/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include #include #include #include "iwl-commands.h" #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-debug.h" #include "iwl-agn.h" #include "iwl-eeprom.h" #include "iwl-io.h" /************************** EEPROM BANDS **************************** * * The iwl_eeprom_band definitions below provide the mapping from the * EEPROM contents to the specific channel number supported for each * band. * * For example, iwl_priv->eeprom.band_3_channels[4] from the band_3 * definition below maps to physical channel 42 in the 5.2GHz spectrum. * The specific geography and calibration information for that channel * is contained in the eeprom map itself. * * During init, we copy the eeprom information and channel map * information into priv->channel_info_24/52 and priv->channel_map_24/52 * * channel_map_24/52 provides the index in the channel_info array for a * given channel. We have to have two separate maps as there is channel * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and * band_2 * * A value of 0xff stored in the channel_map indicates that the channel * is not supported by the hardware at all. * * A value of 0xfe in the channel_map indicates that the channel is not * valid for Tx with the current hardware. This means that * while the system can tune and receive on a given channel, it may not * be able to associate or transmit any frames on that * channel. There is no corresponding channel information for that * entry. * *********************************************************************/ /* 2.4 GHz */ const u8 iwl_eeprom_band_1[14] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }; /* 5.2 GHz bands */ static const u8 iwl_eeprom_band_2[] = { /* 4915-5080MHz */ 183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16 }; static const u8 iwl_eeprom_band_3[] = { /* 5170-5320MHz */ 34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64 }; static const u8 iwl_eeprom_band_4[] = { /* 5500-5700MHz */ 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140 }; static const u8 iwl_eeprom_band_5[] = { /* 5725-5825MHz */ 145, 149, 153, 157, 161, 165 }; static const u8 iwl_eeprom_band_6[] = { /* 2.4 ht40 channel */ 1, 2, 3, 4, 5, 6, 7 }; static const u8 iwl_eeprom_band_7[] = { /* 5.2 ht40 channel */ 36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157 }; /****************************************************************************** * * generic NVM functions * ******************************************************************************/ /* * The device's EEPROM semaphore prevents conflicts between driver and uCode * when accessing the EEPROM; each access is a series of pulses to/from the * EEPROM chip, not a single event, so even reads could conflict if they * weren't arbitrated by the semaphore. */ static int iwl_eeprom_acquire_semaphore(struct iwl_bus *bus) { u16 count; int ret; for (count = 0; count < EEPROM_SEM_RETRY_LIMIT; count++) { /* Request semaphore */ iwl_set_bit(bus, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); /* See if we got it */ ret = iwl_poll_bit(bus, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM, EEPROM_SEM_TIMEOUT); if (ret >= 0) { IWL_DEBUG_EEPROM(bus, "Acquired semaphore after %d tries.