/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include "ath9k.h" #define ATH_PCI_VERSION "0.1" static char *dev_info = "ath9k"; MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); /* We use the hw_value as an index into our private channel structure */ #define CHAN2G(_freq, _idx) { \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } #define CHAN5G(_freq, _idx) { \ .band = IEEE80211_BAND_5GHZ, \ .center_freq = (_freq), \ .hw_value = (_idx), \ .max_power = 30, \ } /* Some 2 GHz radios are actually tunable on 2312-2732 * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_2ghz_chantable[] = { CHAN2G(2412, 0), /* Channel 1 */ CHAN2G(2417, 1), /* Channel 2 */ CHAN2G(2422, 2), /* Channel 3 */ CHAN2G(2427, 3), /* Channel 4 */ CHAN2G(2432, 4), /* Channel 5 */ CHAN2G(2437, 5), /* Channel 6 */ CHAN2G(2442, 6), /* Channel 7 */ CHAN2G(2447, 7), /* Channel 8 */ CHAN2G(2452, 8), /* Channel 9 */ CHAN2G(2457, 9), /* Channel 10 */ CHAN2G(2462, 10), /* Channel 11 */ CHAN2G(2467, 11), /* Channel 12 */ CHAN2G(2472, 12), /* Channel 13 */ CHAN2G(2484, 13), /* Channel 14 */ }; /* Some 5 GHz radios are actually tunable on XXXX-YYYY * on 5 MHz steps, we support the channels which we know * we have calibration data for all cards though to make * this static */ static struct ieee80211_channel ath9k_5ghz_chantable[] = { /* _We_ call this UNII 1 */ CHAN5G(5180, 14), /* Channel 36 */ CHAN5G(5200, 15), /* Channel 40 */ CHAN5G(5220, 16), /* Channel 44 */ CHAN5G(5240, 17), /* Channel 48 */ /* _We_ call this UNII 2 */ CHAN5G(5260, 18), /* Channel 52 */ CHAN5G(5280, 19), /* Channel 56 */ CHAN5G(5300, 20), /* Channel 60 */ CHAN5G(5320, 21), /* Channel 64 */ /* _We_ call this "Middle band" */ CHAN5G(5500, 22), /* Channel 100 */ CHAN5G(5520, 23), /* Channel 104 */ CHAN5G(5540, 24), /* Channel 108 */ CHAN5G(5560, 25), /* Channel 112 */ CHAN5G(5580, 26), /* Channel 116 */ CHAN5G(5600, 27), /* Channel 120 */ CHAN5G(5620, 28), /* Channel 124 */ CHAN5G(5640, 29), /* Channel 128 */ CHAN5G(5660, 30), /* Channel 132 */ CHAN5G(5680, 31), /* Channel 136 */ CHAN5G(5700, 32), /* Channel 140 */ /* _We_ call this UNII 3 */ CHAN5G(5745, 33), /* Channel 149 */ CHAN5G(5765, 34), /* Channel 153 */ CHAN5G(5785, 35), /* Channel 157 */ CHAN5G(5805, 36), /* Channel 161 */ CHAN5G(5825, 37), /* Channel 165 */ }; static void ath_cache_conf_rate(struct ath_softc *sc, struct ieee80211_conf *conf) { switch (conf->channel->band) { case IEEE80211_BAND_2GHZ: if (conf_is_ht20(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT20]; else if (conf_is_ht40_minus(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS]; else if (conf_is_ht40_plus(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS]; else sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11G]; break; case IEEE80211_BAND_5GHZ: if (conf_is_ht20(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT20]; else if (conf_is_ht40_minus(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS]; else if (conf_is_ht40_plus(conf)) sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS]; else sc->cur_rate_table = sc->hw_rate_table[ATH9K_MODE_11A]; break; default: BUG_ON(1); break; } } static void ath_update_txpow(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; u32 txpow; if (sc->sc_curtxpow != sc->sc_config.txpowlimit) { ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit); /* read back in case value is clamped */ ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow); sc->sc_curtxpow = txpow; } } static u8 parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band) { struct ath_rate_table *rate_table = NULL; struct ieee80211_supported_band *sband; struct ieee80211_rate *rate; int i, maxrates; switch (band) { case IEEE80211_BAND_2GHZ: rate_table = sc->hw_rate_table[ATH9K_MODE_11G]; break; case IEEE80211_BAND_5GHZ: rate_table = sc->hw_rate_table[ATH9K_MODE_11A]; break; default: break; } if (rate_table == NULL) return; sband = &sc->sbands[band]; rate = sc->rates[band]; if (rate_table->rate_cnt > ATH_RATE_MAX) maxrates = ATH_RATE_MAX; else maxrates = rate_table->rate_cnt; for (i = 0; i < maxrates; i++) { rate[i].bitrate = rate_table->info[i].ratekbps / 100; rate[i].hw_value = rate_table->info[i].ratecode; if (rate_table->info[i].short_preamble) { rate[i].hw_value_short = rate_table->info[i].ratecode | rate_table->info[i].short_preamble; rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE; } sband->n_bitrates++; DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n", rate[i].bitrate / 10, rate[i].hw_value); } } /* * Set/change channels. If the channel is really being changed, it's done * by reseting the chip. To accomplish this we must first cleanup any pending * DMA, then restart stuff. */ static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan) { struct ath_hal *ah = sc->sc_ah; bool fastcc = true, stopped; struct ieee80211_hw *hw = sc->hw; struct ieee80211_channel *channel = hw->conf.channel; int r; if (sc->sc_flags & SC_OP_INVALID) return -EIO; ath9k_ps_wakeup(sc); /* * This is only performed if the channel settings have * actually changed. * * To switch channels clear any pending DMA operations; * wait long enough for the RX fifo to drain, reset the * hardware at the new frequency, and then re-enable * the relevant bits of the h/w. */ ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, false); stopped = ath_stoprecv(sc); /* XXX: do not flush receive queue here. We don't want * to flush data frames already in queue because of * changing channel. */ if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET)) fastcc = false; DPRINTF(sc, ATH_DBG_CONFIG, "(%u MHz) -> (%u MHz), chanwidth: %d\n", sc->sc_ah->ah_curchan->channel, channel->center_freq, sc->tx_chan_width); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, hchan, fastcc); if (r) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset channel (%u Mhz) " "reset status %u\n", channel->center_freq, r); spin_unlock_bh(&sc->sc_resetlock); return r; } spin_unlock_bh(&sc->sc_resetlock); sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE; sc->sc_flags &= ~SC_OP_FULL_RESET; if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to restart recv logic\n"); return -EIO; } ath_cache_conf_rate(sc, &hw->conf); ath_update_txpow(sc); ath9k_hw_set_interrupts(ah, sc->sc_imask); ath9k_ps_restore(sc); return 0; } /* * This routine performs the periodic noise floor calibration function * that is used to adjust and optimize the chip performance. This * takes environmental changes (location, temperature) into account. * When the task is complete, it reschedules itself depending on the * appropriate interval that was calculated. */ static void ath_ani_calibrate(unsigned long data) { struct ath_softc *sc; struct ath_hal *ah; bool longcal = false; bool shortcal = false; bool aniflag = false; unsigned int timestamp = jiffies_to_msecs(jiffies); u32 cal_interval; sc = (struct ath_softc *)data; ah = sc->sc_ah; /* * don't calibrate when we're scanning. * we are most likely not on our home channel. */ if (sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC) return; /* Long calibration runs independently of short calibration. */ if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) { longcal = true; DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies); sc->sc_ani.sc_longcal_timer = timestamp; } /* Short calibration applies only while sc_caldone is false */ if (!sc->sc_ani.sc_caldone) { if ((timestamp - sc->sc_ani.sc_shortcal_timer) >= ATH_SHORT_CALINTERVAL) { shortcal = true; DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies); sc->sc_ani.sc_shortcal_timer = timestamp; sc->sc_ani.sc_resetcal_timer = timestamp; } } else { if ((timestamp - sc->sc_ani.sc_resetcal_timer) >= ATH_RESTART_CALINTERVAL) { sc->sc_ani.sc_caldone = ath9k_hw_reset_calvalid(ah); if (sc->sc_ani.sc_caldone) sc->sc_ani.sc_resetcal_timer = timestamp; } } /* Verify whether we must check ANI */ if ((timestamp - sc->sc_ani.sc_checkani_timer) >= ATH_ANI_POLLINTERVAL) { aniflag = true; sc->sc_ani.sc_checkani_timer = timestamp; } /* Skip all processing if there's nothing to do. */ if (longcal || shortcal || aniflag) { /* Call ANI routine if necessary */ if (aniflag) ath9k_hw_ani_monitor(ah, &sc->sc_halstats, ah->ah_curchan); /* Perform calibration if necessary */ if (longcal || shortcal) { bool iscaldone = false; if (ath9k_hw_calibrate(ah, ah->ah_curchan, sc->sc_rx_chainmask, longcal, &iscaldone)) { if (longcal) sc->sc_ani.sc_noise_floor = ath9k_hw_getchan_noise(ah, ah->ah_curchan); DPRINTF(sc, ATH_DBG_ANI, "calibrate chan %u/%x nf: %d\n", ah->ah_curchan->channel, ah->ah_curchan->channelFlags, sc->sc_ani.sc_noise_floor); } else { DPRINTF(sc, ATH_DBG_ANY, "calibrate chan %u/%x failed\n", ah->ah_curchan->channel, ah->ah_curchan->channelFlags); } sc->sc_ani.sc_caldone = iscaldone; } } /* * Set timer interval based on previous results. * The interval must be the shortest necessary to satisfy ANI, * short calibration and long calibration. */ cal_interval = ATH_LONG_CALINTERVAL; if (sc->sc_ah->ah_config.enable_ani) cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL); if (!sc->sc_ani.sc_caldone) cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL); mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval)); } /* * Update tx/rx chainmask. For legacy association, * hard code chainmask to 1x1, for 11n association, use * the chainmask configuration, for bt coexistence, use * the chainmask configuration even in legacy mode. */ static void ath_update_chainmask(struct ath_softc *sc, int is_ht) { sc->sc_flags |= SC_OP_CHAINMASK_UPDATE; if (is_ht || (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) { sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask; sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask; } else { sc->sc_tx_chainmask = 1; sc->sc_rx_chainmask = 1; } DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n", sc->sc_tx_chainmask, sc->sc_rx_chainmask); } static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta) { struct ath_node *an; an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_node_init(sc, an); an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR + sta->ht_cap.ampdu_factor); an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density); } static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta) { struct ath_node *an = (struct ath_node *)sta->drv_priv; if (sc->sc_flags & SC_OP_TXAGGR) ath_tx_node_cleanup(sc, an); } static void ath9k_tasklet(unsigned long data) { struct ath_softc *sc = (struct ath_softc *)data; u32 status = sc->sc_intrstatus; if (status & ATH9K_INT_FATAL) { /* need a chip reset */ ath_reset(sc, false); return; } else { if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) { spin_lock_bh(&sc->rx.rxflushlock); ath_rx_tasklet(sc, 0); spin_unlock_bh(&sc->rx.rxflushlock); } /* XXX: optimize this */ if (status & ATH9K_INT_TX) ath_tx_tasklet(sc); } /* re-enable hardware interrupt */ ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); } irqreturn_t ath_isr(int irq, void *dev) { struct ath_softc *sc = dev; struct ath_hal *ah = sc->sc_ah; enum ath9k_int status; bool sched = false; do { if (sc->sc_flags & SC_OP_INVALID) { /* * The hardware is not ready/present, don't * touch anything. Note this can happen early * on if the IRQ is shared. */ return IRQ_NONE; } if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */ return IRQ_NONE; } /* * Figure out the reason(s) for the interrupt. Note * that the hal returns a pseudo-ISR that may include * bits we haven't explicitly enabled so we mask the * value to insure we only process bits we requested. */ ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */ status &= sc->sc_imask; /* discard unasked-for bits */ /* * If there are no status bits set, then this interrupt was not * for me (should have been caught above). */ if (!status) return IRQ_NONE; sc->sc_intrstatus = status; if (status & ATH9K_INT_FATAL) { /* need a chip reset */ sched = true; } else if (status & ATH9K_INT_RXORN) { /* need a chip reset */ sched = true; } else { if (status & ATH9K_INT_SWBA) { /* schedule a tasklet for beacon handling */ tasklet_schedule(&sc->bcon_tasklet); } if (status & ATH9K_INT_RXEOL) { /* * NB: the hardware should re-read the link when * RXE bit is written, but it doesn't work * at least on older hardware revs. */ sched = true; } if (status & ATH9K_INT_TXURN) /* bump tx trigger level */ ath9k_hw_updatetxtriglevel(ah, true); /* XXX: optimize this */ if (status & ATH9K_INT_RX) sched = true; if (status & ATH9K_INT_TX) sched = true; if (status & ATH9K_INT_BMISS) sched = true; /* carrier sense timeout */ if (status & ATH9K_INT_CST) sched = true; if (status & ATH9K_INT_MIB) { /* * Disable interrupts until we service the MIB * interrupt; otherwise it will continue to * fire. */ ath9k_hw_set_interrupts(ah, 0); /* * Let the hal handle the event. We assume * it will clear whatever condition caused * the interrupt. */ ath9k_hw_procmibevent(ah, &sc->sc_halstats); ath9k_hw_set_interrupts(ah, sc->sc_imask); } if (status & ATH9K_INT_TIM_TIMER) { if (!(ah->ah_caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { /* Clear RxAbort bit so that we can * receive frames */ ath9k_hw_setpower(ah, ATH9K_PM_AWAKE); ath9k_hw_setrxabort(ah, 0); sched = true; sc->sc_flags |= SC_OP_WAIT_FOR_BEACON; } } } } while (0); ath_debug_stat_interrupt(sc, status); if (sched) { /* turn off every interrupt except SWBA */ ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA)); tasklet_schedule(&sc->intr_tq); } return IRQ_HANDLED; } static u32 ath_get_extchanmode(struct ath_softc *sc, struct ieee80211_channel *chan, enum nl80211_channel_type channel_type) { u32 chanmode = 0; switch (chan->band) { case IEEE80211_BAND_2GHZ: switch(channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_G_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_G_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_G_HT40MINUS; break; } break; case IEEE80211_BAND_5GHZ: switch(channel_type) { case NL80211_CHAN_NO_HT: case NL80211_CHAN_HT20: chanmode = CHANNEL_A_HT20; break; case NL80211_CHAN_HT40PLUS: chanmode = CHANNEL_A_HT40PLUS; break; case NL80211_CHAN_HT40MINUS: chanmode = CHANNEL_A_HT40MINUS; break; } break; default: break; } return chanmode; } static int ath_keyset(struct ath_softc *sc, u16 keyix, struct ath9k_keyval *hk, const u8 mac[ETH_ALEN]) { bool status; status = ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, mac, false); return status != false; } static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key, struct ath9k_keyval *hk, const u8 *addr) { const u8 *key_rxmic; const u8 *key_txmic; key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY; key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY; if (addr == NULL) { /* Group key installation */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); return ath_keyset(sc, keyix, hk, addr); } if (!sc->sc_splitmic) { /* * data key goes at first index, * the hal handles the MIC keys at index+64. */ memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic)); return ath_keyset(sc, keyix, hk, addr); } /* * TX key goes at first index, RX key at +32. * The hal handles the MIC keys at index+64. */ memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic)); if (!ath_keyset(sc, keyix, hk, NULL)) { /* Txmic entry failed. No need to proceed further */ DPRINTF(sc, ATH_DBG_KEYCACHE, "Setting