; p54_set_vdcf(dev); return 0; } static int p54_get_stats(struct ieee80211_hw *dev, struct ieee80211_low_level_stats *stats) { /* TODO */ return 0; } static int p54_get_tx_stats(struct ieee80211_hw *dev, struct ieee80211_tx_queue_stats *stats) { struct p54_common *priv = dev->priv; memcpy(stats, &priv->tx_stats, sizeof(stats[0]) * dev->queues); return 0; } static const struct ieee80211_ops p54_ops = { .tx = p54_tx, .start = p54_start, .stop = p54_stop, .add_interface = p54_add_interface, .remove_interface = p54_remove_interface, .config = p54_config, .config_interface = p54_config_interface, .configure_filter = p54_configure_filter, .conf_tx = p54_conf_tx, .get_stats = p54_get_stats, .get_tx_stats = p54_get_tx_stats }; struct ieee80211_hw *p54_init_common(size_t priv_data_len) { struct ieee80211_hw *dev; struct p54_common *priv; dev = ieee80211_alloc_hw(priv_data_len, &p54_ops); if (!dev) return NULL; priv = dev->priv; priv->mode = IEEE80211_IF_TYPE_INVALID; skb_queue_head_init(&priv->tx_queue); dev->wiphy->bands[IEEE80211_BAND_2GHZ] = &band_2GHz; dev->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | /* not sure */ IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_SIGNAL_UNSPEC; dev->channel_change_time = 1000; /* TODO: find actual value */ dev->max_signal = 127; priv->tx_stats[0].limit = 5; dev->queues = 1; dev->extra_tx_headroom = sizeof(struct p54_control_hdr) + 4 + sizeof(struct p54_tx_control_allocdata); mutex_init(&priv->conf_mutex); return dev; } EXPORT_SYMBOL_GPL(p54_init_common); void p54_free_common(struct ieee80211_hw *dev) { struct p54_common *priv = dev->priv; kfree(priv->iq_autocal); kfree(priv->output_limit); kfree(priv->curve_data); kfree(priv->cached_vdcf); } EXPORT_SYMBOL_GPL(p54_free_common); static int __init p54_init(void) { return 0; } static void __exit p54_exit(void) { } module_init(p54_init); module_exit(p54_exit);