\n", count+1); return ret; } } return ret; } static void iwl_eeprom_release_semaphore(struct iwl_bus *bus) { iwl_clear_bit(bus, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_EEPROM_OWN_SEM); } static int iwl_eeprom_verify_signature(struct iwl_trans *trans) { u32 gp = iwl_read32(bus(trans), CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK; int ret = 0; IWL_DEBUG_EEPROM(trans, "EEPROM signature=0x%08x\n", gp); switch (gp) { case CSR_EEPROM_GP_BAD_SIG_EEP_GOOD_SIG_OTP: if (trans->nvm_device_type != NVM_DEVICE_TYPE_OTP) { IWL_ERR(trans, "EEPROM with bad signature: 0x%08x\n", gp); ret = -ENOENT; } break; case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K: case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K: if (trans->nvm_device_type != NVM_DEVICE_TYPE_EEPROM) { IWL_ERR(trans, "OTP with bad signature: 0x%08x\n", gp); ret = -ENOENT; } break; case CSR_EEPROM_GP_BAD_SIGNATURE_BOTH_EEP_AND_OTP: default: IWL_ERR(trans, "bad EEPROM/OTP signature, type=%s, " "EEPROM_GP=0x%08x\n", (trans->nvm_device_type == NVM_DEVICE_TYPE_OTP) ? "OTP" : "EEPROM", gp); ret = -ENOENT; break; } return ret; } u16 iwl_eeprom_query16(const struct iwl_shared *shrd, size_t offset) { if (!shrd->eeprom) return 0; return (u16)shrd->eeprom[offset] | ((u16)shrd->eeprom[offset + 1] << 8); } int iwl_eeprom_check_version(struct iwl_priv *priv) { u16 eeprom_ver; u16 calib_ver; eeprom_ver = iwl_eeprom_query16(priv->shrd, EEPROM_VERSION); calib_ver = iwl_eeprom_calib_version(priv->shrd); if (eeprom_ver < priv->cfg->eeprom_ver || calib_ver < priv->cfg->eeprom_calib_ver) goto err; IWL_INFO(priv, "device EEPROM VER=0x%x, CALIB=0x%x\n", eeprom_ver, calib_ver); return 0; err: IWL_ERR(priv, "Unsupported (too old) EEPROM VER=0x%x < 0x%x " "CALIB=0x%x < 0x%x\n", eeprom_ver, priv->cfg->eeprom_ver, calib_ver, priv->cfg->eeprom_calib_ver); return -EINVAL; } int iwl_eeprom_check_sku(struct iwl_priv *priv) { struct iwl_shared *shrd = priv->shrd; u16 radio_cfg; if (!priv->cfg->sku) { /* not using sku overwrite */ priv->cfg->sku = iwl_eeprom_query16(shrd, EEPROM_SKU_CAP); if (priv->cfg->sku & EEPROM_SKU_CAP_11N_ENABLE && !priv->cfg->ht_params) { IWL_ERR(priv, "Invalid 11n configuration\n"); return -EINVAL; } } if (!priv->cfg->sku) { IWL_ERR(priv, "Invalid device sku\n"); return -EINVAL; } IWL_INFO(priv, "Device SKU: 0X%x\n", priv->cfg->sku); if (!priv->cfg->valid_tx_ant && !priv->cfg->valid_rx_ant) { /* not using .cfg overwrite */ radio_cfg = iwl_eeprom_query16(shrd, EEPROM_RADIO_CONFIG); priv->cfg->valid_tx_ant = EEPROM_RF_CFG_TX_ANT_MSK(radio_cfg); priv->cfg->valid_rx_ant = EEPROM_RF_CFG_RX_ANT_MSK(radio_cfg); if (!priv->cfg->valid_tx_ant || !priv->cfg->valid_rx_ant) { IWL_ERR(priv, "Invalid chain (0X%x, 0X%x)\n", priv->cfg->valid_tx_ant, priv->cfg->valid_rx_ant); return -EINVAL; } IWL_INFO(priv, "Valid Tx ant: 0X%x, Valid Rx ant: 0X%x\n", priv->cfg->valid_tx_ant, priv->cfg->valid_rx_ant); } /* * for some special cases, * EEPROM did not reflect the correct antenna setting * so overwrite the valid tx/rx antenna from .cfg */ return 0; } void iwl_eeprom_get_mac(const struct iwl_shared *shrd, u8 *mac) { const u8 *addr = iwl_eeprom_query_addr(shrd, EEPROM_MAC_ADDRESS); memcpy(mac, addr, ETH_ALEN); } /****************************************************************************** * * OTP related functions * ******************************************************************************/ static void iwl_set_otp_access(struct iwl_bus *bus, enum iwl_access_mode mode) { iwl_read32(bus, CSR_OTP_GP_REG); if (mode == IWL_OTP_ACCESS_ABSOLUTE) iwl_clear_bit(bus, CSR_OTP_GP_REG, CSR_OTP_GP_REG_OTP_ACCESS_MODE); else iwl_set_bit(bus, CSR_OTP_GP_REG, CSR_OTP_GP_REG_OTP_ACCESS_MODE); } static int iwl_get_nvm_type(struct iwl_bus *bus, u32 hw_rev) { u32 otpgp; int nvm_type; /* OTP only valid for CP/PP and after */ switch (hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_NONE: IWL_ERR(bus, "Unknown hardware type\n"); return -ENOENT; case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: case CSR_HW_REV_TYPE_5100: case CSR_HW_REV_TYPE_5150: nvm_type = NVM_DEVICE_TYPE_EEPROM; break; default: otpgp = iwl_read32(bus, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_DEVICE_SELECT) nvm_type = NVM_DEVICE_TYPE_OTP; else nvm_type = NVM_DEVICE_TYPE_EEPROM; break; } return nvm_type; } static int iwl_init_otp_access(struct iwl_bus *bus) { int ret; /* Enable 40MHz radio clock */ iwl_write32(bus, CSR_GP_CNTRL, iwl_read32(bus, CSR_GP_CNTRL) | CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* wait for clock to be ready */ ret = iwl_poll_bit(bus, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) IWL_ERR(bus, "Time out access OTP\n"); else { iwl_set_bits_prph(bus, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); udelay(5); iwl_clear_bits_prph(bus, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_RESET_REQ); /* * CSR auto clock gate disable bit - * this is only applicable for HW with OTP shadow RAM */ if (priv(bus)->cfg->base_params->shadow_ram_support) iwl_set_bit(bus, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED); } return ret; } static int iwl_read_otp_word(struct iwl_bus *bus, u16 addr, __le16 *eeprom_data) { int ret = 0; u32 r; u32 otpgp; iwl_write32(bus, CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(bus, CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(bus, "Time out reading OTP[%d]\n", addr); return ret; } r = iwl_read32(bus, CSR_EEPROM_REG); /* check for ECC errors: */ otpgp = iwl_read32(bus, CSR_OTP_GP_REG); if (otpgp & CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK) { /* stop in this case */ /* set the uncorrectable OTP ECC bit for acknowledgement */ iwl_set_bit(bus, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); IWL_ERR(bus, "Uncorrectable OTP ECC error, abort OTP read\n"); return -EINVAL; } if (otpgp & CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK) { /* continue in this case */ /* set the correctable OTP ECC bit for acknowledgement */ iwl_set_bit(bus, CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK); IWL_ERR(bus, "Correctable OTP ECC error, continue read\n"); } *eeprom_data = cpu_to_le16(r >> 16); return 0; } /* * iwl_is_otp_empty: check for empty OTP */ static bool iwl_is_otp_empty(struct iwl_bus *bus) { u16 next_link_addr = 0; __le16 link_value; bool is_empty = false; /* locate the beginning of OTP link list */ if (!iwl_read_otp_word(bus, next_link_addr, &link_value)) { if (!link_value) { IWL_ERR(bus, "OTP is empty\n"); is_empty = true; } } else { IWL_ERR(bus, "Unable to read first block of OTP list.