TX MIC Key Failed\n"); return 0; } memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic)); /* XXX delete tx key on failure? */ return ath_keyset(sc, keyix + 32, hk, addr); } static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc) { int i; for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) { if (test_bit(i, sc->sc_keymap) || test_bit(i + 64, sc->sc_keymap)) continue; /* At least one part of TKIP key allocated */ if (sc->sc_splitmic && (test_bit(i + 32, sc->sc_keymap) || test_bit(i + 64 + 32, sc->sc_keymap))) continue; /* At least one part of TKIP key allocated */ /* Found a free slot for a TKIP key */ return i; } return -1; } static int ath_reserve_key_cache_slot(struct ath_softc *sc) { int i; /* First, try to find slots that would not be available for TKIP. */ if (sc->sc_splitmic) { for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 4; i++) { if (!test_bit(i, sc->sc_keymap) && (test_bit(i + 32, sc->sc_keymap) || test_bit(i + 64, sc->sc_keymap) || test_bit(i + 64 + 32, sc->sc_keymap))) return i; if (!test_bit(i + 32, sc->sc_keymap) && (test_bit(i, sc->sc_keymap) || test_bit(i + 64, sc->sc_keymap) || test_bit(i + 64 + 32, sc->sc_keymap))) return i + 32; if (!test_bit(i + 64, sc->sc_keymap) && (test_bit(i , sc->sc_keymap) || test_bit(i + 32, sc->sc_keymap) || test_bit(i + 64 + 32, sc->sc_keymap))) return i + 64; if (!test_bit(i + 64 + 32, sc->sc_keymap) && (test_bit(i, sc->sc_keymap) || test_bit(i + 32, sc->sc_keymap) || test_bit(i + 64, sc->sc_keymap))) return i + 64 + 32; } } else { for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax / 2; i++) { if (!test_bit(i, sc->sc_keymap) && test_bit(i + 64, sc->sc_keymap)) return i; if (test_bit(i, sc->sc_keymap) && !test_bit(i + 64, sc->sc_keymap)) return i + 64; } } /* No partially used TKIP slots, pick any available slot */ for (i = IEEE80211_WEP_NKID; i < sc->sc_keymax; i++) { /* Do not allow slots that could be needed for TKIP group keys * to be used. This limitation could be removed if we know that * TKIP will not be used. */ if (i >= 64 && i < 64 + IEEE80211_WEP_NKID) continue; if (sc->sc_splitmic) { if (i >= 32 && i < 32 + IEEE80211_WEP_NKID) continue; if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID) continue; } if (!test_bit(i, sc->sc_keymap)) return i; /* Found a free slot for a key */ } /* No free slot found */ return -1; } static int ath_key_config(struct ath_softc *sc, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath9k_keyval hk; const u8 *mac = NULL; int ret = 0; int idx; memset(&hk, 0, sizeof(hk)); switch (key->alg) { case ALG_WEP: hk.kv_type = ATH9K_CIPHER_WEP; break; case ALG_TKIP: hk.kv_type = ATH9K_CIPHER_TKIP; break; case ALG_CCMP: hk.kv_type = ATH9K_CIPHER_AES_CCM; break; default: return -EOPNOTSUPP; } hk.kv_len = key->keylen; memcpy(hk.kv_val, key->key, key->keylen); if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) { /* For now, use the default keys for broadcast keys. This may * need to change with virtual interfaces. */ idx = key->keyidx; } else if (key->keyidx) { struct ieee80211_vif *vif; if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; vif = sc->sc_vaps[0]; if (vif->type != NL80211_IFTYPE_AP) { /* Only keyidx 0 should be used with unicast key, but * allow this for client mode for now. */ idx = key->keyidx; } else return -EIO; } else { if (WARN_ON(!sta)) return -EOPNOTSUPP; mac = sta->addr; if (key->alg == ALG_TKIP) idx = ath_reserve_key_cache_slot_tkip(sc); else idx = ath_reserve_key_cache_slot(sc); if (idx < 0) return -ENOSPC; /* no free key cache entries */ } if (key->alg == ALG_TKIP) ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac); else ret = ath_keyset(sc, idx, &hk, mac); if (!ret) return -EIO; set_bit(idx, sc->sc_keymap); if (key->alg == ALG_TKIP) { set_bit(idx + 64, sc->sc_keymap); if (sc->sc_splitmic) { set_bit(idx + 32, sc->sc_keymap); set_bit(idx + 64 + 32, sc->sc_keymap); } } return idx; } static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key) { ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx); if (key->hw_key_idx < IEEE80211_WEP_NKID) return; clear_bit(key->hw_key_idx, sc->sc_keymap); if (key->alg != ALG_TKIP) return; clear_bit(key->hw_key_idx + 64, sc->sc_keymap); if (sc->sc_splitmic) { clear_bit(key->hw_key_idx + 32, sc->sc_keymap); clear_bit(key->hw_key_idx + 64 + 32, sc->sc_keymap); } } static void setup_ht_cap(struct ath_softc *sc, struct ieee80211_sta_ht_cap *ht_info) { #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */ #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */ ht_info->ht_supported = true; ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_SM_PS | IEEE80211_HT_CAP_SGI_40 | IEEE80211_HT_CAP_DSSSCCK40; ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536; ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8; /* set up supported mcs set */ memset(&ht_info->mcs, 0, sizeof(ht_info->mcs)); switch(sc->sc_rx_chainmask) { case 1: ht_info->mcs.rx_mask[0] = 0xff; break; case 3: case 5: case 7: default: ht_info->mcs.rx_mask[0] = 0xff; ht_info->mcs.rx_mask[1] = 0xff; break; } ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; } static void ath9k_bss_assoc_info(struct ath_softc *sc, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ath_vap *avp = (void *)vif->drv_priv; if (bss_conf->assoc) { DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n", bss_conf->aid, sc->sc_curbssid); /* New association, store aid */ if (avp->av_opmode == NL80211_IFTYPE_STATION) { sc->sc_curaid = bss_conf->aid; ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid, sc->sc_curaid); } /* Configure the beacon */ ath_beacon_config(sc, 0); sc->sc_flags |= SC_OP_BEACONS; /* Reset rssi stats */ sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER; sc->sc_halstats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER; /* Start ANI */ mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); } else { DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISSOC\n"); sc->sc_curaid = 0; } } /********************************/ /* LED functions */ /********************************/ static void ath_led_blink_work(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, ath_led_blink_work.work); if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED)) return; ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0); queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work, (sc->sc_flags & SC_OP_LED_ON) ? msecs_to_jiffies(sc->led_off_duration) : msecs_to_jiffies(sc->led_on_duration)); sc->led_on_duration = max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25); sc->led_off_duration = max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10); sc->led_on_cnt = sc->led_off_cnt = 0; if (sc->sc_flags & SC_OP_LED_ON) sc->sc_flags &= ~SC_OP_LED_ON; else sc->sc_flags |= SC_OP_LED_ON; } static void ath_led_brightness(struct led_classdev *led_cdev, enum led_brightness brightness) { struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev); struct ath_softc *sc = led->sc; switch (brightness) { case LED_OFF: if (led->led_type == ATH_LED_ASSOC || led->led_type == ATH_LED_RADIO) { ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, (led->led_type == ATH_LED_RADIO)); sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; if (led->led_type == ATH_LED_RADIO) sc->sc_flags &= ~SC_OP_LED_ON; } else { sc->led_off_cnt++; } break; case LED_FULL: if (led->led_type == ATH_LED_ASSOC) { sc->sc_flags |= SC_OP_LED_ASSOCIATED; queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work, 0); } else if (led->led_type == ATH_LED_RADIO) { ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0); sc->sc_flags |= SC_OP_LED_ON; } else { sc->led_on_cnt++; } break; default: break; } } static int ath_register_led(struct ath_softc *sc, struct ath_led *led, char *trigger) { int ret; led->sc = sc; led->led_cdev.name = led->name; led->led_cdev.default_trigger = trigger; led->led_cdev.brightness_set = ath_led_brightness; ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev); if (ret) DPRINTF(sc, ATH_DBG_FATAL, "Failed to register led:%s", led->name); else led->registered = 1; return ret; } static void ath_unregister_led(struct ath_led *led) { if (led->registered) { led_classdev_unregister(&led->led_cdev); led->registered = 0; } } static void ath_deinit_leds(struct ath_softc *sc) { cancel_delayed_work_sync(&sc->ath_led_blink_work); ath_unregister_led(&sc->assoc_led); sc->sc_flags &= ~SC_OP_LED_ASSOCIATED; ath_unregister_led(&sc->tx_led); ath_unregister_led(&sc->rx_led); ath_unregister_led(&sc->radio_led); ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); } static void ath_init_leds(struct ath_softc *sc) { char *trigger; int ret; /* Configure gpio 1 for output */ ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); /* LED off, active low */ ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1); INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work); trigger = ieee80211_get_radio_led_name(sc->hw); snprintf(sc->radio_led.name, sizeof(sc->radio_led.name), "ath9k-%s::radio", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->radio_led, trigger); sc->radio_led.led_type = ATH_LED_RADIO; if (ret) goto fail; trigger = ieee80211_get_assoc_led_name(sc->hw); snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name), "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->assoc_led, trigger); sc->assoc_led.led_type = ATH_LED_ASSOC; if (ret) goto fail; trigger = ieee80211_get_tx_led_name(sc->hw); snprintf(sc->tx_led.name, sizeof(sc->tx_led.name), "ath9k-%s::tx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->tx_led, trigger); sc->tx_led.led_type = ATH_LED_TX; if (ret) goto fail; trigger = ieee80211_get_rx_led_name(sc->hw); snprintf(sc->rx_led.name, sizeof(sc->rx_led.name), "ath9k-%s::rx", wiphy_name(sc->hw->wiphy)); ret = ath_register_led(sc, &sc->rx_led, trigger); sc->rx_led.led_type = ATH_LED_RX; if (ret) goto fail; return; fail: ath_deinit_leds(sc); } #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) /*******************/ /* Rfkill */ /*******************/ static void ath_radio_enable(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ieee80211_channel *channel = sc->hw->conf.channel; int r; ath9k_ps_wakeup(sc); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, ah->ah_curchan, false); if (r) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset channel %u (%uMhz) ", "reset status %u\n", channel->center_freq, r); } spin_unlock_bh(&sc->sc_resetlock); ath_update_txpow(sc); if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to restart recv logic\n"); return; } if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */ /* Re-Enable interrupts */ ath9k_hw_set_interrupts(ah, sc->sc_imask); /* Enable LED */ ath9k_hw_cfg_output(ah, ATH_LED_PIN, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0); ieee80211_wake_queues(sc->hw); ath9k_ps_restore(sc); } static void ath_radio_disable(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; struct ieee80211_channel *channel = sc->hw->conf.channel; int r; ath9k_ps_wakeup(sc); ieee80211_stop_queues(sc->hw); /* Disable LED */ ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1); ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN); /* Disable interrupts */ ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, false); /* clear pending tx frames */ ath_stoprecv(sc); /* turn off frame recv */ ath_flushrecv(sc); /* flush recv queue */ spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, ah->ah_curchan, false); if (r) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset channel %u (%uMhz) " "reset status %u\n", channel->center_freq, r); } spin_unlock_bh(&sc->sc_resetlock); ath9k_hw_phy_disable(ah); ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); ath9k_ps_restore(sc); } static bool ath_is_rfkill_set(struct ath_softc *sc) { struct ath_hal *ah = sc->sc_ah; return ath9k_hw_gpio_get(ah, ah->ah_rfkill_gpio) == ah->ah_rfkill_polarity; } /* h/w rfkill poll function */ static void ath_rfkill_poll(struct work_struct *work) { struct ath_softc *sc = container_of(work, struct ath_softc, rf_kill.rfkill_poll.work); bool radio_on; if (sc->sc_flags & SC_OP_INVALID) return; radio_on = !ath_is_rfkill_set(sc); /* * enable/disable radio only when there is a * state change in RF switch */ if (radio_on == !!(sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED)) { enum rfkill_state state; if (sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED) { state = radio_on ? RFKILL_STATE_SOFT_BLOCKED : RFKILL_STATE_HARD_BLOCKED; } else if (radio_on) { ath_radio_enable(sc); state = RFKILL_STATE_UNBLOCKED; } else { ath_radio_disable(sc); state = RFKILL_STATE_HARD_BLOCKED; } if (state == RFKILL_STATE_HARD_BLOCKED) sc->sc_flags |= SC_OP_RFKILL_HW_BLOCKED; else sc->sc_flags &= ~SC_OP_RFKILL_HW_BLOCKED; rfkill_force_state(sc->rf_kill.rfkill, state); } queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, msecs_to_jiffies(ATH_RFKILL_POLL_INTERVAL)); } /* s/w rfkill handler */ static int ath_sw_toggle_radio(void *data, enum rfkill_state state) { struct ath_softc *sc = data; switch (state) { case RFKILL_STATE_SOFT_BLOCKED: if (!(sc->sc_flags & (SC_OP_RFKILL_HW_BLOCKED | SC_OP_RFKILL_SW_BLOCKED))) ath_radio_disable(sc); sc->sc_flags |= SC_OP_RFKILL_SW_BLOCKED; return 0; case RFKILL_STATE_UNBLOCKED: if ((sc->sc_flags & SC_OP_RFKILL_SW_BLOCKED)) { sc->sc_flags &= ~SC_OP_RFKILL_SW_BLOCKED; if (sc->sc_flags & SC_OP_RFKILL_HW_BLOCKED) { DPRINTF(sc, ATH_DBG_FATAL, "Can't turn on the" "radio as it is disabled by h/w\n"); return -EPERM; } ath_radio_enable(sc); } return 0; default: return -EINVAL; } } /* Init s/w rfkill */ static int ath_init_sw_rfkill(struct ath_softc *sc) { sc->rf_kill.rfkill = rfkill_allocate(wiphy_dev(sc->hw->wiphy), RFKILL_TYPE_WLAN); if (!sc->rf_kill.rfkill) { DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n"); return -ENOMEM; } snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name), "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy)); sc->rf_kill.rfkill->name = sc->rf_kill.rfkill_name; sc->rf_kill.rfkill->data = sc; sc->rf_kill.rfkill->toggle_radio = ath_sw_toggle_radio; sc->rf_kill.rfkill->state = RFKILL_STATE_UNBLOCKED; sc->rf_kill.rfkill->user_claim_unsupported = 1; return 0; } /* Deinitialize rfkill */ static void ath_deinit_rfkill(struct ath_softc *sc) { if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) { rfkill_unregister(sc->rf_kill.rfkill); sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED; sc->rf_kill.rfkill = NULL; } } static int ath_start_rfkill_poll(struct ath_softc *sc) { if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) queue_delayed_work(sc->hw->workqueue, &sc->rf_kill.rfkill_poll, 0); if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) { if (rfkill_register(sc->rf_kill.rfkill)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to register rfkill\n"); rfkill_free(sc->rf_kill.rfkill); /* Deinitialize the device */ ath_cleanup(sc); return -EIO; } else { sc->sc_flags |= SC_OP_RFKILL_REGISTERED; } } return 0; } #endif /* CONFIG_RFKILL */ void ath_cleanup(struct ath_softc *sc) { ath_detach(sc); free_irq(sc->irq, sc); ath_bus_cleanup(sc); ieee80211_free_hw(sc->hw); } void ath_detach(struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; int i = 0; ath9k_ps_wakeup(sc); DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n"); #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) ath_deinit_rfkill(sc); #endif ath_deinit_leds(sc); ieee80211_unregister_hw(hw); ath_rx_cleanup(sc); ath_tx_cleanup(sc); tasklet_kill(&sc->intr_tq); tasklet_kill(&sc->bcon_tasklet); if (!