/***************************************************************************** * sdla_chdlc.c WANPIPE(tm) Multiprotocol WAN Link Driver. Cisco HDLC module. * * Authors: Nenad Corbic <ncorbic@sangoma.com> * Gideon Hack * * Copyright: (c) 1995-2001 Sangoma Technologies Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * ============================================================================ * Feb 28, 2001 Nenad Corbic Updated if_tx_timeout() routine for * 2.4.X kernels. * Jan 25, 2001 Nenad Corbic Added a TTY Sync serial driver over the * HDLC streaming protocol * Added a TTY Async serial driver over the * Async protocol. * Dec 15, 2000 Nenad Corbic Updated for 2.4.X Kernel support * Nov 13, 2000 Nenad Corbic Added true interface type encoding option. * Tcpdump doesn't support CHDLC inteface * types, to fix this "true type" option will set * the interface type to RAW IP mode. * Nov 07, 2000 Nenad Corbic Added security features for UDP debugging: * Deny all and specify allowed requests. * Jun 20, 2000 Nenad Corbic Fixed the API IP ERROR bug. Caused by the * latest update. * May 09, 2000 Nenad Corbic Option to bring down an interface * upon disconnect. * Mar 23, 2000 Nenad Corbic Improved task queue, bh handling. * Mar 16, 2000 Nenad Corbic Fixed the SLARP Dynamic IP addressing. * Mar 06, 2000 Nenad Corbic Bug Fix: corrupted mbox recovery. * Feb 10, 2000 Gideon Hack Added ASYNC support. * Feb 09, 2000 Nenad Corbic Fixed two shutdown bugs in update() and * if_stats() functions. * Jan 24, 2000 Nenad Corbic Fixed a startup wanpipe state racing, * condition between if_open and isr. * Jan 10, 2000 Nenad Corbic Added new socket API support. * Dev 15, 1999 Nenad Corbic Fixed up header files for 2.0.X kernels * Nov 20, 1999 Nenad Corbic Fixed zero length API bug. * Sep 30, 1999 Nenad Corbic Fixed dynamic IP and route setup. * Sep 23, 1999 Nenad Corbic Added SMP support, fixed tracing * Sep 13, 1999 Nenad Corbic Split up Port 0 and 1 into separate devices. * Jun 02, 1999 Gideon Hack Added support for the S514 adapter. * Oct 30, 1998 Jaspreet Singh Added Support for CHDLC API (HDLC STREAMING). * Oct 28, 1998 Jaspreet Singh Added Support for Dual Port CHDLC. * Aug 07, 1998 David Fong Initial version. *****************************************************************************/ #include <linux/module.h> #include <linux/kernel.h> /* printk(), and other useful stuff */ #include <linux/stddef.h> /* offsetof(), etc. */ #include <linux/errno.h> /* return codes */ #include <linux/string.h> /* inline memset(), etc. */ #include <linux/slab.h> /* kmalloc(), kfree() */ #include <linux/wanrouter.h> /* WAN router definitions */ #include <linux/wanpipe.h> /* WANPIPE common user API definitions */ #include <linux/if_arp.h> /* ARPHRD_* defines */ #include <asm/uaccess.h> #include <linux/inetdevice.h> #include <linux/netdevice.h> #include <linux/in.h> /* sockaddr_in */ #include <linux/inet.h> #include <linux/if.h> #include <asm/byteorder.h> /* htons(), etc. */ #include <linux/sdlapci.h> #include <asm/io.h> #include <linux/sdla_chdlc.h> /* CHDLC firmware API definitions */ #include <linux/sdla_asy.h> /* CHDLC (async) API definitions */ #include <linux/if_wanpipe_common.h> /* Socket Driver common area */ #include <linux/if_wanpipe.h> /* TTY Includes */ #include <linux/tty.h> #include <linux/tty_flip.h> #include <linux/serial.h> /****** Defines & Macros ****************************************************/ /* reasons for enabling the timer interrupt on the adapter */ #define TMR_INT_ENABLED_UDP 0x01 #define TMR_INT_ENABLED_UPDATE 0x02 #define TMR_INT_ENABLED_CONFIG 0x10 #define MAX_IP_ERRORS 10 #define TTY_CHDLC_MAX_MTU 2000 #define CHDLC_DFLT_DATA_LEN 1500 /* default MTU */ #define CHDLC_HDR_LEN 1 #define CHDLC_API 0x01 #define PORT(x) (x == 0 ? "PRIMARY" : "SECONDARY" ) #define MAX_BH_BUFF 10 //#define PRINT_DEBUG #ifdef PRINT_DEBUG #define dbg_printk(format, a...) printk(format, ## a) #else #define dbg_printk(format, a...) #endif /******Data Structures*****************************************************/ /* This structure is placed in the private data area of the device structure. * The card structure used to occupy the private area but now the following * structure will incorporate the card structure along with CHDLC specific data */ typedef struct chdlc_private_area { wanpipe_common_t common; sdla_t *card; int TracingEnabled; /* For enabling Tracing */ unsigned long curr_trace_addr; /* Used for Tracing */ unsigned long start_trace_addr; unsigned long end_trace_addr; unsigned long base_addr_trace_buffer; unsigned long end_addr_trace_buffer; unsigned short number_trace_elements; unsigned available_buffer_space; unsigned long router_start_time; unsigned char route_status; unsigned char route_removed; unsigned long tick_counter; /* For 5s timeout counter */ unsigned long router_up_time; u32 IP_address; /* IP addressing */ u32 IP_netmask; u32 ip_local; u32 ip_remote; u32 ip_local_tmp; u32 ip_remote_tmp; u8 ip_error; u8 config_chdlc; u8 config_chdlc_timeout; unsigned char mc; /* Mulitcast support on/off */ unsigned short udp_pkt_lgth; /* udp packet processing */ char udp_pkt_src; char udp_pkt_data[MAX_LGTH_UDP_MGNT_PKT]; unsigned short timer_int_enabled; char update_comms_stats; /* updating comms stats */ bh_data_t *bh_head; /* Circular buffer for chdlc_bh */ unsigned long tq_working; volatile int bh_write; volatile int bh_read; atomic_t bh_buff_used; unsigned char interface_down; /* Polling work queue entry. Each interface * has its own work queue entry, which is used * to defer events from the interrupt */ struct work_struct poll_work; struct timer_list poll_delay_timer; u8 gateway; u8 true_if_encoding; //FIXME: add driver stats as per frame relay! } chdlc_private_area_t; /* Route Status options */ #define NO_ROUTE 0x00 #define ADD_ROUTE 0x01 #define ROUTE_ADDED 0x02 #define REMOVE_ROUTE 0x03 /* variable for keeping track of enabling/disabling FT1 monitor status */ static int rCount = 0; /* variable for tracking how many interfaces to open for WANPIPE on the two ports */ extern void disable_irq(unsigned int); extern void enable_irq(unsigned int); /****** Function Prototypes *************************************************/ /* WAN link driver entry points. These are called by the WAN router module. */ static int update(struct wan_device* wandev); static int new_if(struct wan_device* wandev, struct net_device* dev, wanif_conf_t* conf); /* Network device interface */ static int if_init(struct net_device* dev); static int if_open(struct net_device* dev); static int if_close(struct net_device* dev); static int if_header(struct sk_buff* skb, struct net_device* dev, unsigned short type, void* daddr, void* saddr, unsigned len); static int if_rebuild_hdr (struct sk_buff *skb); static struct net_device_stats* if_stats(struct net_device* dev); static int if_send(struct sk_buff* skb, struct net_device* dev); /* CHDLC Firmware interface functions */ static int chdlc_configure (sdla_t* card, void* data); static int chdlc_comm_enable (sdla_t* card); static int chdlc_read_version (sdla_t* card, char* str); static int chdlc_set_intr_mode (sdla_t* card, unsigned mode); static int chdlc_send (sdla_t* card, void* data, unsigned len); static int chdlc_read_comm_err_stats (sdla_t* card); static int chdlc_read_op_stats (sdla_t* card); static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb); static int chdlc_disable_comm_shutdown (sdla_t *card); static void if_tx_timeout(struct net_device *dev); /* Miscellaneous CHDLC Functions */ static int set_chdlc_config (sdla_t* card); static void init_chdlc_tx_rx_buff( sdla_t* card); static int process_chdlc_exception(sdla_t *card); static int process_global_exception(sdla_t *card); static int update_comms_stats(sdla_t* card, chdlc_private_area_t* chdlc_priv_area); static int configure_ip (sdla_t* card); static int unconfigure_ip (sdla_t* card); static void process_route(sdla_t *card); static void port_set_state (sdla_t *card, int); static int config_chdlc (sdla_t *card); static void disable_comm (sdla_t *card); static void trigger_chdlc_poll(struct net_device *dev); static void chdlc_poll(struct net_device *dev); static void chdlc_poll_delay (unsigned long dev_ptr); /* Miscellaneous asynchronous interface Functions */ static int set_asy_config (sdla_t* card); static int asy_comm_enable (sdla_t* card); /* Interrupt handlers */ static void wpc_isr (sdla_t* card); static void rx_intr (sdla_t* card); static void timer_intr(sdla_t *); /* Bottom half handlers */ static void chdlc_work(struct net_device *dev); static int chdlc_work_cleanup(struct net_device *dev); static int bh_enqueue(struct net_device *dev, struct sk_buff *skb); /* Miscellaneous functions */ static int chk_bcast_mcast_addr(sdla_t* card, struct net_device* dev, struct sk_buff *skb); static int reply_udp( unsigned char *data, unsigned int mbox_len ); static int intr_test( sdla_t* card); static int udp_pkt_type( struct sk_buff *skb , sdla_t* card); static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card, struct sk_buff *skb, struct net_device* dev, chdlc_private_area_t* chdlc_priv_area); static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev, chdlc_private_area_t* chdlc_priv_area); static unsigned short calc_checksum (char *, int); static void s508_lock (sdla_t *card, unsigned long *smp_flags); static void s508_unlock (sdla_t *card, unsigned long *smp_flags); static int Intr_test_counter; /* TTY Global Definitions */ #define NR_PORTS 4 #define WAN_TTY_MAJOR 226 #define WAN_TTY_MINOR 0 #define WAN_CARD(port) (tty_card_map[port]) #define MIN_PORT 0 #define MAX_PORT NR_PORTS-1 #define CRC_LENGTH 2 static int wanpipe_tty_init(sdla_t *card); static void wanpipe_tty_receive(sdla_t *, unsigned, unsigned int); static void wanpipe_tty_trigger_poll(sdla_t *card); static struct tty_driver serial_driver; static int tty_init_cnt=0; static struct serial_state rs_table[NR_PORTS]; static char tty_driver_mode=WANOPT_TTY_SYNC; static char *opt_decode[] = {"NONE","CRTSCTS","XONXOFF-RX", "CRTSCTS XONXOFF-RX","XONXOFF-TX", "CRTSCTS XONXOFF-TX","CRTSCTS XONXOFF"}; static char *p_decode[] = {"NONE","ODD","EVEN"}; static void* tty_card_map[NR_PORTS] = {NULL,NULL,NULL,NULL}; /****** Public Functions ****************************************************/ /*============================================================================ * Cisco HDLC protocol initialization routine. * * This routine is called by the main WANPIPE module during setup. At this * point adapter is completely initialized and firmware is running. * o read firmware version (to make sure it's alive) * o configure adapter * o initialize protocol-specific fields of the adapter data space. * * Return: 0 o.k. * < 0 failure. */ int wpc_init (sdla_t* card, wandev_conf_t* conf) { unsigned char port_num; int err; unsigned long max_permitted_baud = 0; SHARED_MEMORY_INFO_STRUCT *flags; union { char str[80]; } u; volatile CHDLC_MAILBOX_STRUCT* mb; CHDLC_MAILBOX_STRUCT* mb1; unsigned long timeout; /* Verify configuration ID */ if (conf->config_id != WANCONFIG_CHDLC) { printk(KERN_INFO "%s: invalid configuration ID %u!\n", card->devname, conf->config_id); return -EINVAL; } /* Find out which Port to use */ if ((conf->comm_port == WANOPT_PRI) || (conf->comm_port == WANOPT_SEC)){ if (card->next){ if (conf->comm_port != card->next->u.c.comm_port){ card->u.c.comm_port = conf->comm_port; }else{ printk(KERN_INFO "%s: ERROR - %s port used!\n", card->wandev.name, PORT(conf->comm_port)); return -EINVAL; } }else{ card->u.c.comm_port = conf->comm_port; } }else{ printk(KERN_INFO "%s: ERROR - Invalid Port Selected!\n", card->wandev.name); return -EINVAL; } /* Initialize protocol-specific fields */ if(card->hw.type != SDLA_S514){ if (card->u.c.comm_port == WANOPT_PRI){ card->mbox = (void *) card->hw.dpmbase; }else{ card->mbox = (void *) card->hw.dpmbase + SEC_BASE_ADDR_MB_STRUCT - PRI_BASE_ADDR_MB_STRUCT; } }else{ /* for a S514 adapter, set a pointer to the actual mailbox in the */ /* allocated virtual memory area */ if (card->u.c.comm_port == WANOPT_PRI){ card->mbox = (void *) card->hw.dpmbase + PRI_BASE_ADDR_MB_STRUCT; }else{ card->mbox = (void *) card->hw.dpmbase + SEC_BASE_ADDR_MB_STRUCT; } } mb = mb1 = card->mbox; if (!card->configured){ /* The board will place an 'I' in the return code to indicate that it is ready to accept commands. We expect this to be completed in less than 1 second. */ timeout = jiffies; while (mb->return_code != 'I') /* Wait 1s for board to initialize */ if ((jiffies - timeout) > 1*HZ) break; if (mb->return_code != 'I') { printk(KERN_INFO "%s: Initialization not completed by adapter\n", card->devname); printk(KERN_INFO "Please contact Sangoma representative.