\n"); is_empty = true; } return is_empty; } /* * iwl_find_otp_image: find EEPROM image in OTP * finding the OTP block that contains the EEPROM image. * the last valid block on the link list (the block _before_ the last block) * is the block we should read and used to configure the device. * If all the available OTP blocks are full, the last block will be the block * we should read and used to configure the device. * only perform this operation if shadow RAM is disabled */ static int iwl_find_otp_image(struct iwl_bus *bus, u16 *validblockaddr) { u16 next_link_addr = 0, valid_addr; __le16 link_value = 0; int usedblocks = 0; /* set addressing mode to absolute to traverse the link list */ iwl_set_otp_access(bus, IWL_OTP_ACCESS_ABSOLUTE); /* checking for empty OTP or error */ if (iwl_is_otp_empty(bus)) return -EINVAL; /* * start traverse link list * until reach the max number of OTP blocks * different devices have different number of OTP blocks */ do { /* save current valid block address * check for more block on the link list */ valid_addr = next_link_addr; next_link_addr = le16_to_cpu(link_value) * sizeof(u16); IWL_DEBUG_EEPROM(bus, "OTP blocks %d addr 0x%x\n", usedblocks, next_link_addr); if (iwl_read_otp_word(bus, next_link_addr, &link_value)) return -EINVAL; if (!link_value) { /* * reach the end of link list, return success and * set address point to the starting address * of the image */ *validblockaddr = valid_addr; /* skip first 2 bytes (link list pointer) */ *validblockaddr += 2; return 0; } /* more in the link list, continue */ usedblocks++; } while (usedblocks <= priv(bus)->cfg->base_params->max_ll_items); /* OTP has no valid blocks */ IWL_DEBUG_EEPROM(bus, "OTP has no valid blocks\n"); return -EINVAL; } /****************************************************************************** * * Tx Power related functions * ******************************************************************************/ /** * iwl_get_max_txpower_avg - get the highest tx power from all chains. * find the highest tx power from all chains for the channel */ static s8 iwl_get_max_txpower_avg(struct iwl_cfg *cfg, struct iwl_eeprom_enhanced_txpwr *enhanced_txpower, int element, s8 *max_txpower_in_half_dbm) { s8 max_txpower_avg = 0; /* (dBm) */ /* Take the highest tx power from any valid chains */ if ((cfg->valid_tx_ant & ANT_A) && (enhanced_txpower[element].chain_a_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_a_max; if ((cfg->valid_tx_ant & ANT_B) && (enhanced_txpower[element].chain_b_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_b_max; if ((cfg->valid_tx_ant & ANT_C) && (enhanced_txpower[element].chain_c_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].chain_c_max; if (((cfg->valid_tx_ant == ANT_AB) | (cfg->valid_tx_ant == ANT_BC) | (cfg->valid_tx_ant == ANT_AC)) && (enhanced_txpower[element].mimo2_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo2_max; if ((cfg->valid_tx_ant == ANT_ABC) && (enhanced_txpower[element].mimo3_max > max_txpower_avg)) max_txpower_avg = enhanced_txpower[element].mimo3_max; /* * max. tx power in EEPROM is in 1/2 dBm format * convert from 1/2 dBm to dBm (round-up convert) * but we also do not want to loss 1/2 dBm resolution which * will impact performance */ *max_txpower_in_half_dbm = max_txpower_avg; return (max_txpower_avg & 0x01) + (max_txpower_avg >> 1); } static void iwl_eeprom_enh_txp_read_element(struct iwl_priv *priv, struct iwl_eeprom_enhanced_txpwr *txp, s8 max_txpower_avg) { int ch_idx; bool is_ht40 = txp->flags & IWL_EEPROM_ENH_TXP_FL_40MHZ; enum ieee80211_band band; band = txp->flags & IWL_EEPROM_ENH_TXP_FL_BAND_52G ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ; for (ch_idx = 0; ch_idx < priv->channel_count; ch_idx++) { struct iwl_channel_info *ch_info = &priv->channel_info[ch_idx]; /* update