/* * Copyright (c) 2008 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ath9k.h" #define FUDGE 2 /* * This function will modify certain transmit queue properties depending on * the operating mode of the station (AP or AdHoc). Parameters are AIFS * settings and channel width min/max */ static int ath_beaconq_config(struct ath_softc *sc) { struct ath_hw *ah = sc->sc_ah; struct ath9k_tx_queue_info qi; ath9k_hw_get_txq_props(ah, sc->beacon.beaconq, &qi); if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) { /* Always burst out beacon and CAB traffic. */ qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; } else { /* Adhoc mode; important thing is to use 2x cwmin. */ qi.tqi_aifs = sc->beacon.beacon_qi.tqi_aifs; qi.tqi_cwmin = 2*sc->beacon.beacon_qi.tqi_cwmin; qi.tqi_cwmax = sc->beacon.beacon_qi.tqi_cwmax; } if (!ath9k_hw_set_txq_props(ah, sc->beacon.beaconq, &qi)) { DPRINTF(sc, ATH_DBG_FATAL, "unable to update h/w beacon queue parameters\n"); return 0; } else { ath9k_hw_resettxqueue(ah, sc->beacon.beaconq); return 1; } } /* * Associates the beacon frame buffer with a transmit descriptor. Will set * up all required antenna switch parameters, rate codes, and channel flags. * Beacons are always sent out at the lowest rate, and are not retried. */ static void ath_beacon_setup(struct ath_softc *sc, struct ath_vif *avp, struct ath_buf *bf) { struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; struct ath_hw *ah = sc->sc_ah; struct ath_desc *ds; struct ath9k_11n_rate_series series[4]; struct ath_rate_table *rt; int flags, antenna, ctsrate = 0, ctsduration = 0; u8 rate; ds = bf->bf_desc; flags = ATH9K_TXDESC_NOACK; if (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC && (ah->caps.hw_caps & ATH9K_HW_CAP_VEOL)) { ds->ds_link = bf->bf_daddr; /* self-linked */ flags |= ATH9K_TXDESC_VEOL; /* Let hardware handle antenna switching. */ antenna = 0; } else { ds->ds_link = 0; /* * Switch antenna every beacon. * Should only switch every beacon period, not for every SWBA * XXX assumes two antennae */ antenna = ((sc->beacon.ast_be_xmit / sc->nbcnvifs) & 1 ? 2 : 1); } ds->ds_data = bf->bf_buf_addr; rt = sc->cur_rate_table; rate = rt->info[0].ratecode; if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) rate |= rt->info[0].short_preamble; ath9k_hw_set11n_txdesc(ah, ds, skb->len + FCS_LEN, ATH9K_PKT_TYPE_BEACON, MAX_RATE_POWER, ATH9K_TXKEYIX_INVALID, ATH9K_KEY_TYPE_CLEAR, flags); /* NB: beacon's BufLen must be a multiple of 4 bytes */ ath9k_hw_filltxdesc(ah, ds, roundup(skb->len, 4), true, true, ds); memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); series[0].Tries = 1; series[0].Rate = rate; series[0].ChSel = sc->tx_chainmask; series[0].RateFlags = (ctsrate) ? ATH9K_RATESERIES_RTS_CTS : 0; ath9k_hw_set11n_ratescenario(ah, ds, ds, 0, ctsrate, ctsduration, series, 4, 0); } static struct ath_buf *ath_beacon_generate(struct ath_softc *sc, int if_id) { struct ath_buf *bf; struct ath_vif *avp; struct sk_buff *skb; struct ath_txq *cabq; struct ieee80211_vif *vif; struct ieee80211_tx_info *info; int cabq_depth; vif = sc->vifs[if_id]; avp = (void *)vif->drv_priv; cabq = sc->beacon.cabq; if (avp->av_bcbuf == NULL) { DPRINTF(sc, ATH_DBG_BEACON, "avp=%p av_bcbuf=%p\n", avp, avp->av_bcbuf); return NULL; } /* Release the old beacon first */ bf = avp->av_bcbuf; skb = (struct sk_buff *)bf->bf_mpdu; if (skb) { dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); } /* Get a new beacon from mac80211 */ skb = ieee80211_beacon_get(sc->hw, vif); bf->bf_mpdu = skb; if (skb == NULL) return NULL; info = IEEE80211_SKB_CB(skb); if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { /* * TODO: make sure the seq# gets assigned properly (vs. other * TX frames) */ struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; sc->tx.seq_no += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); } bf->bf_buf_addr = bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; DPRINTF(sc, ATH_DBG_FATAL, "dma_mapping_error on beaconing\n"); return NULL; } skb = ieee80211_get_buffered_bc(sc->hw, vif); /* * if the CABQ traffic from previous DTIM is pending and the current * beacon is also a DTIM. * 1) if there is only one vif let the cab traffic continue. * 2) if there are more than one vif and we are using staggered * beacons, then drain the cabq by dropping all the frames in * the cabq so that the current vifs cab traffic can be scheduled. */ spin_lock_bh(&cabq->axq_lock); cabq_depth = cabq->axq_depth; spin_unlock_bh(&cabq->axq_lock); if (skb && cabq_depth) { if (sc->nvifs > 1) { DPRINTF(sc, ATH_DBG_BEACON, "Flushing previous cabq traffic\n"); ath_draintxq(sc, cabq, false); } } ath_beacon_setup(sc, avp, bf); while (skb) { ath_tx_cabq(sc, skb); skb = ieee80211_get_buffered_bc(sc->hw, vif); } return bf; } /* * Startup beacon transmission for adhoc mode when they are sent entirely * by the hardware using the self-linked descriptor + veol trick. */ static void ath_beacon_start_adhoc(struct ath_softc *sc, int if_id) { struct ieee80211_vif *vif; struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf; struct ath_vif *avp; struct sk_buff *skb; vif = sc->vifs[if_id]; avp = (void *)vif->drv_priv; if (avp->av_bcbuf == NULL) return; bf = avp->av_bcbuf; skb = (struct sk_buff *) bf->bf_mpdu; ath_beacon_setup(sc, avp, bf); /* NB: caller is known to have already stopped tx dma */ ath9k_hw_puttxbuf(ah, sc->beacon.beaconq, bf->bf_daddr); ath9k_hw_txstart(ah, sc->beacon.beaconq); DPRINTF(sc, ATH_DBG_BEACON, "TXDP%u = %llx (%p)\n", sc->beacon.beaconq, ito64(bf->bf_daddr), bf->bf_desc); } int ath_beaconq_setup(struct ath_hw *ah) { struct ath9k_tx_queue_info qi; memset(&qi, 0, sizeof(qi)); qi.tqi_aifs = 1; qi.tqi_cwmin = 0; qi.tqi_cwmax = 0; /* NB: don't enable any interrupts */ return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi); } int ath_beacon_alloc(struct ath_softc *sc, int if_id) { struct ieee80211_vif *vif; struct ath_vif *avp; struct ieee80211_hdr *hdr; struct ath_buf *bf; struct sk_buff *skb; __le64 tstamp; vif = sc->vifs[if_id]; avp = (void *)vif->drv_priv; /* Allocate a beacon descriptor if we haven't done so. */ if (!avp->av_bcbuf) { /* Allocate beacon state for hostap/ibss. We know * a buffer is available. */ avp->av_bcbuf = list_first_entry(&sc->beacon.bbuf, struct ath_buf, list); list_del(&avp->av_bcbuf->list); if (sc->sc_ah->opmode == NL80211_IFTYPE_AP || !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_VEOL)) { int slot; /* * Assign the vif to a beacon xmit slot. As * above, this cannot fail to find one. */ avp->av_bslot = 0; for (slot = 0; slot < ATH_BCBUF; slot++) if (sc->beacon.bslot[slot] == ATH_IF_ID_ANY) { /* * XXX hack, space out slots to better * deal with misses */ if (slot+1 < ATH_BCBUF && sc->beacon.bslot[slot+1] == ATH_IF_ID_ANY) { avp->av_bslot = slot+1; break; } avp->av_bslot = slot; /* NB: keep looking for a double slot */ } BUG_ON(sc->beacon.bslot[avp->av_bslot] != ATH_IF_ID_ANY); sc->beacon.bslot[avp->av_bslot] = if_id; sc->nbcnvifs++; } } /* release the previous beacon frame, if it already exists. */ bf = avp->av_bcbuf; if (bf->bf_mpdu != NULL) { skb = (struct sk_buff *)bf->bf_mpdu; dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; } /* NB: the beacon data buffer must be 32-bit aligned. */ skb = ieee80211_beacon_get(sc->hw, vif); if (skb == NULL) { DPRINTF(sc, ATH_DBG_BEACON, "cannot get skb\n"); return -ENOMEM; } tstamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp; sc->beacon.bc_tstamp = le64_to_cpu(tstamp); /* * Calculate a TSF adjustment factor required for * staggered beacons. Note that we assume the format * of the beacon frame leaves the tstamp field immediately * following the header. */ if (avp->av_bslot > 0) { u64 tsfadjust; __le64 val; int intval; intval = sc->hw->conf.beacon_int ? sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL; /* * The beacon interval is in TU's; the TSF in usecs. * We figure out how many TU's to add to align the * timestamp then convert to TSF units and handle * byte swapping before writing it in the frame. * The hardware will then add this each time a beacon * frame is sent. Note that we align vif's 1..N * and leave vif 0 untouched. This means vap 0 * has a timestamp in one beacon interval while the * others get a timestamp aligned to the next interval. */ tsfadjust = (intval * (ATH_BCBUF - avp->av_bslot)) / ATH_BCBUF; val = cpu_to_le64(tsfadjust << 10); /* TU->TSF */ DPRINTF(sc, ATH_DBG_BEACON, "stagger beacons, bslot %d intval %u tsfadjust %llu\n", avp->av_bslot, intval, (unsigned long long)tsfadjust); hdr = (struct ieee80211_hdr *)skb->data; memcpy(&hdr[1], &val, sizeof(val)); } bf->bf_mpdu = skb; bf->bf_buf_addr = bf->bf_dmacontext = dma_map_single(sc->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; DPRINTF(sc, ATH_DBG_FATAL, "dma_mapping_error on beacon alloc\n"); return -ENOMEM; } return 0; } void ath_beacon_return(struct ath_softc *sc, struct ath_vif *avp) { if (avp->av_bcbuf != NULL) { struct ath_buf *bf; if (avp->av_bslot != -1) { sc->beacon.bslot[avp->av_bslot] = ATH_IF_ID_ANY; sc->nbcnvifs--; } bf = avp->av_bcbuf; if (bf->bf_mpdu != NULL) { struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu; dma_unmap_single(sc->dev, bf->bf_dmacontext, skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(skb); bf->bf_mpdu = NULL; } list_add_tail(&bf->list, &sc->beacon.bbuf); avp->av_bcbuf = NULL; } } void ath_beacon_tasklet(unsigned long data) { struct ath_softc *sc = (struct ath_softc *)data; struct ath_hw *ah = sc->sc_ah; struct ath_buf *bf = NULL; int slot, if_id; u32 bfaddr, bc = 0, tsftu; u64 tsf; u16 intval; /* * Check if the previous beacon has gone out. If * not don't try to post another, skip this period * and wait for the next. Missed beacons indicate * a problem and should not occur. If we miss too * many consecutive beacons reset the device. */ if (ath9k_hw_numtxpending(ah, sc->beacon.beaconq) != 0) { sc->beacon.bmisscnt++; if (sc->beacon.bmisscnt < BSTUCK_THRESH) { DPRINTF(sc, ATH_DBG_BEACON, "missed %u consecutive beacons\n", sc->beacon.bmisscnt); } else if (sc->beacon.bmisscnt >= BSTUCK_THRESH) { DPRINTF(sc, ATH_DBG_BEACON, "beacon is officially stuck\n"); ath_reset(sc, false); } return; } if (sc->beacon.bmisscnt != 0) { DPRINTF(sc, ATH_DBG_BEACON, "resume beacon xmit after %u misses\n", sc->beacon.bmisscnt); sc->beacon.bmisscnt = 0; } /* * Generate beacon frames. we are sending frames * staggered so calculate the slot for this frame based * on the tsf to safeguard against missing an swba. */ intval = sc->hw->conf.beacon_int ? sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL; tsf = ath9k_hw_gettsf64(ah); tsftu = TSF_TO_TU(tsf>>32, tsf); slot = ((tsftu % intval) * ATH_BCBUF) / intval; if_id = sc->beacon.bslot[(slot + 1) % ATH_BCBUF]; DPRINTF(sc, ATH_DBG_BEACON, "slot %d [tsf %llu tsftu %u intval %u] if_id %d\n", slot, tsf, tsftu, intval, if_id); bfaddr = 0; if (if_id != ATH_IF_ID_ANY) { bf = ath_beacon_generate(sc, if_id); if (bf != NULL) { bfaddr = bf->bf_daddr; bc = 1; } } /* * Handle slot time change when a non-ERP station joins/leaves * an 11g network. The 802.11 layer notifies us via callback, * we mark updateslot, then wait one beacon before effecting * the change. This gives associated stations at least one * beacon interval to note the state change. * * NB: The slot time change state machine is clocked according * to whether we are bursting or staggering beacons. We * recognize the request to update and record the current * slot then don't transition until that slot is reached * again. If we miss a beacon for that slot then we'll be * slow to transition but we'll be sure