(sc->sc_flags & SC_OP_INVALID)) ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); ath9k_hw_detach(sc->sc_ah); ath9k_exit_debug(sc); ath9k_ps_restore(sc); } static int ath_init(u16 devid, struct ath_softc *sc) { struct ath_hal *ah = NULL; int status; int error = 0, i; int csz = 0; /* XXX: hardware will not be ready until ath_open() being called */ sc->sc_flags |= SC_OP_INVALID; if (ath9k_init_debug(sc) < 0) printk(KERN_ERR "Unable to create debugfs files\n"); spin_lock_init(&sc->sc_resetlock); mutex_init(&sc->mutex); tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc); tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet, (unsigned long)sc); /* * Cache line size is used to size and align various * structures used to communicate with the hardware. */ ath_read_cachesize(sc, &csz); /* XXX assert csz is non-zero */ sc->sc_cachelsz = csz << 2; /* convert to bytes */ ah = ath9k_hw_attach(devid, sc, sc->mem, &status); if (ah == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to attach hardware; HAL status %d\n", status); error = -ENXIO; goto bad; } sc->sc_ah = ah; /* Get the hardware key cache size. */ sc->sc_keymax = ah->ah_caps.keycache_size; if (sc->sc_keymax > ATH_KEYMAX) { DPRINTF(sc, ATH_DBG_KEYCACHE, "Warning, using only %u entries in %u key cache\n", ATH_KEYMAX, sc->sc_keymax); sc->sc_keymax = ATH_KEYMAX; } /* * Reset the key cache since some parts do not * reset the contents on initial power up. */ for (i = 0; i < sc->sc_keymax; i++) ath9k_hw_keyreset(ah, (u16) i); if (ath9k_regd_init(sc->sc_ah)) goto bad; /* default to MONITOR mode */ sc->sc_ah->ah_opmode = NL80211_IFTYPE_MONITOR; /* Setup rate tables */ ath_rate_attach(sc); ath_setup_rates(sc, IEEE80211_BAND_2GHZ); ath_setup_rates(sc, IEEE80211_BAND_5GHZ); /* * Allocate hardware transmit queues: one queue for * beacon frames and one data queue for each QoS * priority. Note that the hal handles reseting * these queues at the needed time. */ sc->beacon.beaconq = ath_beaconq_setup(ah); if (sc->beacon.beaconq == -1) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup a beacon xmit queue\n"); error = -EIO; goto bad2; } sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0); if (sc->beacon.cabq == NULL) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup CAB xmit queue\n"); error = -EIO; goto bad2; } sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME; ath_cabq_update(sc); for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++) sc->tx.hwq_map[i] = -1; /* Setup data queues */ /* NB: ensure BK queue is the lowest priority h/w queue */ if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup xmit queue for BK traffic\n"); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup xmit queue for BE traffic\n"); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup xmit queue for VI traffic\n"); error = -EIO; goto bad2; } if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to setup xmit queue for VO traffic\n"); error = -EIO; goto bad2; } /* Initializes the noise floor to a reasonable default value. * Later on this will be updated during ANI processing. */ sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR; setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc); if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL)) { /* * Whether we should enable h/w TKIP MIC. * XXX: if we don't support WME TKIP MIC, then we wouldn't * report WMM capable, so it's always safe to turn on * TKIP MIC in this case. */ ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC, 0, 1, NULL); } /* * Check whether the separate key cache entries * are required to handle both tx+rx MIC keys. * With split mic keys the number of stations is limited * to 27 otherwise 59. */ if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_TKIP, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER, ATH9K_CIPHER_MIC, NULL) && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT, 0, NULL)) sc->sc_splitmic = 1; /* turn on mcast key search if possible */ if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL)) (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1, 1, NULL); sc->sc_config.txpowlimit = ATH_TXPOWER_MAX; /* 11n Capabilities */ if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) { sc->sc_flags |= SC_OP_TXAGGR; sc->sc_flags |= SC_OP_RXAGGR; } sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask; sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask; ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL); sc->rx.defant = ath9k_hw_getdefantenna(ah); ath9k_hw_getmac(ah, sc->sc_myaddr); if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) { ath9k_hw_getbssidmask(ah, sc->sc_bssidmask); ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask); ath9k_hw_setbssidmask(ah, sc->sc_bssidmask); } sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */ /* initialize beacon slots */ for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) sc->beacon.bslot[i] = ATH_IF_ID_ANY; /* save MISC configurations */ sc->sc_config.swBeaconProcess = 1; /* setup channels and rates */ sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable; sc->sbands[IEEE80211_BAND_2GHZ].bitrates = sc->rates[IEEE80211_BAND_2GHZ]; sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ; sc->sbands[IEEE80211_BAND_2GHZ].n_channels = ARRAY_SIZE(ath9k_2ghz_chantable); if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) { sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable; sc->sbands[IEEE80211_BAND_5GHZ].bitrates = sc->rates[IEEE80211_BAND_5GHZ]; sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ; sc->sbands[IEEE80211_BAND_5GHZ].n_channels = ARRAY_SIZE(ath9k_5ghz_chantable); } if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_BT_COEX) ath9k_hw_btcoex_enable(sc->sc_ah); return 0; bad2: /* cleanup tx queues */ for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) if (ATH_TXQ_SETUP(sc, i)) ath_tx_cleanupq(sc, &sc->tx.txq[i]); bad: if (ah) ath9k_hw_detach(ah); return error; } int ath_attach(u16 devid, struct ath_softc *sc) { struct ieee80211_hw *hw = sc->hw; int error = 0; DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n"); error = ath_init(devid, sc); if (error != 0) return error; /* get mac address from hardware and set in mac80211 */ SET_IEEE80211_PERM_ADDR(hw, sc->sc_myaddr); hw->flags = IEEE80211_HW_RX_INCLUDES_FCS | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_AMPDU_AGGREGATION | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_PS_NULLFUNC_STACK; if (AR_SREV_9160_10_OR_LATER(sc->sc_ah)) hw->flags |= IEEE80211_HW_MFP_CAPABLE; hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_ADHOC); hw->wiphy->reg_notifier = ath9k_reg_notifier; hw->wiphy->strict_regulatory = true; hw->queues = 4; hw->max_rates = 4; hw->max_rate_tries = ATH_11N_TXMAXTRY; hw->sta_data_size = sizeof(struct ath_node); hw->vif_data_size = sizeof(struct ath_vap); hw->rate_control_algorithm = "ath9k_rate_control"; if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) { setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap); if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap); } hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &sc->sbands[IEEE80211_BAND_2GHZ]; if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) hw->wiphy->bands[IEEE80211_BAND_5GHZ] = &sc->sbands[IEEE80211_BAND_5GHZ]; /* initialize tx/rx engine */ error = ath_tx_init(sc, ATH_TXBUF); if (error != 0) goto detach; error = ath_rx_init(sc, ATH_RXBUF); if (error != 0) goto