\n"); return -EIO; } } /* Read firmware version. Note that when adapter initializes, it * clears the mailbox, so it may appear that the first command was * executed successfully when in fact it was merely erased. To work * around this, we execute the first command twice. */ if (chdlc_read_version(card, u.str)) return -EIO; printk(KERN_INFO "%s: Running Cisco HDLC firmware v%s\n", card->devname, u.str); card->isr = &wpc_isr; card->poll = NULL; card->exec = NULL; card->wandev.update = &update; card->wandev.new_if = &new_if; card->wandev.del_if = NULL; card->wandev.udp_port = conf->udp_port; card->disable_comm = &disable_comm; card->wandev.new_if_cnt = 0; /* reset the number of times the 'update()' proc has been called */ card->u.c.update_call_count = 0; card->wandev.ttl = conf->ttl; card->wandev.interface = conf->interface; if ((card->u.c.comm_port == WANOPT_SEC && conf->interface == WANOPT_V35)&& card->hw.type != SDLA_S514){ printk(KERN_INFO "%s: ERROR - V35 Interface not supported on S508 %s port \n", card->devname, PORT(card->u.c.comm_port)); return -EIO; } card->wandev.clocking = conf->clocking; port_num = card->u.c.comm_port; /* in API mode, we can configure for "receive only" buffering */ if(card->hw.type == SDLA_S514) { card->u.c.receive_only = conf->receive_only; if(conf->receive_only) { printk(KERN_INFO "%s: Configured for 'receive only' mode\n", card->devname); } } /* Setup Port Bps */ if(card->wandev.clocking) { if((port_num == WANOPT_PRI) || card->u.c.receive_only) { /* For Primary Port 0 */ max_permitted_baud = (card->hw.type == SDLA_S514) ? PRI_MAX_BAUD_RATE_S514 : PRI_MAX_BAUD_RATE_S508; }else if(port_num == WANOPT_SEC) { /* For Secondary Port 1 */ max_permitted_baud = (card->hw.type == SDLA_S514) ? SEC_MAX_BAUD_RATE_S514 : SEC_MAX_BAUD_RATE_S508; } if(conf->bps > max_permitted_baud) { conf->bps = max_permitted_baud; printk(KERN_INFO "%s: Baud too high!\n", card->wandev.name); printk(KERN_INFO "%s: Baud rate set to %lu bps\n", card->wandev.name, max_permitted_baud); } card->wandev.bps = conf->bps; }else{ card->wandev.bps = 0; } /* Setup the Port MTU */ if((port_num == WANOPT_PRI) || card->u.c.receive_only) { /* For Primary Port 0 */ card->wandev.mtu = (conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ? min_t(unsigned int, conf->mtu, PRI_MAX_NO_DATA_BYTES_IN_FRAME) : CHDLC_DFLT_DATA_LEN; } else if(port_num == WANOPT_SEC) { /* For Secondary Port 1 */ card->wandev.mtu = (conf->mtu >= MIN_LGTH_CHDLC_DATA_CFG) ? min_t(unsigned int, conf->mtu, SEC_MAX_NO_DATA_BYTES_IN_FRAME) : CHDLC_DFLT_DATA_LEN; } /* Set up the interrupt status area */ /* Read the CHDLC Configuration and obtain: * Ptr to shared memory infor struct * Use this pointer to calculate the value of card->u.c.flags ! */ mb1->buffer_length = 0; mb1->command = READ_CHDLC_CONFIGURATION; err = sdla_exec(mb1) ? mb1->return_code : CMD_TIMEOUT; if(err != COMMAND_OK) { if(card->hw.type != SDLA_S514) enable_irq(card->hw.irq); chdlc_error(card, err, mb1); return -EIO; } if(card->hw.type == SDLA_S514){ card->u.c.flags = (void *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb1->data)-> ptr_shared_mem_info_struct)); }else{ card->u.c.flags = (void *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb1->data)-> ptr_shared_mem_info_struct % SDLA_WINDOWSIZE)); } flags = card->u.c.flags; /* This is for the ports link state */ card->wandev.state = WAN_DUALPORT; card->u.c.state = WAN_DISCONNECTED; if (!card->wandev.piggyback){ int err; /* Perform interrupt testing */ err = intr_test(card); if(err || (Intr_test_counter < MAX_INTR_TEST_COUNTER)) { printk(KERN_INFO "%s: Interrupt test failed (%i)\n", card->devname, Intr_test_counter); printk(KERN_INFO "%s: Please choose another interrupt\n", card->devname); return -EIO; } printk(KERN_INFO "%s: Interrupt test passed (%i)\n", card->devname, Intr_test_counter); card->configured = 1; } if ((card->tty_opt=conf->tty) == WANOPT_YES){ int err; card->tty_minor = conf->tty_minor; /* On ASYNC connections internal clocking * is mandatory */ if ((card->u.c.async_mode = conf->tty_mode)){ card->wandev.clocking = 1; } err=wanpipe_tty_init(card); if (err){ return err; } }else{ if (chdlc_set_intr_mode(card, APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: " "Failed to set interrupt triggers!\n", card->devname); return -EIO; } /* Mask the Timer interrupt */ flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_TIMER; } /* If we are using CHDLC in backup mode, this flag will * indicate not to look for IP addresses in config_chdlc()*/ card->u.c.backup = conf->backup; printk(KERN_INFO "\n"); return 0; } /******* WAN Device Driver Entry Points *************************************/ /*============================================================================ * Update device status & statistics * This procedure is called when updating the PROC file system and returns * various communications statistics. These statistics are accumulated from 3 * different locations: * 1) The 'if_stats' recorded for the device. * 2) Communication error statistics on the adapter. * 3) CHDLC operational statistics on the adapter. * The board level statistics are read during a timer interrupt. Note that we * read the error and operational statistics during consecitive timer ticks so * as to minimize the time that we are inside the interrupt handler. * */ static int update(struct wan_device* wandev) { sdla_t* card = wandev->private; struct net_device* dev; volatile chdlc_private_area_t* chdlc_priv_area; SHARED_MEMORY_INFO_STRUCT *flags; unsigned long timeout; /* sanity checks */ if((wandev == NULL) || (wandev->private == NULL)) return -EFAULT; if(wandev->state == WAN_UNCONFIGURED) return -ENODEV; /* more sanity checks */ if(!card->u.c.flags) return -ENODEV; if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) return -EAGAIN; if((dev=card->wandev.dev) == NULL) return -ENODEV; if((chdlc_priv_area=dev->priv) == NULL) return -ENODEV; flags = card->u.c.flags; if(chdlc_priv_area->update_comms_stats){ return -EAGAIN; } /* we will need 2 timer interrupts to complete the */ /* reading of the statistics */ chdlc_priv_area->update_comms_stats = 2; flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER; chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UPDATE; /* wait a maximum of 1 second for the statistics to be updated */ timeout = jiffies; for(;;) { if(chdlc_priv_area->update_comms_stats == 0) break; if ((jiffies - timeout) > (1 * HZ)){ chdlc_priv_area->update_comms_stats = 0; chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE; return -EAGAIN; } } return 0; } /*============================================================================ * Create new logical channel. * This routine is called by the router when ROUTER_IFNEW IOCTL is being * handled. * o parse media- and hardware-specific configuration * o make sure that a new channel can be created * o allocate resources, if necessary * o prepare network device structure for registaration. * * Return: 0 o.k. * < 0 failure (channel will not be created) */ static int new_if(struct wan_device* wandev, struct net_device* dev, wanif_conf_t* conf) { sdla_t* card = wandev->private; chdlc_private_area_t* chdlc_priv_area; printk(KERN_INFO "%s: Configuring Interface: %s\n", card->devname, conf->name); if ((conf->name[0] == '\0') || (strlen(conf->name) > WAN_IFNAME_SZ)) { printk(KERN_INFO "%s: Invalid interface name!\n", card->devname); return -EINVAL; } /* allocate and initialize private data */ chdlc_priv_area = kmalloc(sizeof(chdlc_private_area_t), GFP_KERNEL); if(chdlc_priv_area == NULL) return -ENOMEM; memset(chdlc_priv_area, 0, sizeof(chdlc_private_area_t)); chdlc_priv_area->card = card; chdlc_priv_area->common.sk = NULL; chdlc_priv_area->common.func = NULL; /* initialize data */ strcpy(card->u.c.if_name, conf->name); if(card->wandev.new_if_cnt > 0) { kfree(chdlc_priv_area); return -EEXIST; } card->wandev.new_if_cnt++; chdlc_priv_area->TracingEnabled = 0; chdlc_priv_area->route_status = NO_ROUTE; chdlc_priv_area->route_removed = 0; card->u.c.async_mode = conf->async_mode; /* setup for asynchronous mode */ if(conf->async_mode) { printk(KERN_INFO "%s: Configuring for asynchronous mode\n", wandev->name); if(card->u.c.comm_port == WANOPT_PRI) { printk(KERN_INFO "%s:Asynchronous mode on secondary port only\n", wandev->name); kfree(chdlc_priv_area); return -EINVAL; } if(strcmp(conf->usedby, "WANPIPE") == 0) { printk(KERN_INFO "%s: Running in WANIPE Async Mode\n", wandev->name); card->u.c.usedby = WANPIPE; }else{ card->u.c.usedby = API; } if(!card->wandev.clocking) { printk(KERN_INFO "%s: Asynch. clocking must be 'Internal'\n", wandev->name); kfree(chdlc_priv_area); return -EINVAL; } if((card->wandev.bps < MIN_ASY_BAUD_RATE) || (card->wandev.bps > MAX_ASY_BAUD_RATE)) { printk(KERN_INFO "%s: Selected baud rate is invalid.\n", wandev->name); printk(KERN_INFO "Must be between %u and %u bps.\n", MIN_ASY_BAUD_RATE, MAX_ASY_BAUD_RATE); kfree(chdlc_priv_area); return -EINVAL; } card->u.c.api_options = 0; if (conf->asy_data_trans == WANOPT_YES) { card->u.c.api_options |= ASY_RX_DATA_TRANSPARENT; } card->u.c.protocol_options = 0; if (conf->rts_hs_for_receive == WANOPT_YES) { card->u.c.protocol_options |= ASY_RTS_HS_FOR_RX; } if (conf->xon_xoff_hs_for_receive == WANOPT_YES) { card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_RX; } if (conf->xon_xoff_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_XON_XOFF_HS_FOR_TX; } if (conf->dcd_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_DCD_HS_FOR_TX; } if (conf->cts_hs_for_transmit == WANOPT_YES) { card->u.c.protocol_options |= ASY_CTS_HS_FOR_TX; } card->u.c.tx_bits_per_char = conf->tx_bits_per_char; card->u.c.rx_bits_per_char = conf->rx_bits_per_char; card->u.c.stop_bits = conf->stop_bits; card->u.c.parity = conf->parity; card->u.c.break_timer = conf->break_timer; card->u.c.inter_char_timer = conf->inter_char_timer; card->u.c.rx_complete_length = conf->rx_complete_length; card->u.c.xon_char = conf->xon_char; } else { /* setup for synchronous mode */ card->u.c.protocol_options = 0; if (conf->ignore_dcd == WANOPT_YES){ card->u.c.protocol_options |= IGNORE_DCD_FOR_LINK_STAT; } if (conf->ignore_cts == WANOPT_YES){ card->u.c.protocol_options |= IGNORE_CTS_FOR_LINK_STAT; } if (conf->ignore_keepalive == WANOPT_YES) { card->u.c.protocol_options |= IGNORE_KPALV_FOR_LINK_STAT; card->u.c.kpalv_tx = MIN_Tx_KPALV_TIMER; card->u.c.kpalv_rx = MIN_Rx_KPALV_TIMER; card->u.c.kpalv_err = MIN_KPALV_ERR_TOL; } else { /* Do not ignore keepalives */ card->u.c.kpalv_tx = ((conf->keepalive_tx_tmr - MIN_Tx_KPALV_TIMER) >= 0) ? min_t(unsigned int, conf->keepalive_tx_tmr,MAX_Tx_KPALV_TIMER) : DEFAULT_Tx_KPALV_TIMER; card->u.c.kpalv_rx = ((conf->keepalive_rx_tmr - MIN_Rx_KPALV_TIMER) >= 0) ? min_t(unsigned int, conf->keepalive_rx_tmr,MAX_Rx_KPALV_TIMER) : DEFAULT_Rx_KPALV_TIMER; card->u.c.kpalv_err = ((conf->keepalive_err_margin-MIN_KPALV_ERR_TOL) >= 0) ? min_t(unsigned int, conf->keepalive_err_margin, MAX_KPALV_ERR_TOL) : DEFAULT_KPALV_ERR_TOL; } /* Setup slarp timer to control delay between slarps */ card->u.c.slarp_timer = ((conf->slarp_timer - MIN_SLARP_REQ_TIMER) >= 0) ? min_t(unsigned int, conf->slarp_timer, MAX_SLARP_REQ_TIMER) : DEFAULT_SLARP_REQ_TIMER; if (conf->hdlc_streaming == WANOPT_YES) { printk(KERN_INFO "%s: Enabling HDLC STREAMING Mode\n", wandev->name); card->u.c.protocol_options = HDLC_STREAMING_MODE; } if ((chdlc_priv_area->true_if_encoding = conf->true_if_encoding) == WANOPT_YES){ printk(KERN_INFO "%s: Enabling, true interface type encoding.\n", card->devname); } /* Setup wanpipe as a router (WANPIPE) or as an API */ if( strcmp(conf->usedby, "WANPIPE") == 0) { printk(KERN_INFO "%s: Running in WANPIPE mode!\n", wandev->name); card->u.c.usedby = WANPIPE; /* Option to bring down the interface when * the link goes down */ if (conf->if_down){ set_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down); printk(KERN_INFO "%s: Dynamic interface configuration enabled\n", card->devname); } } else if( strcmp(conf->usedby, "API") == 0) { card->u.c.usedby = API; printk(KERN_INFO "%s: Running in API mode !\n", wandev->name); } } /* Tells us that if this interface is a * gateway or not */ if ((chdlc_priv_area->gateway = conf->gateway) == WANOPT_YES){ printk(KERN_INFO "%s: Interface %s is set as a gateway.\n", card->devname,card->u.c.if_name); } /* Get Multicast Information */ chdlc_priv_area->mc = conf->mc; /* prepare network device data space for registration */ strcpy(dev->name,card->u.c.if_name); dev->init = &if_init; dev->priv = chdlc_priv_area; /* Initialize the polling work routine */ INIT_WORK(&chdlc_priv_area->poll_work, (void*)(void*)chdlc_poll, dev); /* Initialize the polling delay timer */ init_timer(&chdlc_priv_area->poll_delay_timer); chdlc_priv_area->poll_delay_timer.data = (unsigned long)dev; chdlc_priv_area->poll_delay_timer.function = chdlc_poll_delay; printk(KERN_INFO "\n"); return 0; } /****** Network Device Interface ********************************************/ /*============================================================================ * Initialize Linux network interface. * * This routine is called only once for each interface, during Linux network * interface registration. Returning anything but zero will fail interface * registration. */ static int if_init(struct net_device* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; struct wan_device* wandev = &card->wandev; /* Initialize device driver entry points */ dev->open = &if_open; dev->stop = &if_close; dev->hard_header = &if_header; dev->rebuild_header = &if_rebuild_hdr; dev->hard_start_xmit = &if_send; dev->get_stats = &if_stats; dev->tx_timeout = &if_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; /* Initialize media-specific parameters */ dev->flags |= IFF_POINTOPOINT; dev->flags |= IFF_NOARP; /* Enable Mulitcasting if user selected */ if (chdlc_priv_area->mc == WANOPT_YES){ dev->flags |= IFF_MULTICAST; } if (chdlc_priv_area->true_if_encoding){ dev->type = ARPHRD_HDLC; /* This breaks the tcpdump */ }else{ dev->type = ARPHRD_PPP; } dev->mtu = card->wandev.mtu; /* for API usage, add the API header size to the requested MTU size */ if(card->u.c.usedby == API) { dev->mtu += sizeof(api_tx_hdr_t); } dev->hard_header_len = CHDLC_HDR_LEN; /* Initialize hardware parameters */ dev->irq = wandev->irq; dev->dma = wandev->dma; dev->base_addr = wandev->ioport; dev->mem_start = wandev->maddr; dev->mem_end = wandev->maddr + wandev->msize - 1; /* Set