/* * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux * * This software may be used and distributed according to the terms of the * GNU General Public License. * * The author may be reached as romieu@cogenit.fr. * Specific bug reports/asian food will be welcome. * * Special thanks to the nice people at CS-Telecom for the hardware and the * access to the test/measure tools. * * * Theory of Operation * * I. Board Compatibility * * This device driver is designed for the Siemens PEB20534 4 ports serial * controller as found on Etinc PCISYNC cards. The documentation for the * chipset is available at http://www.infineon.com: * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1"; * - Application Hint "Management of DSCC4 on-chip FIFO resources". * - Errata sheet DS5 (courtesy of Michael Skerritt). * Jens David has built an adapter based on the same chipset. Take a look * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific * driver. * Sample code (2 revisions) is available at Infineon. * * II. Board-specific settings * * Pcisync can transmit some clock signal to the outside world on the * *first two* ports provided you put a quartz and a line driver on it and * remove the jumpers. The operation is described on Etinc web site. If you * go DCE on these ports, don't forget to use an adequate cable. * * Sharing of the PCI interrupt line for this board is possible. * * III. Driver operation * * The rx/tx operations are based on a linked list of descriptors. The driver * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more * I tried to fix it, the more it started to look like (convoluted) software * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider * this a rfc2119 MUST. * * Tx direction * When the tx ring is full, the xmit routine issues a call to netdev_stop. * The device is supposed to be enabled again during an ALLS irq (we could * use HI but as it's easy to lose events, it's fscked). * * Rx direction * The received frames aren't supposed to span over multiple receiving areas. * I may implement it some day but it isn't the highest ranked item. * * IV. Notes * The current error (XDU, RFO) recovery code is untested. * So far, RDO takes his RX channel down and the right sequence to enable it * again is still a mistery. If RDO happens, plan a reboot. More details * in the code (NB: as this happens, TX still works). * Don't mess the cables during operation, especially on DTE ports. I don't * suggest it for DCE either but at least one can get some messages instead * of a complete instant freeze. * Tests are done on Rev. 20 of the silicium. The RDO handling changes with * the documentation/chipset releases. * * TODO: * - test X25. * - use polling at high irq/s, * - performance analysis, * - endianness. * * 2001/12/10 Daniela Squassoni * - Contribution to support the new generic HDLC layer. * * 2002/01 Ueimor * - old style interface removal * - dscc4_release_ring fix (related to DMA mapping) * - hard_start_xmit fix (hint: TxSizeMax) * - misc crapectomy. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Version */ static const char version[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n"; static int debug; static int quartz; #ifdef CONFIG_DSCC4_PCI_RST static DEFINE_MUTEX(dscc4_mutex); static u32 dscc4_pci_config_store[16]; #endif #define DRV_NAME "dscc4" #undef DSCC4_POLLING /* Module parameters */ MODULE_AUTHOR("Maintainer: Francois Romieu "); MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler"); MODULE_LICENSE("GPL"); module_param(debug, int, 0); MODULE_PARM_DESC(debug,"Enable/disable extra messages"); module_param(quartz, int, 0); MODULE_PARM_DESC(quartz,"If present, on-board quartz frequency (Hz)"); /* Structures */ struct thingie { int define; u32 bits; }; struct TxFD { __le32 state; __le32 next; __le32 data; __le32 complete; u32 jiffies; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */ /* FWIW, datasheet calls that "dummy" and says that card * never looks at it; neither does the driver */ }; struct RxFD { __le32 state1; __le32 next; __le32 data; __le32 state2; __le32 end; }; #define DUMMY_SKB_SIZE 64 #define TX_LOW 8 #define TX_RING_SIZE 32 #define RX_RING_SIZE 32 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD) #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD) #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */ #define TX_TIMEOUT (HZ/10) #define DSCC4_HZ_MAX 33000000 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */ #define dev_per_card 4 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */ #define SOURCE_ID(flags) (((flags) >> 28) & 0x03) #define TO_SIZE(state) (((state) >> 16) & 0x1fff) /* * Given the operating range of Linux HDLC, the 2 defines below could be * made simpler. However they are a fine reminder for the limitations of * the driver: it's better to stay < TxSizeMax and < RxSizeMax. */ #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16) #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16) #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */ #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET) struct dscc4_pci_priv { __le32 *iqcfg; int cfg_cur; spinlock_t lock; struct pci_dev *pdev; struct dscc4_dev_priv *root; dma_addr_t iqcfg_dma; u32 xtal_hz; }; struct dscc4_dev_priv { struct sk_buff *rx_skbuff[RX_RING_SIZE]; struct sk_buff *tx_skbuff[TX_RING_SIZE]; struct RxFD *rx_fd; struct TxFD *tx_fd; __le32 *iqrx; __le32 *iqtx; /* FIXME: check all the volatile are required */ volatile u32 tx_current; u32 rx_current; u32 iqtx_current; u32 iqrx_current; volatile u32 tx_dirty; volatile u32 