/****************************************************************************** * * Copyright(c) 2007 - 2009 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * *****************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include "iwl-eeprom.h" #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-io.h" #include "iwl-sta.h" #include "iwl-helpers.h" #include "iwl-5000-hw.h" /* Highest firmware API version supported */ #define IWL5000_UCODE_API_MAX 1 #define IWL5150_UCODE_API_MAX 1 /* Lowest firmware API version supported */ #define IWL5000_UCODE_API_MIN 1 #define IWL5150_UCODE_API_MIN 1 #define IWL5000_FW_PRE "iwlwifi-5000-" #define _IWL5000_MODULE_FIRMWARE(api) IWL5000_FW_PRE #api ".ucode" #define IWL5000_MODULE_FIRMWARE(api) _IWL5000_MODULE_FIRMWARE(api) #define IWL5150_FW_PRE "iwlwifi-5150-" #define _IWL5150_MODULE_FIRMWARE(api) IWL5150_FW_PRE #api ".ucode" #define IWL5150_MODULE_FIRMWARE(api) _IWL5150_MODULE_FIRMWARE(api) static const u16 iwl5000_default_queue_to_tx_fifo[] = { IWL_TX_FIFO_AC3, IWL_TX_FIFO_AC2, IWL_TX_FIFO_AC1, IWL_TX_FIFO_AC0, IWL50_CMD_FIFO_NUM, IWL_TX_FIFO_HCCA_1, IWL_TX_FIFO_HCCA_2 }; /* FIXME: same implementation as 4965 */ static int iwl5000_apm_stop_master(struct iwl_priv *priv) { unsigned long flags; spin_lock_irqsave(&priv->lock, flags); /* set stop master bit */ iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER); iwl_poll_direct_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED, 100); spin_unlock_irqrestore(&priv->lock, flags); IWL_DEBUG_INFO("stop master\n"); return 0; } static int iwl5000_apm_init(struct iwl_priv *priv) { int ret = 0; iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* disable L0s without affecting L1 :don't wait for ICH L0s bug W/A) */ iwl_set_bit(priv, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ iwl_set_bit(priv, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL); /* enable HAP INTA to move device L1a -> L0s */ iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL); /* set "initialization complete" bit to move adapter * D0U* --> D0A* state */ iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* wait for clock stabilization */ ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO("Failed to init the card\n"); return ret; } ret = iwl_grab_nic_access(priv); if (ret) return ret; /* enable DMA */ iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* disable L1-Active */ iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); iwl_release_nic_access(priv); return ret; } /* FIXME: this is identical to 4965 */ static void iwl5000_apm_stop(struct iwl_priv *priv) { unsigned long flags; iwl5000_apm_stop_master(priv); spin_lock_irqsave(&priv->lock, flags); iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* clear "init complete" move adapter D0A* --> D0U state */ iwl_clear_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); spin_unlock_irqrestore(&priv->lock, flags); } static int iwl5000_apm_reset(struct iwl_priv *priv) { int ret = 0; unsigned long flags; iwl5000_apm_stop_master(priv); spin_lock_irqsave(&priv->lock, flags); iwl_set_bit(priv, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET); udelay(10); /* FIXME: put here L1A -L0S w/a */ iwl_set_bit(priv, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL); /* set "initialization complete" bit to move adapter * D0U* --> D0A* state */ iwl_set_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* wait for clock stabilization */ ret = iwl_poll_direct_bit(priv, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (ret < 0) { IWL_DEBUG_INFO("Failed to init the card\n"); goto out; } ret = iwl_grab_nic_access(priv); if (ret) goto out; /* enable DMA */ iwl_write_prph(priv, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT); udelay(20); /* disable L1-Active */ iwl_set_bits_prph(priv, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS); iwl_release_nic_access(priv); out: spin_unlock_irqrestore(&priv->lock, flags); return ret; } static void iwl5000_nic_config(struct iwl_priv *priv) { unsigned long flags; u16 radio_cfg; u16 link; spin_lock_irqsave(&priv->lock, flags); pci_read_config_word(priv->pci_dev, PCI_CFG_LINK_CTRL, &link); /* L1 is enabled by BIOS */ if ((link & PCI_CFG_LINK_CTRL_VAL_L1_EN) == PCI_CFG_LINK_CTRL_VAL_L1_EN) /* disable L0S disabled L1A enabled */ iwl_set_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); else /* L0S enabled L1A disabled */ iwl_clear_bit(priv, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED); radio_cfg = iwl_eeprom_query16(priv, EEPROM_RADIO_CONFIG); /* write radio config values to register */ if (EEPROM_RF_CFG_TYPE_MSK(radio_cfg) < EEPROM_5000_RF_CFG_TYPE_MAX) iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, EEPROM_RF_CFG_TYPE_MSK(radio_cfg) | EEPROM_RF_CFG_STEP_MSK(radio_cfg) | EEPROM_RF_CFG_DASH_MSK(radio_cfg)); /* set CSR_HW_CONFIG_REG for uCode use */ iwl_set_bit(priv, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | CSR_HW_IF_CONFIG_REG_BIT_MAC_SI); /* W/A : NIC is stuck in a reset state after Early PCIe power off * (PCIe power is lost before PERST# is asserted), * causing ME FW to lose ownership and not being able to obtain it back. */ iwl_grab_nic_access(priv); iwl_set_bits_mask_prph(priv, APMG_PS_CTRL_REG, APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); iwl_release_nic_access(priv); spin_unlock_irqrestore(&priv->lock, flags); } /* * EEPROM */ static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address) { u16 offset = 0; if ((address & INDIRECT_ADDRESS) == 0) return address; switch (address & INDIRECT_TYPE_MSK) { case INDIRECT_HOST: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_HOST); break; case INDIRECT_GENERAL: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_GENERAL); break; case INDIRECT_REGULATORY: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_REGULATORY); break; case INDIRECT_CALIBRATION: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_CALIBRATION); break; case INDIRECT_PROCESS_ADJST: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_PROCESS_ADJST); break; case INDIRECT_OTHERS: offset = iwl_eeprom_query16(priv, EEPROM_5000_LINK_OTHERS); break; default: IWL_ERR(priv, "illegal indirect type: 0x%X\n", address & INDIRECT_TYPE_MSK); break; } /* translate the offset from words to byte */ return (address & ADDRESS_MSK) + (offset << 1); } static u16 iwl5000_eeprom_calib_version(struct iwl_priv *priv) { struct iwl_eeprom_calib_hdr { u8 version; u8 pa_type; u16 voltage; } *hdr; hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv, EEPROM_5000_CALIB_ALL); return hdr->version; } static void iwl5000_gain_computation(struct iwl_priv *priv, u32 average_noise[NUM_RX_CHAINS], u16 min_average_noise_antenna_i, u32 min_average_noise) { int i; s32 delta_g; struct iwl_chain_noise_data *data = &priv->chain_noise_data; /* Find Gain Code for the antennas B and C */ for (i = 1; i < NUM_RX_CHAINS; i++) { if ((data->disconn_array[i])) { data->delta_gain_code[i] = 0; continue; } delta_g = (1000 * ((s32)average_noise[0] - (s32)average_noise[i])) / 1500; /* bound gain by 2 bits value max, 3rd bit is sign */ data->delta_gain_code[i] = min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE); if (delta_g < 0) /* set negative sign */ data->delta_gain_code[i] |= (1 << 2); } IWL_DEBUG_CALIB("Delta gains: ANT_B = %d ANT_C = %d\n", data->delta_gain_code[1], data->delta_gain_code[2]); if (!data->radio_write) { struct iwl_calib_chain_noise_gain_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD; cmd.hdr.first_group = 0; cmd.hdr.groups_num = 1; cmd.hdr.data_valid = 1; cmd.delta_gain_1 = data->delta_gain_code[1]; cmd.delta_gain_2 = data->delta_gain_code[2]; iwl_send_cmd_pdu_async(priv, REPLY_PHY_CALIBRATION_CMD, sizeof(cmd), &cmd, NULL); data->radio_write = 1; data->state = IWL_CHAIN_NOISE_CALIBRATED; } data->chain_noise_a = 0; data->chain_noise_b = 0; data->chain_noise_c = 0; data->chain_signal_a = 0; data->chain_signal_b = 0; data->chain_signal_c = 0; data->beacon_count = 0; } static void iwl5000_chain_noise_reset(struct iwl_priv *priv) { struct iwl_chain_noise_data *data = &priv->chain_noise_data; int ret; if ((data->state == IWL_CHAIN_NOISE_ALIVE) && iwl_is_associated(priv)) { struct iwl_calib_chain_noise_reset_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD; cmd.hdr.first_group = 0; cmd.hdr.groups_num = 1; cmd.hdr.data_valid = 1; ret = iwl_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD, sizeof(cmd), &cmd); if (ret) IWL_ERR(priv, "Could not send REPLY_PHY_CALIBRATION_CMD\n"); data->state = IWL_CHAIN_NOISE_ACCUMULATE; IWL_DEBUG_CALIB("Run chain_noise_calibrate\n"); } } static void iwl5000_rts_tx_cmd_flag(struct ieee80211_tx_info *info, __le32 *tx_flags) { if ((info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) || (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)) *tx_flags |= TX_CMD_FLG_RTS_CTS_MSK; else *tx_flags &= ~TX_CMD_FLG_RTS_CTS_MSK; } static struct iwl_sensitivity_ranges iwl5000_sensitivity = { .min_nrg_cck = 95, .max_nrg_cck = 0, .auto_corr_min_ofdm = 90, .auto_corr_min_ofdm_mrc = 170, .auto_corr_min_ofdm_x1 = 120, .auto_corr_min_ofdm_mrc_x1 = 240, .auto_corr_max_ofdm = 120, .auto_corr_max_ofdm_mrc = 210, .auto_corr_max_ofdm_x1 = 155, .auto_corr_max_ofdm_mrc_x1 = 290, .auto_corr_min_cck = 125, .auto_corr_max_cck = 200, .auto_corr_min_cck_mrc = 170, .auto_corr_max_cck_mrc = 400, .nrg_th_cck = 95, .nrg_th_ofdm = 95, }; static const u8 *iwl5000_eeprom_query_addr(const struct iwl_priv *priv, size_t offset) { u32 address = eeprom_indirect_address(priv, offset); BUG_ON(address >= priv->cfg->eeprom_size); return &priv->eeprom[address]; } static s32 iwl5150_get_ct_threshold(struct iwl_priv *priv) { const s32 volt2temp_coef = -5; u16 *temp_calib = (u16 *)iwl_eeprom_query_addr(priv, EEPROM_5000_TEMPERATURE); /* offset = temperate - voltage / coef */ s32 offset = temp_calib[0] - temp_calib[1] / volt2temp_coef; s32 threshold = (s32)CELSIUS_TO_KELVIN(CT_KILL_THRESHOLD) - offset; return threshold * volt2temp_coef; } /* * Calibration */ static int iwl5000_set_Xtal_calib(struct iwl_priv *priv) { struct iwl_calib_xtal_freq_cmd cmd; u16 *xtal_calib = (u16 *)iwl_eeprom_query_addr(priv, EEPROM_5000_XTAL); cmd.hdr.op_code = IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD; cmd.hdr.first_group = 0; cmd.hdr.groups_num = 1; cmd.hdr.data_valid = 1; cmd.cap_pin1 = (u8)xtal_calib[0]; cmd.cap_pin2 = (u8)xtal_calib[1]; return iwl_calib_set(&priv->calib_results[IWL_CALIB_XTAL], (u8 *)&cmd, sizeof(cmd)); } static int iwl5000_send_calib_cfg(struct iwl_priv *priv) { struct iwl_calib_cfg_cmd calib_cfg_cmd; struct iwl_host_cmd cmd = { .id = CALIBRATION_CFG_CMD, .len = sizeof(struct iwl_calib_cfg_cmd), .data = &calib_cfg_cmd, }; memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd)); calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_INIT_CFG_ALL; calib_cfg_cmd.ucd_calib_cfg.once.start = IWL_CALIB_INIT_CFG_ALL; calib_cfg_cmd.ucd_calib_cfg.once.send_res = IWL_CALIB_INIT_CFG_ALL; calib_cfg_cmd.ucd_calib_cfg.flags = IWL_CALIB_INIT_CFG_ALL; return iwl_send_cmd(priv, &cmd); } static void iwl5000_rx_calib_result(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (void *)rxb->skb->data; struct iwl_calib_hdr *hdr = (struct iwl_calib_hdr *)pkt->u.raw; int len = le32_to_cpu(pkt->len) & FH_RSCSR_FRAME_SIZE_MSK; int index; /* reduce the size of the length field itself */ len -= 4; /* Define the order in which the results will be sent to the runtime * uCode. iwl_send_calib_results sends them in a row according to their * index. We sort them here */ switch (hdr->op_code) { case IWL_PHY_CALIBRATE_DC_CMD: index = IWL_CALIB_DC; break; case IWL_PHY_CALIBRATE_LO_CMD: index = IWL_CALIB_LO; break; case IWL_PHY_CALIBRATE_TX_IQ_CMD: index = IWL_CALIB_TX_IQ; break; case IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD: index = IWL_CALIB_TX_IQ_PERD; break; case IWL_PHY_CALIBRATE_BASE_BAND_CMD: index = IWL_CALIB_BASE_BAND; break; default: IWL_ERR(priv, "Unknown calibration notification %d\n", hdr->op_code); return; } iwl_calib_set(&priv->calib_results[index], pkt->u.raw, len); } static void iwl5000_rx_calib_complete(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { IWL_DEBUG_INFO("Init. calibration is completed, restarting fw.\n"); queue_work(priv->workqueue, &priv->restart); } /* * ucode */ static int iwl5000_load_section(struct iwl_priv *priv, struct fw_desc *image, u32 dst_addr) { int ret = 0; unsigned long flags; dma_addr_t phy_addr = image->p_addr; u32 byte_cnt = image->len; spin_lock_irqsave(&priv->lock, flags); ret = iwl_grab_nic_access(priv); if (ret) { spin_unlock_irqrestore(&priv->lock, flags); return ret; } iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); iwl_write_direct32(priv, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr); iwl_write_direct32(priv, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); iwl_write_direct32(priv, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL), (iwl_get_dma_hi_addr(phy_addr) << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); iwl_write_direct32(priv, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL), 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); iwl_release_nic_access(priv); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static int iwl5000_load_given_ucode(struct iwl_priv *priv, struct fw_desc *inst_image, struct fw_desc *data_image) { int ret = 0; ret = iwl5000_load_section(priv, inst_image, IWL50_RTC_INST_LOWER_BOUND); if (ret) return ret; IWL_DEBUG_INFO("INST uCode section being loaded...\n"); ret = wait_event_interruptible_timeout(priv->wait_command_queue, priv->ucode_write_complete, 5 * HZ); if (ret == -ERESTARTSYS) { IWL_ERR(priv, "Could not load the INST uCode section due " "to interrupt\n"); return ret; } if (!ret) { IWL_ERR(priv, "Could not load the INST uCode section\n"); return -ETIMEDOUT; } priv->ucode_write_complete = 0; ret = iwl5000_load_section( priv, data_image, IWL50_RTC_DATA_LOWER_BOUND); if (ret) return ret; IWL_DEBUG_INFO("DATA uCode section being loaded...\n"); ret = wait_event_interruptible_timeout(priv->wait_command_queue, priv->ucode_write_complete, 5 * HZ); if (ret == -ERESTARTSYS) { IWL_ERR(priv, "Could not load the INST uCode section due " "to interrupt\n"); return ret; } else if (!ret) { IWL_ERR(priv, "Could not load the DATA uCode section\n"); return -ETIMEDOUT; } else ret = 0; priv->ucode_write_complete = 0; return ret; } static int iwl5000_load_ucode(struct iwl_priv *priv) { int ret = 0; /* check whether init ucode should be loaded, or rather runtime ucode */ if (priv->ucode_init.len && (priv->ucode_type == UCODE_NONE)) { IWL_DEBUG_INFO("Init ucode found. Loading init ucode...\n"); ret = iwl5000_load_given_ucode(priv, &priv->ucode_init, &priv->ucode_init_data); if (!ret) { IWL_DEBUG_INFO("Init ucode load complete.\n"); priv->ucode_type = UCODE_INIT; } } else { IWL_DEBUG_INFO("Init ucode not found, or already loaded. " "Loading runtime ucode...\n"); ret = iwl5000_load_given_ucode(priv, &priv->ucode_code, &priv->ucode_data); if (!ret) { IWL_DEBUG_INFO("Runtime ucode load complete.\n"); priv->ucode_type = UCODE_RT; } } return ret; } static void iwl5000_init_alive_start(struct iwl_priv *priv) { int ret = 0; /* Check alive response for "valid" sign from uCode */ if (priv->card_alive_init.is_valid != UCODE_VALID_OK) { /* We had an error bringing up the hardware, so take it * all the way back down so we can try again */ IWL_DEBUG_INFO("Initialize Alive failed.\n"); goto restart; } /* initialize uCode was loaded... verify inst image. * This is a paranoid check, because we would not have gotten the * "initialize" alive if code weren't properly loaded. */ if (iwl_verify_ucode(priv)) { /* Runtime instruction load was bad; * take it all the way back down so we can try again */ IWL_DEBUG_INFO("Bad \"initialize\" uCode load.\n"); goto restart; } iwl_clear_stations_table(priv); ret = priv->cfg->ops->lib->alive_notify(priv); if (ret) { IWL_WARN(priv, "Could not complete ALIVE transition: %d\n", ret); goto restart; } iwl5000_send_calib_cfg(priv); return; restart: /* real restart (first load init_ucode) */ queue_work(priv->workqueue, &priv->restart); } static void iwl5000_set_wr_ptrs(struct iwl_priv *priv, int txq_id, u32 index) { iwl_write_direct32(priv, HBUS_TARG_WRPTR, (index & 0xff) | (txq_id << 8)); iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(txq_id), index); } static void iwl5000_tx_queue_set_status(struct iwl_priv *priv, struct iwl_tx_queue *txq, int tx_fifo_id, int scd_retry) { int txq_id = txq->q.id; int active = test_bit(txq_id, &priv->txq_ctx_active_msk) ? 