/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called LICENSE.GPL. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ #include #include #include "iwl-dev.h" #include "iwl-core.h" #include "iwl-4965-calib.h" /***************************************************************************** * INIT calibrations framework *****************************************************************************/ struct stats_general_data { u32 beacon_silence_rssi_a; u32 beacon_silence_rssi_b; u32 beacon_silence_rssi_c; u32 beacon_energy_a; u32 beacon_energy_b; u32 beacon_energy_c; }; void il4965_calib_free_results(struct il_priv *il) { int i; for (i = 0; i < IL_CALIB_MAX; i++) { kfree(il->calib_results[i].buf); il->calib_results[i].buf = NULL; il->calib_results[i].buf_len = 0; } } /***************************************************************************** * RUNTIME calibrations framework *****************************************************************************/ /* "false alarms" are signals that our DSP tries to lock onto, * but then determines that they are either noise, or transmissions * from a distant wireless network (also "noise", really) that get * "stepped on" by stronger transmissions within our own network. * This algorithm attempts to set a sensitivity level that is high * enough to receive all of our own network traffic, but not so * high that our DSP gets too busy trying to lock onto non-network * activity/noise. */ static int il4965_sens_energy_cck(struct il_priv *il, u32 norm_fa, u32 rx_enable_time, struct stats_general_data *rx_info) { u32 max_nrg_cck = 0; int i = 0; u8 max_silence_rssi = 0; u32 silence_ref = 0; u8 silence_rssi_a = 0; u8 silence_rssi_b = 0; u8 silence_rssi_c = 0; u32 val; /* "false_alarms" values below are cross-multiplications to assess the * numbers of false alarms within the measured period of actual Rx * (Rx is off when we're txing), vs the min/max expected false alarms * (some should be expected if rx is sensitive enough) in a * hypothetical listening period of 200 time units (TU), 204.8 msec: * * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time * * */ u32 false_alarms = norm_fa * 200 * 1024; u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; struct il_sensitivity_data *data = NULL; const struct il_sensitivity_ranges *ranges = il->hw_params.sens; data = &(il->sensitivity_data); data->nrg_auto_corr_silence_diff = 0; /* Find max silence rssi among all 3 receivers. * This is background noise, which may include transmissions from other * networks, measured during silence before our network's beacon */ silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & ALL_BAND_FILTER) >> 8); silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & ALL_BAND_FILTER) >> 8); silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & ALL_BAND_FILTER) >> 8); val = max(silence_rssi_b, silence_rssi_c); max_silence_rssi = max(silence_rssi_a, (u8) val); /* Store silence rssi in 20-beacon history table */ data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; data->nrg_silence_idx++; if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) data->nrg_silence_idx = 0; /* Find max silence rssi across 20 beacon history */ for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { val = data->nrg_silence_rssi[i]; silence_ref = max(silence_ref, val); } D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a, silence_rssi_b, silence_rssi_c, silence_ref); /* Find max rx energy (min value!) among all 3 receivers, * measured during beacon frame. * Save it in 10-beacon history table. */ i = data->nrg_energy_idx; val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); data->nrg_value[i] = min(rx_info->beacon_energy_a, val); data->nrg_energy_idx++; if (data->nrg_energy_idx >= 10) data->nrg_energy_idx = 0; /* Find min rx energy (max value) across 10 beacon history. * This is the minimum signal level that we want to receive well. * Add backoff (margin so we don't miss slightly lower energy frames). * This establishes an upper bound (min value) for energy threshold. */ max_nrg_cck = data->nrg_value[0]; for (i = 1; i < 10; i++) max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); max_nrg_cck += 