ltda; u32 rx_dirty; u32 lrda; dma_addr_t tx_fd_dma; dma_addr_t rx_fd_dma; dma_addr_t iqtx_dma; dma_addr_t iqrx_dma; u32 scc_regs[SCC_REGISTERS_MAX]; /* Cf errata DS5 p.4 */ struct timer_list timer; struct dscc4_pci_priv *pci_priv; spinlock_t lock; int dev_id; volatile u32 flags; u32 timer_help; unsigned short encoding; unsigned short parity; struct net_device *dev; sync_serial_settings settings; void __iomem *base_addr; u32 __pad __attribute__ ((aligned (4))); }; /* GLOBAL registers definitions */ #define GCMDR 0x00 #define GSTAR 0x04 #define GMODE 0x08 #define IQLENR0 0x0C #define IQLENR1 0x10 #define IQRX0 0x14 #define IQTX0 0x24 #define IQCFG 0x3c #define FIFOCR1 0x44 #define FIFOCR2 0x48 #define FIFOCR3 0x4c #define FIFOCR4 0x34 #define CH0CFG 0x50 #define CH0BRDA 0x54 #define CH0BTDA 0x58 #define CH0FRDA 0x98 #define CH0FTDA 0xb0 #define CH0LRDA 0xc8 #define CH0LTDA 0xe0 /* SCC registers definitions */ #define SCC_START 0x0100 #define SCC_OFFSET 0x80 #define CMDR 0x00 #define STAR 0x04 #define CCR0 0x08 #define CCR1 0x0c #define CCR2 0x10 #define BRR 0x2C #define RLCR 0x40 #define IMR 0x54 #define ISR 0x58 #define GPDIR 0x0400 #define GPDATA 0x0404 #define GPIM 0x0408 /* Bit masks */ #define EncodingMask 0x00700000 #define CrcMask 0x00000003 #define IntRxScc0 0x10000000 #define IntTxScc0 0x01000000 #define TxPollCmd 0x00000400 #define RxActivate 0x08000000 #define MTFi 0x04000000 #define Rdr 0x00400000 #define Rdt 0x00200000 #define Idr 0x00100000 #define Idt 0x00080000 #define TxSccRes 0x01000000 #define RxSccRes 0x00010000 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */ #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */ #define Ccr0ClockMask 0x0000003f #define Ccr1LoopMask 0x00000200 #define IsrMask 0x000fffff #define BrrExpMask 0x00000f00 #define BrrMultMask 0x0000003f #define EncodingMask 0x00700000 #define Hold cpu_to_le32(0x40000000) #define SccBusy 0x10000000 #define PowerUp 0x80000000 #define Vis 0x00001000 #define FrameOk (FrameVfr | FrameCrc) #define FrameVfr 0x80 #define FrameRdo 0x40 #define FrameCrc 0x20 #define FrameRab 0x10 #define FrameAborted cpu_to_le32(0x00000200) #define FrameEnd cpu_to_le32(0x80000000) #define DataComplete cpu_to_le32(0x40000000) #define LengthCheck 0x00008000 #define SccEvt 0x02000000 #define NoAck 0x00000200 #define Action 0x00000001 #define HiDesc cpu_to_le32(0x20000000) /* SCC events */ #define RxEvt 0xf0000000 #define TxEvt 0x0f000000 #define Alls 0x00040000 #define Xdu 0x00010000 #define Cts 0x00004000 #define Xmr 0x00002000 #define Xpr 0x00001000 #define Rdo 0x00000080 #define Rfs 0x00000040 #define Cd 0x00000004 #define Rfo 0x00000002 #define Flex 0x00000001 /* DMA core events */ #define Cfg 0x00200000 #define Hi 0x00040000 #define Fi 0x00020000 #define Err 0x00010000 #define Arf 0x00000002 #define ArAck 0x00000001 /* State flags */ #define Ready 0x00000000 #define NeedIDR 0x00000001 #define NeedIDT 0x00000002 #define RdoSet 0x00000004 #define FakeReset 0x00000008 /* Don't mask RDO. Ever. */ #ifdef DSCC4_POLLING #define EventsMask 0xfffeef7f #else #define EventsMask 0xfffa8f7a #endif /* Functions prototypes */ static void dscc4_rx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *); static void dscc4_tx_irq(struct dscc4_pci_priv *, struct dscc4_dev_priv *); static int dscc4_found1(struct pci_dev *, void __iomem *ioaddr); static int dscc4_init_one(struct pci_dev *, const struct pci_device_id *ent); static int dscc4_open(struct net_device *); static int dscc4_start_xmit(struct sk_buff *, struct net_device *); static int dscc4_close(struct net_device *); static int dscc4_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int dscc4_init_ring(struct net_device *); static void dscc4_release_ring(struct dscc4_dev_priv *); static void dscc4_timer(unsigned long); static void dscc4_tx_timeout(struct net_device *); static irqreturn_t dscc4_irq(int irq, void *dev_id); static int dscc4_hdlc_attach(struct net_device *, unsigned short, unsigned short); static int dscc4_set_iface(struct dscc4_dev_priv *, struct net_device *); #ifdef DSCC4_POLLING static int dscc4_tx_poll(struct dscc4_dev_priv *, struct net_device *); #endif static inline struct dscc4_dev_priv *dscc4_priv(struct net_device *dev) { return dev_to_hdlc(dev)->priv; } static inline struct net_device *dscc4_to_dev(struct dscc4_dev_priv *p) { return p->dev; } static void scc_patchl(u32 mask, u32 value, struct dscc4_dev_priv *dpriv, struct net_device *dev, int offset) { u32 state; /* Cf scc_writel for concern regarding thread-safety */ state = dpriv->scc_regs[offset >> 2]; state &= ~mask; state |= value; dpriv->scc_regs[offset >> 2] = state; writel(state, dpriv->base_addr + SCC_REG_START(dpriv) + offset); } static void scc_writel(u32 bits, struct dscc4_dev_priv *dpriv, struct net_device *dev, int offset) { /* * Thread-UNsafe. * As of 2002/02/16, there are no thread racing for access. */ dpriv->scc_regs[offset >> 2] = bits; writel(bits, dpriv->base_addr + SCC_REG_START(dpriv) + offset); } static inline u32 scc_readl(struct dscc4_dev_priv *dpriv, int offset) { return dpriv->scc_regs[offset >> 2]; } static u32 scc_readl_star(struct dscc4_dev_priv *dpriv, struct net_device *dev) { /* Cf errata DS5 p.4 */ readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR); return readl(dpriv->base_addr + SCC_REG_START(dpriv) + STAR); } static inline void dscc4_do_tx(struct dscc4_dev_priv *dpriv, struct net_device *dev) { dpriv->ltda = dpriv->tx_fd_dma + ((dpriv->tx_current-1)%TX_RING_SIZE)*sizeof(struct TxFD); writel(dpriv->ltda, dpriv->base_addr + CH0LTDA + dpriv->dev_id*4); /* Flush