matching channel or from common data only */ if (txp->channel != 0 && ch_info->channel != txp->channel) continue; /* update matching band only */ if (band != ch_info->band) continue; if (ch_info->max_power_avg < max_txpower_avg && !is_ht40) { ch_info->max_power_avg = max_txpower_avg; ch_info->curr_txpow = max_txpower_avg; ch_info->scan_power = max_txpower_avg; } if (is_ht40 && ch_info->ht40_max_power_avg < max_txpower_avg) ch_info->ht40_max_power_avg = max_txpower_avg; } } #define EEPROM_TXP_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT) #define EEPROM_TXP_ENTRY_LEN sizeof(struct iwl_eeprom_enhanced_txpwr) #define EEPROM_TXP_SZ_OFFS (0x00 | INDIRECT_ADDRESS | INDIRECT_TXP_LIMIT_SIZE) #define TXP_CHECK_AND_PRINT(x) ((txp->flags & IWL_EEPROM_ENH_TXP_FL_##x) \ ? # x " " : "") void iwl_eeprom_enhanced_txpower(struct iwl_priv *priv) { struct iwl_shared *shrd = priv->shrd; struct iwl_eeprom_enhanced_txpwr *txp_array, *txp; int idx, entries; __le16 *txp_len; s8 max_txp_avg, max_txp_avg_halfdbm; BUILD_BUG_ON(sizeof(struct iwl_eeprom_enhanced_txpwr) != 8); /* the length is in 16-bit words, but we want entries */ txp_len = (__le16 *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_SZ_OFFS); entries = le16_to_cpup(txp_len) * 2 / EEPROM_TXP_ENTRY_LEN; txp_array = (void *) iwl_eeprom_query_addr(shrd, EEPROM_TXP_OFFS); for (idx = 0; idx < entries; idx++) { txp = &txp_array[idx]; /* skip invalid entries */ if (!(txp->flags & IWL_EEPROM_ENH_TXP_FL_VALID)) continue; IWL_DEBUG_EEPROM(priv, "%s %d:\t %s%s%s%s%s%s%s%s (0x%02x)\n", (txp->channel && (txp->flags & IWL_EEPROM_ENH_TXP_FL_COMMON_TYPE)) ? "Common " : (txp->channel) ? "Channel" : "Common", (txp->channel), TXP_CHECK_AND_PRINT(VALID), TXP_CHECK_AND_PRINT(BAND_52G), TXP_CHECK_AND_PRINT(OFDM), TXP_CHECK_AND_PRINT(40MHZ), TXP_CHECK_AND_PRINT(HT_AP), TXP_CHECK_AND_PRINT(RES1), TXP_CHECK_AND_PRINT(RES2), TXP_CHECK_AND_PRINT(COMMON_TYPE), txp->flags); IWL_DEBUG_EEPROM(priv, "\t\t chain_A: 0x%02x " "chain_B: 0X%02x chain_C: 0X%02x\n", txp->chain_a_max, txp->chain_b_max, txp->chain_c_max); IWL_DEBUG_EEPROM(priv, "\t\t MIMO2: 0x%02x " "MIMO3: 0x%02x High 20_on_40: 0x%02x " "Low 20_on_40: 0x%02x\n", txp->mimo2_max, txp->mimo3_max, ((txp->delta_20_in_40 & 0xf0) >> 4), (txp->delta_20_in_40 & 0x0f)); max_txp_avg = iwl_get_max_txpower_avg(priv->cfg, txp_array, idx, &max_txp_avg_halfdbm); /* * Update the user limit values values to the highest * power supported by any channel */ if (max_txp_avg > priv->tx_power_user_lmt) priv->tx_power_user_lmt = max_txp_avg; if (max_txp_avg_halfdbm > priv->tx_power_lmt_in_half_dbm) priv->tx_power_lmt_in_half_dbm = max_txp_avg_halfdbm; iwl_eeprom_enh_txp_read_element(priv, txp, max_txp_avg); } } /** * iwl_eeprom_init - read EEPROM contents * * Load the EEPROM contents from adapter into shrd->eeprom * * NOTE: This routine uses the non-debug IO access functions. */ int iwl_eeprom_init(struct iwl_priv *priv, u32 hw_rev) { struct iwl_shared *shrd = priv->shrd; __le16 *e; u32 gp = iwl_read32(bus(priv), CSR_EEPROM_GP); int sz; int ret; u16 addr; u16 validblockaddr = 0; u16 cache_addr = 0; trans(priv)->nvm_device_type = iwl_get_nvm_type(bus(priv), hw_rev); if (trans(priv)->nvm_device_type == -ENOENT) return -ENOENT; /* allocate eeprom */ sz = priv->cfg->base_params->eeprom_size; IWL_DEBUG_EEPROM(priv, "NVM size = %d\n", sz); shrd->eeprom = kzalloc(sz, GFP_KERNEL); if (!shrd->eeprom) { ret = -ENOMEM; goto alloc_err; } e = (__le16 *)shrd->eeprom; iwl_apm_init(priv); ret = iwl_eeprom_verify_signature(trans(priv)); if (ret < 0) { IWL_ERR(priv, "EEPROM not found, EEPROM_GP=0x%08x\n", gp); ret = -ENOENT; goto err; } /* Make sure driver (instead of uCode) is allowed to read EEPROM */ ret = iwl_eeprom_acquire_semaphore(bus(priv)); if (ret < 0) { IWL_ERR(priv, "Failed to acquire EEPROM semaphore.