/* * wanXL serial card driver for Linux * host part * * Copyright (C) 2003 Krzysztof Halasa <khc@pm.waw.pl> * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License * as published by the Free Software Foundation. * * Status: * - Only DTE (external clock) support with NRZ and NRZI encodings * - wanXL100 will require minor driver modifications, no access to hw */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/netdevice.h> #include <linux/hdlc.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <asm/io.h> #include "wanxl.h" static const char* version = "wanXL serial card driver version: 0.48"; #define PLX_CTL_RESET 0x40000000 /* adapter reset */ #undef DEBUG_PKT #undef DEBUG_PCI /* MAILBOX #1 - PUTS COMMANDS */ #define MBX1_CMD_ABORTJ 0x85000000 /* Abort and Jump */ #ifdef __LITTLE_ENDIAN #define MBX1_CMD_BSWAP 0x8C000001 /* little-endian Byte Swap Mode */ #else #define MBX1_CMD_BSWAP 0x8C000000 /* big-endian Byte Swap Mode */ #endif /* MAILBOX #2 - DRAM SIZE */ #define MBX2_MEMSZ_MASK 0xFFFF0000 /* PUTS Memory Size Register mask */ typedef struct { struct net_device *dev; struct card_t *card; spinlock_t lock; /* for wanxl_xmit */ int node; /* physical port #0 - 3 */ unsigned int clock_type; int tx_in, tx_out; struct sk_buff *tx_skbs[TX_BUFFERS]; }port_t; typedef struct { desc_t rx_descs[RX_QUEUE_LENGTH]; port_status_t port_status[4]; }card_status_t; typedef struct card_t { int n_ports; /* 1, 2 or 4 ports */ u8 irq; u8 __iomem *plx; /* PLX PCI9060 virtual base address */ struct pci_dev *pdev; /* for pci_name(pdev) */ int rx_in; struct sk_buff *rx_skbs[RX_QUEUE_LENGTH]; card_status_t *status; /* shared between host and card */ dma_addr_t status_address; port_t ports[0]; /* 1 - 4 port_t structures follow */ }card_t; static inline port_t* dev_to_port(struct net_device *dev) { return (port_t *)dev_to_hdlc(dev)->priv; } static inline port_status_t* get_status(port_t *port) { return &port->card->status->port_status[port->node]; } #ifdef DEBUG_PCI static inline dma_addr_t pci_map_single_debug(struct pci_dev *pdev, void *ptr, size_t size, int direction) { dma_addr_t addr = pci_map_single(pdev, ptr, size, direction); if (addr + size > 0x100000000LL) printk(KERN_CRIT "wanXL %s: pci_map_single() returned memory" " at 0x%LX!\n", pci_name(pdev), (unsigned long long)addr); return addr; } #undef pci_map_single #define pci_map_single pci_map_single_debug #endif /* Cable and/or personality module change interrupt service */ static inline void wanxl_cable_intr(port_t *port) { u32 value = get_status(port)->cable; int valid = 1; const char *cable, *pm, *dte = "", *dsr = "", *dcd = ""; switch(value & 0x7) { case STATUS_CABLE_V35: cable = "V.35"; break; case STATUS_CABLE_X21: cable = "X.21"; break; case STATUS_CABLE_V24: cable = "V.24"; break; case STATUS_CABLE_EIA530: cable = "EIA530"; break; case STATUS_CABLE_NONE: cable = "no"; break; default: cable = "invalid"; } switch((value >> STATUS_CABLE_PM_SHIFT) & 0x7) { case STATUS_CABLE_V35: pm = "V.35"; break; case STATUS_CABLE_X21: pm = "X.21"; break; case STATUS_CABLE_V24: pm = "V.24"; break; case STATUS_CABLE_EIA530: pm = "EIA530"; break; case STATUS_CABLE_NONE: pm = "no personality"; valid = 0; break; default: pm = "invalid personality"; valid = 0; } if (valid) { if ((value & 7) == ((value >> STATUS_CABLE_PM_SHIFT) & 7)) { dsr = (value & STATUS_CABLE_DSR) ? ", DSR ON" : ", DSR off"; dcd = (value & STATUS_CABLE_DCD) ? ", carrier ON" : ", carrier off"; } dte = (value & STATUS_CABLE_DCE) ? " DCE" : " DTE"; } printk(KERN_INFO "%s: %s%s module, %s cable%s%s\n", port->dev->name, pm, dte, cable, dsr, dcd); if (value & STATUS_CABLE_DCD) netif_carrier_on(port->dev); else netif_carrier_off(port->dev); } /* Transmit complete interrupt service */ static inline void wanxl_tx_intr(port_t *port) { struct net_device *dev = port->dev; while (1) { desc_t *desc = &get_status(port)->tx_descs[port->tx_in]; struct sk_buff *skb = port->tx_skbs[port->tx_in]; switch (desc->stat) { case PACKET_FULL: case PACKET_EMPTY: netif_wake_queue(dev); return; case PACKET_UNDERRUN: dev->stats.tx_errors++; dev->stats.tx_fifo_errors++; break; default: dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; } desc->stat = PACKET_EMPTY; /* Free descriptor */ pci_unmap_single(port->card->pdev, desc->address, skb->len, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); port->tx_in = (port->tx_in + 1) % TX_BUFFERS; } } /* Receive complete interrupt service */ static inline void wanxl_rx_intr(card_t *card) { desc_t *desc; while (desc = &card->status->rx_descs[card->rx_in], desc->stat != PACKET_EMPTY) { if ((desc->stat & PACKET_PORT_MASK) > card->n_ports) printk(KERN_CRIT "wanXL %s: received packet for" " nonexistent port\n", pci_name(card->pdev)); else { struct sk_buff *skb = card->rx_skbs[card->rx_in]; port_t *port = &card->ports[desc->stat & PACKET_PORT_MASK]; struct net_device *dev = port->dev; if (!skb) dev->stats.rx_dropped++; else { pci_unmap_single(card->pdev, desc->address, BUFFER_LENGTH, PCI_DMA_FROMDEVICE); skb_put(skb, desc->length); #ifdef DEBUG_PKT printk(KERN_DEBUG "%s RX(%i):", dev->name, skb->len); debug_frame(skb); #endif dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; skb->protocol = hdlc_type_trans(skb, dev); netif_rx(skb); skb = NULL; } if (!skb) { skb = dev_alloc_skb(BUFFER_LENGTH); desc->address = skb ? pci_map_single(card->pdev, skb->data, BUFFER_LENGTH, PCI_DMA_FROMDEVICE) : 0; card->rx_skbs[card->rx_in] = skb; } } desc->stat = PACKET_EMPTY; /* Free descriptor */ card->rx_in = (card->rx_in + 1) % RX_QUEUE_LENGTH; } } static irqreturn_t wanxl_intr(int irq, void* dev_id) { card_t *card = dev_id; int i; u32 stat; int handled = 0; while((stat = readl(card->plx + PLX_DOORBELL_FROM_CARD)) != 0) { handled = 1; writel(stat, card->plx + PLX_DOORBELL_FROM_CARD); for (i = 0; i < card->n_ports; i++) { if (stat & (1 << (DOORBELL_FROM_CARD_TX_0 + i))) wanxl_tx_intr(&card->ports[i]); if (stat & (1 << (DOORBELL_FROM_CARD_CABLE_0 + i))) wanxl_cable_intr(&card->ports[i]); } if (stat & (1 << DOORBELL_FROM_CARD_RX)) wanxl_rx_intr(card); } return IRQ_RETVAL(handled); } static netdev_tx_t wanxl_xmit(struct sk_buff *skb, struct net_device *dev) { port_t *port = dev_to_port(dev); desc_t *desc; spin_lock(&port->lock); desc = &get_status(port)->tx_descs[port->tx_out]; if (desc->stat != PACKET_EMPTY) { /* should never happen - previous xmit should stop queue */ #ifdef DEBUG_PKT printk(KERN_DEBUG "%s: transmitter buffer full\n", dev->name); #endif netif_stop_queue(dev); spin_unlock_irq(&port->lock); return