6; D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", rx_info->beacon_energy_a, rx_info->beacon_energy_b, rx_info->beacon_energy_c, max_nrg_cck - 6); /* Count number of consecutive beacons with fewer-than-desired * false alarms. */ if (false_alarms < min_false_alarms) data->num_in_cck_no_fa++; else data->num_in_cck_no_fa = 0; D_CALIB("consecutive bcns with few false alarms = %u\n", data->num_in_cck_no_fa); /* If we got too many false alarms this time, reduce sensitivity */ if (false_alarms > max_false_alarms && data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK) { D_CALIB("norm FA %u > max FA %u\n", false_alarms, max_false_alarms); D_CALIB("... reducing sensitivity\n"); data->nrg_curr_state = IL_FA_TOO_MANY; /* Store for "fewer than desired" on later beacon */ data->nrg_silence_ref = silence_ref; /* increase energy threshold (reduce nrg value) * to decrease sensitivity */ data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK; /* Else if we got fewer than desired, increase sensitivity */ } else if (false_alarms < min_false_alarms) { data->nrg_curr_state = IL_FA_TOO_FEW; /* Compare silence level with silence level for most recent * healthy number or too many false alarms */ data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - (s32)silence_ref; D_CALIB( "norm FA %u < min FA %u, silence diff %d\n", false_alarms, min_false_alarms, data->nrg_auto_corr_silence_diff); /* Increase value to increase sensitivity, but only if: * 1a) previous beacon did *not* have *too many* false alarms * 1b) AND there's a significant difference in Rx levels * from a previous beacon with too many, or healthy # FAs * OR 2) We've seen a lot of beacons (100) with too few * false alarms */ if (data->nrg_prev_state != IL_FA_TOO_MANY && (data->nrg_auto_corr_silence_diff > NRG_DIFF || data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { D_CALIB("... increasing sensitivity\n"); /* Increase nrg value to increase sensitivity */ val = data->nrg_th_cck + NRG_STEP_CCK; data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); } else { D_CALIB( "... but not changing sensitivity\n"); } /* Else we got a healthy number of false alarms, keep status quo */ } else { D_CALIB(" FA in safe zone\n"); data->nrg_curr_state = IL_FA_GOOD_RANGE; /* Store for use in "fewer than desired" with later beacon */ data->nrg_silence_ref = silence_ref; /* If previous beacon had too many false alarms, * give it some extra margin by reducing sensitivity again * (but don't go below measured energy of desired Rx) */ if (IL_FA_TOO_MANY == data->nrg_prev_state) { D_CALIB("... increasing margin\n"); if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) data->nrg_th_cck -= NRG_MARGIN; else data->nrg_th_cck = max_nrg_cck; } } /* Make sure the energy threshold does not go above the measured * energy of the desired Rx signals (reduced by backoff margin), * or else we might start missing Rx frames. * Lower value is higher energy, so we use max()! */ data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); D_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); data->nrg_prev_state = data->nrg_curr_state; /* Auto-correlation CCK algorithm */ if (false_alarms > min_false_alarms) { /* increase auto_corr values to decrease sensitivity * so the DSP won't be disturbed by the noise */ if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; else { val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; data->auto_corr_cck = min((u32)ranges->auto_corr_max_cck, val); } val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; data->auto_corr_cck_mrc = min((u32)ranges->auto_corr_max_cck_mrc, val); } else if (false_alarms < min_false_alarms && (data->nrg_auto_corr_silence_diff > NRG_DIFF || data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA)) { /* Decrease auto_corr values to increase sensitivity */ val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; data->auto_corr_cck = max((u32)ranges->auto_corr_min_cck, val); val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; data->auto_corr_cck_mrc = max((u32)ranges->auto_corr_min_cck_mrc, val); } return 0; } static int il4965_sens_auto_corr_ofdm(struct il_priv *il, u32 norm_fa, u32 rx_enable_time) { u32 val; u32 false_alarms = norm_fa * 200 * 1024; u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; struct il_sensitivity_data *data = NULL; const struct il_sensitivity_ranges *ranges = il->hw_params.sens; data = &(il->sensitivity_data); /* If we got too many false alarms this time, reduce sensitivity */ if (false_alarms > max_false_alarms) { D_CALIB("norm FA %u > max FA %u)\n", false_alarms, max_false_alarms); val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm = min((u32)ranges->auto_corr_max_ofdm, val); val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_mrc = min((u32)ranges->auto_corr_max_ofdm_mrc, val); val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_x1 = min((u32)ranges->auto_corr_max_ofdm_x1, val); val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_mrc_x1 = min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); } /* Else if we got fewer than desired, increase sensitivity */ else if (false_alarms < min_false_alarms) { D_CALIB("norm FA %u < min FA %u\n", false_alarms, min_false_alarms); val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm = max((u32)ranges->auto_corr_min_ofdm, val); val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_mrc = max((u32)ranges->auto_corr_min_ofdm_mrc, val); val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_x1 = max((u32)ranges->auto_corr_min_ofdm_x1, val); val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; data->auto_corr_ofdm_mrc_x1 = max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); } else { D_CALIB("min FA %u < norm FA %u < max FA %u OK\n", min_false_alarms, false_alarms, max_false_alarms); } return 0; } static void il4965_prepare_legacy_sensitivity_tbl(struct il_priv *il, struct il_sensitivity_data *data, __le16 *tbl) { tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = cpu_to_le16((u16)data->auto_corr_ofdm); tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = cpu_to_le16((u16)data->auto_corr_ofdm_mrc); tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = cpu_to_le16((u16)data->auto_corr_ofdm_x1); tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = cpu_to_le16((u16)data->auto_corr_cck); tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = cpu_to_le16((u16)data->auto_corr_cck_mrc); tbl[HD_MIN_ENERGY_CCK_DET_INDEX] = cpu_to_le16((u16)data->nrg_th_cck); tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] = cpu_to_le16((u16)data->nrg_th_ofdm); tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = cpu_to_le16(data->barker_corr_th_min); tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = cpu_to_le16(data->barker_corr_th_min_mrc); tbl[HD_OFDM_ENERGY_TH_IN_INDEX] = cpu_to_le16(data->nrg_th_cca); D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, data->nrg_th_ofdm); D_CALIB("cck: ac %u mrc %u thresh %u\n", data->auto_corr_cck, data->auto_corr_cck_mrc, data->nrg_th_cck); } /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ static int il4965_sensitivity_write(struct il_priv *il) { struct il_sensitivity_cmd cmd; struct il_sensitivity_data *data = NULL; struct il_host_cmd cmd_out = { .id = SENSITIVITY_CMD, .len = sizeof(struct il_sensitivity_cmd), .flags = CMD_ASYNC, .data = &cmd, }; data = &(il->sensitivity_data); memset(&cmd, 0, sizeof(cmd)); il4965_prepare_legacy_sensitivity_tbl(il, data, &cmd.table[0]); /* Update uCode's "work" table, and copy it to DSP */ cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; /* Don't send command to uCode if nothing has changed */ if (!memcmp(&cmd.table[0], &(il->sensitivity_tbl[0]), sizeof(u16)*HD_TABLE_SIZE)) { D_CALIB("No change in SENSITIVITY_CMD\n"); return 0; } /* Copy table for comparison next time */ memcpy(&(il->sensitivity_tbl[0]), &(cmd.table[0]), sizeof(u16)*HD_TABLE_SIZE); return il_send_cmd(il, &cmd_out); } void il4965_init_sensitivity(struct il_priv *il) { int ret = 0; int i; struct il_sensitivity_data *data = NULL; const struct il_sensitivity_ranges *ranges = il->hw_params.sens; if (il->disable_sens_cal) return; D_CALIB("Start il4965_init_sensitivity\n"); /* Clear driver's sensitivity algo data */ data = &(il->sensitivity_data); if (ranges == NULL) return; memset(data, 0, sizeof(struct il_sensitivity_data)); data->num_in_cck_no_fa = 0; data->nrg_curr_state = IL_FA_TOO_MANY; data->nrg_prev_state = IL_FA_TOO_MANY; data->nrg_silence_ref = 0; data->nrg_silence_idx = 0; data->nrg_energy_idx = 0; for (i = 0; i < 