transmit buffer queue length * If too low packets will not be retransmitted * by stack. */ dev->tx_queue_len = 100; SET_MODULE_OWNER(dev); return 0; } /*============================================================================ * Open network interface. * o enable communications and interrupts. * o prevent module from unloading by incrementing use count * * Return 0 if O.k. or errno. */ static int if_open(struct net_device* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; struct timeval tv; int err = 0; /* Only one open per interface is allowed */ if (netif_running(dev)) return -EBUSY; /* Initialize the work queue entry */ chdlc_priv_area->tq_working=0; INIT_WORK(&chdlc_priv_area->common.wanpipe_work, (void *)(void *)chdlc_work, dev); /* Allocate and initialize BH circular buffer */ /* Add 1 to MAX_BH_BUFF so we don't have test with (MAX_BH_BUFF-1) */ chdlc_priv_area->bh_head = kmalloc((sizeof(bh_data_t)*(MAX_BH_BUFF+1)),GFP_ATOMIC); memset(chdlc_priv_area->bh_head,0,(sizeof(bh_data_t)*(MAX_BH_BUFF+1))); atomic_set(&chdlc_priv_area->bh_buff_used, 0); do_gettimeofday(&tv); chdlc_priv_area->router_start_time = tv.tv_sec; netif_start_queue(dev); wanpipe_open(card); /* TTY is configured during wanpipe_set_termios * call, not here */ if (card->tty_opt) return err; set_bit(0,&chdlc_priv_area->config_chdlc); chdlc_priv_area->config_chdlc_timeout=jiffies; /* Start the CHDLC configuration after 1sec delay. * This will give the interface initilization time * to finish its configuration */ mod_timer(&chdlc_priv_area->poll_delay_timer, jiffies + HZ); return err; } /*============================================================================ * Close network interface. * o if this is the last close, then disable communications and interrupts. * o reset flags. */ static int if_close(struct net_device* dev) { chdlc_private_area_t* chdlc_priv_area = dev->priv; sdla_t* card = chdlc_priv_area->card; if (chdlc_priv_area->bh_head){ int i; struct sk_buff *skb; for (i=0; i<(MAX_BH_BUFF+1); i++){ skb = ((bh_data_t *)&chdlc_priv_area->bh_head[i])->skb; if (skb != NULL){ dev_kfree_skb_any(skb); } } kfree(chdlc_priv_area->bh_head); chdlc_priv_area->bh_head=NULL; } netif_stop_queue(dev); wanpipe_close(card); del_timer(&chdlc_priv_area->poll_delay_timer); return 0; } static void disable_comm (sdla_t *card) { SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; if (card->u.c.comm_enabled){ chdlc_disable_comm_shutdown (card); }else{ flags->interrupt_info_struct.interrupt_permission = 0; } if (!tty_init_cnt) return; if (card->tty_opt){ struct serial_state * state; if (!(--tty_init_cnt)){ int e1; serial_driver.refcount=0; if ((e1 = tty_unregister_driver(&serial_driver))) printk("SERIAL: failed to unregister serial driver (%d)\n", e1); printk(KERN_INFO "%s: Unregistering TTY Driver, Major %i\n", card->devname,WAN_TTY_MAJOR); } card->tty=NULL; tty_card_map[card->tty_minor]=NULL; state = &rs_table[card->tty_minor]; memset(state, 0, sizeof(*state)); } return; } /*============================================================================ * Build media header. * * The trick here is to put packet type (Ethertype) into 'protocol' field of * the socket buffer, so that we don't forget it. If packet type is not * supported, set skb->protocol to 0 and discard packet later. * * Return: media header length. */ static int if_header(struct sk_buff* skb, struct net_device* dev, unsigned short type, void* daddr, void* saddr, unsigned len) { skb->protocol = htons(type); return CHDLC_HDR_LEN; } /*============================================================================ * Handle transmit timeout event from netif watchdog */ static void if_tx_timeout(struct net_device *dev) { chdlc_private_area_t* chan = dev->priv; sdla_t *card = chan->card; /* If our device stays busy for at least 5 seconds then we will * kick start the device by making dev->tbusy = 0. We expect * that our device never stays busy more than 5 seconds. So this * is only used as a last resort. */ ++card->wandev.stats.collisions; printk (KERN_INFO "%s: Transmit timed out on %s\n", card->devname,dev->name); netif_wake_queue (dev); } /*============================================================================ * Re-build media header. * * Return: 1 physical address resolved. * 0 physical address not resolved */ static int if_rebuild_hdr (struct sk_buff *skb) { return 1; } /*============================================================================ * Send a packet on a network interface. * o set tbusy flag (marks start of the transmission) to block a timer-based * transmit from overlapping. * o check link state. If link is not up, then drop the packet. * o execute adapter send command. * o free socket buffer * * Return: 0 complete (socket buffer must be freed) * non-0 packet may be re-transmitted (tbusy must be set) * * Notes: * 1. This routine is called either by the protocol stack or by the "net * bottom half" (with interrupts enabled). * 2. Setting tbusy flag will inhibit further transmit requests from the * protocol stack and can be used for flow control with protocol layer. */ static int if_send(struct sk_buff* skb, struct net_device* dev) { chdlc_private_area_t *chdlc_priv_area = dev->priv; sdla_t *card = chdlc_priv_area->card; SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; INTERRUPT_INFORMATION_STRUCT *chdlc_int = &flags->interrupt_info_struct; int udp_type = 0; unsigned long smp_flags; int err=0; netif_stop_queue(dev); if (skb == NULL){ /* If we get here, some higher layer thinks we've missed an * tx-done interrupt. */ printk(KERN_INFO "%s: interface %s got kicked!\n", card->devname, dev->name); netif_wake_queue(dev); return 0; } if (ntohs(skb->protocol) != htons(PVC_PROT)){ /* check the udp packet type */ udp_type = udp_pkt_type(skb, card); if (udp_type == UDP_CPIPE_TYPE){ if(store_udp_mgmt_pkt(UDP_PKT_FRM_STACK, card, skb, dev, chdlc_priv_area)){ chdlc_int->interrupt_permission |= APP_INT_ON_TIMER; } netif_start_queue(dev); return 0; } /* check to see if the source IP address is a broadcast or */ /* multicast IP address */ if(chk_bcast_mcast_addr(card, dev, skb)){ ++card->wandev.stats.tx_dropped; dev_kfree_skb_any(skb); netif_start_queue(dev); return 0; } } /* Lock the 508 Card: SMP is supported */ if(card->hw.type != SDLA_S514){ s508_lock(card,&smp_flags); } if(test_and_set_bit(SEND_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Critical in if_send: %lx\n", card->wandev.name,card->wandev.critical); ++card->wandev.stats.tx_dropped; netif_start_queue(dev); goto if_send_exit_crit; } if(card->u.c.state != WAN_CONNECTED){ ++card->wandev.stats.tx_dropped; netif_start_queue(dev); }else if(!skb->protocol){ ++card->wandev.stats.tx_errors; netif_start_queue(dev); }else { void* data = skb->data; unsigned len = skb->len; unsigned char attr; /* If it's an API packet pull off the API * header. Also check that the packet size * is larger than the API header */ if (card->u.c.usedby == API){ api_tx_hdr_t* api_tx_hdr; /* discard the frame if we are configured for */ /* 'receive only' mode or if there is no data */ if (card->u.c.receive_only || (len <= sizeof(api_tx_hdr_t))) { ++card->wandev.stats.tx_dropped; netif_start_queue(dev); goto if_send_exit_crit; } api_tx_hdr = (api_tx_hdr_t *)data; attr = api_tx_hdr->attr; data += sizeof(api_tx_hdr_t); len -= sizeof(api_tx_hdr_t); } if(chdlc_send(card, data, len)) { netif_stop_queue(dev); }else{ ++card->wandev.stats.tx_packets; card->wandev.stats.tx_bytes += len; netif_start_queue(dev); dev->trans_start = jiffies; } } if_send_exit_crit: if (!(err=netif_queue_stopped(dev))) { dev_kfree_skb_any(skb); }else{ chdlc_priv_area->tick_counter = jiffies; chdlc_int->interrupt_permission |= APP_INT_ON_TX_FRAME; } clear_bit(SEND_CRIT, (void*)&card->wandev.critical); if(card->hw.type != SDLA_S514){ s508_unlock(card,&smp_flags); } return err; } /*============================================================================ * Check to see if the packet to be transmitted contains a broadcast or * multicast source IP address. */ static int chk_bcast_mcast_addr(sdla_t *card, struct net_device* dev, struct sk_buff *skb) { u32 src_ip_addr; u32 broadcast_ip_addr = 0; struct in_device *in_dev; /* read the IP source address from the outgoing packet */ src_ip_addr = *(u32 *)(skb->data + 12); /* read the IP broadcast address for the device */ in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa= in_dev->ifa_list; if(ifa != NULL) broadcast_ip_addr = ifa->ifa_broadcast; else return 0; } /* check if the IP Source Address is a Broadcast address */ if((dev->flags & IFF_BROADCAST) && (src_ip_addr == broadcast_ip_addr)) { printk(KERN_INFO "%s: Broadcast Source Address silently discarded\n", card->devname); return 1; } /* check if the IP Source Address is a Multicast address */ if((ntohl(src_ip_addr) >= 0xE0000001) && (ntohl(src_ip_addr) <= 0xFFFFFFFE)) { printk(KERN_INFO "%s: Multicast Source Address silently discarded\n", card->devname); return 1; } return 0; } /*============================================================================ * Reply to UDP Management system. * Return length of reply. */ static int reply_udp( unsigned char *data, unsigned int mbox_len ) { unsigned short len, udp_length, temp, ip_length; unsigned long ip_temp; int even_bound = 0; chdlc_udp_pkt_t *c_udp_pkt = (chdlc_udp_pkt_t *)data; /* Set length of packet */ len = sizeof(ip_pkt_t)+ sizeof(udp_pkt_t)+ sizeof(wp_mgmt_t)+ sizeof(cblock_t)+ sizeof(trace_info_t)+ mbox_len; /* fill in UDP reply */ c_udp_pkt->wp_mgmt.request_reply = UDPMGMT_REPLY; /* fill in UDP length */ udp_length = sizeof(udp_pkt_t)+ sizeof(wp_mgmt_t)+ sizeof(cblock_t)+ sizeof(trace_info_t)+ mbox_len; /* put it on an even boundary */ if ( udp_length & 0x0001 ) { udp_length += 1; len += 1; even_bound = 1; } temp = (udp_length<<8)|(udp_length>>8); c_udp_pkt->udp_pkt.udp_length = temp; /* swap UDP ports */ temp = c_udp_pkt->udp_pkt.udp_src_port; c_udp_pkt->udp_pkt.udp_src_port = c_udp_pkt->udp_pkt.udp_dst_port; c_udp_pkt->udp_pkt.udp_dst_port = temp; /* add UDP pseudo header */ temp = 0x1100; *((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound)) = temp; temp = (udp_length<<8)|(udp_length>>8); *((unsigned short *)(c_udp_pkt->data+mbox_len+even_bound+2)) = temp; /* calculate UDP checksum */ c_udp_pkt->udp_pkt.udp_checksum = 0; c_udp_pkt->udp_pkt.udp_checksum = calc_checksum(&data[UDP_OFFSET],udp_length+UDP_OFFSET); /* fill in IP length */ ip_length = len; temp = (ip_length<<8)|(ip_length>>8); c_udp_pkt->ip_pkt.total_length = temp; /* swap IP addresses */ ip_temp = c_udp_pkt->ip_pkt.ip_src_address; c_udp_pkt->ip_pkt.ip_src_address = c_udp_pkt->ip_pkt.ip_dst_address; c_udp_pkt->ip_pkt.ip_dst_address = ip_temp; /* fill in IP checksum */ c_udp_pkt->ip_pkt.hdr_checksum = 0; c_udp_pkt->ip_pkt.hdr_checksum = calc_checksum(data,sizeof(ip_pkt_t)); return len; } /* reply_udp */ unsigned short calc_checksum (char *data, int len) { unsigned short temp; unsigned long sum=0; int i; for( i = 0; i <len; i+=2 ) { memcpy(&temp,&data[i],2); sum += (unsigned long)temp; } while (sum >> 16 ) { sum = (sum & 0xffffUL) + (sum >> 16); } temp = (unsigned short)sum; temp = ~temp; if( temp == 0 ) temp = 0xffff; return temp; } /*============================================================================ * Get ethernet-style interface statistics. * Return a pointer to struct enet_statistics. */ static struct net_device_stats* if_stats(struct net_device* dev) { sdla_t *my_card; chdlc_private_area_t* chdlc_priv_area; if ((chdlc_priv_area=dev->priv) == NULL) return NULL; my_card = chdlc_priv_area->card; return &my_card->wandev.stats; } /****** Cisco HDLC Firmware Interface Functions *******************************/ /*============================================================================ * Read firmware code version. * Put code version as ASCII string in str. */ static int chdlc_read_version (sdla_t* card, char* str) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; int len; char err; mb->buffer_length = 0; mb->command = READ_CHDLC_CODE_VERSION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if(err != COMMAND_OK) { chdlc_error(card,err,mb); } else if (str) { /* is not null */ len = mb->buffer_length; memcpy(str, mb->data, len); str[len] = '\0'; } return (err); } /*----------------------------------------------------------------------------- * Configure CHDLC firmware. */ static int chdlc_configure (sdla_t* card, void* data) { int err; CHDLC_MAILBOX_STRUCT *mailbox = card->mbox; int data_length = sizeof(CHDLC_CONFIGURATION_STRUCT); mailbox->buffer_length = data_length; memcpy(mailbox->data, data, data_length); mailbox->command = SET_CHDLC_CONFIGURATION; err = sdla_exec(mailbox) ? mailbox->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error (card, err, mailbox); return err; } /*============================================================================ * Set interrupt mode -- HDLC Version. */ static int chdlc_set_intr_mode (sdla_t* card, unsigned mode) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; CHDLC_INT_TRIGGERS_STRUCT* int_data = (CHDLC_INT_TRIGGERS_STRUCT *)mb->data; int err; int_data->CHDLC_interrupt_triggers = mode; int_data->IRQ = card->hw.irq; int_data->interrupt_timer = 1; mb->buffer_length = sizeof(CHDLC_INT_TRIGGERS_STRUCT); mb->command = SET_CHDLC_INTERRUPT_TRIGGERS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } /*=========================================================== * chdlc_disable_comm_shutdown * * Shutdown() disables the communications. We must * have a sparate functions, because we must not * call chdlc_error() hander