posted writes *NOW* */ readl(dpriv->base_addr + CH0LTDA + dpriv->dev_id*4); } static inline void dscc4_rx_update(struct dscc4_dev_priv *dpriv, struct net_device *dev) { dpriv->lrda = dpriv->rx_fd_dma + ((dpriv->rx_dirty - 1)%RX_RING_SIZE)*sizeof(struct RxFD); writel(dpriv->lrda, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4); } static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv *dpriv) { return dpriv->tx_current == dpriv->tx_dirty; } static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv *dpriv, struct net_device *dev) { return readl(dpriv->base_addr + CH0FTDA + dpriv->dev_id*4) == dpriv->ltda; } static int state_check(u32 state, struct dscc4_dev_priv *dpriv, struct net_device *dev, const char *msg) { int ret = 0; if (debug > 1) { if (SOURCE_ID(state) != dpriv->dev_id) { printk(KERN_DEBUG "%s (%s): Source Id=%d, state=%08x\n", dev->name, msg, SOURCE_ID(state), state ); ret = -1; } if (state & 0x0df80c00) { printk(KERN_DEBUG "%s (%s): state=%08x (UFO alert)\n", dev->name, msg, state); ret = -1; } } return ret; } static void dscc4_tx_print(struct net_device *dev, struct dscc4_dev_priv *dpriv, char *msg) { printk(KERN_DEBUG "%s: tx_current=%02d tx_dirty=%02d (%s)\n", dev->name, dpriv->tx_current, dpriv->tx_dirty, msg); } static void dscc4_release_ring(struct dscc4_dev_priv *dpriv) { struct pci_dev *pdev = dpriv->pci_priv->pdev; struct TxFD *tx_fd = dpriv->tx_fd; struct RxFD *rx_fd = dpriv->rx_fd; struct sk_buff **skbuff; int i; pci_free_consistent(pdev, TX_TOTAL_SIZE, tx_fd, dpriv->tx_fd_dma); pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma); skbuff = dpriv->tx_skbuff; for (i = 0; i < TX_RING_SIZE; i++) { if (*skbuff) { pci_unmap_single(pdev, le32_to_cpu(tx_fd->data), (*skbuff)->len, PCI_DMA_TODEVICE); dev_kfree_skb(*skbuff); } skbuff++; tx_fd++; } skbuff = dpriv->rx_skbuff; for (i = 0; i < RX_RING_SIZE; i++) { if (*skbuff) { pci_unmap_single(pdev, le32_to_cpu(rx_fd->data), RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE); dev_kfree_skb(*skbuff); } skbuff++; rx_fd++; } } static inline int try_get_rx_skb(struct dscc4_dev_priv *dpriv, struct net_device *dev) { unsigned int dirty = dpriv->rx_dirty%RX_RING_SIZE; struct RxFD *rx_fd = dpriv->rx_fd + dirty; const int len = RX_MAX(HDLC_MAX_MRU); struct sk_buff *skb; int ret = 0; skb = dev_alloc_skb(len); dpriv->rx_skbuff[dirty] = skb; if (skb) { skb->protocol = hdlc_type_trans(skb, dev); rx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev, skb->data, len, PCI_DMA_FROMDEVICE)); } else { rx_fd->data = 0; ret = -1; } return ret; } /* * IRQ/thread/whatever safe */ static int dscc4_wait_ack_cec(struct dscc4_dev_priv *dpriv, struct net_device *dev, char *msg) { s8 i = 0; do { if (!(scc_readl_star(dpriv, dev) & SccBusy)) { printk(KERN_DEBUG "%s: %s ack (%d try)\n", dev->name, msg, i); goto done; } schedule_timeout_uninterruptible(10); rmb(); } while (++i > 0); printk(KERN_ERR "%s: %s timeout\n", dev->name, msg); done: return (i >= 0) ? i : -EAGAIN; } static int dscc4_do_action(struct net_device *dev, char *msg) { void __iomem *ioaddr = dscc4_priv(dev)->base_addr; s16 i = 0; writel(Action, ioaddr + GCMDR); ioaddr += GSTAR; do { u32 state = readl(ioaddr); if (state & ArAck) { printk(KERN_DEBUG "%s: %s ack\n", dev->name, msg); writel(ArAck, ioaddr); goto done; } else if (state & Arf) { printk(KERN_ERR "%s: %s failed\n", dev->name, msg); writel(Arf, ioaddr); i = -1; goto done; } rmb(); } while (++i > 0); printk(KERN_ERR "%s: %s timeout\n", dev->name, msg); done: return i; } static inline int dscc4_xpr_ack(struct dscc4_dev_priv *dpriv) { int cur = dpriv->iqtx_current%IRQ_RING_SIZE; s8 i = 0; do { if (!(dpriv->flags & (NeedIDR | NeedIDT)) || (dpriv->iqtx[cur] & cpu_to_le32(Xpr))) break; smp_rmb(); schedule_timeout_uninterruptible(10); } while (++i > 0); return (i >= 0 ) ? i : -EAGAIN; } #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */ static void dscc4_rx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev) { unsigned long flags; spin_lock_irqsave(&dpriv->pci_priv->lock, flags); /* Cf errata DS5 p.6 */ writel(0x00000000, dpriv->base_addr + CH0LRDA + dpriv->dev_id*4); scc_patchl(PowerUp, 0, dpriv, dev, CCR0); readl(dpriv->base_addr + CH0LRDA + dpriv->dev_id*4); writel(MTFi|Rdr, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG); writel(Action, dpriv->base_addr + GCMDR); spin_unlock_irqrestore(&dpriv->pci_priv->lock, flags); } #endif #if 0 static void dscc4_tx_reset(struct dscc4_dev_priv *dpriv, struct net_device *dev) { u16 i = 0; /* Cf errata DS5 p.7 */ scc_patchl(PowerUp, 0, dpriv, dev, CCR0); scc_writel(0x00050000, dpriv, dev, CCR2); /* * Must be longer than the time required to fill the fifo. */ while (!dscc4_tx_quiescent(dpriv, dev) && ++i) { udelay(1); wmb(); } writel(MTFi|Rdt, dpriv->base_addr + dpriv->dev_id*0x0c + CH0CFG); if (dscc4_do_action(dev, "Rdt") < 0) printk(KERN_ERR "%s: Tx reset failed\n", dev->name); } #endif /* TODO: (ab)use this function to refill a completely depleted RX ring. */ static inline void dscc4_rx_skb(struct dscc4_dev_priv *dpriv, struct net_device *dev) { struct RxFD *rx_fd = dpriv->rx_fd + dpriv->rx_current%RX_RING_SIZE; struct pci_dev *pdev = dpriv->pci_priv->pdev; struct sk_buff *skb; int pkt_len; skb = dpriv->rx_skbuff[dpriv->rx_current++%RX_RING_SIZE]; if (!skb) { printk(KERN_DEBUG "%s: skb=0 (%s)\n", dev->name, __func__); goto refill; } pkt_len = TO_SIZE(le32_to_cpu(rx_fd->state2)); pci_unmap_single(pdev, le32_to_cpu(rx_fd->data), RX_MAX(HDLC_MAX_MRU), PCI_DMA_FROMDEVICE); if ((skb->data[--pkt_len] & FrameOk) == FrameOk) { dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; skb_put(skb, pkt_len); if (netif_running(dev)) skb->protocol = hdlc_type_trans(skb, dev); skb->dev->last_rx = jiffies; netif_rx(skb); } else { if (skb->data[pkt_len] & FrameRdo) dev->stats.rx_fifo_errors++; else if (!