NETDEV_TX_BUSY; /* request packet to be queued */ } #ifdef DEBUG_PKT printk(KERN_DEBUG "%s TX(%i):", dev->name, skb->len); debug_frame(skb); #endif port->tx_skbs[port->tx_out] = skb; desc->address = pci_map_single(port->card->pdev, skb->data, skb->len, PCI_DMA_TODEVICE); desc->length = skb->len; desc->stat = PACKET_FULL; writel(1 << (DOORBELL_TO_CARD_TX_0 + port->node), port->card->plx + PLX_DOORBELL_TO_CARD); port->tx_out = (port->tx_out + 1) % TX_BUFFERS; if (get_status(port)->tx_descs[port->tx_out].stat != PACKET_EMPTY) { netif_stop_queue(dev); #ifdef DEBUG_PKT printk(KERN_DEBUG "%s: transmitter buffer full\n", dev->name); #endif } spin_unlock(&port->lock); return NETDEV_TX_OK; } static int wanxl_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { port_t *port = dev_to_port(dev); if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI) return -EINVAL; if (parity != PARITY_NONE && parity != PARITY_CRC32_PR1_CCITT && parity != PARITY_CRC16_PR1_CCITT && parity != PARITY_CRC32_PR0_CCITT && parity != PARITY_CRC16_PR0_CCITT) return -EINVAL; get_status(port)->encoding = encoding; get_status(port)->parity = parity; return 0; } static int wanxl_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { const size_t size = sizeof(sync_serial_settings); sync_serial_settings line; port_t *port = dev_to_port(dev); if (cmd != SIOCWANDEV) return hdlc_ioctl(dev, ifr, cmd); switch (ifr->ifr_settings.type) { case IF_GET_IFACE: ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } line.clock_type = get_status(port)->clocking; line.clock_rate = 0; line.loopback = 0; if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size)) return -EFAULT; return 0; case IF_IFACE_SYNC_SERIAL: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (dev->flags & IFF_UP) return -EBUSY; if (copy_from_user(&line, ifr->ifr_settings.ifs_ifsu.sync, size)) return -EFAULT; if (line.clock_type != CLOCK_EXT && line.clock_type != CLOCK_TXFROMRX) return -EINVAL; /* No such clock setting */ if (line.loopback != 0) return -EINVAL; get_status(port)->clocking = line.clock_type; return 0; default: return hdlc_ioctl(dev, ifr, cmd); } } static int wanxl_open(struct net_device *dev) { port_t *port = dev_to_port(dev); u8 __iomem *dbr = port->card->plx + PLX_DOORBELL_TO_CARD; unsigned long timeout; int i; if (get_status(port)->open) { printk(KERN_ERR "%s: port already open\n", dev->name); return -EIO; } if ((i = hdlc_open(dev)) != 0) return i; port->tx_in = port->tx_out = 0; for (i = 0; i < TX_BUFFERS; i++) get_status(port)->tx_descs[i].stat = PACKET_EMPTY; /* signal the card */ writel(1 << (DOORBELL_TO_CARD_OPEN_0 + port->node), dbr); timeout = jiffies + HZ; do { if (get_status(port)->open) { netif_start_queue(dev); return 0; } } while (time_after(timeout, jiffies)); printk(KERN_ERR "%s: unable to open port\n", dev->name); /* ask the card to close the port, should it be still alive */ writel(1 << (DOORBELL_TO_CARD_CLOSE_0 + port->node), dbr); return -EFAULT; } static int wanxl_close(struct net_device *dev) { port_t *port = dev_to_port(dev); unsigned long timeout; int i; hdlc_close(dev); /* signal the card */ writel(1 << (DOORBELL_TO_CARD_CLOSE_0 + port->node), port->card->plx + PLX_DOORBELL_TO_CARD); timeout = jiffies + HZ; do { if (!get_status(port)->open) break; } while (time_after(timeout, jiffies)); if (get_status(port)->open) printk(KERN_ERR "%s: unable to close port\n", dev->name); netif_stop_queue(dev); for (i = 0; i < TX_BUFFERS; i++) { desc_t *desc = &get_status(port)->tx_descs[i]; if (desc->stat != PACKET_EMPTY) { desc->stat = PACKET_EMPTY; pci_unmap_single(port->card->pdev, desc->address, port->tx_skbs[i]->len, PCI_DMA_TODEVICE); dev_kfree_skb(port->tx_skbs[i]); } } return 0; } static struct net_device_stats *wanxl_get_stats(struct net_device *dev) { port_t *port = dev_to_port(dev); dev->stats.rx_over_errors = get_status(port)->rx_overruns; dev->stats.rx_frame_errors = get_status(port)->rx_frame_errors; dev->stats.rx_errors = dev->stats.rx_over_errors + dev->stats.rx_frame_errors; return &dev->stats; } static int wanxl_puts_command(card_t *card, u32 cmd) { unsigned long timeout = jiffies + 5 * HZ; writel(cmd, card->plx + PLX_MAILBOX_1); do { if (readl(card->plx + PLX_MAILBOX_1) == 0) return 0; schedule(); }while (time_after(timeout, jiffies)); return -1; } static void wanxl_reset(card_t *card) { u32 old_value = readl(card->plx + PLX_CONTROL) & ~PLX_CTL_RESET; writel(0x80, card->plx + PLX_MAILBOX_0); writel(old_value | PLX_CTL_RESET, card->plx + PLX_CONTROL); readl(card->plx + PLX_CONTROL); /* wait for posted write */ udelay(1); writel(old_value, card->plx + PLX_CONTROL); readl(card->plx + PLX_CONTROL); /* wait for posted write */ } static void wanxl_pci_remove_one(struct pci_dev *pdev) { card_t *card = pci_get_drvdata(pdev); int i; for (i = 0; i < card->n_ports; i++) { unregister_hdlc_device(card->ports[i].dev); free_netdev(card->ports[i].dev); } /* unregister and free all host resources */ if (card->irq) free_irq(card->irq, card); wanxl_reset(card); for (i = 0; i < RX_QUEUE_LENGTH; i++) if (card->rx_skbs[i]) { pci_unmap_single(card->pdev, card->status->rx_descs[i].address, BUFFER_LENGTH, PCI_DMA_FROMDEVICE); dev_kfree_skb(card->rx_skbs[i]); } if (card->plx) iounmap(card->plx); if (card->status) pci_free_consistent(pdev, sizeof(card_status_t), card->status, card->status_address); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); kfree(card); } #include "wanxlfw.inc" static const struct net_device_ops wanxl_ops = { .ndo_open = wanxl_open, .ndo_stop = wanxl_close, .ndo_change_mtu = hdlc_change_mtu, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = wanxl_ioctl, .ndo_get_stats = wanxl_get_stats, }; static int __devinit wanxl_pci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { card_t *card; u32 ramsize, stat; unsigned long timeout; u32 plx_phy; /* PLX PCI base address */ u32 mem_phy; /* memory PCI base addr */ u8 __iomem *mem; /* memory virtual base addr */ int i, ports, alloc_size; #ifndef MODULE static int printed_version; if (!printed_version) { printed_version++; printk(KERN_INFO "%s\n", version); } #endif i = pci_enable_device(pdev); if (i) return i; /* QUICC can only access first 256 MB of host RAM directly, but PLX9060 DMA does 32-bits for actual packet data transfers */ /* FIXME when PCI/DMA subsystems are fixed. We set both dma_mask and consistent_dma_mask to 28 bits and pray pci_alloc_consistent() will use this info. It should work on most platforms */ if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(28)) || pci_set_dma_mask(pdev, DMA_BIT_MASK(28))) { printk(KERN_ERR "wanXL: No usable DMA configuration\n"); return -EIO; } i = pci_request_regions(pdev, "wanXL"); if (i) { pci_disable_device(pdev); return i; } switch (pdev->device) { case PCI_DEVICE_ID_SBE_WANXL100: ports = 1; break; case PCI_DEVICE_ID_SBE_WANXL200: ports = 2; break; default: ports = 4; } alloc_size = sizeof(card_t) + ports * sizeof(port_t); card = kzalloc(alloc_size, GFP_KERNEL); if (card == NULL) { printk(KERN_ERR "wanXL %s: unable to allocate memory\n", pci_name(pdev)); pci_release_regions(pdev); pci_disable_device(pdev); return -ENOBUFS; } pci_set_drvdata(pdev, card); card->pdev = pdev; card->status = pci_alloc_consistent(pdev, sizeof(card_status_t), &card->status_address); if (card->status == NULL) { wanxl_pci_remove_one(pdev); return -ENOBUFS; } #ifdef DEBUG_PCI printk(KERN_DEBUG "wanXL %s: pci_alloc_consistent() returned memory" " at 0x%LX\n", pci_name(pdev), (unsigned long long)card->status_address); #endif /* FIXME when PCI/DMA subsystems are fixed. We set both dma_mask and consistent_dma_mask back to 32 bits to indicate the card can do 32-bit DMA addressing */ if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) || pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { printk(KERN_ERR "wanXL: No usable DMA configuration\n"); wanxl_pci_remove_one(pdev); return -EIO; } /* set up PLX mapping */ plx_phy = pci_resource_start(pdev, 0); card->plx = ioremap_nocache(plx_phy, 0x70); if (!card->plx) { printk(KERN_ERR "wanxl: ioremap() failed\n"); wanxl_pci_remove_one(pdev); return -EFAULT; } #if RESET_WHILE_LOADING wanxl_reset(card); #endif timeout = jiffies + 20 * HZ; while ((stat = readl(card->plx + PLX_MAILBOX_0)) != 0) { if (time_before(timeout, jiffies)) { printk(KERN_WARNING "wanXL %s: timeout waiting for" " PUTS to complete\n", pci_name(pdev)); wanxl_pci_remove_one(pdev); return -ENODEV; } switch(stat & 0xC0) { case 0x00: /* hmm - PUTS completed with non-zero code? */ case 0x80: /* PUTS still testing the hardware */ break; default: printk(KERN_WARNING "wanXL %s: PUTS test 0x%X" " failed\n", pci_name(pdev), stat & 0x30); wanxl_pci_remove_one(pdev); return -ENODEV; } schedule(); } /* get on-board memory size (PUTS detects no more than 4 MB) */ ramsize = readl(card->plx + PLX_MAILBOX_2) & MBX2_MEMSZ_MASK; /* set up on-board RAM mapping */ mem_phy = pci_resource_start(pdev, 2); /* sanity check the board's reported memory size */ if (ramsize < BUFFERS_ADDR + (TX_BUFFERS + RX_BUFFERS) * BUFFER_LENGTH * ports) { printk(KERN_WARNING "wanXL %s: no enough on-board RAM" " (%u bytes detected, %u bytes required)\n", pci_name(pdev), ramsize, BUFFERS_ADDR + (TX_BUFFERS + RX_BUFFERS) * BUFFER_LENGTH * ports); wanxl_pci_remove_one(pdev); return -ENODEV; } if (wanxl_puts_command(card, MBX1_CMD_BSWAP)) { printk(KERN_WARNING "wanXL %s: unable to Set Byte Swap" " Mode\n", pci_name(pdev)); wanxl_pci_remove_one(pdev); return -ENODEV; } for (i = 0; i < RX_QUEUE_LENGTH; i++) { struct sk_buff *skb = dev_alloc_skb(BUFFER_LENGTH); card->rx_skbs[i] = skb; if (skb) card->status->rx_descs[i].address = pci_map_single(card->pdev, skb->data, BUFFER_LENGTH, PCI_DMA_FROMDEVICE); } mem = ioremap_nocache(mem_phy, PDM_OFFSET + sizeof(firmware)); if (!mem) { printk(KERN_ERR "wanxl: ioremap() failed\n"); wanxl_pci_remove_one(pdev); return -EFAULT; } for (i = 0; i < sizeof(firmware); i += 4) writel(ntohl(*(__be32*)(firmware + i)), mem + PDM_OFFSET + i); for (i = 0; i < ports; i++) writel(card->status_address + (void *)&card->status->port_status[i] - (void *)card->status, mem + PDM_OFFSET + 4 + i * 4); writel(card->status_address, mem + PDM_OFFSET + 20); writel(PDM_OFFSET, mem); iounmap(mem); writel(0, card->plx + PLX_MAILBOX_5); if (wanxl_puts_command(card, MBX1_CMD_ABORTJ)) { printk(KERN_WARNING "wanXL %s: unable to Abort and Jump\n", pci_name(pdev)); wanxl_pci_remove_one(pdev); return -ENODEV; } stat = 0; timeout = jiffies + 5 * HZ; do { if ((stat = readl(card->plx + PLX_MAILBOX_5)) != 0) break; schedule(); }while (time_after(timeout, jiffies)); if (!stat) { printk(KERN_WARNING "wanXL %s: timeout while initializing card " "firmware\n", pci_name(pdev)); wanxl_pci_remove_one(pdev); return -ENODEV; } #if DETECT_RAM ramsize = stat; #endif printk(KERN_INFO "wanXL %s: at 0x%X, %u KB of RAM at 0x%X, irq %u\n", pci_name(pdev), plx_phy, ramsize / 1024, mem_phy, pdev->irq); /* Allocate IRQ */ if (request_irq(pdev->irq, wanxl_intr, IRQF_SHARED, "wanXL", card)) { printk(KERN_WARNING "wanXL %s: could not allocate IRQ%i.\n", pci_name(pdev), pdev->irq); wanxl_pci_remove_one(pdev); return -EBUSY; } card->irq = pdev->irq; for (i = 0; i < ports; i++) { hdlc_device *hdlc; port_t *port = &card->ports[i]; struct net_device *dev = alloc_hdlcdev(port); if (!dev) { printk(KERN_ERR "wanXL %s: unable to allocate" " memory\n", pci_name(pdev)); wanxl_pci_remove_one(pdev); return -ENOMEM; } port->dev = dev; hdlc = dev_to_hdlc(dev); spin_lock_init(&port->lock); dev->tx_queue_len = 50; dev->netdev_ops = &wanxl_ops; hdlc->attach = wanxl_attach; hdlc->xmit = wanxl_xmit; port->card = card; port->node = i; get_status(port)->clocking = CLOCK_EXT; if (register_hdlc_device(dev)) { printk(KERN_ERR "wanXL %s: unable to register hdlc" " device\n", pci_name(pdev)); free_netdev(dev); wanxl_pci_remove_one(pdev); return -ENOBUFS; } card->n_ports++; } printk(KERN_INFO "wanXL %s: port", pci_name(pdev)); for (i = 0; i < ports; i++) printk("%s #%i: %s", i ? "," : "", i, card->ports[i].dev->name); printk("\n"); for (i = 0; i < ports; i++) wanxl_cable_intr(&card->ports[i]); /* get carrier status etc.*/ return 0; } static DEFINE_PCI_DEVICE_TABLE(wanxl_pci_tbl) = { { PCI_VENDOR_ID_SBE, PCI_DEVICE_ID_SBE_WANXL100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_SBE, PCI_DEVICE_ID_SBE_WANXL200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_SBE, PCI_DEVICE_ID_SBE_WANXL400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { 0, } }; static struct pci_driver wanxl_pci_driver = { .name = "wanXL", .id_table = wanxl_pci_tbl, .probe = wanxl_pci_init_one, .remove = wanxl_pci_remove_one, }; static int __init wanxl_init_module(void) { #ifdef MODULE printk(KERN_INFO "%s\n", version); #endif return pci_register_driver(&wanxl_pci_driver); } static void __exit wanxl_cleanup_module(void) { pci_unregister_driver(&wanxl_pci_driver); } MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); MODULE_DESCRIPTION("SBE Inc. wanXL serial port driver"); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, wanxl_pci_tbl); module_init(wanxl_init_module); module_exit(wanxl_cleanup_module);