10; i++) data->nrg_value[i] = 0; for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) data->nrg_silence_rssi[i] = 0; data->auto_corr_ofdm = ranges->auto_corr_min_ofdm; data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; data->nrg_th_cck = ranges->nrg_th_cck; data->nrg_th_ofdm = ranges->nrg_th_ofdm; data->barker_corr_th_min = ranges->barker_corr_th_min; data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc; data->nrg_th_cca = ranges->nrg_th_cca; data->last_bad_plcp_cnt_ofdm = 0; data->last_fa_cnt_ofdm = 0; data->last_bad_plcp_cnt_cck = 0; data->last_fa_cnt_cck = 0; ret |= il4965_sensitivity_write(il); D_CALIB("<disable_sens_cal) return; data = &(il->sensitivity_data); if (!il_is_any_associated(il)) { D_CALIB("<< - not associated\n"); return; } spin_lock_irqsave(&il->lock, flags); rx_info = &(((struct il_notif_stats *)resp)->rx.general); ofdm = &(((struct il_notif_stats *)resp)->rx.ofdm); cck = &(((struct il_notif_stats *)resp)->rx.cck); if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { D_CALIB("<< invalid data.\n"); spin_unlock_irqrestore(&il->lock, flags); return; } /* Extract Statistics: */ rx_enable_time = le32_to_cpu(rx_info->channel_load); fa_cck = le32_to_cpu(cck->false_alarm_cnt); fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt); bad_plcp_cck = le32_to_cpu(cck->plcp_err); bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err); statis.beacon_silence_rssi_a = le32_to_cpu(rx_info->beacon_silence_rssi_a); statis.beacon_silence_rssi_b = le32_to_cpu(rx_info->beacon_silence_rssi_b); statis.beacon_silence_rssi_c = le32_to_cpu(rx_info->beacon_silence_rssi_c); statis.beacon_energy_a = le32_to_cpu(rx_info->beacon_energy_a); statis.beacon_energy_b = le32_to_cpu(rx_info->beacon_energy_b); statis.beacon_energy_c = le32_to_cpu(rx_info->beacon_energy_c); spin_unlock_irqrestore(&il->lock, flags); D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); if (!rx_enable_time) { D_CALIB("<< RX Enable Time == 0!\n"); return; } /* These stats increase monotonically, and do not reset * at each beacon. Calculate difference from last value, or just * use the new stats value if it has reset or wrapped around. */ if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) data->last_bad_plcp_cnt_cck = bad_plcp_cck; else { bad_plcp_cck -= data->last_bad_plcp_cnt_cck; data->last_bad_plcp_cnt_cck += bad_plcp_cck; } if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; else { bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; } if (data->last_fa_cnt_ofdm > fa_ofdm) data->last_fa_cnt_ofdm = fa_ofdm; else { fa_ofdm -= data->last_fa_cnt_ofdm; data->last_fa_cnt_ofdm += fa_ofdm; } if (data->last_fa_cnt_cck > fa_cck) data->last_fa_cnt_cck = fa_cck; else { fa_cck -= data->last_fa_cnt_cck; data->last_fa_cnt_cck += fa_cck; } /* Total aborted signal locks */ norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; norm_fa_cck = fa_cck + bad_plcp_cck; D_CALIB( "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); il4965_sens_auto_corr_ofdm(il, norm_fa_ofdm, rx_enable_time); il4965_sens_energy_cck(il, norm_fa_cck, rx_enable_time, &statis); il4965_sensitivity_write(il); } static inline u8 il4965_find_first_chain(u8 mask) { if (mask & ANT_A) return CHAIN_A; if (mask & ANT_B) return CHAIN_B; return CHAIN_C; } /** * Run disconnected antenna algorithm to find out which antennas are * disconnected. */ static void il4965_find_disconn_antenna(struct il_priv *il, u32* average_sig, struct il_chain_noise_data *data) { u32 active_chains = 0; u32 max_average_sig; u16 max_average_sig_antenna_i; u8 num_tx_chains; u8 first_chain; u16 i = 0; average_sig[0] = data->chain_signal_a / il->cfg->base_params->chain_noise_num_beacons; average_sig[1] = data->chain_signal_b / il->cfg->base_params->chain_noise_num_beacons; average_sig[2] = data->chain_signal_c / il->cfg->base_params->chain_noise_num_beacons; if (average_sig[0] >= average_sig[1]) { max_average_sig = average_sig[0]; max_average_sig_antenna_i = 0; active_chains = (1 << max_average_sig_antenna_i); } else { max_average_sig = average_sig[1]; max_average_sig_antenna_i = 1; active_chains = (1 << max_average_sig_antenna_i); } if (average_sig[2] >= max_average_sig) { max_average_sig = average_sig[2]; max_average_sig_antenna_i = 2; active_chains = (1 << max_average_sig_antenna_i); } D_CALIB("average_sig: a %d b %d c %d\n", average_sig[0], average_sig[1], average_sig[2]); D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig, max_average_sig_antenna_i); /* Compare signal strengths for all 3 receivers. */ for (i = 0; i < NUM_RX_CHAINS; i++) { if (i != max_average_sig_antenna_i) { s32 rssi_delta = (max_average_sig - average_sig[i]); /* If signal is very weak, compared with * strongest, mark it as disconnected. */ if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) data->disconn_array[i] = 1; else active_chains |= (1 << i); D_CALIB("i = %d rssiDelta = %d " "disconn_array[i] = %d\n", i, rssi_delta, data->disconn_array[i]); } } /* * The above algorithm sometimes fails when the ucode * reports 0 for all chains. It's not clear why that * happens to start with, but it is then causing trouble * because this can make us enable more chains than the * hardware really has. * * To be safe, simply mask out any chains that we know * are not on the device. */ active_chains &= il->hw_params.valid_rx_ant; num_tx_chains = 0; for (i = 0; i < NUM_RX_CHAINS; i++) { /* loops on all the bits of * il->hw_setting.valid_tx_ant */ u8 ant_msk = (1 << i); if (!(il->hw_params.valid_tx_ant & ant_msk)) continue; num_tx_chains++; if (data->disconn_array[i] == 0) /* there is a Tx antenna connected */ break; if (num_tx_chains == il->hw_params.tx_chains_num && data->disconn_array[i]) { /* * If all chains are disconnected * connect the first valid tx chain */ first_chain = il4965_find_first_chain(il->cfg->valid_tx_ant); data->disconn_array[first_chain] = 0; active_chains |= BIT(first_chain); D_CALIB( "All Tx chains are disconnected W/A - declare %d as connected\n", first_chain); break; } } if (active_chains != il->hw_params.valid_rx_ant && active_chains != il->chain_noise_data.active_chains) D_CALIB( "Detected that not all antennas are connected! " "Connected: %#x, valid: %#x.\n", active_chains, il->hw_params.valid_rx_ant); /* Save for use within RXON, TX, SCAN commands, etc. */ data->active_chains = active_chains; D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains); } static void il4965_gain_computation(struct il_priv *il, u32 *average_noise, u16 min_average_noise_antenna_i, u32 min_average_noise, u8 default_chain) { int i, ret; struct il_chain_noise_data *data = &il->chain_noise_data; data->delta_gain_code[min_average_noise_antenna_i] = 0; for (i = default_chain; i < NUM_RX_CHAINS; i++) { s32 delta_g = 0; if (!data->disconn_array[i] && data->delta_gain_code[i] == CHAIN_NOISE_DELTA_GAIN_INIT_VAL) { delta_g = average_noise[i] - min_average_noise; data->delta_gain_code[i] = (u8)((delta_g * 10) / 15); data->delta_gain_code[i] = min(data->delta_gain_code[i], (u8) CHAIN_NOISE_MAX_DELTA_GAIN_CODE); data->delta_gain_code[i] = (data->delta_gain_code[i] | (1 << 2)); } else { data->delta_gain_code[i] = 0; } } D_CALIB("delta_gain_codes: a %d b %d c %d\n", data->delta_gain_code[0], data->delta_gain_code[1], data->delta_gain_code[2]); /* Differential gain gets sent to uCode only once */ if (!data->radio_write) { struct il_calib_diff_gain_cmd cmd; data->radio_write = 1; memset(&cmd, 0, sizeof(cmd)); cmd.hdr.op_code = IL_PHY_CALIBRATE_DIFF_GAIN_CMD; cmd.diff_gain_a = data->delta_gain_code[0]; cmd.diff_gain_b = data->delta_gain_code[1]; cmd.diff_gain_c = data->delta_gain_code[2]; ret = il_send_cmd_pdu(il, REPLY_PHY_CALIBRATION_CMD, sizeof(cmd), &cmd); if (ret) D_CALIB("fail sending cmd " "REPLY_PHY_CALIBRATION_CMD\n"); /* TODO we might want recalculate * rx_chain in rxon cmd */ /* Mark so we run this algo only once! */ data->state = IL_CHAIN_NOISE_CALIBRATED; } } /* * Accumulate 16 beacons of signal and noise stats for each of * 3 receivers/antennas/rx-chains, then figure out: * 1) Which antennas are connected. * 2) Differential rx gain settings to balance the 3 receivers. */ void il4965_chain_noise_calibration(struct il_priv *il, void *stat_resp) { struct il_chain_noise_data *data = NULL; u32 chain_noise_a; u32 chain_noise_b; u32 chain_noise_c; u32 chain_sig_a; u32 chain_sig_b; u32 chain_sig_c; u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; u16 i = 0; u16 rxon_chnum = INITIALIZATION_VALUE; u16 stat_chnum = INITIALIZATION_VALUE; u8 rxon_band24; u8 