/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "hif.h" #include "pci.h" #include "ce.h" #include "debug.h" /* * Support for Copy Engine hardware, which is mainly used for * communication between Host and Target over a PCIe interconnect. */ /* * A single CopyEngine (CE) comprises two "rings": * a source ring * a destination ring * * Each ring consists of a number of descriptors which specify * an address, length, and meta-data. * * Typically, one side of the PCIe interconnect (Host or Target) * controls one ring and the other side controls the other ring. * The source side chooses when to initiate a transfer and it * chooses what to send (buffer address, length). The destination * side keeps a supply of "anonymous receive buffers" available and * it handles incoming data as it arrives (when the destination * recieves an interrupt). * * The sender may send a simple buffer (address/length) or it may * send a small list of buffers. When a small list is sent, hardware * "gathers" these and they end up in a single destination buffer * with a single interrupt. * * There are several "contexts" managed by this layer -- more, it * may seem -- than should be needed. These are provided mainly for * maximum flexibility and especially to facilitate a simpler HIF * implementation. There are per-CopyEngine recv, send, and watermark * contexts. These are supplied by the caller when a recv, send, * or watermark handler is established and they are echoed back to * the caller when the respective callbacks are invoked. There is * also a per-transfer context supplied by the caller when a buffer * (or sendlist) is sent and when a buffer is enqueued for recv. * These per-transfer contexts are echoed back to the caller when * the buffer is sent/received. */ static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n); } static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS); } static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); void __iomem *indicator_addr; if (!test_bit(ATH10K_PCI_FEATURE_HW_1_0_WORKAROUND, ar_pci->features)) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n); return; } /* workaround for QCA988x_1.0 HW CE */ indicator_addr = ar_pci->mem + ce_ctrl_addr + DST_WATERMARK_ADDRESS; if (ce_ctrl_addr == ath10k_ce_base_address(CDC_WAR_DATA_CE)) { iowrite32((CDC_WAR_MAGIC_STR | n), indicator_addr); } else { unsigned long irq_flags; local_irq_save(irq_flags); iowrite32(1, indicator_addr); /* * PCIE write waits for ACK in IPQ8K, there is no * need to read back value. */ (void)ioread32(indicator_addr); (void)ioread32(indicator_addr); /* conservative */ ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n); iowrite32(0, indicator_addr); local_irq_restore(irq_flags); } } static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS); } static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS); } static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int addr) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr); } static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n); } static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32((ar), (ce_ctrl_addr) + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) | CE_CTRL1_DMAX_LENGTH_SET(n)); } static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) | CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n)); } static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS, (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) | CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n)); } static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar, u32 ce_ctrl_addr) { return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS); } static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar, u32 ce_ctrl_addr, u32 addr) { ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr); } static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n); } static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, (addr & ~SRC_WATERMARK_HIGH_MASK) | SRC_WATERMARK_HIGH_SET(n)); } static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS, (addr & ~SRC_WATERMARK_LOW_MASK) | SRC_WATERMARK_LOW_SET(n)); } static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, (addr & ~DST_WATERMARK_HIGH_MASK) | DST_WATERMARK_HIGH_SET(n)); } static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int n) { u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS, (addr & ~DST_WATERMARK_LOW_MASK) | DST_WATERMARK_LOW_SET(n)); } static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr | HOST_IE_COPY_COMPLETE_MASK); } static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK); } static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 host_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + HOST_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS, host_ie_addr & ~CE_WATERMARK_MASK); } static inline void ath10k_ce_error_intr_enable(struct ath10k *ar, u32 ce_ctrl_addr) { u32 misc_ie_addr = ath10k_pci_read32(ar, ce_ctrl_addr + MISC_IE_ADDRESS); ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS, misc_ie_addr | CE_ERROR_MASK); } static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar, u32 ce_ctrl_addr, unsigned int mask) { ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask); } /* * Guts of ath10k_ce_send, used by both ath10k_ce_send and * ath10k_ce_sendlist_send. * The caller takes responsibility for any needed locking. */ static int ath10k_ce_send_nolock(struct ce_state *ce_state, void *per_transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ce_ring_state *src_ring = ce_state->src_ring; struct ce_desc *desc, *sdesc; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int write_index = src_ring->write_index; u32 ctrl_addr = ce_state->ctrl_addr; u32 desc_flags = 0; int ret = 0; if (nbytes > ce_state->src_sz_max) ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n", __func__, nbytes, ce_state->src_sz_max); ath10k_pci_wake(ar); if (unlikely(CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) <= 0)) { ret = -EIO; goto exit; } desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space, write_index); sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index); desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA); if (flags & CE_SEND_FLAG_GATHER) desc_flags |= CE_DESC_FLAGS_GATHER; if (flags & CE_SEND_FLAG_BYTE_SWAP) desc_flags |= CE_DESC_FLAGS_BYTE_SWAP; sdesc->addr = __cpu_to_le32(buffer); sdesc->nbytes = __cpu_to_le16(nbytes); sdesc->flags = __cpu_to_le16(desc_flags); *desc = *sdesc; src_ring->per_transfer_context[write_index] = per_transfer_context; /* Update Source Ring Write Index */ write_index = CE_RING_IDX_INCR(nentries_mask, write_index); /* WORKAROUND */ if (!(flags & CE_SEND_FLAG_GATHER)) ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); src_ring->write_index = write_index; exit: ath10k_pci_sleep(ar); return ret; } int ath10k_ce_send(struct ce_state *ce_state, void *per_transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, buffer, nbytes, transfer_id, flags); spin_unlock_bh(&ar_pci->ce_lock); return ret; } void ath10k_ce_sendlist_buf_add(struct ce_sendlist *sendlist, u32 buffer, unsigned int nbytes, u32 flags) { unsigned int num_items = sendlist->num_items; struct ce_sendlist_item *item; item = &sendlist->item[num_items]; item->data = buffer; item->u.nbytes = nbytes; item->flags = flags; sendlist->num_items++; } int ath10k_ce_sendlist_send(struct ce_state *ce_state, void *per_transfer_context, struct ce_sendlist *sendlist, unsigned int transfer_id) { struct ce_ring_state *src_ring = ce_state->src_ring; struct ce_sendlist_item *item; struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned int nentries_mask = src_ring->nentries_mask; unsigned int num_items = sendlist->num_items; unsigned int sw_index; unsigned int write_index; int i, delta, ret = -ENOMEM; spin_lock_bh(&ar_pci->ce_lock); sw_index = src_ring->sw_index; write_index = src_ring->write_index; delta = CE_RING_DELTA(nentries_mask, write_index, sw_index - 1); if (delta >= num_items) { /* * Handle all but the last item uniformly. */ for (i = 0; i < num_items - 1; i++) { item = &sendlist->item[i]; ret = ath10k_ce_send_nolock(ce_state, CE_SENDLIST_ITEM_CTXT, (u32) item->data, item->u.nbytes, transfer_id, item->flags | CE_SEND_FLAG_GATHER); if (ret) ath10k_warn("CE send failed for item: %d\n", i); } /* * Provide valid