1 : 0; iwl_write_prph(priv, IWL50_SCD_QUEUE_STATUS_BITS(txq_id), (active << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (tx_fifo_id << IWL50_SCD_QUEUE_STTS_REG_POS_TXF) | (1 << IWL50_SCD_QUEUE_STTS_REG_POS_WSL) | IWL50_SCD_QUEUE_STTS_REG_MSK); txq->sched_retry = scd_retry; IWL_DEBUG_INFO("%s %s Queue %d on AC %d\n", active ? "Activate" : "Deactivate", scd_retry ? "BA" : "AC", txq_id, tx_fifo_id); } static int iwl5000_send_wimax_coex(struct iwl_priv *priv) { struct iwl_wimax_coex_cmd coex_cmd; memset(&coex_cmd, 0, sizeof(coex_cmd)); return iwl_send_cmd_pdu(priv, COEX_PRIORITY_TABLE_CMD, sizeof(coex_cmd), &coex_cmd); } static int iwl5000_alive_notify(struct iwl_priv *priv) { u32 a; unsigned long flags; int ret; int i, chan; u32 reg_val; spin_lock_irqsave(&priv->lock, flags); ret = iwl_grab_nic_access(priv); if (ret) { spin_unlock_irqrestore(&priv->lock, flags); return ret; } priv->scd_base_addr = iwl_read_prph(priv, IWL50_SCD_SRAM_BASE_ADDR); a = priv->scd_base_addr + IWL50_SCD_CONTEXT_DATA_OFFSET; for (; a < priv->scd_base_addr + IWL50_SCD_TX_STTS_BITMAP_OFFSET; a += 4) iwl_write_targ_mem(priv, a, 0); for (; a < priv->scd_base_addr + IWL50_SCD_TRANSLATE_TBL_OFFSET; a += 4) iwl_write_targ_mem(priv, a, 0); for (; a < sizeof(u16) * priv->hw_params.max_txq_num; a += 4) iwl_write_targ_mem(priv, a, 0); iwl_write_prph(priv, IWL50_SCD_DRAM_BASE_ADDR, priv->scd_bc_tbls.dma >> 10); /* Enable DMA channel */ for (chan = 0; chan < FH50_TCSR_CHNL_NUM ; chan++) iwl_write_direct32(priv, FH_TCSR_CHNL_TX_CONFIG_REG(chan), FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); /* Update FH chicken bits */ reg_val = iwl_read_direct32(priv, FH_TX_CHICKEN_BITS_REG); iwl_write_direct32(priv, FH_TX_CHICKEN_BITS_REG, reg_val | FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); iwl_write_prph(priv, IWL50_SCD_QUEUECHAIN_SEL, IWL50_SCD_QUEUECHAIN_SEL_ALL(priv->hw_params.max_txq_num)); iwl_write_prph(priv, IWL50_SCD_AGGR_SEL, 0); /* initiate the queues */ for (i = 0; i < priv->hw_params.max_txq_num; i++) { iwl_write_prph(priv, IWL50_SCD_QUEUE_RDPTR(i), 0); iwl_write_direct32(priv, HBUS_TARG_WRPTR, 0 | (i << 8)); iwl_write_targ_mem(priv, priv->scd_base_addr + IWL50_SCD_CONTEXT_QUEUE_OFFSET(i), 0); iwl_write_targ_mem(priv, priv->scd_base_addr + IWL50_SCD_CONTEXT_QUEUE_OFFSET(i) + sizeof(u32), ((SCD_WIN_SIZE << IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((SCD_FRAME_LIMIT << IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); } iwl_write_prph(priv, IWL50_SCD_INTERRUPT_MASK, IWL_MASK(0, priv->hw_params.max_txq_num)); /* Activate all Tx DMA/FIFO channels */ priv->cfg->ops->lib->txq_set_sched(priv, IWL_MASK(0, 7)); iwl5000_set_wr_ptrs(priv, IWL_CMD_QUEUE_NUM, 0); /* map qos queues to fifos one-to-one */ for (i = 0; i < ARRAY_SIZE(iwl5000_default_queue_to_tx_fifo); i++) { int ac = iwl5000_default_queue_to_tx_fifo[i]; iwl_txq_ctx_activate(priv, i); iwl5000_tx_queue_set_status(priv, &priv->txq[i], ac, 0); } /* TODO - need to initialize those FIFOs inside the loop above, * not only mark them as active */ iwl_txq_ctx_activate(priv, 4); iwl_txq_ctx_activate(priv, 7); iwl_txq_ctx_activate(priv, 8); iwl_txq_ctx_activate(priv, 9); iwl_release_nic_access(priv); spin_unlock_irqrestore(&priv->lock, flags); iwl5000_send_wimax_coex(priv); iwl5000_set_Xtal_calib(priv); iwl_send_calib_results(priv); return 0; } static int iwl5000_hw_set_hw_params(struct iwl_priv *priv) { if ((priv->cfg->mod_params->num_of_queues > IWL50_NUM_QUEUES) || (priv->cfg->mod_params->num_of_queues < IWL_MIN_NUM_QUEUES)) { IWL_ERR(priv, "invalid queues_num, should be between %d and %d\n", IWL_MIN_NUM_QUEUES, IWL50_NUM_QUEUES); return -EINVAL; } priv->hw_params.max_txq_num = priv->cfg->mod_params->num_of_queues; priv->hw_params.dma_chnl_num = FH50_TCSR_CHNL_NUM; priv->hw_params.scd_bc_tbls_size = IWL50_NUM_QUEUES * sizeof(struct iwl5000_scd_bc_tbl); priv->hw_params.max_stations = IWL5000_STATION_COUNT; priv->hw_params.bcast_sta_id = IWL5000_BROADCAST_ID; priv->hw_params.max_data_size = IWL50_RTC_DATA_SIZE; priv->hw_params.max_inst_size = IWL50_RTC_INST_SIZE; priv->hw_params.max_bsm_size = 0; priv->hw_params.fat_channel = BIT(IEEE80211_BAND_2GHZ) | BIT(IEEE80211_BAND_5GHZ); priv->hw_params.rx_wrt_ptr_reg = FH_RSCSR_CHNL0_WPTR; priv->hw_params.sens = &iwl5000_sensitivity; switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_5100: priv->hw_params.tx_chains_num = 1; priv->hw_params.rx_chains_num = 2; priv->hw_params.valid_tx_ant = ANT_B; priv->hw_params.valid_rx_ant = ANT_AB; break; case CSR_HW_REV_TYPE_5150: priv->hw_params.tx_chains_num = 1; priv->hw_params.rx_chains_num = 2; priv->hw_params.valid_tx_ant = ANT_A; priv->hw_params.valid_rx_ant = ANT_AB; break; case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: priv->hw_params.tx_chains_num = 3; priv->hw_params.rx_chains_num = 3; priv->hw_params.valid_tx_ant = ANT_ABC; priv->hw_params.valid_rx_ant = ANT_ABC; break; } switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_5100: case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: /* 5X00 and 5350 wants in Celsius */ priv->hw_params.ct_kill_threshold = CT_KILL_THRESHOLD; break; case CSR_HW_REV_TYPE_5150: /* 5150 wants in Kelvin */ priv->hw_params.ct_kill_threshold = iwl5150_get_ct_threshold(priv); break; } /* Set