\n"); ret = -ENOENT; goto err; } if (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP) { ret = iwl_init_otp_access(bus(priv)); if (ret) { IWL_ERR(priv, "Failed to initialize OTP access.\n"); ret = -ENOENT; goto done; } iwl_write32(bus(priv), CSR_EEPROM_GP, iwl_read32(bus(priv), CSR_EEPROM_GP) & ~CSR_EEPROM_GP_IF_OWNER_MSK); iwl_set_bit(bus(priv), CSR_OTP_GP_REG, CSR_OTP_GP_REG_ECC_CORR_STATUS_MSK | CSR_OTP_GP_REG_ECC_UNCORR_STATUS_MSK); /* traversing the linked list if no shadow ram supported */ if (!priv->cfg->base_params->shadow_ram_support) { if (iwl_find_otp_image(bus(priv), &validblockaddr)) { ret = -ENOENT; goto done; } } for (addr = validblockaddr; addr < validblockaddr + sz; addr += sizeof(u16)) { __le16 eeprom_data; ret = iwl_read_otp_word(bus(priv), addr, &eeprom_data); if (ret) goto done; e[cache_addr / 2] = eeprom_data; cache_addr += sizeof(u16); } } else { /* eeprom is an array of 16bit values */ for (addr = 0; addr < sz; addr += sizeof(u16)) { u32 r; iwl_write32(bus(priv), CSR_EEPROM_REG, CSR_EEPROM_REG_MSK_ADDR & (addr << 1)); ret = iwl_poll_bit(bus(priv), CSR_EEPROM_REG, CSR_EEPROM_REG_READ_VALID_MSK, CSR_EEPROM_REG_READ_VALID_MSK, IWL_EEPROM_ACCESS_TIMEOUT); if (ret < 0) { IWL_ERR(priv, "Time out reading EEPROM[%d]\n", addr); goto done; } r = iwl_read32(bus(priv), CSR_EEPROM_REG); e[addr / 2] = cpu_to_le16(r >> 16); } } IWL_DEBUG_EEPROM(priv, "NVM Type: %s, version: 0x%x\n", (trans(priv)->nvm_device_type == NVM_DEVICE_TYPE_OTP) ? "OTP" : "EEPROM", iwl_eeprom_query16(shrd, EEPROM_VERSION)); ret = 0; done: iwl_eeprom_release_semaphore(bus(priv)); err: if (ret) iwl_eeprom_free(priv->shrd); /* Reset chip to save power until we load uCode during "up". */ iwl_apm_stop(priv); alloc_err: return ret; } void iwl_eeprom_free(struct iwl_shared *shrd) { kfree(shrd->eeprom); shrd->eeprom = NULL; } static void iwl_init_band_reference(const struct iwl_priv *priv, int eep_band, int *eeprom_ch_count, const struct iwl_eeprom_channel **eeprom_ch_info, const u8 **eeprom_ch_index) { struct iwl_shared *shrd = priv->shrd; u32 offset = priv->cfg->lib-> eeprom_ops.regulatory_bands[eep_band - 1]; switch (eep_band) { case 1: /* 2.4GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_1); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_1; break; case 2: /* 4.9GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_2); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_2; break; case 3: /* 5.2GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_3); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_3; break; case 4: /* 5.5GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_4); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_4; break; case 5: /* 5.7GHz band */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_5); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_5; break; case 6: /* 2.4GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_6); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_6; break; case 7: /* 5 GHz ht40 channels */ *eeprom_ch_count = ARRAY_SIZE(iwl_eeprom_band_7); *eeprom_ch_info = (struct iwl_eeprom_channel *) iwl_eeprom_query_addr(shrd, offset); *eeprom_ch_index = iwl_eeprom_band_7; break; default: BUG(); return; } } #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /** * iwl_mod_ht40_chan_info - Copy ht40 channel info into driver's priv. * * Does not set up a command, or touch hardware. */ static int iwl_mod_ht40_chan_info(struct iwl_priv *priv, enum ieee80211_band band, u16 channel, const struct iwl_eeprom_channel *eeprom_ch, u8 clear_ht40_extension_channel) { struct iwl_channel_info *ch_info; ch_info = (struct iwl_channel_info *) iwl_get_channel_info(priv, band, channel); if (!is_channel_valid(ch_info)) return -1; IWL_DEBUG_EEPROM(priv, "HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE), CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE), CHECK_AND_PRINT(DFS), eeprom_ch->flags, eeprom_ch->max_power_avg, ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); ch_info->ht40_eeprom = *eeprom_ch; ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg; ch_info->ht40_flags = eeprom_ch->flags; if (eeprom_ch->flags & EEPROM_CHANNEL_VALID) ch_info->ht40_extension_channel &= ~clear_ht40_extension_channel; return 0; } #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \ ? # x " " : "") /** * iwl_init_channel_map - Set up driver's info for all possible channels */ int iwl_init_channel_map(struct iwl_priv *priv) { int eeprom_ch_count = 0; const u8 *eeprom_ch_index = NULL; const struct iwl_eeprom_channel *eeprom_ch_info = NULL; int band, ch; struct iwl_channel_info *ch_info; if (priv->channel_count) { IWL_DEBUG_EEPROM(priv, "Channel map already initialized.\n"); return 0; } IWL_DEBUG_EEPROM(priv, "Initializing regulatory info from EEPROM\n"); priv->channel_count = ARRAY_SIZE(iwl_eeprom_band_1) + ARRAY_SIZE(iwl_eeprom_band_2) + ARRAY_SIZE(iwl_eeprom_band_3) + ARRAY_SIZE(iwl_eeprom_band_4) + ARRAY_SIZE(iwl_eeprom_band_5); IWL_DEBUG_EEPROM(priv, "Parsing data for %d channels.\n", priv->channel_count); priv->channel_info = kcalloc(priv->channel_count, sizeof(struct iwl_channel_info), GFP_KERNEL); if (!priv->channel_info) { IWL_ERR(priv, "Could not allocate channel_info\n"); priv->channel_count = 0; return -ENOMEM; } ch_info = priv->channel_info; /* Loop through the 5 EEPROM bands adding them in order to the * channel map we maintain (that contains additional information than * what just in the EEPROM) */ for (band = 1; band <= 5; band++) { iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { ch_info->channel = eeprom_ch_index[ch]; ch_info->band = (band == 1) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; /* permanently store EEPROM's channel regulatory flags * and max power in channel info database. */ ch_info->eeprom = eeprom_ch_info[ch]; /* Copy the run-time flags so they are there even on * invalid channels */ ch_info->flags = eeprom_ch_info[ch].flags; /* First write that ht40 is not enabled, and then enable * one by one */ ch_info->ht40_extension_channel = IEEE80211_CHAN_NO_HT40; if (!