context pointer for final item. */ item = &sendlist->item[i]; ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, (u32) item->data, item->u.nbytes, transfer_id, item->flags); if (ret) ath10k_warn("CE send failed for last item: %d\n", i); } spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_recv_buf_enqueue(struct ce_state *ce_state, void *per_recv_context, u32 buffer) { struct ce_ring_state *dest_ring = ce_state->dest_ring; u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int write_index; unsigned int sw_index; int ret; spin_lock_bh(&ar_pci->ce_lock); write_index = dest_ring->write_index; sw_index = dest_ring->sw_index; ath10k_pci_wake(ar); if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) > 0) { struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index); /* Update destination descriptor */ desc->addr = __cpu_to_le32(buffer); desc->nbytes = 0; dest_ring->per_transfer_context[write_index] = per_recv_context; /* Update Destination Ring Write Index */ write_index = CE_RING_IDX_INCR(nentries_mask, write_index); ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; ret = 0; } else { ret = -EIO; } ath10k_pci_sleep(ar); spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of ath10k_ce_completed_recv_next. * The caller takes responsibility for any necessary locking. */ static int ath10k_ce_completed_recv_next_nolock(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp, unsigned int *flagsp) { struct ce_ring_state *dest_ring = ce_state->dest_ring; unsigned int nentries_mask = dest_ring->nentries_mask; unsigned int sw_index = dest_ring->sw_index; struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); struct ce_desc sdesc; u16 nbytes; /* Copy in one go for performance reasons */ sdesc = *desc; nbytes = __le16_to_cpu(sdesc.nbytes); if (nbytes == 0) { /* * This closes a relatively unusual race where the Host * sees the updated DRRI before the update to the * corresponding descriptor has completed. We treat this * as a descriptor that is not yet done. */ return -EIO; } desc->nbytes = 0; /* Return data from completed destination descriptor */ *bufferp = __le32_to_cpu(sdesc.addr); *nbytesp = nbytes; *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA); if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP) *flagsp = CE_RECV_FLAG_SWAPPED; else *flagsp = 0; if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* sanity */ dest_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; return 0; } int ath10k_ce_completed_recv_next(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp, unsigned int *flagsp) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_completed_recv_next_nolock(ce_state, per_transfer_contextp, bufferp, nbytesp, transfer_idp, flagsp); spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_revoke_recv_next(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp) { struct ce_ring_state *dest_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_pci *ar_pci; dest_ring = ce_state->dest_ring; if (!dest_ring) return -EIO; ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; write_index = dest_ring->write_index; if (write_index != sw_index) { struct ce_desc *base = dest_ring->base_addr_owner_space; struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index); /* Return data from completed destination descriptor */ *bufferp = __le32_to_cpu(desc->addr); if (per_transfer_contextp) *per_transfer_contextp = dest_ring->per_transfer_context[sw_index]; /* sanity */ dest_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); dest_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of ath10k_ce_completed_send_next. * The caller takes responsibility for any necessary locking. */ static int ath10k_ce_completed_send_next_nolock(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp) { struct ce_ring_state *src_ring = ce_state->src_ring; u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; unsigned int nentries_mask = src_ring->nentries_mask; unsigned int sw_index = src_ring->sw_index; unsigned int read_index; int ret = -EIO; if (src_ring->hw_index == sw_index) { /* * The SW completion index has caught up with the cached * version of the HW completion index. * Update the