(skb->data[pkt_len] | ~FrameCrc)) dev->stats.rx_crc_errors++; else if (!(skb->data[pkt_len] | ~(FrameVfr | FrameRab))) dev->stats.rx_length_errors++; else dev->stats.rx_errors++; dev_kfree_skb_irq(skb); } refill: while ((dpriv->rx_dirty - dpriv->rx_current) % RX_RING_SIZE) { if (try_get_rx_skb(dpriv, dev) < 0) break; dpriv->rx_dirty++; } dscc4_rx_update(dpriv, dev); rx_fd->state2 = 0x00000000; rx_fd->end = cpu_to_le32(0xbabeface); } static void dscc4_free1(struct pci_dev *pdev) { struct dscc4_pci_priv *ppriv; struct dscc4_dev_priv *root; int i; ppriv = pci_get_drvdata(pdev); root = ppriv->root; for (i = 0; i < dev_per_card; i++) unregister_hdlc_device(dscc4_to_dev(root + i)); pci_set_drvdata(pdev, NULL); for (i = 0; i < dev_per_card; i++) free_netdev(root[i].dev); kfree(root); kfree(ppriv); } static int __devinit dscc4_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { struct dscc4_pci_priv *priv; struct dscc4_dev_priv *dpriv; void __iomem *ioaddr; int i, rc; printk(KERN_DEBUG "%s", version); rc = pci_enable_device(pdev); if (rc < 0) goto out; rc = pci_request_region(pdev, 0, "registers"); if (rc < 0) { printk(KERN_ERR "%s: can't reserve MMIO region (regs)\n", DRV_NAME); goto err_disable_0; } rc = pci_request_region(pdev, 1, "LBI interface"); if (rc < 0) { printk(KERN_ERR "%s: can't reserve MMIO region (lbi)\n", DRV_NAME); goto err_free_mmio_region_1; } ioaddr = pci_ioremap_bar(pdev, 0); if (!ioaddr) { printk(KERN_ERR "%s: cannot remap MMIO region %llx @ %llx\n", DRV_NAME, (unsigned long long)pci_resource_len(pdev, 0), (unsigned long long)pci_resource_start(pdev, 0)); rc = -EIO; goto err_free_mmio_regions_2; } printk(KERN_DEBUG "Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n", (unsigned long long)pci_resource_start(pdev, 0), (unsigned long long)pci_resource_start(pdev, 1), pdev->irq); /* Cf errata DS5 p.2 */ pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xf8); pci_set_master(pdev); rc = dscc4_found1(pdev, ioaddr); if (rc < 0) goto err_iounmap_3; priv = pci_get_drvdata(pdev); rc = request_irq(pdev->irq, dscc4_irq, IRQF_SHARED, DRV_NAME, priv->root); if (rc < 0) { printk(KERN_WARNING "%s: IRQ %d busy\n", DRV_NAME, pdev->irq); goto err_release_4; } /* power up/little endian/dma core controlled via lrda/ltda */ writel(0x00000001, ioaddr + GMODE); /* Shared interrupt queue */ { u32 bits; bits = (IRQ_RING_SIZE >> 5) - 1; bits |= bits << 4; bits |= bits << 8; bits |= bits << 16; writel(bits, ioaddr + IQLENR0); } /* Global interrupt queue */ writel((u32)(((IRQ_RING_SIZE >> 5) - 1) << 20), ioaddr + IQLENR1); priv->iqcfg = (__le32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(__le32), &priv->iqcfg_dma); if (!priv->iqcfg) goto err_free_irq_5; writel(priv->iqcfg_dma, ioaddr + IQCFG); rc = -ENOMEM; /* * SCC 0-3 private rx/tx irq structures * IQRX/TXi needs to be set soon. Learned it the hard way... */ for (i = 0; i < dev_per_card; i++) { dpriv = priv->root + i; dpriv->iqtx = (__le32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), &dpriv->iqtx_dma); if (!dpriv->iqtx) goto err_free_iqtx_6; writel(dpriv->iqtx_dma, ioaddr + IQTX0 + i*4); } for (i = 0; i < dev_per_card; i++) { dpriv = priv->root + i; dpriv->iqrx = (__le32 *) pci_alloc_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), &dpriv->iqrx_dma); if (!dpriv->iqrx) goto err_free_iqrx_7; writel(dpriv->iqrx_dma, ioaddr + IQRX0 + i*4); } /* Cf application hint. Beware of hard-lock condition on threshold. */ writel(0x42104000, ioaddr + FIFOCR1); //writel(0x9ce69800, ioaddr + FIFOCR2); writel(0xdef6d800, ioaddr + FIFOCR2); //writel(0x11111111, ioaddr + FIFOCR4); writel(0x18181818, ioaddr + FIFOCR4); // FIXME: should depend on the chipset revision writel(0x0000000e, ioaddr + FIFOCR3); writel(0xff200001, ioaddr + GCMDR); rc = 0; out: return rc; err_free_iqrx_7: while (--i >= 0) { dpriv = priv->root + i; pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqrx, dpriv->iqrx_dma); } i = dev_per_card; err_free_iqtx_6: while (--i >= 0) { dpriv = priv->root + i; pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqtx, dpriv->iqtx_dma); } pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), priv->iqcfg, priv->iqcfg_dma); err_free_irq_5: free_irq(pdev->irq, priv->root); err_release_4: dscc4_free1(pdev); err_iounmap_3: iounmap (ioaddr); err_free_mmio_regions_2: pci_release_region(pdev, 1); err_free_mmio_region_1: pci_release_region(pdev, 0); err_disable_0: pci_disable_device(pdev); goto out; }; /* * Let's hope the default values are decent enough to protect my * feet from the user's gun - Ueimor */ static void dscc4_init_registers(struct dscc4_dev_priv *dpriv, struct net_device *dev) { /* No interrupts, SCC core disabled. Let's relax */ scc_writel(0x00000000, dpriv, dev, CCR0); scc_writel(LengthCheck | (HDLC_MAX_MRU >> 5), dpriv, dev, RLCR); /* * No address recognition/crc-CCITT/cts enabled * Shared flags transmission disabled - cf errata DS5 p.11 * Carrier detect disabled - cf errata p.14 * FIXME: carrier detection/polarity may be handled more gracefully. */ scc_writel(0x02408000, dpriv, dev, CCR1); /* crc not forwarded - Cf errata DS5 p.11 */ scc_writel(0x00050008 & ~RxActivate, dpriv, dev, CCR2); // crc forwarded //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2); } static inline int dscc4_set_quartz(struct dscc4_dev_priv *dpriv, int hz) { int ret = 