since the private * area has already been replaced */ static int chdlc_disable_comm_shutdown (sdla_t *card) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; CHDLC_INT_TRIGGERS_STRUCT* int_data = (CHDLC_INT_TRIGGERS_STRUCT *)mb->data; int err; /* Disable Interrutps */ int_data->CHDLC_interrupt_triggers = 0; int_data->IRQ = card->hw.irq; int_data->interrupt_timer = 1; mb->buffer_length = sizeof(CHDLC_INT_TRIGGERS_STRUCT); mb->command = SET_CHDLC_INTERRUPT_TRIGGERS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; /* Disable Communications */ if (card->u.c.async_mode) { mb->command = DISABLE_ASY_COMMUNICATIONS; }else{ mb->command = DISABLE_CHDLC_COMMUNICATIONS; } mb->buffer_length = 0; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; card->u.c.comm_enabled = 0; return 0; } /*============================================================================ * Enable communications. */ static int chdlc_comm_enable (sdla_t* card) { int err; CHDLC_MAILBOX_STRUCT* mb = card->mbox; mb->buffer_length = 0; mb->command = ENABLE_CHDLC_COMMUNICATIONS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error(card, err, mb); else card->u.c.comm_enabled = 1; return err; } /*============================================================================ * Read communication error statistics. */ static int chdlc_read_comm_err_stats (sdla_t* card) { int err; CHDLC_MAILBOX_STRUCT* mb = card->mbox; mb->buffer_length = 0; mb->command = READ_COMMS_ERROR_STATS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error(card,err,mb); return err; } /*============================================================================ * Read CHDLC operational statistics. */ static int chdlc_read_op_stats (sdla_t* card) { int err; CHDLC_MAILBOX_STRUCT* mb = card->mbox; mb->buffer_length = 0; mb->command = READ_CHDLC_OPERATIONAL_STATS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error(card,err,mb); return err; } /*============================================================================ * Update communications error and general packet statistics. */ static int update_comms_stats(sdla_t* card, chdlc_private_area_t* chdlc_priv_area) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; COMMS_ERROR_STATS_STRUCT* err_stats; CHDLC_OPERATIONAL_STATS_STRUCT *op_stats; /* on the first timer interrupt, read the comms error statistics */ if(chdlc_priv_area->update_comms_stats == 2) { if(chdlc_read_comm_err_stats(card)) return 1; err_stats = (COMMS_ERROR_STATS_STRUCT *)mb->data; card->wandev.stats.rx_over_errors = err_stats->Rx_overrun_err_count; card->wandev.stats.rx_crc_errors = err_stats->CRC_err_count; card->wandev.stats.rx_frame_errors = err_stats->Rx_abort_count; card->wandev.stats.rx_fifo_errors = err_stats->Rx_dis_pri_bfrs_full_count; card->wandev.stats.rx_missed_errors = card->wandev.stats.rx_fifo_errors; card->wandev.stats.tx_aborted_errors = err_stats->sec_Tx_abort_count; } /* on the second timer interrupt, read the operational statistics */ else { if(chdlc_read_op_stats(card)) return 1; op_stats = (CHDLC_OPERATIONAL_STATS_STRUCT *)mb->data; card->wandev.stats.rx_length_errors = (op_stats->Rx_Data_discard_short_count + op_stats->Rx_Data_discard_long_count); } return 0; } /*============================================================================ * Send packet. * Return: 0 - o.k. * 1 - no transmit buffers available */ static int chdlc_send (sdla_t* card, void* data, unsigned len) { CHDLC_DATA_TX_STATUS_EL_STRUCT *txbuf = card->u.c.txbuf; if (txbuf->opp_flag) return 1; sdla_poke(&card->hw, txbuf->ptr_data_bfr, data, len); txbuf->frame_length = len; txbuf->opp_flag = 1; /* start transmission */ /* Update transmit buffer control fields */ card->u.c.txbuf = ++txbuf; if ((void*)txbuf > card->u.c.txbuf_last) card->u.c.txbuf = card->u.c.txbuf_base; return 0; } /****** Firmware Error Handler **********************************************/ /*============================================================================ * Firmware error handler. * This routine is called whenever firmware command returns non-zero * return code. * * Return zero if previous command has to be cancelled. */ static int chdlc_error (sdla_t *card, int err, CHDLC_MAILBOX_STRUCT *mb) { unsigned cmd = mb->command; switch (err) { case CMD_TIMEOUT: printk(KERN_INFO "%s: command 0x%02X timed out!\n", card->devname, cmd); break; case S514_BOTH_PORTS_SAME_CLK_MODE: if(cmd == SET_CHDLC_CONFIGURATION) { printk(KERN_INFO "%s: Configure both ports for the same clock source\n", card->devname); break; } default: printk(KERN_INFO "%s: command 0x%02X returned 0x%02X!\n", card->devname, cmd, err); } return 0; } /********** Bottom Half Handlers ********************************************/ /* NOTE: There is no API, BH support for Kernels lower than 2.2.X. * DO NOT INSERT ANY CODE HERE, NOTICE THE * PREPROCESSOR STATEMENT ABOVE, UNLESS YOU KNOW WHAT YOU ARE * DOING */ static void chdlc_work(struct net_device * dev) { chdlc_private_area_t* chan = dev->priv; sdla_t *card = chan->card; struct sk_buff *skb; if (atomic_read(&chan->bh_buff_used) == 0){ clear_bit(0, &chan->tq_working); return; } while (atomic_read(&chan->bh_buff_used)){ skb = ((bh_data_t *)&chan->bh_head[chan->bh_read])->skb; if (skb != NULL){ if (chan->common.sk == NULL || chan->common.func == NULL){ ++card->wandev.stats.rx_dropped; dev_kfree_skb_any(skb); chdlc_work_cleanup(dev); continue; } if (chan->common.func(skb,dev,chan->common.sk) != 0){ /* Sock full cannot send, queue us for another * try */ atomic_set(&chan->common.receive_block,1); return; }else{ chdlc_work_cleanup(dev); } }else{ chdlc_work_cleanup(dev); } } clear_bit(0, &chan->tq_working); return; } static int chdlc_work_cleanup(struct net_device *dev) { chdlc_private_area_t* chan = dev->priv; ((bh_data_t *)&chan->bh_head[chan->bh_read])->skb = NULL; if (chan->bh_read == MAX_BH_BUFF){ chan->bh_read=0; }else{ ++chan->bh_read; } atomic_dec(&chan->bh_buff_used); return 0; } static int bh_enqueue(struct net_device *dev, struct sk_buff *skb) { /* Check for full */ chdlc_private_area_t* chan = dev->priv; sdla_t *card = chan->card; if (atomic_read(&chan->bh_buff_used) == (MAX_BH_BUFF+1)){ ++card->wandev.stats.rx_dropped; dev_kfree_skb_any(skb); return 1; } ((bh_data_t *)&chan->bh_head[chan->bh_write])->skb = skb; if (chan->bh_write == MAX_BH_BUFF){ chan->bh_write=0; }else{ ++chan->bh_write; } atomic_inc(&chan->bh_buff_used); return 0; } /* END OF API BH Support */ /****** Interrupt Handlers **************************************************/ /*============================================================================ * Cisco HDLC interrupt service routine. */ static void wpc_isr (sdla_t* card) { struct net_device* dev; SHARED_MEMORY_INFO_STRUCT* flags = NULL; int i; sdla_t *my_card; /* Check for which port the interrupt has been generated * Since Secondary Port is piggybacking on the Primary * the check must be done here. */ flags = card->u.c.flags; if (!flags->interrupt_info_struct.interrupt_type){ /* Check for a second port (piggybacking) */ if ((my_card = card->next)){ flags = my_card->u.c.flags; if (flags->interrupt_info_struct.interrupt_type){ card = my_card; card->isr(card); return; } } } flags = card->u.c.flags; card->in_isr = 1; dev = card->wandev.dev; /* If we get an interrupt with no network device, stop the interrupts * and issue an error */ if (!card->tty_opt && !dev && flags->interrupt_info_struct.interrupt_type != COMMAND_COMPLETE_APP_INT_PEND){ goto isr_done; } /* if critical due to peripheral operations * ie. update() or getstats() then reset the interrupt and * wait for the board to retrigger. */ if(test_bit(PERI_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "ISR CRIT TO PERI\n"); goto isr_done; } /* On a 508 Card, if critical due to if_send * Major Error !!! */ if(card->hw.type != SDLA_S514) { if(test_bit(SEND_CRIT, (void*)&card->wandev.critical)) { printk(KERN_INFO "%s: Critical while in ISR: %lx\n", card->devname, card->wandev.critical); card->in_isr = 0; flags->interrupt_info_struct.interrupt_type = 0; return; } } switch(flags->interrupt_info_struct.interrupt_type) { case RX_APP_INT_PEND: /* 0x01: receive interrupt */ rx_intr(card); break; case TX_APP_INT_PEND: /* 0x02: transmit interrupt */ flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_TX_FRAME; if (card->tty_opt){ wanpipe_tty_trigger_poll(card); break; } if (dev && netif_queue_stopped(dev)){ if (card->u.c.usedby == API){ netif_start_queue(dev); wakeup_sk_bh(dev); }else{ netif_wake_queue(dev); } } break; case COMMAND_COMPLETE_APP_INT_PEND:/* 0x04: cmd cplt */ ++ Intr_test_counter; break; case CHDLC_EXCEP_COND_APP_INT_PEND: /* 0x20 */ process_chdlc_exception(card); break; case GLOBAL_EXCEP_COND_APP_INT_PEND: process_global_exception(card); break; case TIMER_APP_INT_PEND: timer_intr(card); break; default: printk(KERN_INFO "%s: spurious interrupt 0x%02X!\n", card->devname, flags->interrupt_info_struct.interrupt_type); printk(KERN_INFO "Code name: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags->global_info_struct.codename[i]); printk(KERN_INFO "\nCode version: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags->global_info_struct.codeversion[i]); printk(KERN_INFO "\n"); break; } isr_done: card->in_isr = 0; flags->interrupt_info_struct.interrupt_type = 0; return; } /*============================================================================ * Receive interrupt handler. */ static void rx_intr (sdla_t* card) { struct net_device *dev; chdlc_private_area_t *chdlc_priv_area; SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; CHDLC_DATA_RX_STATUS_EL_STRUCT *rxbuf = card->u.c.rxmb; struct sk_buff *skb; unsigned len; unsigned addr = rxbuf->ptr_data_bfr; void *buf; int i,udp_type; if (rxbuf->opp_flag != 0x01) { printk(KERN_INFO "%s: corrupted Rx buffer @ 0x%X, flag = 0x%02X!\n", card->devname, (unsigned)rxbuf, rxbuf->opp_flag); printk(KERN_INFO "Code name: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags->global_info_struct.codename[i]); printk(KERN_INFO "\nCode version: "); for(i = 0; i < 4; i ++) printk(KERN_INFO "%c", flags->global_info_struct.codeversion[i]); printk(KERN_INFO "\n"); /* Bug Fix: Mar 6 2000 * If we get a corrupted mailbox, it measn that driver * is out of sync with the firmware. There is no recovery. * If we don't turn off all interrupts for this card * the machine will crash. */ printk(KERN_INFO "%s: Critical router failure ...!!!\n", card->devname); printk(KERN_INFO "Please contact Sangoma Technologies !\n"); chdlc_set_intr_mode(card,0); return; } len = rxbuf->frame_length; if (card->tty_opt){ if (rxbuf->error_flag){ goto rx_exit; } if (len <= CRC_LENGTH){ goto rx_exit; } if (!card->u.c.async_mode){ len -= CRC_LENGTH; } wanpipe_tty_receive(card,addr,len); goto rx_exit; } dev = card->wandev.dev; if (!dev){ goto rx_exit; } if (!netif_running(dev)) goto rx_exit; chdlc_priv_area = dev->priv; /* Allocate socket buffer */ skb = dev_alloc_skb(len); if (skb == NULL) { printk(KERN_INFO "%s: no socket buffers available!\n", card->devname); ++card->wandev.stats.rx_dropped; goto rx_exit; } /* Copy data to the socket buffer */ if((addr + len) > card->u.c.rx_top + 1) { unsigned tmp = card->u.c.rx_top - addr + 1; buf = skb_put(skb, tmp); sdla_peek(&card->hw, addr, buf, tmp); addr = card->u.c.rx_base; len -= tmp; } buf = skb_put(skb, len); sdla_peek(&card->hw, addr, buf, len); skb->protocol = htons(ETH_P_IP); card->wandev.stats.rx_packets ++; card->wandev.stats.rx_bytes += skb->len; udp_type = udp_pkt_type( skb, card ); if(udp_type == UDP_CPIPE_TYPE) { if(store_udp_mgmt_pkt(UDP_PKT_FRM_NETWORK, card, skb, dev, chdlc_priv_area)) { flags->interrupt_info_struct. interrupt_permission |= APP_INT_ON_TIMER; } } else if(card->u.c.usedby == API) { api_rx_hdr_t* api_rx_hdr; skb_push(skb, sizeof(api_rx_hdr_t)); api_rx_hdr = (api_rx_hdr_t*)&skb->data[0x00]; api_rx_hdr->error_flag = rxbuf->error_flag; api_rx_hdr->time_stamp = rxbuf->time_stamp; skb->protocol = htons(PVC_PROT); skb->mac.raw = skb->data; skb->dev = dev; skb->pkt_type = WAN_PACKET_DATA; bh_enqueue(dev, skb); if (!test_and_set_bit(0,&chdlc_priv_area->tq_working)) wanpipe_queue_work(&chdlc_priv_area->common.wanpipe_work); }else{ /* FIXME: we should check to see if the received packet is a multicast packet so that we can increment the multicast statistic ++ chdlc_priv_area->if_stats.multicast; */ /* Pass it up the protocol stack */ skb->dev = dev; skb->mac.raw = skb->data; netif_rx(skb); dev->last_rx = jiffies; } rx_exit: /* Release buffer element and calculate a pointer to the next one */ rxbuf->opp_flag = 0x00; card->u.c.rxmb = ++ rxbuf; if((void*)rxbuf > card->u.c.rxbuf_last){ card->u.c.rxmb = card->u.c.rxbuf_base; } } /*============================================================================ * Timer interrupt handler. * The timer interrupt is used for two purposes: * 1) Processing udp calls from 'cpipemon'. * 2) Reading board-level statistics for updating the proc file system. */ void timer_intr(sdla_t *card) { struct net_device* dev; chdlc_private_area_t* chdlc_priv_area = NULL; SHARED_MEMORY_INFO_STRUCT* flags = NULL; if ((dev = card->wandev.dev)==NULL){ flags = card->u.c.flags; flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_TIMER; return; } chdlc_priv_area = dev->priv; if (chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_CONFIG) { if (!config_chdlc(card)){ chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_CONFIG; } } /* process a udp call if pending */ if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UDP) { process_udp_mgmt_pkt(card, dev, chdlc_priv_area); chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_UDP; } /* read the communications statistics if required */ if(chdlc_priv_area->timer_int_enabled & TMR_INT_ENABLED_UPDATE) { update_comms_stats(card, chdlc_priv_area); if(!