stat_band24; unsigned long flags; struct stats_rx_non_phy *rx_info; struct il_rxon_context *ctx = &il->ctx; if (il->disable_chain_noise_cal) return; data = &(il->chain_noise_data); /* * Accumulate just the first "chain_noise_num_beacons" after * the first association, then we're done forever. */ if (data->state != IL_CHAIN_NOISE_ACCUMULATE) { if (data->state == IL_CHAIN_NOISE_ALIVE) D_CALIB("Wait for noise calib reset\n"); return; } spin_lock_irqsave(&il->lock, flags); rx_info = &(((struct il_notif_stats *)stat_resp)-> rx.general); if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { D_CALIB(" << Interference data unavailable\n"); spin_unlock_irqrestore(&il->lock, flags); return; } rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK); rxon_chnum = le16_to_cpu(ctx->staging.channel); stat_band24 = !!(((struct il_notif_stats *) stat_resp)->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); stat_chnum = le32_to_cpu(((struct il_notif_stats *) stat_resp)->flag) >> 16; /* Make sure we accumulate data for just the associated channel * (even if scanning). */ if (rxon_chnum != stat_chnum || rxon_band24 != stat_band24) { D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum, rxon_band24); spin_unlock_irqrestore(&il->lock, flags); return; } /* * Accumulate beacon stats values across * "chain_noise_num_beacons" */ chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & IN_BAND_FILTER; chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & IN_BAND_FILTER; chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & IN_BAND_FILTER; chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; spin_unlock_irqrestore(&il->lock, flags); data->beacon_count++; data->chain_noise_a = (chain_noise_a + data->chain_noise_a); data->chain_noise_b = (chain_noise_b + data->chain_noise_b); data->chain_noise_c = (chain_noise_c + data->chain_noise_c); data->chain_signal_a = (chain_sig_a + data->chain_signal_a); data->chain_signal_b = (chain_sig_b + data->chain_signal_b); data->chain_signal_c = (chain_sig_c + data->chain_signal_c); D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum, rxon_band24, data->beacon_count); D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a, chain_sig_b, chain_sig_c); D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a, chain_noise_b, chain_noise_c); /* If this is the "chain_noise_num_beacons", determine: * 1) Disconnected antennas (using signal strengths) * 2) Differential gain (using silence noise) to balance receivers */ if (data->beacon_count != il->cfg->base_params->chain_noise_num_beacons) return; /* Analyze signal for disconnected antenna */ il4965_find_disconn_antenna(il, average_sig, data); /* Analyze noise for rx balance */ average_noise[0] = data->chain_noise_a / il->cfg->base_params->chain_noise_num_beacons; average_noise[1] = data->chain_noise_b / il->cfg->base_params->chain_noise_num_beacons; average_noise[2] = data->chain_noise_c / il->cfg->base_params->chain_noise_num_beacons; for (i = 0; i < NUM_RX_CHAINS; i++) { if (!data->disconn_array[i] && average_noise[i] <= min_average_noise) { /* This means that chain i is active and has * lower noise values so far: */ min_average_noise = average_noise[i]; min_average_noise_antenna_i = i; } } D_CALIB("average_noise: a %d b %d c %d\n", average_noise[0], average_noise[1], average_noise[2]); D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise, min_average_noise_antenna_i); il4965_gain_computation(il, average_noise, min_average_noise_antenna_i, min_average_noise, il4965_find_first_chain(il->cfg->valid_rx_ant)); /* Some power changes may have been made during the calibration. * Update and commit the RXON */ if (il->cfg->ops->lib->update_chain_flags) il->cfg->ops->lib->update_chain_flags(il); data->state = IL_CHAIN_NOISE_DONE; il_power_update_mode(il, false); } void il4965_reset_run_time_calib(struct il_priv *il) { int i; memset(&(il->sensitivity_data), 0, sizeof(struct il_sensitivity_data)); memset(&(il->chain_noise_data), 0, sizeof(struct il_chain_noise_data)); for (i = 0; i < NUM_RX_CHAINS; i++) il->chain_noise_data.delta_gain_code[i] = CHAIN_NOISE_DELTA_GAIN_INIT_VAL; /* Ask for stats now, the uCode will send notification * periodically after association */ il_send_stats_request(il, CMD_ASYNC, true); }