0; if ((hz < 0) || (hz > DSCC4_HZ_MAX)) ret = -EOPNOTSUPP; else dpriv->pci_priv->xtal_hz = hz; return ret; } static int dscc4_found1(struct pci_dev *pdev, void __iomem *ioaddr) { struct dscc4_pci_priv *ppriv; struct dscc4_dev_priv *root; int i, ret = -ENOMEM; root = kcalloc(dev_per_card, sizeof(*root), GFP_KERNEL); if (!root) { printk(KERN_ERR "%s: can't allocate data\n", DRV_NAME); goto err_out; } for (i = 0; i < dev_per_card; i++) { root[i].dev = alloc_hdlcdev(root + i); if (!root[i].dev) goto err_free_dev; } ppriv = kzalloc(sizeof(*ppriv), GFP_KERNEL); if (!ppriv) { printk(KERN_ERR "%s: can't allocate private data\n", DRV_NAME); goto err_free_dev; } ppriv->root = root; spin_lock_init(&ppriv->lock); for (i = 0; i < dev_per_card; i++) { struct dscc4_dev_priv *dpriv = root + i; struct net_device *d = dscc4_to_dev(dpriv); hdlc_device *hdlc = dev_to_hdlc(d); d->base_addr = (unsigned long)ioaddr; d->init = NULL; d->irq = pdev->irq; d->open = dscc4_open; d->stop = dscc4_close; d->set_multicast_list = NULL; d->do_ioctl = dscc4_ioctl; d->tx_timeout = dscc4_tx_timeout; d->watchdog_timeo = TX_TIMEOUT; SET_NETDEV_DEV(d, &pdev->dev); dpriv->dev_id = i; dpriv->pci_priv = ppriv; dpriv->base_addr = ioaddr; spin_lock_init(&dpriv->lock); hdlc->xmit = dscc4_start_xmit; hdlc->attach = dscc4_hdlc_attach; dscc4_init_registers(dpriv, d); dpriv->parity = PARITY_CRC16_PR0_CCITT; dpriv->encoding = ENCODING_NRZ; ret = dscc4_init_ring(d); if (ret < 0) goto err_unregister; ret = register_hdlc_device(d); if (ret < 0) { printk(KERN_ERR "%s: unable to register\n", DRV_NAME); dscc4_release_ring(dpriv); goto err_unregister; } } ret = dscc4_set_quartz(root, quartz); if (ret < 0) goto err_unregister; pci_set_drvdata(pdev, ppriv); return ret; err_unregister: while (i-- > 0) { dscc4_release_ring(root + i); unregister_hdlc_device(dscc4_to_dev(root + i)); } kfree(ppriv); i = dev_per_card; err_free_dev: while (i-- > 0) free_netdev(root[i].dev); kfree(root); err_out: return ret; }; /* FIXME: get rid of the unneeded code */ static void dscc4_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct dscc4_dev_priv *dpriv = dscc4_priv(dev); // struct dscc4_pci_priv *ppriv; goto done; done: dpriv->timer.expires = jiffies + TX_TIMEOUT; add_timer(&dpriv->timer); } static void dscc4_tx_timeout(struct net_device *dev) { /* FIXME: something is missing there */ } static int dscc4_loopback_check(struct dscc4_dev_priv *dpriv) { sync_serial_settings *settings = &dpriv->settings; if (settings->loopback && (settings->clock_type != CLOCK_INT)) { struct net_device *dev = dscc4_to_dev(dpriv); printk(KERN_INFO "%s: loopback requires clock\n", dev->name); return -1; } return 0; } #ifdef CONFIG_DSCC4_PCI_RST /* * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together * so as to provide a safe way to reset the asic while not the whole machine * rebooting. * * This code doesn't need to be efficient. Keep It Simple */ static void dscc4_pci_reset(struct pci_dev *pdev, void __iomem *ioaddr) { int i; mutex_lock(&dscc4_mutex); for (i = 0; i < 16; i++) pci_read_config_dword(pdev, i << 2, dscc4_pci_config_store + i); /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */ writel(0x001c0000, ioaddr + GMODE); /* Configure GPIO port as output */ writel(0x0000ffff, ioaddr + GPDIR); /* Disable interruption */ writel(0x0000ffff, ioaddr + GPIM); writel(0x0000ffff, ioaddr + GPDATA); writel(0x00000000, ioaddr + GPDATA); /* Flush posted writes */ readl(ioaddr + GSTAR); schedule_timeout_uninterruptible(10); for (i = 0; i < 16; i++) pci_write_config_dword(pdev, i << 2, dscc4_pci_config_store[i]); mutex_unlock(&dscc4_mutex); } #else #define dscc4_pci_reset(pdev,ioaddr) do {} while (0) #endif /* CONFIG_DSCC4_PCI_RST */ static int dscc4_open(struct net_device *dev) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); struct dscc4_pci_priv *ppriv; int ret = -EAGAIN; if ((dscc4_loopback_check(dpriv) < 0) || !dev->hard_start_xmit) goto err; if ((ret = hdlc_open(dev))) goto err; ppriv = dpriv->pci_priv; /* * Due to various bugs, there is no way to reliably reset a * specific port (manufacturer's dependant special PCI #RST wiring * apart: it affects all ports). Thus the device goes in the best * silent mode possible at dscc4_close() time and simply claims to * be up if it's opened again. It still isn't possible to change * the HDLC configuration without rebooting but at least the ports * can be up/down ifconfig'ed without killing the host. */ if (dpriv->flags & FakeReset) { dpriv->flags &= ~FakeReset; scc_patchl(0, PowerUp, dpriv, dev, CCR0); scc_patchl(0, 0x00050000, dpriv, dev, CCR2); scc_writel(EventsMask, dpriv, dev, IMR); printk(KERN_INFO "%s: up again.\n", dev->name); goto done; } /* IDT+IDR during XPR */ dpriv->flags = NeedIDR | NeedIDT; scc_patchl(0, PowerUp | Vis, dpriv, dev, CCR0); /* * The following is a bit paranoid... * * NB: the datasheet "...CEC will stay active if the SCC is in * power-down mode or..." and CCR2.RAC = 1 are two different * situations. */ if (scc_readl_star(dpriv, dev) & SccBusy) { printk(KERN_ERR "%s busy. Try later\n", dev->name); ret = -EAGAIN; goto err_out; } else printk(KERN_INFO "%s: available. Good\n", dev->name); scc_writel(EventsMask, dpriv, dev, IMR); /* Posted write is flushed in the wait_ack loop */ scc_writel(TxSccRes | RxSccRes, dpriv, dev, CMDR); if ((ret = dscc4_wait_ack_cec(dpriv, dev, "Cec")) < 0) goto err_disable_scc_events; /* * I would expect XPR near CE completion (before ? after ?). * At worst, this code won't see a late XPR and people * will have to re-issue an ifconfig (this is harmless). * WARNING, a