(-- chdlc_priv_area->update_comms_stats)) { chdlc_priv_area->timer_int_enabled &= ~TMR_INT_ENABLED_UPDATE; } } /* only disable the timer interrupt if there are no udp or statistic */ /* updates pending */ if(!chdlc_priv_area->timer_int_enabled) { flags = card->u.c.flags; flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_TIMER; } } /*------------------------------------------------------------------------------ Miscellaneous Functions - set_chdlc_config() used to set configuration options on the board ------------------------------------------------------------------------------*/ static int set_chdlc_config(sdla_t* card) { CHDLC_CONFIGURATION_STRUCT cfg; memset(&cfg, 0, sizeof(CHDLC_CONFIGURATION_STRUCT)); if(card->wandev.clocking){ cfg.baud_rate = card->wandev.bps; } cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ? INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35; cfg.modem_config_options = 0; cfg.modem_status_timer = 100; cfg.CHDLC_protocol_options = card->u.c.protocol_options; if (card->tty_opt){ cfg.CHDLC_API_options = DISCARD_RX_ERROR_FRAMES; } cfg.percent_data_buffer_for_Tx = (card->u.c.receive_only) ? 0 : 50; cfg.CHDLC_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT | CHDLC_RX_DATA_BYTE_COUNT_STAT); if (card->tty_opt){ card->wandev.mtu = TTY_CHDLC_MAX_MTU; } cfg.max_CHDLC_data_field_length = card->wandev.mtu; cfg.transmit_keepalive_timer = card->u.c.kpalv_tx; cfg.receive_keepalive_timer = card->u.c.kpalv_rx; cfg.keepalive_error_tolerance = card->u.c.kpalv_err; cfg.SLARP_request_timer = card->u.c.slarp_timer; if (cfg.SLARP_request_timer) { cfg.IP_address = 0; cfg.IP_netmask = 0; }else if (card->wandev.dev){ struct net_device *dev = card->wandev.dev; chdlc_private_area_t *chdlc_priv_area = dev->priv; struct in_device *in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa = in_dev->ifa_list; if (ifa != NULL ) { cfg.IP_address = ntohl(ifa->ifa_local); cfg.IP_netmask = ntohl(ifa->ifa_mask); chdlc_priv_area->IP_address = ntohl(ifa->ifa_local); chdlc_priv_area->IP_netmask = ntohl(ifa->ifa_mask); } } /* FIXME: We must re-think this message in next release if((cfg.IP_address & 0x000000FF) > 2) { printk(KERN_WARNING "\n"); printk(KERN_WARNING " WARNING:%s configured with an\n", card->devname); printk(KERN_WARNING " invalid local IP address.\n"); printk(KERN_WARNING " Slarp pragmatics will fail.\n"); printk(KERN_WARNING " IP address should be of the\n"); printk(KERN_WARNING " format A.B.C.1 or A.B.C.2.\n"); } */ } return chdlc_configure(card, &cfg); } /*----------------------------------------------------------------------------- set_asy_config() used to set asynchronous configuration options on the board ------------------------------------------------------------------------------*/ static int set_asy_config(sdla_t* card) { ASY_CONFIGURATION_STRUCT cfg; CHDLC_MAILBOX_STRUCT *mailbox = card->mbox; int err; memset(&cfg, 0, sizeof(ASY_CONFIGURATION_STRUCT)); if(card->wandev.clocking) cfg.baud_rate = card->wandev.bps; cfg.line_config_options = (card->wandev.interface == WANOPT_RS232) ? INTERFACE_LEVEL_RS232 : INTERFACE_LEVEL_V35; cfg.modem_config_options = 0; cfg.asy_API_options = card->u.c.api_options; cfg.asy_protocol_options = card->u.c.protocol_options; cfg.Tx_bits_per_char = card->u.c.tx_bits_per_char; cfg.Rx_bits_per_char = card->u.c.rx_bits_per_char; cfg.stop_bits = card->u.c.stop_bits; cfg.parity = card->u.c.parity; cfg.break_timer = card->u.c.break_timer; cfg.asy_Rx_inter_char_timer = card->u.c.inter_char_timer; cfg.asy_Rx_complete_length = card->u.c.rx_complete_length; cfg.XON_char = card->u.c.xon_char; cfg.XOFF_char = card->u.c.xoff_char; cfg.asy_statistics_options = (CHDLC_TX_DATA_BYTE_COUNT_STAT | CHDLC_RX_DATA_BYTE_COUNT_STAT); mailbox->buffer_length = sizeof(ASY_CONFIGURATION_STRUCT); memcpy(mailbox->data, &cfg, mailbox->buffer_length); mailbox->command = SET_ASY_CONFIGURATION; err = sdla_exec(mailbox) ? mailbox->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error (card, err, mailbox); return err; } /*============================================================================ * Enable asynchronous communications. */ static int asy_comm_enable (sdla_t* card) { int err; CHDLC_MAILBOX_STRUCT* mb = card->mbox; mb->buffer_length = 0; mb->command = ENABLE_ASY_COMMUNICATIONS; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK && card->wandev.dev) chdlc_error(card, err, mb); if (!err) card->u.c.comm_enabled = 1; return err; } /*============================================================================ * Process global exception condition */ static int process_global_exception(sdla_t *card) { CHDLC_MAILBOX_STRUCT* mbox = card->mbox; int err; mbox->buffer_length = 0; mbox->command = READ_GLOBAL_EXCEPTION_CONDITION; err = sdla_exec(mbox) ? mbox->return_code : CMD_TIMEOUT; if(err != CMD_TIMEOUT ){ switch(mbox->return_code) { case EXCEP_MODEM_STATUS_CHANGE: printk(KERN_INFO "%s: Modem status change\n", card->devname); switch(mbox->data[0] & (DCD_HIGH | CTS_HIGH)) { case (DCD_HIGH): printk(KERN_INFO "%s: DCD high, CTS low\n",card->devname); break; case (CTS_HIGH): printk(KERN_INFO "%s: DCD low, CTS high\n",card->devname); break; case ((DCD_HIGH | CTS_HIGH)): printk(KERN_INFO "%s: DCD high, CTS high\n",card->devname); break; default: printk(KERN_INFO "%s: DCD low, CTS low\n",card->devname); break; } break; case EXCEP_TRC_DISABLED: printk(KERN_INFO "%s: Line trace disabled\n", card->devname); break; case EXCEP_IRQ_TIMEOUT: printk(KERN_INFO "%s: IRQ timeout occurred\n", card->devname); break; case 0x17: if (card->tty_opt){ if (card->tty && card->tty_open){ printk(KERN_INFO "%s: Modem Hangup Exception: Hanging Up!\n", card->devname); tty_hangup(card->tty); } break; } /* If TTY is not used just drop throught */ default: printk(KERN_INFO "%s: Global exception %x\n", card->devname, mbox->return_code); break; } } return 0; } /*============================================================================ * Process chdlc exception condition */ static int process_chdlc_exception(sdla_t *card) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; int err; mb->buffer_length = 0; mb->command = READ_CHDLC_EXCEPTION_CONDITION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if(err != CMD_TIMEOUT) { switch (err) { case EXCEP_LINK_ACTIVE: port_set_state(card, WAN_CONNECTED); trigger_chdlc_poll(card->wandev.dev); break; case EXCEP_LINK_INACTIVE_MODEM: port_set_state(card, WAN_DISCONNECTED); unconfigure_ip(card); trigger_chdlc_poll(card->wandev.dev); break; case EXCEP_LINK_INACTIVE_KPALV: port_set_state(card, WAN_DISCONNECTED); printk(KERN_INFO "%s: Keepalive timer expired.\n", card->devname); unconfigure_ip(card); trigger_chdlc_poll(card->wandev.dev); break; case EXCEP_IP_ADDRESS_DISCOVERED: if (configure_ip(card)) return -1; break; case EXCEP_LOOPBACK_CONDITION: printk(KERN_INFO "%s: Loopback Condition Detected.\n", card->devname); break; case NO_CHDLC_EXCEP_COND_TO_REPORT: printk(KERN_INFO "%s: No exceptions reported.\n", card->devname); break; } } return 0; } /*============================================================================ * Configure IP from SLARP negotiation * This adds dynamic routes when SLARP has provided valid addresses */ static int configure_ip (sdla_t* card) { struct net_device *dev = card->wandev.dev; chdlc_private_area_t *chdlc_priv_area; char err; if (!dev) return 0; chdlc_priv_area = dev->priv; /* set to discover */ if(card->u.c.slarp_timer != 0x00) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; CHDLC_CONFIGURATION_STRUCT *cfg; mb->buffer_length = 0; mb->command = READ_CHDLC_CONFIGURATION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if(err != COMMAND_OK) { chdlc_error(card,err,mb); return -1; } cfg = (CHDLC_CONFIGURATION_STRUCT *)mb->data; chdlc_priv_area->IP_address = cfg->IP_address; chdlc_priv_area->IP_netmask = cfg->IP_netmask; /* Set flag to add route */ chdlc_priv_area->route_status = ADD_ROUTE; /* The idea here is to add the route in the poll routine. This way, we aren't in interrupt context when adding routes */ trigger_chdlc_poll(dev); } return 0; } /*============================================================================ * Un-Configure IP negotiated by SLARP * This removes dynamic routes when the link becomes inactive. */ static int unconfigure_ip (sdla_t* card) { struct net_device *dev = card->wandev.dev; chdlc_private_area_t *chdlc_priv_area; if (!dev) return 0; chdlc_priv_area= dev->priv; if (chdlc_priv_area->route_status == ROUTE_ADDED) { /* Note: If this function is called, the * port state has been DISCONNECTED. This state * change will trigger a poll_disconnected * function, that will check for this condition. */ chdlc_priv_area->route_status = REMOVE_ROUTE; } return 0; } /*============================================================================ * Routine to add/remove routes * Called like a polling routine when Routes are flagged to be added/removed. */ static void process_route (sdla_t *card) { struct net_device *dev = card->wandev.dev; unsigned char port_num; chdlc_private_area_t *chdlc_priv_area = NULL; u32 local_IP_addr = 0; u32 remote_IP_addr = 0; u32 IP_netmask, IP_addr; int err = 0; struct in_device *in_dev; mm_segment_t fs; struct ifreq if_info; struct sockaddr_in *if_data1, *if_data2; chdlc_priv_area = dev->priv; port_num = card->u.c.comm_port; /* Bug Fix Mar 16 2000 * AND the IP address to the Mask before checking * the last two bits. */ if((chdlc_priv_area->route_status == ADD_ROUTE) && ((chdlc_priv_area->IP_address & ~chdlc_priv_area->IP_netmask) > 2)) { printk(KERN_INFO "%s: Dynamic route failure.\n",card->devname); if(card->u.c.slarp_timer) { u32 addr_net = htonl(chdlc_priv_area->IP_address); printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u received\n", card->devname, NIPQUAD(addr_net)); printk(KERN_INFO "%s: from remote station.\n", card->devname); }else{ u32 addr_net = htonl(chdlc_priv_area->IP_address); printk(KERN_INFO "%s: Bad IP address %u.%u.%u.%u issued\n", card->devname, NIPQUAD(addr_net)); printk(KERN_INFO "%s: to remote station. Local\n", card->devname); printk(KERN_INFO "%s: IP address must be A.B.C.1\n", card->devname); printk(KERN_INFO "%s: or A.B.C.2.\n",card->devname); } /* remove the route due to the IP address error condition */ chdlc_priv_area->route_status = REMOVE_ROUTE; err = 1; } /* If we are removing a route with bad IP addressing, then use the */ /* locally configured IP addresses */ if((chdlc_priv_area->route_status == REMOVE_ROUTE) && err) { /* do not remove a bad route that has already been removed */ if(chdlc_priv_area->route_removed) { return; } in_dev = dev->ip_ptr; if(in_dev != NULL) { struct in_ifaddr *ifa = in_dev->ifa_list; if (ifa != NULL ) { local_IP_addr = ifa->ifa_local; IP_netmask = ifa->ifa_mask; } } }else{ /* According to Cisco HDLC, if the point-to-point address is A.B.C.1, then we are the opposite (A.B.C.2), and vice-versa. */ IP_netmask = ntohl(chdlc_priv_area->IP_netmask); remote_IP_addr = ntohl(chdlc_priv_area->IP_address); /* If Netmask is 255.255.255.255 the local address * calculation will fail. Default it back to 255.255.255.0 */ if (IP_netmask == 0xffffffff) IP_netmask &= 0x00ffffff; /* Bug Fix Mar 16 2000 * AND the Remote IP address with IP netmask, instead * of static netmask of 255.255.255.0 */ local_IP_addr = (remote_IP_addr & IP_netmask) + (~remote_IP_addr & ntohl(0x0003)); if(!card->u.c.slarp_timer) { IP_addr = local_IP_addr; local_IP_addr = remote_IP_addr; remote_IP_addr = IP_addr; } } fs = get_fs(); /* Save file system */ set_fs(get_ds()); /* Get user space block */ /* Setup a structure for adding/removing routes */ memset(&if_info, 0, sizeof(if_info)); strcpy(if_info.ifr_name, dev->name); switch (chdlc_priv_area->route_status) { case ADD_ROUTE: if(!card->u.c.slarp_timer) { if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = remote_IP_addr; if_data2->sin_family = AF_INET; err = devinet_ioctl(SIOCSIFDSTADDR, &if_info); } else { if_data1 = (struct sockaddr_in *)&if_info.ifr_addr; if_data1->sin_addr.s_addr = local_IP_addr; if_data1->sin_family = AF_INET; if(!(err = devinet_ioctl(SIOCSIFADDR, &if_info))){ if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = remote_IP_addr; if_data2->sin_family = AF_INET; err = devinet_ioctl(SIOCSIFDSTADDR, &if_info); } } if(err) { printk(KERN_INFO "%s: Add route %u.%u.%u.%u failed (%d)\n", card->devname, NIPQUAD(remote_IP_addr), err); } else { ((chdlc_private_area_t *)dev->priv)->route_status = ROUTE_ADDED; printk(KERN_INFO "%s: Dynamic route added.\n", card->devname); printk(KERN_INFO "%s: Local IP addr : %u.%u.%u.%u\n", card->devname, NIPQUAD(local_IP_addr)); printk(KERN_INFO "%s: Remote IP addr: %u.%u.%u.%u\n", card->devname, NIPQUAD(remote_IP_addr)); chdlc_priv_area->route_removed = 0; } break; case REMOVE_ROUTE: /* Change the local ip address of the interface to 0. * This will also delete the destination route. */ if(!card->u.c.slarp_timer) { if_data2 = (struct sockaddr_in *)&if_info.ifr_dstaddr; if_data2->sin_addr.s_addr = 0; if_data2->sin_family = AF_INET; err = devinet_ioctl(SIOCSIFDSTADDR, &if_info); } else { if_data1 = (struct sockaddr_in *)&if_info.ifr_addr; if_data1->sin_addr.s_addr = 0; if_data1->sin_family = AF_INET; err = devinet_ioctl(SIOCSIFADDR,&if_info); } if(err) { printk(KERN_INFO "%s: Remove route %u.%u.%u.%u failed, (err %d)\n", card->devname, NIPQUAD(remote_IP_addr), err); } else { ((chdlc_private_area_t *)dev->priv)->route_status = NO_ROUTE; printk(KERN_INFO "%s: Dynamic route removed: %u.