cached HW completion index to see whether * the SW has really caught up to the HW, or if the cached * value of the HW index has become stale. */ ath10k_pci_wake(ar); src_ring->hw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); ath10k_pci_sleep(ar); } read_index = src_ring->hw_index; if ((read_index != sw_index) && (read_index != 0xffffffff)) { struct ce_desc *sbase = src_ring->shadow_base; struct ce_desc *sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index); /* Return data from completed source descriptor */ *bufferp = __le32_to_cpu(sdesc->addr); *nbytesp = __le16_to_cpu(sdesc->nbytes); *transfer_idp = MS(__le16_to_cpu(sdesc->flags), CE_DESC_FLAGS_META_DATA); if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; ret = 0; } return ret; } /* NB: Modeled after ath10k_ce_completed_send_next */ int ath10k_ce_cancel_send_next(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp) { struct ce_ring_state *src_ring; unsigned int nentries_mask; unsigned int sw_index; unsigned int write_index; int ret; struct ath10k *ar; struct ath10k_pci *ar_pci; src_ring = ce_state->src_ring; if (!src_ring) return -EIO; ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; if (write_index != sw_index) { struct ce_desc *base = src_ring->base_addr_owner_space; struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index); /* Return data from completed source descriptor */ *bufferp = __le32_to_cpu(desc->addr); *nbytesp = __le16_to_cpu(desc->nbytes); *transfer_idp = MS(__le16_to_cpu(desc->flags), CE_DESC_FLAGS_META_DATA); if (per_transfer_contextp) *per_transfer_contextp = src_ring->per_transfer_context[sw_index]; /* sanity */ src_ring->per_transfer_context[sw_index] = NULL; /* Update sw_index */ sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index); src_ring->sw_index = sw_index; ret = 0; } else { ret = -EIO; } spin_unlock_bh(&ar_pci->ce_lock); return ret; } int ath10k_ce_completed_send_next(struct ce_state *ce_state, void **per_transfer_contextp, u32 *bufferp, unsigned int *nbytesp, unsigned int *transfer_idp) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; spin_lock_bh(&ar_pci->ce_lock); ret = ath10k_ce_completed_send_next_nolock(ce_state, per_transfer_contextp, bufferp, nbytesp, transfer_idp); spin_unlock_bh(&ar_pci->ce_lock); return ret; } /* * Guts of interrupt handler for per-engine interrupts on a particular CE. * * Invokes registered callbacks for recv_complete, * send_complete, and watermarks. */ void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id]; u32 ctrl_addr = ce_state->ctrl_addr; void *transfer_context; u32 buf; unsigned int nbytes; unsigned int id; unsigned int flags; ath10k_pci_wake(ar); spin_lock_bh(&ar_pci->ce_lock); /* Clear the copy-complete interrupts that will be handled here. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, HOST_IS_COPY_COMPLETE_MASK); if (ce_state->recv_cb) { /* * Pop completed recv buffers and call the registered * recv callback for each */ while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context, &buf, &nbytes, &id, &flags) == 0) { spin_unlock_bh(&ar_pci->ce_lock); ce_state->recv_cb(ce_state, transfer_context, buf, nbytes, id, flags); spin_lock_bh(&ar_pci->ce_lock); } } if (ce_state->send_cb) { /* * Pop completed send buffers and call the registered * send callback for each */ while (ath10k_ce_completed_send_next_nolock(ce_state, &transfer_context, &buf, &nbytes, &id) == 0) { spin_unlock_bh(&ar_pci->ce_lock); ce_state->send_cb(ce_state, transfer_context, buf, nbytes, id); spin_lock_bh(&ar_pci->ce_lock); } } /* * Misc CE interrupts are not being handled, but still need * to be cleared. */ ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK); spin_unlock_bh(&ar_pci->ce_lock); ath10k_pci_sleep(ar); } /* * Handler for per-engine interrupts on ALL active CEs. * This is used in cases where the system is sharing a * single interrput for all CEs */ void ath10k_ce_per_engine_service_any(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ce_id; u32 intr_summary; ath10k_pci_wake(ar); intr_summary = CE_INTERRUPT_SUMMARY(ar); for (ce_id = 0; intr_summary && (ce_id < ar_pci->ce_count); ce_id++) { if (intr_summary & (1 << ce_id)) intr_summary &= ~(1 << ce_id); else /* no intr pending on this CE */ continue; ath10k_ce_per_engine_service(ar, ce_id); } ath10k_pci_sleep(ar); } /* * Adjust interrupts for the copy complete handler. * If it's needed for either send or recv, then unmask * this interrupt; otherwise, mask it. * * Called with ce_lock held. */ static void ath10k_ce_per_engine_handler_adjust(struct ce_state *ce_state, int disable_copy_compl_intr) { u32 ctrl_addr = ce_state->ctrl_addr; struct ath10k *ar = ce_state->ar; ath10k_pci_wake(ar); if ((!disable_copy_compl_intr) && (ce_state->send_cb || ce_state->recv_cb)) ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); else ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); ath10k_pci_sleep(ar); } void ath10k_ce_disable_interrupts(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ce_id; ath10k_pci_wake(ar); for (ce_id = 0; ce_id < ar_pci->ce_count; ce_id++) { struct ce_state *ce_state = ar_pci->ce_id_to_state[ce_id]; u32 ctrl_addr = ce_state->ctrl_addr; ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); } ath10k_pci_sleep(ar); } void ath10k_ce_send_cb_register(struct ce_state *ce_state, void (*send_cb) (struct ce_state *ce_state, void *transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id), int disable_interrupts) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); ce_state->send_cb = send_cb; ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts); spin_unlock_bh(&ar_pci->ce_lock); } void ath10k_ce_recv_cb_register(struct ce_state *ce_state, void (*recv_cb) (struct ce_state *ce_state, void *transfer_context, u32 buffer, unsigned int nbytes, unsigned int transfer_id, unsigned int flags)) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); spin_lock_bh(&ar_pci->ce_lock); ce_state->recv_cb = recv_cb; ath10k_ce_per_engine_handler_adjust(ce_state, 0); spin_unlock_bh(&ar_pci->ce_lock); } static int ath10k_ce_init_src_ring(struct ath10k *ar, unsigned int ce_id, struct ce_state *ce_state, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ce_ring_state *src_ring; unsigned int nentries = attr->src_nentries; unsigned int ce_nbytes; u32 ctrl_addr = ath10k_ce_base_address(ce_id); dma_addr_t base_addr; char *ptr; nentries = roundup_pow_of_two(nentries); if (ce_state->src_ring) { WARN_ON(ce_state->src_ring->nentries != nentries); return 0; } ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *)); ptr = kzalloc(ce_nbytes, GFP_KERNEL); if (ptr == NULL) return -ENOMEM; ce_state->src_ring = (struct ce_ring_state *)ptr; src_ring = ce_state->src_ring; ptr += sizeof(struct ce_ring_state); src_ring->nentries = nentries; src_ring->nentries_mask = nentries - 1; ath10k_pci_wake(ar); src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); src_ring->hw_index = src_ring->sw_index; src_ring->write_index = ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); ath10k_pci_sleep(ar); src_ring->per_transfer_context = (void **)ptr; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ src_ring->base_addr_owner_space_unaligned = pci_alloc_consistent(ar_pci->pdev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr); src_ring->base_addr_ce_space_unaligned = base_addr; src_ring->base_addr_owner_space = PTR_ALIGN( src_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); src_ring->base_addr_ce_space = ALIGN( src_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); /* * Also allocate a shadow src ring in regular * mem to use for faster access. */ src_ring->shadow_base_unaligned = kmalloc((nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), GFP_KERNEL); src_ring->shadow_base = PTR_ALIGN( src_ring->shadow_base_unaligned, CE_DESC_RING_ALIGN); ath10k_pci_wake(ar); ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, src_ring->base_addr_ce_space); ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_pci_sleep(ar); return 0; } static int ath10k_ce_init_dest_ring(struct ath10k *ar, unsigned int ce_id, struct ce_state *ce_state, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ce_ring_state *dest_ring; unsigned int nentries = attr->dest_nentries; unsigned int ce_nbytes; u32 ctrl_addr = ath10k_ce_base_address(ce_id); dma_addr_t base_addr; char *ptr; nentries = roundup_pow_of_two(nentries); if (ce_state->dest_ring) { WARN_ON(ce_state->dest_ring->nentries != nentries); return 0; } ce_nbytes = sizeof(struct ce_ring_state) + (nentries * sizeof(void *)); ptr = kzalloc(ce_nbytes, GFP_KERNEL); if (ptr == NULL) return -ENOMEM; ce_state->dest_ring = (struct ce_ring_state *)ptr; dest_ring = ce_state->dest_ring; ptr += sizeof(struct ce_ring_state); dest_ring->nentries = nentries; dest_ring->nentries_mask = nentries - 1; ath10k_pci_wake(ar); dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); dest_ring->write_index = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); ath10k_pci_sleep(ar); dest_ring->per_transfer_context = (void **)ptr; /* * Legacy platforms that do not support cache * coherent DMA are unsupported */ dest_ring->base_addr_owner_space_unaligned = pci_alloc_consistent(ar_pci->pdev, (nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), &base_addr); dest_ring->base_addr_ce_space_unaligned = base_addr; /* * Correctly initialize memory to 0 to prevent garbage * data crashing system when download firmware */ memset(dest_ring->base_addr_owner_space_unaligned, 0, nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN); dest_ring->base_addr_owner_space = PTR_ALIGN( dest_ring->base_addr_owner_space_unaligned, CE_DESC_RING_ALIGN); dest_ring->base_addr_ce_space = ALIGN( dest_ring->base_addr_ce_space_unaligned, CE_DESC_RING_ALIGN); ath10k_pci_wake(ar); ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, dest_ring->base_addr_ce_space); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_pci_sleep(ar); return 0; } static struct ce_state *ath10k_ce_init_state(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ce_state *ce_state = NULL; u32 ctrl_addr = ath10k_ce_base_address(ce_id); spin_lock_bh(&ar_pci->ce_lock); if (!ar_pci->ce_id_to_state[ce_id]) { ce_state = kzalloc(sizeof(*ce_state), GFP_ATOMIC); if (ce_state == NULL) { spin_unlock_bh(&ar_pci->ce_lock); return NULL; } ar_pci->ce_id_to_state[ce_id] = ce_state; ce_state->ar = ar; ce_state->id = ce_id; ce_state->ctrl_addr = ctrl_addr; ce_state->state = CE_RUNNING; /* Save attribute flags */ ce_state->attr_flags = attr->flags; ce_state->src_sz_max = attr->src_sz_max; } spin_unlock_bh(&ar_pci->ce_lock); return ce_state; } /* * Initialize a Copy Engine based on caller-supplied attributes. * This may be called once to initialize both source and destination * rings or it may be called twice for separate source and destination * initialization. It may be that only one side or the other is * initialized by software/firmware. */ struct ce_state *ath10k_ce_init(struct ath10k *ar, unsigned int ce_id, const struct ce_attr *attr) { struct ce_state *ce_state; u32 ctrl_addr = ath10k_ce_base_address(ce_id); ce_state = ath10k_ce_init_state(ar, ce_id, attr); if (!ce_state) { ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id); return NULL; } if (attr->src_nentries) { if (ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr)) { ath10k_err("Failed to initialize CE src ring for ID: %d\n", ce_id); ath10k_ce_deinit(ce_state); return NULL; } } if (attr->dest_nentries) { if (ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr)) { ath10k_err("Failed to initialize CE dest ring for ID: %d\n", ce_id); ath10k_ce_deinit(ce_state); return NULL; } } /* Enable CE error interrupts */ ath10k_pci_wake(ar); ath10k_ce_error_intr_enable(ar, ctrl_addr); ath10k_pci_sleep(ar); return ce_state; } void ath10k_ce_deinit(struct ce_state *ce_state) { unsigned int ce_id = ce_state->id; struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ce_state->state = CE_UNUSED; ar_pci->ce_id_to_state[ce_id] = NULL; if (ce_state->src_ring) { kfree(ce_state->src_ring->shadow_base_unaligned); pci_free_consistent(ar_pci->pdev, (ce_state->src_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->src_ring->base_addr_owner_space, ce_state->src_ring->base_addr_ce_space); kfree(ce_state->src_ring); } if (ce_state->dest_ring) { pci_free_consistent(ar_pci->pdev, (ce_state->dest_ring->nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN), ce_state->dest_ring->base_addr_owner_space, ce_state->dest_ring->base_addr_ce_space); kfree(ce_state->dest_ring); } kfree(ce_state); }