really missing XPR usually means a hardware * reset is needed. Suggestions anyone ? */ if ((ret = dscc4_xpr_ack(dpriv)) < 0) { printk(KERN_ERR "%s: %s timeout\n", DRV_NAME, "XPR"); goto err_disable_scc_events; } if (debug > 2) dscc4_tx_print(dev, dpriv, "Open"); done: netif_start_queue(dev); init_timer(&dpriv->timer); dpriv->timer.expires = jiffies + 10*HZ; dpriv->timer.data = (unsigned long)dev; dpriv->timer.function = &dscc4_timer; add_timer(&dpriv->timer); netif_carrier_on(dev); return 0; err_disable_scc_events: scc_writel(0xffffffff, dpriv, dev, IMR); scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0); err_out: hdlc_close(dev); err: return ret; } #ifdef DSCC4_POLLING static int dscc4_tx_poll(struct dscc4_dev_priv *dpriv, struct net_device *dev) { /* FIXME: it's gonna be easy (TM), for sure */ } #endif /* DSCC4_POLLING */ static int dscc4_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); struct dscc4_pci_priv *ppriv = dpriv->pci_priv; struct TxFD *tx_fd; int next; next = dpriv->tx_current%TX_RING_SIZE; dpriv->tx_skbuff[next] = skb; tx_fd = dpriv->tx_fd + next; tx_fd->state = FrameEnd | TO_STATE_TX(skb->len); tx_fd->data = cpu_to_le32(pci_map_single(ppriv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); tx_fd->complete = 0x00000000; tx_fd->jiffies = jiffies; mb(); #ifdef DSCC4_POLLING spin_lock(&dpriv->lock); while (dscc4_tx_poll(dpriv, dev)); spin_unlock(&dpriv->lock); #endif dev->trans_start = jiffies; if (debug > 2) dscc4_tx_print(dev, dpriv, "Xmit"); /* To be cleaned(unsigned int)/optimized. Later, ok ? */ if (!((++dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE)) netif_stop_queue(dev); if (dscc4_tx_quiescent(dpriv, dev)) dscc4_do_tx(dpriv, dev); return 0; } static int dscc4_close(struct net_device *dev) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); del_timer_sync(&dpriv->timer); netif_stop_queue(dev); scc_patchl(PowerUp | Vis, 0, dpriv, dev, CCR0); scc_patchl(0x00050000, 0, dpriv, dev, CCR2); scc_writel(0xffffffff, dpriv, dev, IMR); dpriv->flags |= FakeReset; hdlc_close(dev); return 0; } static inline int dscc4_check_clock_ability(int port) { int ret = 0; #ifdef CONFIG_DSCC4_PCISYNC if (port >= 2) ret = -1; #endif return ret; } /* * DS1 p.137: "There are a total of 13 different clocking modes..." * ^^ * Design choices: * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a). * Clock mode 3b _should_ work but the testing seems to make this point * dubious (DIY testing requires setting CCR0 at 0x00000033). * This is supposed to provide least surprise "DTE like" behavior. * - if line rate is specified, clocks are assumed to be locally generated. * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing * between these it automagically done according on the required frequency * scaling. Of course some rounding may take place. * - no high speed mode (40Mb/s). May be trivial to do but I don't have an * appropriate external clocking device for testing. * - no time-slot/clock mode 5: shameless lazyness. * * The clock signals wiring can be (is ?) manufacturer dependant. Good luck. * * BIG FAT WARNING: if the device isn't provided enough clocking signal, it * won't pass the init sequence. For example, straight back-to-back DTE without * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is * called. * * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153 * DS0 for example) * * Clock mode related bits of CCR0: * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only) * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b * | | +-------- High Speed: say 0 * | | | +-+-+-- Clock Mode: 0..7 * | | | | | | * -+-+-+-+-+-+-+-+ * x|x|5|4|3|2|1|0| lower bits * * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b) * +-+-+-+------------------ M (0..15) * | | | | +-+-+-+-+-+-- N (0..63) * 0 0 0 0 | | | | 0 0 | | | | | | * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits * */ static int dscc4_set_clock(struct net_device *dev, u32 *bps, u32 *state) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); int ret = -1; u32 brr; *state &= ~Ccr0ClockMask; if (*bps) { /* Clock generated - required for DCE */ u32 n = 0, m = 0, divider; int xtal; xtal = dpriv->pci_priv->xtal_hz; if (!xtal) goto done; if (dscc4_check_clock_ability(dpriv->dev_id) < 0) goto done; divider = xtal / *bps; if (divider > BRR_DIVIDER_MAX) { divider >>= 4; *state |= 0x00000036; /* Clock mode 6b (BRG/16) */ } else *state |= 0x00000037; /* Clock mode 7b (BRG) */ if (divider >> 22) { n = 63; m = 15; } else if (divider) { /* Extraction of the 6 highest weighted bits */ m = 0; while (0xffffffc0 & divider) { m++; divider >>= 1; } n = divider; } brr = (m << 8) | n; divider = n << m; if (!(*state & 0x00000001)) /* ?b mode mask => clock mode 6b */ divider <<= 4; *bps = xtal / divider; } else { /* * External clock - DTE * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00). * Nothing more to be done */ brr = 0; } scc_writel(brr, dpriv, dev, BRR); ret = 0; done: return ret; } static int dscc4_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; struct dscc4_dev_priv *dpriv = dscc4_priv(dev); const size_t size = sizeof(dpriv->settings); int ret = 0; if (dev->flags & IFF_UP) return -EBUSY; if (cmd != SIOCWANDEV) return -EOPNOTSUPP; switch(ifr->ifr_settings.type) { case IF_GET_IFACE: ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } if (copy_to_user(line, &dpriv->settings, size)) return -EFAULT; break; case IF_IFACE_SYNC_SERIAL: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (dpriv->flags & FakeReset) { printk(KERN_INFO "%s: please reset the device" " before this