%u.%u.%u\n", card->devname, NIPQUAD(local_IP_addr)); chdlc_priv_area->route_removed = 1; } break; } set_fs(fs); /* Restore file system */ } /*============================================================================= * Store a UDP management packet for later processing. */ static int store_udp_mgmt_pkt(char udp_pkt_src, sdla_t* card, struct sk_buff *skb, struct net_device* dev, chdlc_private_area_t* chdlc_priv_area) { int udp_pkt_stored = 0; if(!chdlc_priv_area->udp_pkt_lgth && (skb->len <= MAX_LGTH_UDP_MGNT_PKT)) { chdlc_priv_area->udp_pkt_lgth = skb->len; chdlc_priv_area->udp_pkt_src = udp_pkt_src; memcpy(chdlc_priv_area->udp_pkt_data, skb->data, skb->len); chdlc_priv_area->timer_int_enabled = TMR_INT_ENABLED_UDP; udp_pkt_stored = 1; } if(udp_pkt_src == UDP_PKT_FRM_STACK){ dev_kfree_skb_any(skb); }else{ dev_kfree_skb_any(skb); } return(udp_pkt_stored); } /*============================================================================= * Process UDP management packet. */ static int process_udp_mgmt_pkt(sdla_t* card, struct net_device* dev, chdlc_private_area_t* chdlc_priv_area ) { unsigned char *buf; unsigned int frames, len; struct sk_buff *new_skb; unsigned short buffer_length, real_len; unsigned long data_ptr; unsigned data_length; int udp_mgmt_req_valid = 1; CHDLC_MAILBOX_STRUCT *mb = card->mbox; SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; chdlc_udp_pkt_t *chdlc_udp_pkt; struct timeval tv; int err; char ut_char; chdlc_udp_pkt = (chdlc_udp_pkt_t *) chdlc_priv_area->udp_pkt_data; if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){ /* Only these commands are support for remote debugging. * All others are not */ switch(chdlc_udp_pkt->cblock.command) { case READ_GLOBAL_STATISTICS: case READ_MODEM_STATUS: case READ_CHDLC_LINK_STATUS: case CPIPE_ROUTER_UP_TIME: case READ_COMMS_ERROR_STATS: case READ_CHDLC_OPERATIONAL_STATS: /* These two commands are executed for * each request */ case READ_CHDLC_CONFIGURATION: case READ_CHDLC_CODE_VERSION: udp_mgmt_req_valid = 1; break; default: udp_mgmt_req_valid = 0; break; } } if(!udp_mgmt_req_valid) { /* set length to 0 */ chdlc_udp_pkt->cblock.buffer_length = 0; /* set return code */ chdlc_udp_pkt->cblock.return_code = 0xCD; if (net_ratelimit()){ printk(KERN_INFO "%s: Warning, Illegal UDP command attempted from network: %x\n", card->devname,chdlc_udp_pkt->cblock.command); } } else { unsigned long trace_status_cfg_addr = 0; TRACE_STATUS_EL_CFG_STRUCT trace_cfg_struct; TRACE_STATUS_ELEMENT_STRUCT trace_element_struct; switch(chdlc_udp_pkt->cblock.command) { case CPIPE_ENABLE_TRACING: if (!chdlc_priv_area->TracingEnabled) { /* OPERATE_DATALINE_MONITOR */ mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT); mb->command = SET_TRACE_CONFIGURATION; ((LINE_TRACE_CONFIG_STRUCT *)mb->data)-> trace_config = TRACE_ACTIVE; /* Trace delay mode is not used because it slows down transfer and results in a standoff situation when there is a lot of data */ /* Configure the Trace based on user inputs */ ((LINE_TRACE_CONFIG_STRUCT *)mb->data)->trace_config |= chdlc_udp_pkt->data[0]; ((LINE_TRACE_CONFIG_STRUCT *)mb->data)-> trace_deactivation_timer = 4000; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) { chdlc_error(card,err,mb); card->TracingEnabled = 0; chdlc_udp_pkt->cblock.return_code = err; mb->buffer_length = 0; break; } /* Get the base address of the trace element list */ mb->buffer_length = 0; mb->command = READ_TRACE_CONFIGURATION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) { chdlc_error(card,err,mb); chdlc_priv_area->TracingEnabled = 0; chdlc_udp_pkt->cblock.return_code = err; mb->buffer_length = 0; break; } trace_status_cfg_addr =((LINE_TRACE_CONFIG_STRUCT *) mb->data) -> ptr_trace_stat_el_cfg_struct; sdla_peek(&card->hw, trace_status_cfg_addr, &trace_cfg_struct, sizeof(trace_cfg_struct)); chdlc_priv_area->start_trace_addr = trace_cfg_struct. base_addr_trace_status_elements; chdlc_priv_area->number_trace_elements = trace_cfg_struct.number_trace_status_elements; chdlc_priv_area->end_trace_addr = (unsigned long) ((TRACE_STATUS_ELEMENT_STRUCT *) chdlc_priv_area->start_trace_addr + (chdlc_priv_area->number_trace_elements - 1)); chdlc_priv_area->base_addr_trace_buffer = trace_cfg_struct.base_addr_trace_buffer; chdlc_priv_area->end_addr_trace_buffer = trace_cfg_struct.end_addr_trace_buffer; chdlc_priv_area->curr_trace_addr = trace_cfg_struct.next_trace_element_to_use; chdlc_priv_area->available_buffer_space = 2000 - sizeof(ip_pkt_t) - sizeof(udp_pkt_t) - sizeof(wp_mgmt_t) - sizeof(cblock_t) - sizeof(trace_info_t); } chdlc_udp_pkt->cblock.return_code = COMMAND_OK; mb->buffer_length = 0; chdlc_priv_area->TracingEnabled = 1; break; case CPIPE_DISABLE_TRACING: if (chdlc_priv_area->TracingEnabled) { /* OPERATE_DATALINE_MONITOR */ mb->buffer_length = sizeof(LINE_TRACE_CONFIG_STRUCT); mb->command = SET_TRACE_CONFIGURATION; ((LINE_TRACE_CONFIG_STRUCT *)mb->data)-> trace_config = TRACE_INACTIVE; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; } chdlc_priv_area->TracingEnabled = 0; chdlc_udp_pkt->cblock.return_code = COMMAND_OK; mb->buffer_length = 0; break; case CPIPE_GET_TRACE_INFO: if (!chdlc_priv_area->TracingEnabled) { chdlc_udp_pkt->cblock.return_code = 1; mb->buffer_length = 0; break; } chdlc_udp_pkt->trace_info.ismoredata = 0x00; buffer_length = 0; /* offset of packet already occupied */ for (frames=0; frames < chdlc_priv_area->number_trace_elements; frames++){ trace_pkt_t *trace_pkt = (trace_pkt_t *) &chdlc_udp_pkt->data[buffer_length]; sdla_peek(&card->hw, chdlc_priv_area->curr_trace_addr, (unsigned char *)&trace_element_struct, sizeof(TRACE_STATUS_ELEMENT_STRUCT)); if (trace_element_struct.opp_flag == 0x00) { break; } /* get pointer to real data */ data_ptr = trace_element_struct.ptr_data_bfr; /* See if there is actual data on the trace buffer */ if (data_ptr){ data_length = trace_element_struct.trace_length; }else{ data_length = 0; chdlc_udp_pkt->trace_info.ismoredata = 0x01; } if( (chdlc_priv_area->available_buffer_space - buffer_length) < ( sizeof(trace_pkt_t) + data_length) ) { /* indicate there are more frames on board & exit */ chdlc_udp_pkt->trace_info.ismoredata = 0x01; break; } trace_pkt->status = trace_element_struct.trace_type; trace_pkt->time_stamp = trace_element_struct.trace_time_stamp; trace_pkt->real_length = trace_element_struct.trace_length; /* see if we can fit the frame into the user buffer */ real_len = trace_pkt->real_length; if (data_ptr == 0) { trace_pkt->data_avail = 0x00; } else { unsigned tmp = 0; /* get the data from circular buffer must check for end of buffer */ trace_pkt->data_avail = 0x01; if ((data_ptr + real_len) > chdlc_priv_area->end_addr_trace_buffer + 1){ tmp = chdlc_priv_area->end_addr_trace_buffer - data_ptr + 1; sdla_peek(&card->hw, data_ptr, trace_pkt->data,tmp); data_ptr = chdlc_priv_area->base_addr_trace_buffer; } sdla_peek(&card->hw, data_ptr, &trace_pkt->data[tmp], real_len - tmp); } /* zero the opp flag to show we got the frame */ ut_char = 0x00; sdla_poke(&card->hw, chdlc_priv_area->curr_trace_addr, &ut_char, 1); /* now move onto the next frame */ chdlc_priv_area->curr_trace_addr += sizeof(TRACE_STATUS_ELEMENT_STRUCT); /* check if we went over the last address */ if ( chdlc_priv_area->curr_trace_addr > chdlc_priv_area->end_trace_addr ) { chdlc_priv_area->curr_trace_addr = chdlc_priv_area->start_trace_addr; } if(trace_pkt->data_avail == 0x01) { buffer_length += real_len - 1; } /* for the header */ buffer_length += sizeof(trace_pkt_t); } /* For Loop */ if (frames == chdlc_priv_area->number_trace_elements){ chdlc_udp_pkt->trace_info.ismoredata = 0x01; } chdlc_udp_pkt->trace_info.num_frames = frames; mb->buffer_length = buffer_length; chdlc_udp_pkt->cblock.buffer_length = buffer_length; chdlc_udp_pkt->cblock.return_code = COMMAND_OK; break; case CPIPE_FT1_READ_STATUS: ((unsigned char *)chdlc_udp_pkt->data )[0] = flags->FT1_info_struct.parallel_port_A_input; ((unsigned char *)chdlc_udp_pkt->data )[1] = flags->FT1_info_struct.parallel_port_B_input; chdlc_udp_pkt->cblock.return_code = COMMAND_OK; chdlc_udp_pkt->cblock.buffer_length = 2; mb->buffer_length = 2; break; case CPIPE_ROUTER_UP_TIME: do_gettimeofday( &tv ); chdlc_priv_area->router_up_time = tv.tv_sec - chdlc_priv_area->router_start_time; *(unsigned long *)&chdlc_udp_pkt->data = chdlc_priv_area->router_up_time; mb->buffer_length = sizeof(unsigned long); chdlc_udp_pkt->cblock.buffer_length = sizeof(unsigned long); chdlc_udp_pkt->cblock.return_code = COMMAND_OK; break; case FT1_MONITOR_STATUS_CTRL: /* Enable FT1 MONITOR STATUS */ if ((chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_STATUS) || (chdlc_udp_pkt->data[0] & ENABLE_READ_FT1_OP_STATS)) { if( rCount++ != 0 ) { chdlc_udp_pkt->cblock. return_code = COMMAND_OK; mb->buffer_length = 1; break; } } /* Disable FT1 MONITOR STATUS */ if( chdlc_udp_pkt->data[0] == 0) { if( --rCount != 0) { chdlc_udp_pkt->cblock. return_code = COMMAND_OK; mb->buffer_length = 1; break; } } goto dflt_1; default: dflt_1: /* it's a board command */ mb->command = chdlc_udp_pkt->cblock.command; mb->buffer_length = chdlc_udp_pkt->cblock.buffer_length; if (mb->buffer_length) { memcpy(&mb->data, (unsigned char *) chdlc_udp_pkt-> data, mb->buffer_length); } /* run the command on the board */ err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) { break; } /* copy the result back to our buffer */ memcpy(&chdlc_udp_pkt->cblock, mb, sizeof(cblock_t)); if (mb->buffer_length) { memcpy(&chdlc_udp_pkt->data, &mb->data, mb->buffer_length); } } /* end of switch */ } /* end of else */ /* Fill UDP TTL */ chdlc_udp_pkt->ip_pkt.ttl = card->wandev.ttl; len = reply_udp(chdlc_priv_area->udp_pkt_data, mb->buffer_length); if(chdlc_priv_area->udp_pkt_src == UDP_PKT_FRM_NETWORK){ /* Must check if we interrupted if_send() routine. The * tx buffers might be used. If so drop the packet */ if (!test_bit(SEND_CRIT,&card->wandev.critical)) { if(!chdlc_send(card, chdlc_priv_area->udp_pkt_data, len)) { ++ card->wandev.stats.tx_packets; card->wandev.stats.tx_bytes += len; } } } else { /* Pass it up the stack Allocate socket buffer */ if ((new_skb = dev_alloc_skb(len)) != NULL) { /* copy data into new_skb */ buf = skb_put(new_skb, len); memcpy(buf, chdlc_priv_area->udp_pkt_data, len); /* Decapsulate pkt and pass it up the protocol stack */ new_skb->protocol = htons(ETH_P_IP); new_skb->dev = dev; new_skb->mac.raw = new_skb->data; netif_rx(new_skb); dev->last_rx = jiffies; } else { printk(KERN_INFO "%s: no socket buffers available!\n", card->devname); } } chdlc_priv_area->udp_pkt_lgth = 0; return 0; } /*============================================================================ * Initialize Receive and Transmit Buffers. */ static void init_chdlc_tx_rx_buff( sdla_t* card) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; CHDLC_TX_STATUS_EL_CFG_STRUCT *tx_config; CHDLC_RX_STATUS_EL_CFG_STRUCT *rx_config; char err; mb->buffer_length = 0; mb->command = READ_CHDLC_CONFIGURATION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if(err != COMMAND_OK) { if (card->wandev.dev){ chdlc_error(card,err,mb); } return; } if(card->hw.type == SDLA_S514) { tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb->data)-> ptr_CHDLC_Tx_stat_el_cfg_struct)); rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb->data)-> ptr_CHDLC_Rx_stat_el_cfg_struct)); /* Setup Head and Tails for buffers */ card->u.c.txbuf_base = (void *)(card->hw.dpmbase + tx_config->base_addr_Tx_status_elements); card->u.c.txbuf_last = (CHDLC_DATA_TX_STATUS_EL_STRUCT *) card->u.c.txbuf_base + (tx_config->number_Tx_status_elements - 1); card->u.c.rxbuf_base = (void *)(card->hw.dpmbase + rx_config->base_addr_Rx_status_elements); card->u.c.rxbuf_last = (CHDLC_DATA_RX_STATUS_EL_STRUCT *) card->u.c.rxbuf_base + (rx_config->number_Rx_status_elements - 1); /* Set up next pointer to be used */ card->u.c.txbuf = (void *)(card->hw.dpmbase + tx_config->next_Tx_status_element_to_use); card->u.c.rxmb = (void *)(card->hw.dpmbase + rx_config->next_Rx_status_element_to_use); } else { tx_config = (CHDLC_TX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb->data)-> ptr_CHDLC_Tx_stat_el_cfg_struct % SDLA_WINDOWSIZE)); rx_config = (CHDLC_RX_STATUS_EL_CFG_STRUCT *)(card->hw.dpmbase + (((CHDLC_CONFIGURATION_STRUCT *)mb->data)-> ptr_CHDLC_Rx_stat_el_cfg_struct % SDLA_WINDOWSIZE)); /* Setup Head and Tails for buffers */ card->u.c.txbuf_base = (void *)(card->hw.dpmbase + (tx_config->base_addr_Tx_status_elements % SDLA_WINDOWSIZE)); card->u.c.txbuf_last = (CHDLC_DATA_TX_STATUS_EL_STRUCT *)card->u.c.txbuf_base + (tx_config->number_Tx_status_elements - 1); card->u.c.rxbuf_base = (void *)(card->hw.dpmbase + (rx_config->base_addr_Rx_status_elements % SDLA_WINDOWSIZE)); card->u.c.rxbuf_last = (CHDLC_DATA_RX_STATUS_EL_STRUCT *)card->u.c.rxbuf_base + (rx_config->number_Rx_status_elements - 1); /* Set up next pointer to be used */ card->u.c.txbuf = (void *)(card->hw.dpmbase + (tx_config->next_Tx_status_element_to_use % SDLA_WINDOWSIZE)); card->u.c.rxmb = (void *)(card->hw.dpmbase + (rx_config->next_Rx_status_element_to_use % SDLA_WINDOWSIZE)); } /* Setup Actual Buffer Start and end addresses */ card->u.c.rx_base = rx_config->base_addr_Rx_buffer; card->u.c.rx_top = rx_config->end_addr_Rx_buffer; } /*============================================================================= * Perform Interrupt Test by running READ_CHDLC_CODE_VERSION command MAX_INTR * _TEST_COUNTER times. */ static int intr_test( sdla_t* card) { CHDLC_MAILBOX_STRUCT* mb = card->mbox; int err,i; Intr_test_counter = 0; err = chdlc_set_intr_mode(card, APP_INT_ON_COMMAND_COMPLETE); if (err == CMD_OK) { for (i = 0; i < MAX_INTR_TEST_COUNTER; i ++) { mb->buffer_length = 0; mb->command = READ_CHDLC_CODE_VERSION; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != CMD_OK) chdlc_error(card, err, mb); } } else { return err; } err = chdlc_set_intr_mode(card, 0); if (err != CMD_OK) return err; return 0; } /*============================================================================== * Determine what type of UDP call it is. CPIPEAB ? */ static int udp_pkt_type(struct sk_buff *skb, sdla_t* card) { chdlc_udp_pkt_t *chdlc_udp_pkt = (chdlc_udp_pkt_t *)skb->data; #ifdef _WAN_UDP_DEBUG printk(KERN_INFO "SIG %s = %s\n\ UPP %x = %x\n\ PRT %x = %x\n\ REQ %i = %i\n\ 36 th = %x 37th = %x\n", chdlc_udp_pkt->wp_mgmt.signature, UDPMGMT_SIGNATURE, chdlc_udp_pkt->udp_pkt.udp_dst_port, ntohs(card->wandev.udp_port), chdlc_udp_pkt->ip_pkt.protocol, UDPMGMT_UDP_PROTOCOL, chdlc_udp_pkt->wp_mgmt.request_reply, UDPMGMT_REQUEST, skb->data[36], skb->data[37]); #endif if (!strncmp(chdlc_udp_pkt->wp_mgmt.signature,UDPMGMT_SIGNATURE,8) && (chdlc_udp_pkt->udp_pkt.udp_dst_port == ntohs(card->wandev.udp_port)) && (chdlc_udp_pkt->ip_pkt.protocol == UDPMGMT_UDP_PROTOCOL) && (chdlc_udp_pkt->wp_mgmt.request_reply == UDPMGMT_REQUEST)) { return UDP_CPIPE_TYPE; }else{ return UDP_INVALID_TYPE; } } /*============================================================================ * Set PORT state. */ static void port_set_state (sdla_t *card, int state) { if (card->u.c.state != state) { switch (state) { case WAN_CONNECTED: printk (KERN_INFO "%s: Link connected!\n", card->devname); break; case WAN_CONNECTING: printk (KERN_INFO "%s: Link connecting...\n", card->devname); break; case WAN_DISCONNECTED: printk (KERN_INFO "%s: Link disconnected!\n", card->devname); break; } card->wandev.state = card->u.c.state = state; if (card->wandev.dev){ struct net_device *dev = card->wandev.dev; chdlc_private_area_t *chdlc_priv_area = dev->priv; chdlc_priv_area->common.state = state; } } } /*=========================================================================== * config_chdlc * * Configure the chdlc protocol and enable communications. * * The if_open() function binds this function to the poll routine. * Therefore, this function will run every time the chdlc interface * is brought up. We cannot run this function from the if_open * because if_open does not have access to the remote IP address. * * If the communications are not enabled, proceed to configure * the card and enable communications. * * If the communications are enabled, it means that the interface * was shutdown by ether the user or driver. In this case, we * have to check that the IP addresses have not changed. If * the IP addresses have changed, we have to reconfigure the firmware * and update the changed IP addresses. Otherwise, just exit. * */ static int config_chdlc (sdla_t *card) { struct net_device *dev = card->wandev.dev; chdlc_private_area_t *chdlc_priv_area = dev->priv; SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; if (card->u.c.comm_enabled){ /* Jun 20. 2000: NC * IP addresses are not used in the API mode */ if ((chdlc_priv_area->ip_local_tmp != chdlc_priv_area->ip_local || chdlc_priv_area->ip_remote_tmp != chdlc_priv_area->ip_remote) && card->u.c.usedby == WANPIPE) { /* The IP addersses have changed, we must * stop the communications and reconfigure * the card. Reason: the firmware must know * the local and remote IP addresses. */ disable_comm(card); port_set_state(card, WAN_DISCONNECTED); printk(KERN_INFO "%s: IP addresses changed!\n", card->devname); printk(KERN_INFO "%s: Restarting communications ...\n", card->devname); }else{ /* IP addresses are the same and the link is up, * we don't have to do anything here. Therefore, exit */ return 0; } } chdlc_priv_area->ip_local = chdlc_priv_area->ip_local_tmp; chdlc_priv_area->ip_remote = chdlc_priv_area->ip_remote_tmp; /* Setup the Board for asynchronous mode */ if (card->u.c.async_mode){ if (set_asy_config(card)) { printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n", card->devname); return 0; } }else{ /* Setup the Board for CHDLC */ if (set_chdlc_config(card)) { printk (KERN_INFO "%s: Failed CHDLC configuration!\n", card->devname); return 0; } } /* Set interrupt mode and mask */ if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_TX_FRAME | APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: Failed to set interrupt triggers!\n", card->devname); return 0; } /* Mask the Transmit and Timer interrupt */ flags->interrupt_info_struct.interrupt_permission &= ~(APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER); /* In TTY mode, receive interrupt will be enabled during * wanpipe_tty_open() operation */ if (card->tty_opt){ flags->interrupt_info_struct.interrupt_permission &= ~APP_INT_ON_RX_FRAME; } /* Enable communications */ if (card->u.c.async_mode){ if (asy_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable async commnunication!\n", card->devname); flags->interrupt_info_struct.interrupt_permission = 0; card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return 0; } }else{ if (chdlc_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable chdlc communications!\n", card->devname); flags->interrupt_info_struct.interrupt_permission = 0; card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return 0; } } /* Initialize Rx/Tx buffer control fields */ init_chdlc_tx_rx_buff(card); port_set_state(card, WAN_CONNECTING); return 0; } /*============================================================ * chdlc_poll * * Rationale: * We cannot manipulate the routing tables, or * ip addresses withing the interrupt. Therefore * we must perform such actons outside an interrupt * at a later time. * * Description: * CHDLC polling routine, responsible for * shutting down interfaces upon disconnect * and adding/removing routes. * * Usage: * This function is executed for each CHDLC * interface through a tq_schedule bottom half. * * trigger_chdlc_poll() function is used to kick * the chldc_poll routine. */ static void chdlc_poll(struct net_device *dev) { chdlc_private_area_t *chdlc_priv_area; sdla_t *card; u8 check_gateway=0; SHARED_MEMORY_INFO_STRUCT* flags; if (!dev || (chdlc_priv_area=dev->priv) == NULL) return; card = chdlc_priv_area->card; flags = card->u.c.flags; /* (Re)Configuraiton is in progress, stop what you are * doing and get out */ if (test_bit(PERI_CRIT,&card->wandev.critical)){ clear_bit(POLL_CRIT,&card->wandev.critical); return; } /* if_open() function has triggered the polling routine * to determine the configured IP addresses. Once the * addresses are found, trigger the chdlc configuration */ if (test_bit(0,&chdlc_priv_area->config_chdlc)){ chdlc_priv_area->ip_local_tmp = get_ip_address(dev,WAN_LOCAL_IP); chdlc_priv_area->ip_remote_tmp = get_ip_address(dev,WAN_POINTOPOINT_IP); /* Jun 20. 2000 Bug Fix * Only perform this check in WANPIPE mode, since * IP addresses are not used in the API mode. */ if (chdlc_priv_area->ip_local_tmp == chdlc_priv_area->ip_remote_tmp && card->u.c.slarp_timer == 0x00 && !card->u.c.backup && card->u.c.usedby == WANPIPE){ if (++chdlc_priv_area->ip_error > MAX_IP_ERRORS){ printk(KERN_INFO "\n%s: --- WARNING ---\n", card->devname); printk(KERN_INFO "%s: The local IP address is the same as the\n", card->devname); printk(KERN_INFO "%s: Point-to-Point IP address.\n", card->devname); printk(KERN_INFO "%s: --- WARNING ---\n\n", card->devname); }else{ clear_bit(POLL_CRIT,&card->wandev.critical); chdlc_priv_area->poll_delay_timer.expires = jiffies+HZ; add_timer(&chdlc_priv_area->poll_delay_timer); return; } } clear_bit(0,&chdlc_priv_area->config_chdlc); clear_bit(POLL_CRIT,&card->wandev.critical); chdlc_priv_area->timer_int_enabled |= TMR_INT_ENABLED_CONFIG; flags->interrupt_info_struct.interrupt_permission |= APP_INT_ON_TIMER; return; } /* Dynamic interface implementation, as well as dynamic * routing. */ switch (card->u.c.state){ case WAN_DISCONNECTED: /* If the dynamic interface configuration is on, and interface * is up, then bring down the netowrk interface */ if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) && !test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) && card->wandev.dev->flags & IFF_UP){ printk(KERN_INFO "%s: Interface %s down.\n", card->devname,card->wandev.dev->name); change_dev_flags(card->wandev.dev,(card->wandev.dev->flags&~IFF_UP)); set_bit(DEV_DOWN,&chdlc_priv_area->interface_down); chdlc_priv_area->route_status = NO_ROUTE; }else{ /* We need to check if the local IP address is * zero. If it is, we shouldn't try to remove it. */ if (card->wandev.dev->flags & IFF_UP && get_ip_address(card->wandev.dev,WAN_LOCAL_IP) && chdlc_priv_area->route_status != NO_ROUTE && card->u.c.slarp_timer){ process_route(card); } } break; case WAN_CONNECTED: /* In SMP machine this code can execute before the interface * comes up. In this case, we must make sure that we do not * try to bring up the interface before dev_open() is finished */ /* DEV_DOWN will be set only when we bring down the interface * for the very first time. This way we know that it was us * that brought the interface down */ if (test_bit(DYN_OPT_ON,&chdlc_priv_area->interface_down) && test_bit(DEV_DOWN, &chdlc_priv_area->interface_down) && !(card->wandev.dev->flags & IFF_UP)){ printk(KERN_INFO "%s: Interface %s up.\n", card->devname,card->wandev.dev->name); change_dev_flags(card->wandev.dev,(card->wandev.dev->flags|IFF_UP)); clear_bit(DEV_DOWN,&chdlc_priv_area->interface_down); check_gateway=1; } if (chdlc_priv_area->route_status == ADD_ROUTE && card->u.c.slarp_timer){ process_route(card); check_gateway=1; } if (chdlc_priv_area->gateway && check_gateway) add_gateway(card,dev); break; } clear_bit(POLL_CRIT,&card->wandev.critical); } /*============================================================ * trigger_chdlc_poll * * Description: * Add a chdlc_poll() work entry into the keventd work queue * for a specific dlci/interface. This will kick * the fr_poll() routine at a later time. * * Usage: * Interrupts use this to defer a taks to * a polling routine. * */ static void trigger_chdlc_poll(struct net_device *dev) { chdlc_private_area_t *chdlc_priv_area; sdla_t *card; if (!dev) return; if ((chdlc_priv_area = dev->priv)==NULL) return; card = chdlc_priv_area->card; if (test_and_set_bit(POLL_CRIT,&card->wandev.critical)){ return; } if (test_bit(PERI_CRIT,&card->wandev.critical)){ return; } schedule_work(&chdlc_priv_area->poll_work); } static void chdlc_poll_delay (unsigned long dev_ptr) { struct net_device *dev = (struct net_device *)dev_ptr; trigger_chdlc_poll(dev); } void s508_lock (sdla_t *card, unsigned long *smp_flags) { spin_lock_irqsave(&card->wandev.lock, *smp_flags); if (card->next){ spin_lock(&card->next->wandev.lock); } } void s508_unlock (sdla_t *card, unsigned long *smp_flags) { if (card->next){ spin_unlock(&card->next->wandev.lock); } spin_unlock_irqrestore(&card->wandev.lock, *smp_flags); } //*********** TTY SECTION **************** static void wanpipe_tty_trigger_tx_irq(sdla_t *card) { SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; INTERRUPT_INFORMATION_STRUCT *chdlc_int = &flags->interrupt_info_struct; chdlc_int->interrupt_permission |= APP_INT_ON_TX_FRAME; } static void wanpipe_tty_trigger_poll(sdla_t *card) { schedule_work(&card->tty_work); } static void tty_poll_work (void* data) { sdla_t *card = (sdla_t*)data; struct tty_struct *tty; if ((tty=card->tty)==NULL) return; tty_wakeup(tty); #if defined(SERIAL_HAVE_POLL_WAIT) wake_up_interruptible(&tty->poll_wait); #endif return; } static void wanpipe_tty_close(struct tty_struct *tty, struct file * filp) { sdla_t *card; unsigned long smp_flags; if (!tty || !tty->driver_data){ return; } card = (sdla_t*)tty->driver_data; if (!card) return; printk(KERN_INFO "%s: Closing TTY Driver!\n", card->devname); /* Sanity Check */ if (!card->tty_open) return; wanpipe_close(card); if (--card->tty_open == 0){ lock_adapter_irq(&card->wandev.lock,&smp_flags); card->tty=NULL; chdlc_disable_comm_shutdown(card); unlock_adapter_irq(&card->wandev.lock,&smp_flags); kfree(card->tty_buf); card->tty_buf = NULL; kfree(card->tty_rx); card->tty_rx = NULL; } return; } static int wanpipe_tty_open(struct tty_struct *tty, struct file * filp) { unsigned long smp_flags; sdla_t *card; if (!tty){ return -ENODEV; } if (!tty->driver_data){ int port; port = tty->index; if ((port < 0) || (port >= NR_PORTS)) return -ENODEV; tty->driver_data = WAN_CARD(port); if (!tty->driver_data) return -ENODEV; } card = (sdla_t*)tty->driver_data; if (!card){ lock_adapter_irq(&card->wandev.lock,&smp_flags); card->tty=NULL; unlock_adapter_irq(&card->wandev.lock,&smp_flags); return -ENODEV; } printk(KERN_INFO "%s: Opening TTY Driver!