detach; #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) /* Initialze h/w Rfkill */ if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) INIT_DELAYED_WORK(&sc->rf_kill.rfkill_poll, ath_rfkill_poll); /* Initialize s/w rfkill */ if (ath_init_sw_rfkill(sc)) goto detach; #endif if (ath9k_is_world_regd(sc->sc_ah)) { /* Anything applied here (prior to wiphy registratoin) gets * saved on the wiphy orig_* parameters */ const struct ieee80211_regdomain *regd = ath9k_world_regdomain(sc->sc_ah); hw->wiphy->custom_regulatory = true; hw->wiphy->strict_regulatory = false; wiphy_apply_custom_regulatory(sc->hw->wiphy, regd); ath9k_reg_apply_radar_flags(hw->wiphy); ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT); } else { /* This gets applied in the case of the absense of CRDA, * its our own custom world regulatory domain, similar to * cfg80211's but we enable passive scanning */ const struct ieee80211_regdomain *regd = ath9k_default_world_regdomain(); wiphy_apply_custom_regulatory(sc->hw->wiphy, regd); ath9k_reg_apply_radar_flags(hw->wiphy); ath9k_reg_apply_world_flags(hw->wiphy, REGDOM_SET_BY_INIT); } error = ieee80211_register_hw(hw); if (!ath9k_is_world_regd(sc->sc_ah)) regulatory_hint(hw->wiphy, sc->sc_ah->alpha2); /* Initialize LED control */ ath_init_leds(sc); return 0; detach: ath_detach(sc); return error; } int ath_reset(struct ath_softc *sc, bool retry_tx) { struct ath_hal *ah = sc->sc_ah; struct ieee80211_hw *hw = sc->hw; int r; ath9k_hw_set_interrupts(ah, 0); ath_drain_all_txq(sc, retry_tx); ath_stoprecv(sc); ath_flushrecv(sc); spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(ah, sc->sc_ah->ah_curchan, false); if (r) DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset hardware; reset status %u\n", r); spin_unlock_bh(&sc->sc_resetlock); if (ath_startrecv(sc) != 0) DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n"); /* * We may be doing a reset in response to a request * that changes the channel so update any state that * might change as a result. */ ath_cache_conf_rate(sc, &hw->conf); ath_update_txpow(sc); if (sc->sc_flags & SC_OP_BEACONS) ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */ ath9k_hw_set_interrupts(ah, sc->sc_imask); if (retry_tx) { int i; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { if (ATH_TXQ_SETUP(sc, i)) { spin_lock_bh(&sc->tx.txq[i].axq_lock); ath_txq_schedule(sc, &sc->tx.txq[i]); spin_unlock_bh(&sc->tx.txq[i].axq_lock); } } } return r; } /* * This function will allocate both the DMA descriptor structure, and the * buffers it contains. These are used to contain the descriptors used * by the system. */ int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head, const char *name, int nbuf, int ndesc) { #define DS2PHYS(_dd, _ds) \ ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc)) #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0) #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096) struct ath_desc *ds; struct ath_buf *bf; int i, bsize, error; DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n", name, nbuf, ndesc); /* ath_desc must be a multiple of DWORDs */ if ((sizeof(struct ath_desc) % 4) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n"); ASSERT((sizeof(struct ath_desc) % 4) == 0); error = -ENOMEM; goto fail; } dd->dd_name = name; dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc; /* * Need additional DMA memory because we can't use * descriptors that cross the 4K page boundary. Assume * one skipped descriptor per 4K page. */ if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { u32 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len); u32 dma_len; while (ndesc_skipped) { dma_len = ndesc_skipped * sizeof(struct ath_desc); dd->dd_desc_len += dma_len; ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len); }; } /* allocate descriptors */ dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, &dd->dd_desc_paddr, GFP_ATOMIC); if (dd->dd_desc == NULL) { error = -ENOMEM; goto fail; } ds = dd->dd_desc; DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n", dd->dd_name, ds, (u32) dd->dd_desc_len, ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len); /* allocate buffers */ bsize = sizeof(struct ath_buf) * nbuf; bf = kmalloc(bsize, GFP_KERNEL); if (bf == NULL) { error = -ENOMEM; goto fail2; } memset(bf, 0, bsize); dd->dd_bufptr = bf; INIT_LIST_HEAD(head); for (i = 0; i < nbuf; i++, bf++, ds += ndesc) { bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) { /* * Skip descriptor addresses which can cause 4KB * boundary crossing (addr + length) with a 32 dword * descriptor fetch. */ while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) { ASSERT((caddr_t) bf->bf_desc < ((caddr_t) dd->dd_desc + dd->dd_desc_len)); ds += ndesc; bf->bf_desc = ds; bf->bf_daddr = DS2PHYS(dd, ds); } } list_add_tail(&bf->list, head); } return 0; fail2: dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); fail: memset(dd, 0, sizeof(*dd)); return error; #undef ATH_DESC_4KB_BOUND_CHECK #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED #undef DS2PHYS } void ath_descdma_cleanup(struct ath_softc *sc, struct ath_descdma *dd, struct list_head *head) { dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr); INIT_LIST_HEAD(head); kfree(dd->dd_bufptr); memset(dd, 0, sizeof(*dd)); } int ath_get_hal_qnum(u16 queue, struct ath_softc *sc) { int qnum; switch (queue) { case 0: qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO]; break; case 1: qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI]; break; case 2: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; break; case 3: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK]; break; default: qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE]; break; } return qnum; } int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc) { int qnum; switch (queue) { case ATH9K_WME_AC_VO: qnum = 0; break; case ATH9K_WME_AC_VI: qnum = 1; break; case ATH9K_WME_AC_BE: qnum = 2; break; case ATH9K_WME_AC_BK: qnum = 3; break; default: qnum = -1; break; } return qnum; } /* XXX: Remove me once we don't depend on ath9k_channel for all * this redundant data */ static void ath9k_update_ichannel(struct ath_softc *sc, struct ath9k_channel *ichan) { struct ieee80211_hw *hw = sc->hw; struct ieee80211_channel *chan = hw->conf.channel; struct ieee80211_conf *conf = &hw->conf; ichan->channel = chan->center_freq; ichan->chan = chan; if (chan->band == IEEE80211_BAND_2GHZ) { ichan->chanmode = CHANNEL_G; ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM; } else { ichan->chanmode = CHANNEL_A; ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM; } sc->tx_chan_width = ATH9K_HT_MACMODE_20; if (conf_is_ht(conf)) { if (conf_is_ht40(conf)) sc->tx_chan_width = ATH9K_HT_MACMODE_2040; ichan->chanmode = ath_get_extchanmode(sc, chan, conf->channel_type); } } /**********************/ /* mac80211 callbacks */ /**********************/ static int ath9k_start(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; struct ieee80211_channel *curchan = hw->conf.channel; struct ath9k_channel *init_channel; int r, pos; DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with " "initial channel: %d MHz\n", curchan->center_freq); mutex_lock(&sc->mutex); /* setup initial channel */ pos = curchan->hw_value; init_channel = &sc->sc_ah->ah_channels[pos]; ath9k_update_ichannel(sc, init_channel); /* Reset SERDES registers */ ath9k_hw_configpcipowersave(sc->sc_ah, 0); /* * The basic interface to setting the hardware in a good * state is ``reset''. On return the hardware is known to * be powered up and with interrupts disabled. This must * be followed by initialization of the appropriate bits * and then setup of