at least one beacon * interval has passed. When bursting slot is always left * set to ATH_BCBUF so this check is a noop. */ if (sc->beacon.updateslot == UPDATE) { sc->beacon.updateslot = COMMIT; /* commit next beacon */ sc->beacon.slotupdate = slot; } else if (sc->beacon.updateslot == COMMIT && sc->beacon.slotupdate == slot) { ath9k_hw_setslottime(sc->sc_ah, sc->beacon.slottime); sc->beacon.updateslot = OK; } if (bfaddr != 0) { /* * Stop any current dma and put the new frame(s) on the queue. * This should never fail since we check above that no frames * are still pending on the queue. */ if (!ath9k_hw_stoptxdma(ah, sc->beacon.beaconq)) { DPRINTF(sc, ATH_DBG_FATAL, "beacon queue %u did not stop?\n", sc->beacon.beaconq); } /* NB: cabq traffic should already be queued and primed */ ath9k_hw_puttxbuf(ah, sc->beacon.beaconq, bfaddr); ath9k_hw_txstart(ah, sc->beacon.beaconq); sc->beacon.ast_be_xmit += bc; /* XXX per-vif? */ } } /* * For multi-bss ap support beacons are either staggered evenly over N slots or * burst together. For the former arrange for the SWBA to be delivered for each * slot. Slots that are not occupied will generate nothing. */ static void ath_beacon_config_ap(struct ath_softc *sc, struct ath_beacon_config *conf, struct ath_vif *avp) { u32 nexttbtt, intval; /* Configure the timers only when the TSF has to be reset */ if (!(sc->sc_flags & SC_OP_TSF_RESET)) return; /* NB: the beacon interval is kept internally in TU's */ intval = conf->beacon_interval & ATH9K_BEACON_PERIOD; intval /= ATH_BCBUF; /* for staggered beacons */ nexttbtt = intval; intval |= ATH9K_BEACON_RESET_TSF; /* * In AP mode we enable the beacon timers and SWBA interrupts to * prepare beacon frames. */ intval |= ATH9K_BEACON_ENA; sc->imask |= ATH9K_INT_SWBA; ath_beaconq_config(sc); /* Set the computed AP beacon timers */ ath9k_hw_set_interrupts(sc->sc_ah, 0); ath9k_hw_beaconinit(sc->sc_ah, nexttbtt, intval); sc->beacon.bmisscnt = 0; ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); /* Clear the reset TSF flag, so that subsequent beacon updation will not reset the HW TSF. */ sc->sc_flags &= ~SC_OP_TSF_RESET; } /* * This sets up the beacon timers according to the timestamp of the last * received beacon and the current TSF, configures PCF and DTIM * handling, programs the sleep registers so the hardware will wakeup in * time to receive beacons, and configures the beacon miss handling so * we'll receive a BMISS interrupt when we stop seeing beacons from the AP * we've associated with. */ static void ath_beacon_config_sta(struct ath_softc *sc, struct ath_beacon_config *conf, struct ath_vif *avp) { struct ath9k_beacon_state bs; int dtimperiod, dtimcount, sleepduration; int cfpperiod, cfpcount; u32 nexttbtt = 0, intval, tsftu; u64 tsf; memset(&bs, 0, sizeof(bs)); intval = conf->beacon_interval & ATH9K_BEACON_PERIOD; /* * Setup dtim and cfp parameters according to * last beacon we received (which may be none). */ dtimperiod = conf->dtim_period; if (dtimperiod <= 0) /* NB: 0 if not known */ dtimperiod = 1; dtimcount = conf->dtim_count; if (dtimcount >= dtimperiod) /* NB: sanity check */ dtimcount = 0; cfpperiod = 1; /* NB: no PCF support yet */ cfpcount = 0; sleepduration = conf->listen_interval * intval; if (sleepduration <= 0) sleepduration = intval; /* * Pull nexttbtt forward to reflect the current * TSF and calculate dtim+cfp state for the result. */ tsf = ath9k_hw_gettsf64(sc->sc_ah); tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE; do { nexttbtt += intval; if (--dtimcount < 0) { dtimcount = dtimperiod - 1; if (--cfpcount < 0) cfpcount = cfpperiod - 1; } } while (nexttbtt < tsftu); bs.bs_intval = intval; bs.bs_nexttbtt = nexttbtt; bs.bs_dtimperiod = dtimperiod*intval; bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval; bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod; bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod; bs.bs_cfpmaxduration = 0; /* * Calculate the number of consecutive beacons to miss* before taking * a BMISS interrupt. The configuration is specified in TU so we only * need calculate based on the beacon interval. Note that we clamp the * result to at most 15 beacons. */ if (sleepduration > intval) { bs.bs_bmissthreshold = conf->listen_interval * ATH_DEFAULT_BMISS_LIMIT / 2; } else { bs.bs_bmissthreshold = DIV_ROUND_UP(conf->bmiss_timeout, intval); if (bs.bs_bmissthreshold > 15) bs.bs_bmissthreshold = 15; else if (bs.bs_bmissthreshold <= 0) bs.bs_bmissthreshold = 1; } /* * Calculate sleep duration. The configuration is given in ms. * We ensure a multiple of the beacon period is used. Also, if the sleep * duration is greater than the DTIM period then it makes senses * to make it a multiple of that. * * XXX fixed at 100ms */ bs.bs_sleepduration = roundup(IEEE80211_MS_TO_TU(100), sleepduration); if (bs.bs_sleepduration > bs.bs_dtimperiod) bs.bs_sleepduration = bs.bs_dtimperiod; /* TSF out of range threshold fixed at 1 second */ bs.bs_tsfoor_threshold = ATH9K_TSFOOR_THRESHOLD; DPRINTF(sc, ATH_DBG_BEACON, "tsf: %llu tsftu: %u\n", tsf, tsftu); DPRINTF(sc, ATH_DBG_BEACON, "bmiss: %u sleep: %u cfp-period: %u maxdur: %u next: %u\n", bs.bs_bmissthreshold, bs.bs_sleepduration, bs.bs_cfpperiod, bs.bs_cfpmaxduration, bs.bs_cfpnext); /* Set the computed STA beacon timers */ ath9k_hw_set_interrupts(sc->sc_ah, 0); ath9k_hw_set_sta_beacon_timers(sc->sc_ah, &bs); sc->imask |= ATH9K_INT_BMISS; ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); } static void ath_beacon_config_adhoc(struct ath_softc *sc, struct ath_beacon_config *conf, struct ath_vif *avp) { u64 tsf; u32 tsftu, intval, nexttbtt; intval = conf->beacon_interval & ATH9K_BEACON_PERIOD; /* Pull nexttbtt forward to reflect the current TSF */ nexttbtt = TSF_TO_TU(sc->beacon.bc_tstamp >> 32, sc->beacon.bc_tstamp); if (nexttbtt == 0) nexttbtt = intval; else if (intval) nexttbtt = roundup(nexttbtt, intval); tsf = ath9k_hw_gettsf64(sc->sc_ah); tsftu = TSF_TO_TU((u32)(tsf>>32), (u32)tsf) + FUDGE; do { nexttbtt += intval; } while (nexttbtt < tsftu); DPRINTF(sc, ATH_DBG_BEACON, "IBSS nexttbtt %u intval %u (%u)\n", nexttbtt, intval, conf->beacon_interval); /* * In IBSS mode enable the beacon timers but only enable SWBA interrupts * if we need to manually prepare beacon frames. Otherwise we use a * self-linked tx descriptor and let the hardware deal with things. */ intval |= ATH9K_BEACON_ENA; if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_VEOL)) sc->imask |= ATH9K_INT_SWBA; ath_beaconq_config(sc); /* Set the computed ADHOC beacon timers */ ath9k_hw_set_interrupts(sc->sc_ah, 0); ath9k_hw_beaconinit(sc->sc_ah, nexttbtt, intval); sc->beacon.bmisscnt = 0; ath9k_hw_set_interrupts(sc->sc_ah, sc->imask); if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_VEOL) ath_beacon_start_adhoc(sc, 0); } void ath_beacon_config(struct ath_softc *sc, int if_id) { struct ath_beacon_config conf; struct ath_vif *avp; struct ieee80211_vif *vif; /* Setup the beacon configuration parameters */ memset(&conf, 0, sizeof(struct ath_beacon_config)); conf.beacon_interval = sc->hw->conf.beacon_int ? sc->hw->conf.beacon_int : ATH_DEFAULT_BINTVAL; conf.listen_interval = 1; conf.dtim_period = conf.beacon_interval; conf.dtim_count = 1; conf.bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf.beacon_interval; if (if_id != ATH_IF_ID_ANY) { vif = sc->vifs[if_id]; avp = (struct ath_vif *)vif->drv_priv; switch(avp->av_opmode) { case NL80211_IFTYPE_AP: ath_beacon_config_ap(sc, &conf, avp); break; case NL80211_IFTYPE_ADHOC: ath_beacon_config_adhoc(sc, &conf, avp); break; case NL80211_IFTYPE_STATION: ath_beacon_config_sta(sc, &conf, avp); break; default: DPRINTF(sc, ATH_DBG_CONFIG, "Unsupported beaconing mode\n"); return; } sc->sc_flags |= SC_OP_BEACONS; } }