initial calibration set */ switch (priv->hw_rev & CSR_HW_REV_TYPE_MSK) { case CSR_HW_REV_TYPE_5100: case CSR_HW_REV_TYPE_5300: case CSR_HW_REV_TYPE_5350: priv->hw_params.calib_init_cfg = BIT(IWL_CALIB_XTAL) | BIT(IWL_CALIB_LO) | BIT(IWL_CALIB_TX_IQ) | BIT(IWL_CALIB_TX_IQ_PERD) | BIT(IWL_CALIB_BASE_BAND); break; case CSR_HW_REV_TYPE_5150: priv->hw_params.calib_init_cfg = BIT(IWL_CALIB_DC) | BIT(IWL_CALIB_LO) | BIT(IWL_CALIB_TX_IQ) | BIT(IWL_CALIB_BASE_BAND); break; } return 0; } /** * iwl5000_txq_update_byte_cnt_tbl - Set up entry in Tx byte-count array */ static void iwl5000_txq_update_byte_cnt_tbl(struct iwl_priv *priv, struct iwl_tx_queue *txq, u16 byte_cnt) { struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr; int write_ptr = txq->q.write_ptr; int txq_id = txq->q.id; u8 sec_ctl = 0; u8 sta_id = 0; u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE; __le16 bc_ent; WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX); if (txq_id != IWL_CMD_QUEUE_NUM) { sta_id = txq->cmd[txq->q.write_ptr]->cmd.tx.sta_id; sec_ctl = txq->cmd[txq->q.write_ptr]->cmd.tx.sec_ctl; switch (sec_ctl & TX_CMD_SEC_MSK) { case TX_CMD_SEC_CCM: len += CCMP_MIC_LEN; break; case TX_CMD_SEC_TKIP: len += TKIP_ICV_LEN; break; case TX_CMD_SEC_WEP: len += WEP_IV_LEN + WEP_ICV_LEN; break; } } bc_ent = cpu_to_le16((len & 0xFFF) | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent; if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id]. tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] = bc_ent; } static void iwl5000_txq_inval_byte_cnt_tbl(struct iwl_priv *priv, struct iwl_tx_queue *txq) { struct iwl5000_scd_bc_tbl *scd_bc_tbl = priv->scd_bc_tbls.addr; int txq_id = txq->q.id; int read_ptr = txq->q.read_ptr; u8 sta_id = 0; __le16 bc_ent; WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX); if (txq_id != IWL_CMD_QUEUE_NUM) sta_id = txq->cmd[read_ptr]->cmd.tx.sta_id; bc_ent = cpu_to_le16(1 | (sta_id << 12)); scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent; if (txq->q.write_ptr < TFD_QUEUE_SIZE_BC_DUP) scd_bc_tbl[txq_id]. tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] = bc_ent; } static int iwl5000_tx_queue_set_q2ratid(struct iwl_priv *priv, u16 ra_tid, u16 txq_id) { u32 tbl_dw_addr; u32 tbl_dw; u16 scd_q2ratid; scd_q2ratid = ra_tid & IWL_SCD_QUEUE_RA_TID_MAP_RATID_MSK; tbl_dw_addr = priv->scd_base_addr + IWL50_SCD_TRANSLATE_TBL_OFFSET_QUEUE(txq_id); tbl_dw = iwl_read_targ_mem(priv, tbl_dw_addr); if (txq_id & 0x1) tbl_dw = (scd_q2ratid << 16) | (tbl_dw & 0x0000FFFF); else tbl_dw = scd_q2ratid | (tbl_dw & 0xFFFF0000); iwl_write_targ_mem(priv, tbl_dw_addr, tbl_dw); return 0; } static void iwl5000_tx_queue_stop_scheduler(struct iwl_priv *priv, u16 txq_id) { /* Simply stop the queue, but don't change any configuration; * the SCD_ACT_EN bit is the write-enable mask for the ACTIVE bit. */ iwl_write_prph(priv, IWL50_SCD_QUEUE_STATUS_BITS(txq_id), (0 << IWL50_SCD_QUEUE_STTS_REG_POS_ACTIVE)| (1 << IWL50_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); } static int iwl5000_txq_agg_enable(struct iwl_priv *priv, int txq_id, int tx_fifo, int sta_id, int tid, u16 ssn_idx) { unsigned long flags; int ret; u16 ra_tid; if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) || (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) { IWL_WARN(priv, "queue number out of range: %d, must be %d to %d\n", txq_id, IWL50_FIRST_AMPDU_QUEUE, IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1); return -EINVAL; } ra_tid = BUILD_RAxTID(sta_id, tid); /* Modify device's station table to Tx this TID */ iwl_sta_tx_modify_enable_tid(priv, sta_id, tid); spin_lock_irqsave(&priv->lock, flags); ret = iwl_grab_nic_access(priv); if (ret) { spin_unlock_irqrestore(&priv->lock, flags); return ret; } /* Stop this Tx queue before configuring it */ iwl5000_tx_queue_stop_scheduler(priv, txq_id); /* Map receiver-address / traffic-ID to this queue */ iwl5000_tx_queue_set_q2ratid(priv, ra_tid, txq_id); /* Set this queue as a chain-building queue */ iwl_set_bits_prph(priv, IWL50_SCD_QUEUECHAIN_SEL, (1<txq[txq_id].q.read_ptr = (ssn_idx & 0xff); priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff); iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx); /* Set up Tx window size and frame limit for this queue */ iwl_write_targ_mem(priv, priv->scd_base_addr + IWL50_SCD_CONTEXT_QUEUE_OFFSET(txq_id) + sizeof(u32), ((SCD_WIN_SIZE << IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWL50_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((SCD_FRAME_LIMIT << IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWL50_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); iwl_set_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id)); /* Set up Status area in SRAM, map to Tx DMA/FIFO, activate the queue */ iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 1); iwl_release_nic_access(priv); spin_unlock_irqrestore(&priv->lock, flags); return 0; } static int iwl5000_txq_agg_disable(struct iwl_priv *priv, u16 txq_id, u16 ssn_idx, u8 tx_fifo) { int ret; if ((IWL50_FIRST_AMPDU_QUEUE > txq_id) || (IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES <= txq_id)) { IWL_WARN(priv, "queue number out of range: %d, must be %d to %d\n", txq_id, IWL50_FIRST_AMPDU_QUEUE, IWL50_FIRST_AMPDU_QUEUE + IWL50_NUM_AMPDU_QUEUES - 1); return -EINVAL; } ret = iwl_grab_nic_access(priv); if (ret) return ret; iwl5000_tx_queue_stop_scheduler(priv, txq_id); iwl_clear_bits_prph(priv, IWL50_SCD_AGGR_SEL, (1 << txq_id)); priv->txq[txq_id].q.read_ptr = (ssn_idx & 0xff); priv->txq[txq_id].q.write_ptr = (ssn_idx & 0xff); /* supposes that ssn_idx is valid (!