\n", card->devname); if (card->tty_open == 0){ lock_adapter_irq(&card->wandev.lock,&smp_flags); card->tty=tty; unlock_adapter_irq(&card->wandev.lock,&smp_flags); if (!card->tty_buf){ card->tty_buf = kmalloc(TTY_CHDLC_MAX_MTU, GFP_KERNEL); if (!card->tty_buf){ card->tty_buf=NULL; card->tty=NULL; return -ENOMEM; } } if (!card->tty_rx){ card->tty_rx = kmalloc(TTY_CHDLC_MAX_MTU, GFP_KERNEL); if (!card->tty_rx){ /* Free the buffer above */ kfree(card->tty_buf); card->tty_buf=NULL; card->tty=NULL; return -ENOMEM; } } } ++card->tty_open; wanpipe_open(card); return 0; } static int wanpipe_tty_write(struct tty_struct * tty, const unsigned char *buf, int count) { unsigned long smp_flags=0; sdla_t *card=NULL; if (!tty){ dbg_printk(KERN_INFO "NO TTY in Write\n"); return -ENODEV; } card = (sdla_t *)tty->driver_data; if (!card){ dbg_printk(KERN_INFO "No Card in TTY Write\n"); return -ENODEV; } if (count > card->wandev.mtu){ dbg_printk(KERN_INFO "Frame too big in Write %i Max: %i\n", count,card->wandev.mtu); return -EINVAL; } if (card->wandev.state != WAN_CONNECTED){ dbg_printk(KERN_INFO "Card not connected in TTY Write\n"); return -EINVAL; } /* Lock the 508 Card: SMP is supported */ if(card->hw.type != SDLA_S514){ s508_lock(card,&smp_flags); } if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){ printk(KERN_INFO "%s: Critical in TTY Write\n", card->devname); /* Lock the 508 Card: SMP is supported */ if(card->hw.type != SDLA_S514) s508_unlock(card,&smp_flags); return -EINVAL; } if (chdlc_send(card,(void*)buf,count)){ dbg_printk(KERN_INFO "%s: Failed to send, retry later: kernel!\n", card->devname); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); wanpipe_tty_trigger_tx_irq(card); if(card->hw.type != SDLA_S514) s508_unlock(card,&smp_flags); return 0; } dbg_printk(KERN_INFO "%s: Packet sent OK: %i\n",card->devname,count); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->hw.type != SDLA_S514) s508_unlock(card,&smp_flags); return count; } static void wanpipe_tty_receive(sdla_t *card, unsigned addr, unsigned int len) { unsigned offset=0; unsigned olen=len; char fp=0; struct tty_struct *tty; int i; struct tty_ldisc *ld; if (!card->tty_open){ dbg_printk(KERN_INFO "%s: TTY not open during receive\n", card->devname); return; } if ((tty=card->tty) == NULL){ dbg_printk(KERN_INFO "%s: No TTY on receive\n", card->devname); return; } if (!tty->driver_data){ dbg_printk(KERN_INFO "%s: No Driver Data, or Flip on receive\n", card->devname); return; } if (card->u.c.async_mode){ if ((tty->flip.count+len) >= TTY_FLIPBUF_SIZE){ if (net_ratelimit()){ printk(KERN_INFO "%s: Received packet size too big: %i bytes, Max: %i!\n", card->devname,len,TTY_FLIPBUF_SIZE); } return; } if((addr + len) > card->u.c.rx_top + 1) { offset = card->u.c.rx_top - addr + 1; sdla_peek(&card->hw, addr, tty->flip.char_buf_ptr, offset); addr = card->u.c.rx_base; len -= offset; tty->flip.char_buf_ptr+=offset; tty->flip.count+=offset; for (i=0;i<offset;i++){ *tty->flip.flag_buf_ptr = 0; tty->flip.flag_buf_ptr++; } } sdla_peek(&card->hw, addr, tty->flip.char_buf_ptr, len); tty->flip.char_buf_ptr+=len; card->tty->flip.count+=len; for (i=0;i<len;i++){ *tty->flip.flag_buf_ptr = 0; tty->flip.flag_buf_ptr++; } tty->low_latency=1; tty_flip_buffer_push(tty); }else{ if (!card->tty_rx){ if (net_ratelimit()){ printk(KERN_INFO "%s: Receive sync buffer not available!\n", card->devname); } return; } if (len > TTY_CHDLC_MAX_MTU){ if (net_ratelimit()){ printk(KERN_INFO "%s: Received packet size too big: %i bytes, Max: %i!\n", card->devname,len,TTY_FLIPBUF_SIZE); } return; } if((addr + len) > card->u.c.rx_top + 1) { offset = card->u.c.rx_top - addr + 1; sdla_peek(&card->hw, addr, card->tty_rx, offset); addr = card->u.c.rx_base; len -= offset; } sdla_peek(&card->hw, addr, card->tty_rx+offset, len); ld = tty_ldisc_ref(tty); if (ld) { if (ld->receive_buf) ld->receive_buf(tty,card->tty_rx,&fp,olen); tty_ldisc_deref(ld); }else{ if (net_ratelimit()){ printk(KERN_INFO "%s: NO TTY Sync line discipline!\n", card->devname); } } } dbg_printk(KERN_INFO "%s: Received Data %i\n",card->devname,olen); return; } #if 0 static int wanpipe_tty_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { return -ENOIOCTLCMD; } #endif static void wanpipe_tty_stop(struct tty_struct *tty) { return; } static void wanpipe_tty_start(struct tty_struct *tty) { return; } static int config_tty (sdla_t *card) { SHARED_MEMORY_INFO_STRUCT *flags = card->u.c.flags; /* Setup the Board for asynchronous mode */ if (card->u.c.async_mode){ if (set_asy_config(card)) { printk (KERN_INFO "%s: Failed CHDLC Async configuration!\n", card->devname); return -EINVAL; } }else{ /* Setup the Board for CHDLC */ if (set_chdlc_config(card)) { printk (KERN_INFO "%s: Failed CHDLC configuration!\n", card->devname); return -EINVAL; } } /* Set interrupt mode and mask */ if (chdlc_set_intr_mode(card, APP_INT_ON_RX_FRAME | APP_INT_ON_GLOBAL_EXCEP_COND | APP_INT_ON_TX_FRAME | APP_INT_ON_CHDLC_EXCEP_COND | APP_INT_ON_TIMER)){ printk (KERN_INFO "%s: Failed to set interrupt triggers!\n", card->devname); return -EINVAL; } /* Mask the Transmit and Timer interrupt */ flags->interrupt_info_struct.interrupt_permission &= ~(APP_INT_ON_TX_FRAME | APP_INT_ON_TIMER); /* Enable communications */ if (card->u.c.async_mode){ if (asy_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable async commnunication!\n", card->devname); flags->interrupt_info_struct.interrupt_permission = 0; card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } }else{ if (chdlc_comm_enable(card) != 0) { printk(KERN_INFO "%s: Failed to enable chdlc communications!\n", card->devname); flags->interrupt_info_struct.interrupt_permission = 0; card->u.c.comm_enabled=0; chdlc_set_intr_mode(card,0); return -EINVAL; } } /* Initialize Rx/Tx buffer control fields */ init_chdlc_tx_rx_buff(card); port_set_state(card, WAN_CONNECTING); return 0; } static int change_speed(sdla_t *card, struct tty_struct *tty, struct termios *old_termios) { int baud, ret=0; unsigned cflag; int dbits,sbits,parity,handshaking; cflag = tty->termios->c_cflag; /* There is always one stop bit */ sbits=WANOPT_ONE; /* Parity is defaulted to NONE */ parity = WANOPT_NONE; handshaking=0; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: dbits = 5; break; case CS6: dbits = 6; break; case CS7: dbits = 7; break; case CS8: dbits = 8; break; /* Never happens, but GCC is too dumb to figure it out */ default: dbits = 8; break; } /* One more stop bit should be supported, thus increment * the number of stop bits Max=2 */ if (cflag & CSTOPB) { sbits = WANOPT_TWO; } if (cflag & PARENB) { parity = WANOPT_EVEN; } if (cflag & PARODD){ parity = WANOPT_ODD; } /* Determine divisor based on baud rate */ baud = tty_get_baud_rate(tty); if (!baud) baud = 9600; /* B0 transition handled in rs_set_termios */ if (cflag & CRTSCTS) { handshaking|=ASY_RTS_HS_FOR_RX; } if (I_IGNPAR(tty)) parity = WANOPT_NONE; if (I_IXOFF(tty)){ handshaking|=ASY_XON_XOFF_HS_FOR_RX; handshaking|=ASY_XON_XOFF_HS_FOR_TX; } if (I_IXON(tty)){ handshaking|=ASY_XON_XOFF_HS_FOR_RX; handshaking|=ASY_XON_XOFF_HS_FOR_TX; } if (card->u.c.async_mode){ if (card->wandev.bps != baud) ret=1; card->wandev.bps = baud; } if (card->u.c.async_mode){ if (card->u.c.protocol_options != handshaking) ret=1; card->u.c.protocol_options = handshaking; if (card->u.c.tx_bits_per_char != dbits) ret=1; card->u.c.tx_bits_per_char = dbits; if (card->u.c.rx_bits_per_char != dbits) ret=1; card->u.c.rx_bits_per_char = dbits; if (card->u.c.stop_bits != sbits) ret=1; card->u.c.stop_bits = sbits; if (card->u.c.parity != parity) ret=1; card->u.c.parity = parity; card->u.c.break_timer = 50; card->u.c.inter_char_timer = 10; card->u.c.rx_complete_length = 100; card->u.c.xon_char = 0xFE; }else{ card->u.c.protocol_options = HDLC_STREAMING_MODE; } return ret; } static void wanpipe_tty_set_termios(struct tty_struct *tty, struct termios *old_termios) { sdla_t *card; int err=1; if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; if (change_speed(card, tty, old_termios) || !card->u.c.comm_enabled){ unsigned long smp_flags; if (card->u.c.comm_enabled){ lock_adapter_irq(&card->wandev.lock,&smp_flags); chdlc_disable_comm_shutdown(card); unlock_adapter_irq(&card->wandev.lock,&smp_flags); } lock_adapter_irq(&card->wandev.lock,&smp_flags); err = config_tty(card); unlock_adapter_irq(&card->wandev.lock,&smp_flags); if (card->u.c.async_mode){ printk(KERN_INFO "%s: TTY Async Configuration:\n" " Baud =%i\n" " Handshaking =%s\n" " Tx Dbits =%i\n" " Rx Dbits =%i\n" " Parity =%s\n" " Stop Bits =%i\n", card->devname, card->wandev.bps, opt_decode[card->u.c.protocol_options], card->u.c.tx_bits_per_char, card->u.c.rx_bits_per_char, p_decode[card->u.c.parity] , card->u.c.stop_bits); }else{ printk(KERN_INFO "%s: TTY Sync Configuration:\n" " Baud =%i\n" " Protocol =HDLC_STREAMING\n", card->devname,card->wandev.bps); } if (!err){ port_set_state(card,WAN_CONNECTED); }else{ port_set_state(card,WAN_DISCONNECTED); } } return; } static void wanpipe_tty_put_char(struct tty_struct *tty, unsigned char ch) { sdla_t *card; unsigned long smp_flags=0; if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; if (card->wandev.state != WAN_CONNECTED) return; if(card->hw.type != SDLA_S514) s508_lock(card,&smp_flags); if (test_and_set_bit(SEND_CRIT,(void*)&card->wandev.critical)){ wanpipe_tty_trigger_tx_irq(card); if(card->hw.type != SDLA_S514) s508_unlock(card,&smp_flags); return; } if (chdlc_send(card,(void*)&ch,1)){ wanpipe_tty_trigger_tx_irq(card); dbg_printk("%s: Failed to TX char!\n",card->devname); } dbg_printk("%s: Char TX OK\n",card->devname); clear_bit(SEND_CRIT,(void*)&card->wandev.critical); if(card->hw.type != SDLA_S514) s508_unlock(card,&smp_flags); return; } static void wanpipe_tty_flush_chars(struct tty_struct *tty) { return; } static void wanpipe_tty_flush_buffer(struct tty_struct *tty) { if (!tty) return; #if defined(SERIAL_HAVE_POLL_WAIT) wake_up_interruptible(&tty->poll_wait); #endif tty_wakeup(tty); return; } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void wanpipe_tty_send_xchar(struct tty_struct *tty, char ch) { return; } static int wanpipe_tty_chars_in_buffer(struct tty_struct *tty) { return 0; } static int wanpipe_tty_write_room(struct tty_struct *tty) { sdla_t *card; printk(KERN_INFO "TTY Write Room\n"); if (!tty){ return 0; } card = (sdla_t *)tty->driver_data; if (!card) return 0; if (card->wandev.state != WAN_CONNECTED) return 0; return SEC_MAX_NO_DATA_BYTES_IN_FRAME; } static int set_modem_status(sdla_t *card, unsigned char data) { CHDLC_MAILBOX_STRUCT *mb = card->mbox; int err; mb->buffer_length=1; mb->command=SET_MODEM_STATUS; mb->data[0]=data; err = sdla_exec(mb) ? mb->return_code : CMD_TIMEOUT; if (err != COMMAND_OK) chdlc_error (card, err, mb); return err; } static void wanpipe_tty_hangup(struct tty_struct *tty) { sdla_t *card; unsigned long smp_flags; printk(KERN_INFO "TTY Hangup!\n"); if (!tty){ return; } card = (sdla_t *)tty->driver_data; if (!card) return; lock_adapter_irq(&card->wandev.lock,&smp_flags); set_modem_status(card,0); unlock_adapter_irq(&card->wandev.lock,&smp_flags); return; } static void wanpipe_tty_break(struct tty_struct *tty, int break_state) { return; } static void wanpipe_tty_wait_until_sent(struct tty_struct *tty, int timeout) { return; } static void wanpipe_tty_throttle(struct tty_struct * tty) { return; } static void wanpipe_tty_unthrottle(struct tty_struct * tty) { return; } int wanpipe_tty_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { return 0; } /* * The serial driver boot-time initialization code! */ int wanpipe_tty_init(sdla_t *card) { struct serial_state * state; /* Initialize the tty_driver structure */ if (card->tty_minor < 0 || card->tty_minor > NR_PORTS){ printk(KERN_INFO "%s: Illegal Minor TTY number (0-4): %i\n", card->devname,card->tty_minor); return -EINVAL; } if (WAN_CARD(card->tty_minor)){ printk(KERN_INFO "%s: TTY Minor %i, already in use\n", card->devname,card->tty_minor); return -EBUSY; } if (tty_init_cnt==0){ printk(KERN_INFO "%s: TTY %s Driver Init: Major %i, Minor Range %i-%i\n", card->devname, card->u.c.async_mode ? "ASYNC" : "SYNC", WAN_TTY_MAJOR,MIN_PORT,MAX_PORT); tty_driver_mode = card->u.c.async_mode; memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.owner = THIS_MODULE; serial_driver.driver_name = "wanpipe_tty"; serial_driver.name = "ttyW"; serial_driver.major = WAN_TTY_MAJOR; serial_driver.minor_start = WAN_TTY_MINOR; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = 1; /* !@!@^#^&!! */ serial_driver.open = wanpipe_tty_open; serial_driver.close = wanpipe_tty_close; serial_driver.write = wanpipe_tty_write; serial_driver.put_char = wanpipe_tty_put_char; serial_driver.flush_chars = wanpipe_tty_flush_chars; serial_driver.write_room = wanpipe_tty_write_room; serial_driver.chars_in_buffer = wanpipe_tty_chars_in_buffer; serial_driver.flush_buffer = wanpipe_tty_flush_buffer; //serial_driver.ioctl = wanpipe_tty_ioctl; serial_driver.throttle = wanpipe_tty_throttle; serial_driver.unthrottle = wanpipe_tty_unthrottle; serial_driver.send_xchar = wanpipe_tty_send_xchar; serial_driver.set_termios = wanpipe_tty_set_termios; serial_driver.stop = wanpipe_tty_stop; serial_driver.start = wanpipe_tty_start; serial_driver.hangup = wanpipe_tty_hangup; serial_driver.break_ctl = wanpipe_tty_break; serial_driver.wait_until_sent = wanpipe_tty_wait_until_sent; serial_driver.read_proc = wanpipe_tty_read_proc; if (tty_register_driver(&serial_driver)){ printk(KERN_INFO "%s: Failed to register serial driver!\n", card->devname); } } /* The subsequent ports must comply to the initial configuration */ if (tty_driver_mode != card->u.c.async_mode){ printk(KERN_INFO "%s: Error: TTY Driver operation mode mismatch!\n", card->devname); printk(KERN_INFO "%s: The TTY driver is configured for %s!\n", card->devname, tty_driver_mode ? "ASYNC" : "SYNC"); return -EINVAL; } tty_init_cnt++; printk(KERN_INFO "%s: Initializing TTY %s Driver Minor %i\n", card->devname, tty_driver_mode ? "ASYNC" : "SYNC", card->tty_minor); tty_card_map[card->tty_minor] = card; state = &rs_table[card->tty_minor]; state->magic = SSTATE_MAGIC; state->line = 0; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; state->irq = card->wandev.irq; INIT_WORK(&card->tty_work, tty_poll_work, (void*)card); return 0; } MODULE_LICENSE("GPL"); /****** End ****************************************************************/