(is_channel_valid(ch_info))) { IWL_DEBUG_EEPROM(priv, "Ch. %d Flags %x [%sGHz] - " "No traffic\n", ch_info->channel, ch_info->flags, is_channel_a_band(ch_info) ? "5.2" : "2.4"); ch_info++; continue; } /* Initialize regulatory-based run-time data */ ch_info->max_power_avg = ch_info->curr_txpow = eeprom_ch_info[ch].max_power_avg; ch_info->scan_power = eeprom_ch_info[ch].max_power_avg; ch_info->min_power = 0; IWL_DEBUG_EEPROM(priv, "Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):" " Ad-Hoc %ssupported\n", ch_info->channel, is_channel_a_band(ch_info) ? "5.2" : "2.4", CHECK_AND_PRINT_I(VALID), CHECK_AND_PRINT_I(IBSS), CHECK_AND_PRINT_I(ACTIVE), CHECK_AND_PRINT_I(RADAR), CHECK_AND_PRINT_I(WIDE), CHECK_AND_PRINT_I(DFS), eeprom_ch_info[ch].flags, eeprom_ch_info[ch].max_power_avg, ((eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_IBSS) && !(eeprom_ch_info[ch]. flags & EEPROM_CHANNEL_RADAR)) ? "" : "not "); ch_info++; } } /* Check if we do have HT40 channels */ if (priv->cfg->lib->eeprom_ops.regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 && priv->cfg->lib->eeprom_ops.regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40) return 0; /* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */ for (band = 6; band <= 7; band++) { enum ieee80211_band ieeeband; iwl_init_band_reference(priv, band, &eeprom_ch_count, &eeprom_ch_info, &eeprom_ch_index); /* EEPROM band 6 is 2.4, band 7 is 5 GHz */ ieeeband = (band == 6) ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; /* Loop through each band adding each of the channels */ for (ch = 0; ch < eeprom_ch_count; ch++) { /* Set up driver's info for lower half */ iwl_mod_ht40_chan_info(priv, ieeeband, eeprom_ch_index[ch], &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40PLUS); /* Set up driver's info for upper half */ iwl_mod_ht40_chan_info(priv, ieeeband, eeprom_ch_index[ch] + 4, &eeprom_ch_info[ch], IEEE80211_CHAN_NO_HT40MINUS); } } /* for newer device (6000 series and up) * EEPROM contain enhanced tx power information * driver need to process addition information * to determine the max channel tx power limits */ if (priv->cfg->lib->eeprom_ops.update_enhanced_txpower) priv->cfg->lib->eeprom_ops.update_enhanced_txpower(priv); return 0; } /* * iwl_free_channel_map - undo allocations in iwl_init_channel_map */ void iwl_free_channel_map(struct iwl_priv *priv) { kfree(priv->channel_info); priv->channel_count = 0; } /** * iwl_get_channel_info - Find driver's private channel info * * Based on band and channel number. */ const struct iwl_channel_info *iwl_get_channel_info(const struct iwl_priv *priv, enum ieee80211_band band, u16 channel) { int i; switch (band) { case IEEE80211_BAND_5GHZ: for (i = 14; i < priv->channel_count; i++) { if (priv->channel_info[i].channel == channel) return &priv->channel_info[i]; } break; case IEEE80211_BAND_2GHZ: if (channel >= 1 && channel <= 14) return &priv->channel_info[channel - 1]; break; default: BUG(); } return NULL; } void iwl_rf_config(struct iwl_priv *priv) { u16 radio_cfg; radio_cfg = iwl_eeprom_query16(priv->shrd, EEPROM_RADIO_CONFIG); /* write radio config values to register */ if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) <= EEPROM_RF_CONFIG_TYPE_MAX) { iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG, EEPROM_RF_CFG_TYPE_MSK(radio_cfg) | EEPROM_RF_CFG_STEP_MSK(radio_cfg) | EEPROM_RF_CFG_DASH_MSK(radio_cfg)); IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n", EEPROM_RF_CFG_TYPE_MSK(radio_cfg), EEPROM_RF_CFG_STEP_MSK(radio_cfg), EEPROM_RF_CFG_DASH_MSK(radio_cfg)); } else WARN_ON(1); /* set CSR_HW_CONFIG_REG for uCode use */ iwl_set_bit(bus(priv), CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | CSR_HW_IF_CONFIG_REG_BIT_MAC_SI); }