= 0xFFF) */ iwl5000_set_wr_ptrs(priv, txq_id, ssn_idx); iwl_clear_bits_prph(priv, IWL50_SCD_INTERRUPT_MASK, (1 << txq_id)); iwl_txq_ctx_deactivate(priv, txq_id); iwl5000_tx_queue_set_status(priv, &priv->txq[txq_id], tx_fifo, 0); iwl_release_nic_access(priv); return 0; } static u16 iwl5000_build_addsta_hcmd(const struct iwl_addsta_cmd *cmd, u8 *data) { u16 size = (u16)sizeof(struct iwl_addsta_cmd); memcpy(data, cmd, size); return size; } /* * Activate/Deactivate Tx DMA/FIFO channels according tx fifos mask * must be called under priv->lock and mac access */ static void iwl5000_txq_set_sched(struct iwl_priv *priv, u32 mask) { iwl_write_prph(priv, IWL50_SCD_TXFACT, mask); } static inline u32 iwl5000_get_scd_ssn(struct iwl5000_tx_resp *tx_resp) { return le32_to_cpup((__le32 *)&tx_resp->status + tx_resp->frame_count) & MAX_SN; } static int iwl5000_tx_status_reply_tx(struct iwl_priv *priv, struct iwl_ht_agg *agg, struct iwl5000_tx_resp *tx_resp, int txq_id, u16 start_idx) { u16 status; struct agg_tx_status *frame_status = &tx_resp->status; struct ieee80211_tx_info *info = NULL; struct ieee80211_hdr *hdr = NULL; u32 rate_n_flags = le32_to_cpu(tx_resp->rate_n_flags); int i, sh, idx; u16 seq; if (agg->wait_for_ba) IWL_DEBUG_TX_REPLY("got tx response w/o block-ack\n"); agg->frame_count = tx_resp->frame_count; agg->start_idx = start_idx; agg->rate_n_flags = rate_n_flags; agg->bitmap = 0; /* # frames attempted by Tx command */ if (agg->frame_count == 1) { /* Only one frame was attempted; no block-ack will arrive */ status = le16_to_cpu(frame_status[0].status); idx = start_idx; /* FIXME: code repetition */ IWL_DEBUG_TX_REPLY("FrameCnt = %d, StartIdx=%d idx=%d\n", agg->frame_count, agg->start_idx, idx); info = IEEE80211_SKB_CB(priv->txq[txq_id].txb[idx].skb[0]); info->status.rates[0].count = tx_resp->failure_frame + 1; info->flags &= ~IEEE80211_TX_CTL_AMPDU; info->flags |= iwl_is_tx_success(status) ? IEEE80211_TX_STAT_ACK : 0; iwl_hwrate_to_tx_control(priv, rate_n_flags, info); /* FIXME: code repetition end */ IWL_DEBUG_TX_REPLY("1 Frame 0x%x failure :%d\n", status & 0xff, tx_resp->failure_frame); IWL_DEBUG_TX_REPLY("Rate Info rate_n_flags=%x\n", rate_n_flags); agg->wait_for_ba = 0; } else { /* Two or more frames were attempted; expect block-ack */ u64 bitmap = 0; int start = agg->start_idx; /* Construct bit-map of pending frames within Tx window */ for (i = 0; i < agg->frame_count; i++) { u16 sc; status = le16_to_cpu(frame_status[i].status); seq = le16_to_cpu(frame_status[i].sequence); idx = SEQ_TO_INDEX(seq); txq_id = SEQ_TO_QUEUE(seq); if (status & (AGG_TX_STATE_FEW_BYTES_MSK | AGG_TX_STATE_ABORT_MSK)) continue; IWL_DEBUG_TX_REPLY("FrameCnt = %d, txq_id=%d idx=%d\n", agg->frame_count, txq_id, idx); hdr = iwl_tx_queue_get_hdr(priv, txq_id, idx); sc = le16_to_cpu(hdr->seq_ctrl); if (idx != (SEQ_TO_SN(sc) & 0xff)) { IWL_ERR(priv, "BUG_ON idx doesn't match seq control" " idx=%d, seq_idx=%d, seq=%d\n", idx, SEQ_TO_SN(sc), hdr->seq_ctrl); return -1; } IWL_DEBUG_TX_REPLY("AGG Frame i=%d idx %d seq=%d\n", i, idx, SEQ_TO_SN(sc)); sh = idx - start; if (sh > 64) { sh = (start - idx) + 0xff; bitmap = bitmap << sh; sh = 0; start = idx; } else if (sh < -64) sh = 0xff - (start - idx); else if (sh < 0) { sh = start - idx; start = idx; bitmap = bitmap << sh; sh = 0; } bitmap |= 1ULL << sh; IWL_DEBUG_TX_REPLY("start=%d bitmap=0x%llx\n", start, (unsigned long long)bitmap); } agg->bitmap = bitmap; agg->start_idx = start; IWL_DEBUG_TX_REPLY("Frames %d start_idx=%d bitmap=0x%llx\n", agg->frame_count, agg->start_idx, (unsigned long long)agg->bitmap); if (bitmap) agg->wait_for_ba = 1; } return 0; } static void iwl5000_rx_reply_tx(struct iwl_priv *priv, struct iwl_rx_mem_buffer *rxb) { struct iwl_rx_packet *pkt = (struct iwl_rx_packet *)rxb->skb->data; u16 sequence = le16_to_cpu(pkt->hdr.sequence); int txq_id = SEQ_TO_QUEUE(sequence); int index = SEQ_TO_INDEX(sequence); struct iwl_tx_queue *txq = &priv->txq[txq_id]; struct ieee80211_tx_info *info; struct iwl5000_tx_resp *tx_resp = (void *)&pkt->u.raw[0]; u32 status = le16_to_cpu(tx_resp->status.status); int tid; int sta_id; int freed; if ((index >= txq->q.n_bd) || (iwl_queue_used(&txq->q, index) == 0)) { IWL_ERR(priv, "Read index for DMA queue txq_id (%d) index %d " "is out of range [0-%d] %d %d\n", txq_id, index, txq->q.n_bd, txq->q.write_ptr, txq->q.read_ptr); return; } info = IEEE80211_SKB_CB(txq->txb[txq->q.read_ptr].skb[0]); memset(&info->status, 0, sizeof(info->status)); tid = (tx_resp->ra_tid & IWL50_TX_RES_TID_MSK) >> IWL50_TX_RES_TID_POS; sta_id = (tx_resp->ra_tid & IWL50_TX_RES_RA_MSK) >> IWL50_TX_RES_RA_POS; if (txq->sched_retry) { const u32 scd_ssn = iwl5000_get_scd_ssn(tx_resp); struct iwl_ht_agg *agg = NULL; agg = &priv->stations[sta_id].tid[tid].agg; iwl5000_tx_status_reply_tx(priv, agg, tx_resp, txq_id, index); /* check if BAR is needed */ if ((tx_resp->frame_count == 1) && !iwl_is_tx_success(status)) info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; if (txq->q.read_ptr != (scd_ssn & 0xff)) { index = iwl_queue_dec_wrap(scd_ssn & 0xff, txq->q.n_bd); IWL_DEBUG_TX_REPLY("Retry scheduler reclaim " "scd_ssn=%d idx=%d txq=%d swq=%d\n", scd_ssn , index, txq_id, txq->swq_id); freed = iwl_tx_queue_reclaim(priv, txq_id, index); priv->stations[sta_id].tid[tid].tfds_in_queue -= freed; if (priv->mac80211_registered && (iwl_queue_space(&txq->q) > txq->q.low_mark) && (agg->state != IWL_EMPTYING_HW_QUEUE_DELBA)) { if (agg->state == IWL_AGG_OFF) ieee80211_wake_queue(priv->hw, txq_id); else ieee80211_wake_queue(priv->hw, txq->swq_id); } } } else { BUG_ON(txq_id != txq->swq_id); info->status.rates[0].count = tx_resp->failure_frame + 1; info->flags |= iwl_is_tx_success(status) ? IEEE80211_TX_STAT_ACK : 0; iwl_hwrate_to_tx_control(priv, le32_to_cpu(tx_resp->rate_n_flags), info); IWL_DEBUG_TX_REPLY("TXQ %d status %s (0x%08x) rate_n_flags " "0x%x retries %d\n", txq_id, iwl_get_tx_fail_reason(status), status, le32_to_cpu(tx_resp->rate_n_flags), tx_resp->failure_frame); freed = iwl_tx_queue_reclaim(priv, txq_id, index); if (ieee80211_is_data_qos(tx_resp->frame_ctrl)) priv->stations[sta_id].tid[tid].tfds_in_queue -= freed; if (priv->mac80211_registered && (iwl_queue_space(&txq->q) > txq->q.low_mark)) ieee80211_wake_queue(priv->hw, txq_id); } if (ieee80211_is_data_qos(tx_resp->frame_ctrl)) iwl_txq_check_empty(priv, sta_id, tid, txq_id); if (iwl_check_bits(status, TX_ABORT_REQUIRED_MSK)) IWL_ERR(priv, "TODO: Implement Tx ABORT REQUIRED!!!\n"); } /* Currently 5000 is the superset of everything */ static u16 iwl5000_get_hcmd_size(u8 cmd_id, u16 len) { return len; } static void iwl5000_setup_deferred_work(struct iwl_priv *priv) { /* in 5000 the tx power calibration is done in uCode */ priv->disable_tx_power_cal = 1; } static void iwl5000_rx_handler_setup(struct iwl_priv *priv) { /* init calibration handlers */ priv->rx_handlers[CALIBRATION_RES_NOTIFICATION] = iwl5000_rx_calib_result; priv->rx_handlers[CALIBRATION_COMPLETE_NOTIFICATION] = iwl5000_rx_calib_complete; priv->rx_handlers[REPLY_TX] = iwl5000_rx_reply_tx; } static int iwl5000_hw_valid_rtc_data_addr(u32 addr) { return (addr >= IWL50_RTC_DATA_LOWER_BOUND) && (addr < IWL50_RTC_DATA_UPPER_BOUND); } static int iwl5000_send_rxon_assoc(struct iwl_priv *priv) { int ret = 0; struct iwl5000_rxon_assoc_cmd rxon_assoc; const struct iwl_rxon_cmd *rxon1 = &priv->staging_rxon; const struct iwl_rxon_cmd *rxon2 = &priv->active_rxon; if ((rxon1->flags == rxon2->flags) && (rxon1->filter_flags == rxon2->filter_flags) && (rxon1->cck_basic_rates == rxon2->cck_basic_rates) && (rxon1->ofdm_ht_single_stream_basic_rates == rxon2->ofdm_ht_single_stream_basic_rates) && (rxon1->ofdm_ht_dual_stream_basic_rates == rxon2->ofdm_ht_dual_stream_basic_rates) && (rxon1->ofdm_ht_triple_stream_basic_rates == rxon2->ofdm_ht_triple_stream_basic_rates) && (rxon1->acquisition_data == rxon2->acquisition_data) && (rxon1->rx_chain == rxon2->rx_chain) && (rxon1->ofdm_basic_rates == rxon2->ofdm_basic_rates)) { IWL_DEBUG_INFO("Using current RXON_ASSOC. Not resending.\n"); return 0; } rxon_assoc.flags = priv->staging_rxon.flags; rxon_assoc.filter_flags = priv->staging_rxon.filter_flags; rxon_assoc.ofdm_basic_rates = priv->staging_rxon.ofdm_basic_rates; rxon_assoc.cck_basic_rates = priv->staging_rxon.cck_basic_rates; rxon_assoc.reserved1 = 0; rxon_assoc.reserved2 = 0; rxon_assoc.reserved3 = 0; rxon_assoc.ofdm_ht_single_stream_basic_rates = priv->staging_rxon.ofdm_ht_single_stream_basic_rates; rxon_assoc.ofdm_ht_dual_stream_basic_rates = priv->staging_rxon.ofdm_ht_dual_stream_basic_rates; rxon_assoc.rx_chain_select_flags = priv->staging_rxon.rx_chain; rxon_assoc.ofdm_ht_triple_stream_basic_rates = priv->staging_rxon.ofdm_ht_triple_stream_basic_rates; rxon_assoc.acquisition_data = priv->staging_rxon.acquisition_data; ret = iwl_send_cmd_pdu_async(priv, REPLY_RXON_ASSOC, sizeof(rxon_assoc), &rxon_assoc, NULL); if (ret) return ret; return ret; } static int iwl5000_send_tx_power(struct iwl_priv *priv) { struct iwl5000_tx_power_dbm_cmd tx_power_cmd; /* half dBm need to multiply */ tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt); tx_power_cmd.flags = IWL50_TX_POWER_NO_CLOSED; tx_power_cmd.srv_chan_lmt = IWL50_TX_POWER_AUTO; return iwl_send_cmd_pdu_async(priv, REPLY_TX_POWER_DBM_CMD, sizeof(tx_power_cmd), &tx_power_cmd, NULL); } static void iwl5000_temperature(struct iwl_priv *priv) { /* store temperature from statistics (in Celsius) */ priv->temperature = le32_to_cpu(priv->statistics.general.temperature); } /* Calc max signal level (dBm) among 3 possible receivers */ static int iwl5000_calc_rssi(struct iwl_priv *priv, struct iwl_rx_phy_res *rx_resp) { /* data from PHY/DSP regarding signal strength, etc., * contents are always there, not configurable by host */ struct iwl5000_non_cfg_phy *ncphy = (struct iwl5000_non_cfg_phy *)rx_resp->non_cfg_phy_buf; u32 val, rssi_a, rssi_b, rssi_c, max_rssi; u8 agc; val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_AGC_IDX]); agc = (val & IWL50_OFDM_AGC_MSK) >> IWL50_OFDM_AGC_BIT_POS; /* Find max rssi among 3 possible receivers. * These values are measured by the digital signal processor (DSP). * They should stay fairly constant even as the signal strength varies, * if the radio's automatic gain control (AGC) is working right. * AGC value (see below) will provide the "interesting" info. */ val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_AB_IDX]); rssi_a = (val & IWL50_OFDM_RSSI_A_MSK) >> IWL50_OFDM_RSSI_A_BIT_POS; rssi_b = (val & IWL50_OFDM_RSSI_B_MSK) >> IWL50_OFDM_RSSI_B_BIT_POS; val = le32_to_cpu(ncphy->non_cfg_phy[IWL50_RX_RES_RSSI_C_IDX]); rssi_c = (val & IWL50_OFDM_RSSI_C_MSK) >> IWL50_OFDM_RSSI_C_BIT_POS; max_rssi = max_t(u32, rssi_a, rssi_b); max_rssi = max_t(u32, max_rssi, rssi_c); IWL_DEBUG_STATS("Rssi In A %d B %d C %d Max %d AGC dB %d\n", rssi_a, rssi_b, rssi_c, max_rssi, agc); /* dBm = max_rssi dB - agc dB - constant. * Higher AGC (higher radio gain) means lower signal. */ return max_rssi - agc - IWL49_RSSI_OFFSET; } static struct iwl_hcmd_ops iwl5000_hcmd = { .rxon_assoc = iwl5000_send_rxon_assoc, }; static struct iwl_hcmd_utils_ops iwl5000_hcmd_utils = { .get_hcmd_size = iwl5000_get_hcmd_size, .build_addsta_hcmd = iwl5000_build_addsta_hcmd, .gain_computation = iwl5000_gain_computation, .chain_noise_reset = iwl5000_chain_noise_reset, .rts_tx_cmd_flag = iwl5000_rts_tx_cmd_flag, .calc_rssi = iwl5000_calc_rssi, }; static struct iwl_lib_ops iwl5000_lib = { .set_hw_params = iwl5000_hw_set_hw_params, .txq_update_byte_cnt_tbl = iwl5000_txq_update_byte_cnt_tbl, .txq_inval_byte_cnt_tbl = iwl5000_txq_inval_byte_cnt_tbl, .txq_set_sched = iwl5000_txq_set_sched, .txq_agg_enable = iwl5000_txq_agg_enable, .txq_agg_disable = iwl5000_txq_agg_disable, .txq_attach_buf_to_tfd = iwl_hw_txq_attach_buf_to_tfd, .txq_free_tfd = iwl_hw_txq_free_tfd, .rx_handler_setup = iwl5000_rx_handler_setup, .setup_deferred_work = iwl5000_setup_deferred_work, .is_valid_rtc_data_addr = iwl5000_hw_valid_rtc_data_addr, .load_ucode = iwl5000_load_ucode, .init_alive_start = iwl5000_init_alive_start, .alive_notify = iwl5000_alive_notify, .send_tx_power = iwl5000_send_tx_power, .temperature = iwl5000_temperature, .update_chain_flags = iwl_update_chain_flags, .apm_ops = { .init = iwl5000_apm_init, .reset = iwl5000_apm_reset, .stop = iwl5000_apm_stop, .config = iwl5000_nic_config, .set_pwr_src = iwl_set_pwr_src, }, .eeprom_ops = { .regulatory_bands = { EEPROM_5000_REG_BAND_1_CHANNELS, EEPROM_5000_REG_BAND_2_CHANNELS, EEPROM_5000_REG_BAND_3_CHANNELS, EEPROM_5000_REG_BAND_4_CHANNELS, EEPROM_5000_REG_BAND_5_CHANNELS, EEPROM_5000_REG_BAND_24_FAT_CHANNELS, EEPROM_5000_REG_BAND_52_FAT_CHANNELS }, .verify_signature = iwlcore_eeprom_verify_signature, .acquire_semaphore = iwlcore_eeprom_acquire_semaphore, .release_semaphore = iwlcore_eeprom_release_semaphore, .calib_version = iwl5000_eeprom_calib_version, .query_addr = iwl5000_eeprom_query_addr, }, }; struct iwl_ops iwl5000_ops = { .lib = &iwl5000_lib, .hcmd = &iwl5000_hcmd, .utils = &iwl5000_hcmd_utils, }; struct iwl_mod_params iwl50_mod_params = { .num_of_queues = IWL50_NUM_QUEUES, .num_of_ampdu_queues = IWL50_NUM_AMPDU_QUEUES, .amsdu_size_8K = 1, .restart_fw = 1, /* the rest are 0 by default */ }; struct iwl_cfg iwl5300_agn_cfg = { .name = "5300AGN", .fw_name_pre = IWL5000_FW_PRE, .ucode_api_max = IWL5000_UCODE_API_MAX, .ucode_api_min = IWL5000_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5000_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; struct iwl_cfg iwl5100_bg_cfg = { .name = "5100BG", .fw_name_pre = IWL5000_FW_PRE, .ucode_api_max = IWL5000_UCODE_API_MAX, .ucode_api_min = IWL5000_UCODE_API_MIN, .sku = IWL_SKU_G, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5000_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; struct iwl_cfg iwl5100_abg_cfg = { .name = "5100ABG", .fw_name_pre = IWL5000_FW_PRE, .ucode_api_max = IWL5000_UCODE_API_MAX, .ucode_api_min = IWL5000_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5000_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; struct iwl_cfg iwl5100_agn_cfg = { .name = "5100AGN", .fw_name_pre = IWL5000_FW_PRE, .ucode_api_max = IWL5000_UCODE_API_MAX, .ucode_api_min = IWL5000_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5000_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5000_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; struct iwl_cfg iwl5350_agn_cfg = { .name = "5350AGN", .fw_name_pre = IWL5000_FW_PRE, .ucode_api_max = IWL5000_UCODE_API_MAX, .ucode_api_min = IWL5000_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5050_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; struct iwl_cfg iwl5150_agn_cfg = { .name = "5150AGN", .fw_name_pre = IWL5150_FW_PRE, .ucode_api_max = IWL5150_UCODE_API_MAX, .ucode_api_min = IWL5150_UCODE_API_MIN, .sku = IWL_SKU_A|IWL_SKU_G|IWL_SKU_N, .ops = &iwl5000_ops, .eeprom_size = IWL_5000_EEPROM_IMG_SIZE, .eeprom_ver = EEPROM_5050_EEPROM_VERSION, .eeprom_calib_ver = EEPROM_5050_TX_POWER_VERSION, .mod_params = &iwl50_mod_params, }; MODULE_FIRMWARE(IWL5000_MODULE_FIRMWARE(IWL5000_UCODE_API_MAX)); MODULE_FIRMWARE(IWL5150_MODULE_FIRMWARE(IWL5150_UCODE_API_MAX)); module_param_named(disable50, iwl50_mod_params.disable, int, 0444); MODULE_PARM_DESC(disable50, "manually disable the 50XX radio (default 0 [radio on])"); module_param_named(swcrypto50, iwl50_mod_params.sw_crypto, bool, 0444); MODULE_PARM_DESC(swcrypto50, "using software crypto engine (default 0 [hardware])\n"); module_param_named(debug50, iwl50_mod_params.debug, uint, 0444); MODULE_PARM_DESC(debug50, "50XX debug output mask"); module_param_named(queues_num50, iwl50_mod_params.num_of_queues, int, 0444); MODULE_PARM_DESC(queues_num50, "number of hw queues in 50xx series"); module_param_named(11n_disable50, iwl50_mod_params.disable_11n, int, 0444); MODULE_PARM_DESC(11n_disable50, "disable 50XX 11n functionality"); module_param_named(amsdu_size_8K50, iwl50_mod_params.amsdu_size_8K, int, 0444); MODULE_PARM_DESC(amsdu_size_8K50, "enable 8K amsdu size in 50XX series"); module_param_named(fw_restart50, iwl50_mod_params.restart_fw, int, 0444); MODULE_PARM_DESC(fw_restart50, "restart firmware in case of error");