the interrupt mask. */ spin_lock_bh(&sc->sc_resetlock); r = ath9k_hw_reset(sc->sc_ah, init_channel, false); if (r) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to reset hardware; reset status %u " "(freq %u MHz)\n", r, curchan->center_freq); spin_unlock_bh(&sc->sc_resetlock); goto mutex_unlock; } spin_unlock_bh(&sc->sc_resetlock); /* * This is needed only to setup initial state * but it's best done after a reset. */ ath_update_txpow(sc); /* * Setup the hardware after reset: * The receive engine is set going. * Frame transmit is handled entirely * in the frame output path; there's nothing to do * here except setup the interrupt mask. */ if (ath_startrecv(sc) != 0) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n"); r = -EIO; goto mutex_unlock; } /* Setup our intr mask. */ sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL; if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT) sc->sc_imask |= ATH9K_INT_GTT; if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) sc->sc_imask |= ATH9K_INT_CST; ath_cache_conf_rate(sc, &hw->conf); sc->sc_flags &= ~SC_OP_INVALID; /* Disable BMISS interrupt when we're not associated */ sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS); ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); ieee80211_wake_queues(sc->hw); #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) r = ath_start_rfkill_poll(sc); #endif mutex_unlock: mutex_unlock(&sc->mutex); return r; } static int ath9k_tx(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ath_softc *sc = hw->priv; struct ath_tx_control txctl; int hdrlen, padsize; memset(&txctl, 0, sizeof(struct ath_tx_control)); /* * As a temporary workaround, assign seq# here; this will likely need * to be cleaned up to work better with Beacon transmission and virtual * BSSes. */ if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) sc->tx.seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); } /* Add the padding after the header if this is not already done */ hdrlen = ieee80211_get_hdrlen_from_skb(skb); if (hdrlen & 3) { padsize = hdrlen % 4; if (skb_headroom(skb) < padsize) return -1; skb_push(skb, padsize); memmove(skb->data, skb->data + padsize, hdrlen); } /* Check if a tx queue is available */ txctl.txq = ath_test_get_txq(sc, skb); if (!txctl.txq) goto exit; DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb); if (ath_tx_start(sc, skb, &txctl) != 0) { DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n"); goto exit; } return 0; exit: dev_kfree_skb_any(skb); return 0; } static void ath9k_stop(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; if (sc->sc_flags & SC_OP_INVALID) { DPRINTF(sc, ATH_DBG_ANY, "Device not present\n"); return; } mutex_lock(&sc->mutex); ieee80211_stop_queues(sc->hw); /* make sure h/w will not generate any interrupt * before setting the invalid flag. */ ath9k_hw_set_interrupts(sc->sc_ah, 0); if (!(sc->sc_flags & SC_OP_INVALID)) { ath_drain_all_txq(sc, false); ath_stoprecv(sc); ath9k_hw_phy_disable(sc->sc_ah); } else sc->rx.rxlink = NULL; #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT) cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll); #endif /* disable HAL and put h/w to sleep */ ath9k_hw_disable(sc->sc_ah); ath9k_hw_configpcipowersave(sc->sc_ah, 1); sc->sc_flags |= SC_OP_INVALID; mutex_unlock(&sc->mutex); DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n"); } static int ath9k_add_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_vap *avp = (void *)conf->vif->drv_priv; enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED; /* Support only vap for now */ if (sc->sc_nvaps) return -ENOBUFS; mutex_lock(&sc->mutex); switch (conf->type) { case NL80211_IFTYPE_STATION: ic_opmode = NL80211_IFTYPE_STATION; break; case NL80211_IFTYPE_ADHOC: ic_opmode = NL80211_IFTYPE_ADHOC; break; case NL80211_IFTYPE_AP: ic_opmode = NL80211_IFTYPE_AP; break; default: DPRINTF(sc, ATH_DBG_FATAL, "Interface type %d not yet supported\n", conf->type); return -EOPNOTSUPP; } DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VAP of type: %d\n", ic_opmode); /* Set the VAP opmode */ avp->av_opmode = ic_opmode; avp->av_bslot = -1; if (ic_opmode == NL80211_IFTYPE_AP) ath9k_hw_set_tsfadjust(sc->sc_ah, 1); sc->sc_vaps[0] = conf->vif; sc->sc_nvaps++; /* Set the device opmode */ sc->sc_ah->ah_opmode = ic_opmode; /* * Enable MIB interrupts when there are hardware phy counters. * Note we only do this (at the moment) for station mode. */ if (ath9k_hw_phycounters(sc->sc_ah) && ((conf->type == NL80211_IFTYPE_STATION) || (conf->type == NL80211_IFTYPE_ADHOC))) sc->sc_imask |= ATH9K_INT_MIB; /* * Some hardware processes the TIM IE and fires an * interrupt when the TIM bit is set. For hardware * that does, if not overridden by configuration, * enable the TIM interrupt when operating as station. */ if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) && (conf->type == NL80211_IFTYPE_STATION) && !sc->sc_config.swBeaconProcess) sc->sc_imask |= ATH9K_INT_TIM; ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); if (conf->type == NL80211_IFTYPE_AP) { /* TODO: is this a suitable place to start ANI for AP mode? */ /* Start ANI */ mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL)); } mutex_unlock(&sc->mutex); return 0; } static void ath9k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_if_init_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_vap *avp = (void *)conf->vif->drv_priv; DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n"); mutex_lock(&sc->mutex); /* Stop ANI */ del_timer_sync(&sc->sc_ani.timer); /* Reclaim beacon resources */ if (sc->sc_ah->ah_opmode == NL80211_IFTYPE_AP || sc->sc_ah->ah_opmode == NL80211_IFTYPE_ADHOC) { ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); ath_beacon_return(sc, avp); } sc->sc_flags &= ~SC_OP_BEACONS; sc->sc_vaps[0] = NULL; sc->sc_nvaps--; mutex_unlock(&sc->mutex); } static int ath9k_config(struct ieee80211_hw *hw, u32 changed) { struct ath_softc *sc = hw->priv; struct ieee80211_conf *conf = &hw->conf; mutex_lock(&sc->mutex); if (changed & IEEE80211_CONF_CHANGE_PS) { if (conf->flags & IEEE80211_CONF_PS) { if ((sc->sc_imask & ATH9K_INT_TIM_TIMER) == 0) { sc->sc_imask |= ATH9K_INT_TIM_TIMER; ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); } ath9k_hw_setrxabort(sc->sc_ah, 1); ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP); } else { ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE); ath9k_hw_setrxabort(sc->sc_ah, 0); sc->sc_flags &= ~SC_OP_WAIT_FOR_BEACON; if (sc->sc_imask & ATH9K_INT_TIM_TIMER) { sc->sc_imask &= ~ATH9K_INT_TIM_TIMER; ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask); } } } if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { struct ieee80211_channel *curchan = hw->conf.channel; int pos = curchan->hw_value; DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n", curchan->center_freq); /* XXX: remove me eventualy */ ath9k_update_ichannel(sc, &sc->sc_ah->ah_channels[pos]); ath_update_chainmask(sc, conf_is_ht(conf)); if (ath_set_channel(sc, &sc->sc_ah->ah_channels[pos]) < 0) { DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n"); mutex_unlock(&sc->mutex); return -EINVAL; } } if (changed & IEEE80211_CONF_CHANGE_POWER) sc->sc_config.txpowlimit = 2 * conf->power_level; mutex_unlock(&sc->mutex); return 0; } static int ath9k_config_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_if_conf *conf) { struct ath_softc *sc = hw->priv; struct ath_hal *ah = sc->sc_ah; struct ath_vap *avp = (void *)vif->drv_priv; u32 rfilt = 0; int error, i; /* TODO: Need to decide which hw opmode to use for multi-interface * cases */ if (vif->type == NL80211_IFTYPE_AP && ah->ah_opmode != NL80211_IFTYPE_AP) { ah->ah_opmode = NL80211_IFTYPE_STATION; ath9k_hw_setopmode(ah); ath9k_hw_write_associd(ah, sc->sc_myaddr, 0); /* Request full reset to get hw opmode changed properly */ sc->sc_flags |= SC_OP_FULL_RESET; } if ((conf->changed & IEEE80211_IFCC_BSSID) && !is_zero_ether_addr(conf->bssid)) { switch (vif->type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_ADHOC: /* Set BSSID */ memcpy(sc->sc_curbssid, conf->bssid, ETH_ALEN); sc->sc_curaid = 0; ath9k_hw_write_associd(sc->sc_ah, sc->sc_curbssid, sc->sc_curaid); /* Set aggregation protection mode parameters */ sc->sc_config.ath_aggr_prot = 0; DPRINTF(sc, ATH_DBG_CONFIG, "RX filter 0x%x bssid %pM aid 0x%x\n", rfilt, sc->sc_curbssid, sc->sc_curaid); /* need to reconfigure the beacon */ sc->sc_flags &= ~SC_OP_BEACONS ; break; default: break; } } if ((vif->type == NL80211_IFTYPE_ADHOC) || (vif->type == NL80211_IFTYPE_AP)) { if ((conf->changed & IEEE80211_IFCC_BEACON) || (conf->changed & IEEE80211_IFCC_BEACON_ENABLED && conf->enable_beacon)) { /* * Allocate and setup the beacon frame. * * Stop any previous beacon DMA. This may be * necessary, for example, when an ibss merge * causes reconfiguration; we may be called * with beacon transmission active. */ ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq); error = ath_beacon_alloc(sc, 0); if (error != 0) return error; ath_beacon_sync(sc, 0); } } /* Check for WLAN_CAPABILITY_PRIVACY ? */ if ((avp->av_opmode != NL80211_IFTYPE_STATION)) { for (i = 0; i < IEEE80211_WEP_NKID; i++) if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i)) ath9k_hw_keysetmac(sc->sc_ah, (u16)i, sc->sc_curbssid); } /* Only legacy IBSS for now */ if (vif->type == NL80211_IFTYPE_ADHOC) ath_update_chainmask(sc, 0); return 0; } #define SUPPORTED_FILTERS \ (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_FCSFAIL) /* FIXME: sc->sc_full_reset ? */ static void ath9k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, int mc_count, struct dev_mc_list *mclist) { struct ath_softc *sc = hw->priv; u32 rfilt; changed_flags &= SUPPORTED_FILTERS; *total_flags &= SUPPORTED_FILTERS; sc->rx.rxfilter = *total_flags; rfilt = ath_calcrxfilter(sc); ath9k_hw_setrxfilter(sc->sc_ah, rfilt); if (changed_flags & FIF_BCN_PRBRESP_PROMISC) { if (*total_flags & FIF_BCN_PRBRESP_PROMISC) ath9k_hw_write_associd(sc->sc_ah, ath_bcast_mac, 0); } DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter); } static void ath9k_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum sta_notify_cmd cmd, struct ieee80211_sta *sta) { struct ath_softc *sc = hw->priv; switch (cmd) { case STA_NOTIFY_ADD: ath_node_attach(sc, sta); break; case STA_NOTIFY_REMOVE: ath_node_detach(sc, sta); break; default: break; } } static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue, const struct ieee80211_tx_queue_params *params) { struct ath_softc *sc = hw->priv; struct ath9k_tx_queue_info qi; int ret = 0, qnum; if (queue >= WME_NUM_AC) return 0; mutex_lock(&sc->mutex); qi.tqi_aifs = params->aifs; qi.tqi_cwmin = params->cw_min; qi.tqi_cwmax = params->cw_max; qi.tqi_burstTime = params->txop; qnum = ath_get_hal_qnum(queue, sc); DPRINTF(sc, ATH_DBG_CONFIG, "Configure tx [queue/halq] [%d/%d], " "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n", queue, qnum, params->aifs, params->cw_min, params->cw_max, params->txop); ret = ath_txq_update(sc, qnum, &qi); if (ret) DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n"); mutex_unlock(&sc->mutex); return ret; } static int ath9k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath_softc *sc = hw->priv; int ret = 0; mutex_lock(&sc->mutex); ath9k_ps_wakeup(sc); DPRINTF(sc, ATH_DBG_KEYCACHE, "Set HW Key\n"); switch (cmd) { case SET_KEY: ret = ath_key_config(sc, sta, key); if (ret >= 0) { key->hw_key_idx = ret; /* push IV and Michael MIC generation to stack */ key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; if (key->alg == ALG_TKIP) key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP) key->flags |= IEEE80211_KEY_FLAG_SW_MGMT; ret = 0; } break; case DISABLE_KEY: ath_key_delete(sc, key); break; default: ret = -EINVAL; } ath9k_ps_restore(sc); mutex_unlock(&sc->mutex); return ret; } static void ath9k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf, u32 changed) { struct ath_softc *sc = hw->priv; mutex_lock(&sc->mutex); if (changed & BSS_CHANGED_ERP_PREAMBLE) { DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n", bss_conf->use_short_preamble); if (bss_conf->use_short_preamble) sc->sc_flags |= SC_OP_PREAMBLE_SHORT; else sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT; } if (changed & BSS_CHANGED_ERP_CTS_PROT) { DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n", bss_conf->use_cts_prot); if (bss_conf->use_cts_prot && hw->conf.channel->band != IEEE80211_BAND_5GHZ) sc->sc_flags |= SC_OP_PROTECT_ENABLE; else sc->sc_flags &= ~SC_OP_PROTECT_ENABLE; } if (changed & BSS_CHANGED_ASSOC) { DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n", bss_conf->assoc); ath9k_bss_assoc_info(sc, vif, bss_conf); } mutex_unlock(&sc->mutex); } static u64 ath9k_get_tsf(struct ieee80211_hw *hw) { u64 tsf; struct ath_softc *sc = hw->priv; mutex_lock(&sc->mutex); tsf = ath9k_hw_gettsf64(sc->sc_ah); mutex_unlock(&sc->mutex); return tsf; } static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf) { struct ath_softc *sc = hw->priv; mutex_lock(&sc->mutex); ath9k_hw_settsf64(sc->sc_ah, tsf); mutex_unlock(&sc->mutex); } static void ath9k_reset_tsf(struct ieee80211_hw *hw) { struct ath_softc *sc = hw->priv; mutex_lock(&sc->mutex); ath9k_hw_reset_tsf(sc->sc_ah); mutex_unlock(&sc->mutex); } static int ath9k_ampdu_action(struct ieee80211_hw *hw, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn) { struct ath_softc *sc = hw->priv; int ret = 0; switch (action) { case IEEE80211_AMPDU_RX_START: if (!(sc->sc_flags & SC_OP_RXAGGR)) ret = -ENOTSUPP; break; case IEEE80211_AMPDU_RX_STOP: break; case IEEE80211_AMPDU_TX_START: ret = ath_tx_aggr_start(sc, sta, tid, ssn); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "Unable to start TX aggregation\n"); else ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid); break; case IEEE80211_AMPDU_TX_STOP: ret = ath_tx_aggr_stop(sc, sta, tid); if (ret < 0) DPRINTF(sc, ATH_DBG_FATAL, "Unable to stop TX aggregation\n"); ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid); break; case IEEE80211_AMPDU_TX_RESUME: ath_tx_aggr_resume(sc, sta, tid); break; default: DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n"); } return ret; } struct ieee80211_ops ath9k_ops = { .tx = ath9k_tx, .start = ath9k_start, .stop = ath9k_stop, .add_interface = ath9k_add_interface, .remove_interface = ath9k_remove_interface, .config = ath9k_config, .config_interface = ath9k_config_interface, .configure_filter = ath9k_configure_filter, .sta_notify = ath9k_sta_notify, .conf_tx = ath9k_conf_tx, .bss_info_changed = ath9k_bss_info_changed, .set_key = ath9k_set_key, .get_tsf = ath9k_get_tsf, .set_tsf = ath9k_set_tsf, .reset_tsf = ath9k_reset_tsf, .ampdu_action = ath9k_ampdu_action, }; static struct { u32 version; const char * name; } ath_mac_bb_names[] = { { AR_SREV_VERSION_5416_PCI, "5416" }, { AR_SREV_VERSION_5416_PCIE, "5418" }, { AR_SREV_VERSION_9100, "9100" }, { AR_SREV_VERSION_9160, "9160" }, { AR_SREV_VERSION_9280, "9280" }, { AR_SREV_VERSION_9285, "9285" } }; static struct { u16 version; const char * name; } ath_rf_names[] = { { 0, "5133" }, { AR_RAD5133_SREV_MAJOR, "5133" }, { AR_RAD5122_SREV_MAJOR, "5122" }, { AR_RAD2133_SREV_MAJOR, "2133" }, { AR_RAD2122_SREV_MAJOR, "2122" } }; /* * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. */ const char * ath_mac_bb_name(u32 mac_bb_version) { int i; for (i=0; i