command\n", dev->name); return -EPERM; } if (copy_from_user(&dpriv->settings, line, size)) return -EFAULT; ret = dscc4_set_iface(dpriv, dev); break; default: ret = hdlc_ioctl(dev, ifr, cmd); break; } return ret; } static int dscc4_match(struct thingie *p, int value) { int i; for (i = 0; p[i].define != -1; i++) { if (value == p[i].define) break; } if (p[i].define == -1) return -1; else return i; } static int dscc4_clock_setting(struct dscc4_dev_priv *dpriv, struct net_device *dev) { sync_serial_settings *settings = &dpriv->settings; int ret = -EOPNOTSUPP; u32 bps, state; bps = settings->clock_rate; state = scc_readl(dpriv, CCR0); if (dscc4_set_clock(dev, &bps, &state) < 0) goto done; if (bps) { /* DCE */ printk(KERN_DEBUG "%s: generated RxClk (DCE)\n", dev->name); if (settings->clock_rate != bps) { printk(KERN_DEBUG "%s: clock adjusted (%08d -> %08d)\n", dev->name, settings->clock_rate, bps); settings->clock_rate = bps; } } else { /* DTE */ state |= PowerUp | Vis; printk(KERN_DEBUG "%s: external RxClk (DTE)\n", dev->name); } scc_writel(state, dpriv, dev, CCR0); ret = 0; done: return ret; } static int dscc4_encoding_setting(struct dscc4_dev_priv *dpriv, struct net_device *dev) { struct thingie encoding[] = { { ENCODING_NRZ, 0x00000000 }, { ENCODING_NRZI, 0x00200000 }, { ENCODING_FM_MARK, 0x00400000 }, { ENCODING_FM_SPACE, 0x00500000 }, { ENCODING_MANCHESTER, 0x00600000 }, { -1, 0} }; int i, ret = 0; i = dscc4_match(encoding, dpriv->encoding); if (i >= 0) scc_patchl(EncodingMask, encoding[i].bits, dpriv, dev, CCR0); else ret = -EOPNOTSUPP; return ret; } static int dscc4_loopback_setting(struct dscc4_dev_priv *dpriv, struct net_device *dev) { sync_serial_settings *settings = &dpriv->settings; u32 state; state = scc_readl(dpriv, CCR1); if (settings->loopback) { printk(KERN_DEBUG "%s: loopback\n", dev->name); state |= 0x00000100; } else { printk(KERN_DEBUG "%s: normal\n", dev->name); state &= ~0x00000100; } scc_writel(state, dpriv, dev, CCR1); return 0; } static int dscc4_crc_setting(struct dscc4_dev_priv *dpriv, struct net_device *dev) { struct thingie crc[] = { { PARITY_CRC16_PR0_CCITT, 0x00000010 }, { PARITY_CRC16_PR1_CCITT, 0x00000000 }, { PARITY_CRC32_PR0_CCITT, 0x00000011 }, { PARITY_CRC32_PR1_CCITT, 0x00000001 } }; int i, ret = 0; i = dscc4_match(crc, dpriv->parity); if (i >= 0) scc_patchl(CrcMask, crc[i].bits, dpriv, dev, CCR1); else ret = -EOPNOTSUPP; return ret; } static int dscc4_set_iface(struct dscc4_dev_priv *dpriv, struct net_device *dev) { struct { int (*action)(struct dscc4_dev_priv *, struct net_device *); } *p, do_setting[] = { { dscc4_encoding_setting }, { dscc4_clock_setting }, { dscc4_loopback_setting }, { dscc4_crc_setting }, { NULL } }; int ret = 0; for (p = do_setting; p->action; p++) { if ((ret = p->action(dpriv, dev)) < 0) break; } return ret; } static irqreturn_t dscc4_irq(int irq, void *token) { struct dscc4_dev_priv *root = token; struct dscc4_pci_priv *priv; struct net_device *dev; void __iomem *ioaddr; u32 state; unsigned long flags; int i, handled = 1; priv = root->pci_priv; dev = dscc4_to_dev(root); spin_lock_irqsave(&priv->lock, flags); ioaddr = root->base_addr; state = readl(ioaddr + GSTAR); if (!state) { handled = 0; goto out; } if (debug > 3) printk(KERN_DEBUG "%s: GSTAR = 0x%08x\n", DRV_NAME, state); writel(state, ioaddr + GSTAR); if (state & Arf) { printk(KERN_ERR "%s: failure (Arf). Harass the maintener\n", dev->name); goto out; } state &= ~ArAck; if (state & Cfg) { if (debug > 0) printk(KERN_DEBUG "%s: CfgIV\n", DRV_NAME); if (priv->iqcfg[priv->cfg_cur++%IRQ_RING_SIZE] & cpu_to_le32(Arf)) printk(KERN_ERR "%s: %s failed\n", dev->name, "CFG"); if (!(state &= ~Cfg)) goto out; } if (state & RxEvt) { i = dev_per_card - 1; do { dscc4_rx_irq(priv, root + i); } while (--i >= 0); state &= ~RxEvt; } if (state & TxEvt) { i = dev_per_card - 1; do { dscc4_tx_irq(priv, root + i); } while (--i >= 0); state &= ~TxEvt; } out: spin_unlock_irqrestore(&priv->lock, flags); return IRQ_RETVAL(handled); } static void dscc4_tx_irq(struct dscc4_pci_priv *ppriv, struct dscc4_dev_priv *dpriv) { struct net_device *dev = dscc4_to_dev(dpriv); u32 state; int cur, loop = 0; try: cur = dpriv->iqtx_current%IRQ_RING_SIZE; state = le32_to_cpu(dpriv->iqtx[cur]); if (!state) { if (debug > 4) printk(KERN_DEBUG "%s: Tx ISR = 0x%08x\n", dev->name, state); if ((debug > 1) && (loop > 1)) printk(KERN_DEBUG "%s: Tx irq loop=%d\n", dev->name, loop); if (loop && netif_queue_stopped(dev)) if ((dpriv->tx_current - dpriv->tx_dirty)%TX_RING_SIZE) netif_wake_queue(dev); if (netif_running(dev) && dscc4_tx_quiescent(dpriv, dev) && !dscc4_tx_done(dpriv)) dscc4_do_tx(dpriv, dev); return; } loop++; dpriv->iqtx[cur] = 0; dpriv->iqtx_current++; if (state_check(state, dpriv, dev, "Tx") < 0) return; if (state & SccEvt) { if (state & Alls) { struct sk_buff *skb; struct TxFD *tx_fd; if (debug > 2) dscc4_tx_print(dev, dpriv, "Alls"); /* * DataComplete can't be trusted for Tx completion. * Cf errata DS5 p.8 */ cur = dpriv->tx_dirty%TX_RING_SIZE; tx_fd = dpriv->tx_fd + cur; skb = dpriv->tx_skbuff[cur]; if (skb) { pci_unmap_single(ppriv->pdev, le32_to_cpu(tx_fd->data), skb->len, PCI_DMA_TODEVICE); if (tx_fd->state & FrameEnd) { dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; } dev_kfree_skb_irq(skb); dpriv->tx_skbuff[cur] = NULL; ++dpriv->tx_dirty; } else { if (debug > 1) printk(KERN_ERR "%s Tx: NULL skb %d\n", dev->name, cur); } /* * If the driver ends sending crap on the wire, it * will be way easier to diagnose than the (not so) * random freeze induced by null sized tx frames. */ tx_fd->data = tx_fd->next; tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE); tx_fd->complete = 0x00000000; tx_fd->jiffies = 0; if (!(state &= ~Alls)) goto try; } /* * Transmit Data Underrun */ if (state & Xdu) { printk(KERN_ERR "%s: XDU. Ask maintainer\n", DRV_NAME); dpriv->flags = NeedIDT; /* Tx reset */ writel(MTFi | Rdt, dpriv->base_addr + 0x0c*dpriv->dev_id + CH0CFG); writel(Action, dpriv->base_addr + GCMDR); return; } if (state & Cts) { printk(KERN_INFO "%s: CTS transition\n", dev->name); if (!(state &= ~Cts)) /* DEBUG */ goto try; } if (state & Xmr) { /* Frame needs to be sent again - FIXME */ printk(KERN_ERR "%s: Xmr. Ask maintainer\n", DRV_NAME); if (!(state &= ~Xmr)) /* DEBUG */ goto try; } if (state & Xpr) { void __iomem *scc_addr; unsigned long ring; int i; /* * - the busy condition happens (sometimes); * - it doesn't seem to make the handler unreliable. */ for (i = 1; i; i <<= 1) { if (!(scc_readl_star(dpriv, dev) & SccBusy)) break; } if (!i) printk(KERN_INFO "%s busy in irq\n", dev->name); scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id; /* Keep this order: IDT before IDR */ if (dpriv->flags & NeedIDT) { if (debug > 2) dscc4_tx_print(dev, dpriv, "Xpr"); ring = dpriv->tx_fd_dma + (dpriv->tx_dirty%TX_RING_SIZE)* sizeof(struct TxFD); writel(ring, scc_addr + CH0BTDA); dscc4_do_tx(dpriv, dev); writel(MTFi | Idt, scc_addr + CH0CFG); if (dscc4_do_action(dev, "IDT") < 0) goto err_xpr; dpriv->flags &= ~NeedIDT; } if (dpriv->flags & NeedIDR) { ring = dpriv->rx_fd_dma + (dpriv->rx_current%RX_RING_SIZE)* sizeof(struct RxFD); writel(ring, scc_addr + CH0BRDA); dscc4_rx_update(dpriv, dev); writel(MTFi | Idr, scc_addr + CH0CFG); if (dscc4_do_action(dev, "IDR") < 0) goto err_xpr; dpriv->flags &= ~NeedIDR; smp_wmb(); /* Activate receiver and misc */ scc_writel(0x08050008, dpriv, dev, CCR2); } err_xpr: if (!(state &= ~Xpr)) goto try; } if (state & Cd) { if (debug > 0) printk(KERN_INFO "%s: CD transition\n", dev->name); if (!(state &= ~Cd)) /* DEBUG */ goto try; } } else { /* ! SccEvt */ if (state & Hi) { #ifdef DSCC4_POLLING while (!dscc4_tx_poll(dpriv, dev)); #endif printk(KERN_INFO "%s: Tx Hi\n", dev->name); state &= ~Hi; } if (state & Err) { printk(KERN_INFO "%s: Tx ERR\n", dev->name); dev->stats.tx_errors++; state &= ~Err; } } goto try; } static void dscc4_rx_irq(struct dscc4_pci_priv *priv, struct dscc4_dev_priv *dpriv) { struct net_device *dev = dscc4_to_dev(dpriv); u32 state; int cur; try: cur = dpriv->iqrx_current%IRQ_RING_SIZE; state = le32_to_cpu(dpriv->iqrx[cur]); if (!state) return; dpriv->iqrx[cur] = 0; dpriv->iqrx_current++; if (state_check(state, dpriv, dev, "Rx") < 0) return; if (!(state & SccEvt)){ struct RxFD *rx_fd; if (debug > 4) printk(KERN_DEBUG "%s: Rx ISR = 0x%08x\n", dev->name, state); state &= 0x00ffffff; if (state & Err) { /* Hold or reset */ printk(KERN_DEBUG "%s: Rx ERR\n", dev->name); cur = dpriv->rx_current%RX_RING_SIZE; rx_fd = dpriv->rx_fd + cur; /* * Presume we're not facing a DMAC receiver reset. * As We use the rx size-filtering feature of the * DSCC4, the beginning of a new frame is waiting in * the rx fifo. I bet a Receive Data Overflow will * happen most of time but let's try and avoid it. * Btw (as for RDO) if one experiences ERR whereas * the system looks rather idle, there may be a * problem with latency. In this case, increasing * RX_RING_SIZE may help. */ //while (dpriv->rx_needs_refill) { while (!(rx_fd->state1 & Hold)) { rx_fd++; cur++; if (!(cur = cur%RX_RING_SIZE)) rx_fd = dpriv->rx_fd; } //dpriv->rx_needs_refill--; try_get_rx_skb(dpriv, dev); if (!rx_fd->data) goto try; rx_fd->state1 &= ~Hold; rx_fd->state2 = 0x00000000; rx_fd->end = cpu_to_le32(0xbabeface); //} goto try; } if (state & Fi) { dscc4_rx_skb(dpriv, dev); goto try; } if (state & Hi ) { /* HI bit */ printk(KERN_INFO "%s: Rx Hi\n", dev->name); state &= ~Hi; goto try; } } else { /* SccEvt */ if (debug > 1) { //FIXME: verifier la presence de tous les evenements static struct { u32 mask; const char *irq_name; } evts[] = { { 0x00008000, "TIN"}, { 0x00000020, "RSC"}, { 0x00000010, "PCE"}, { 0x00000008, "PLLA"}, { 0, NULL} }, *evt; for (evt = evts; evt->irq_name; evt++) { if (state & evt->mask) { printk(KERN_DEBUG "%s: %s\n", dev->name, evt->irq_name); if (!(state &= ~evt->mask)) goto try; } } } else { if (!(state &= ~0x0000c03c)) goto try; } if (state & Cts) { printk(KERN_INFO "%s: CTS transition\n", dev->name); if (!(state &= ~Cts)) /* DEBUG */ goto try; } /* * Receive Data Overflow (FIXME: fscked) */ if (state & Rdo) { struct RxFD *rx_fd; void __iomem *scc_addr; int cur; //if (debug) // dscc4_rx_dump(dpriv); scc_addr = dpriv->base_addr + 0x0c*dpriv->dev_id; scc_patchl(RxActivate, 0, dpriv, dev, CCR2); /* * This has no effect. Why ? * ORed with TxSccRes, one sees the CFG ack (for * the TX part only). */ scc_writel(RxSccRes, dpriv, dev, CMDR); dpriv->flags |= RdoSet; /* * Let's try and save something in the received data. * rx_current must be incremented at least once to * avoid HOLD in the BRDA-to-be-pointed desc. */ do { cur = dpriv->rx_current++%RX_RING_SIZE; rx_fd = dpriv->rx_fd + cur; if (!(rx_fd->state2 & DataComplete)) break; if (rx_fd->state2 & FrameAborted) { dev->stats.rx_over_errors++; rx_fd->state1 |= Hold; rx_fd->state2 = 0x00000000; rx_fd->end = cpu_to_le32(0xbabeface); } else dscc4_rx_skb(dpriv, dev); } while (1); if (debug > 0) { if (dpriv->flags & RdoSet) printk(KERN_DEBUG "%s: no RDO in Rx data\n", DRV_NAME); } #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY /* * FIXME: must the reset be this violent ? */ #warning "FIXME: CH0BRDA" writel(dpriv->rx_fd_dma + (dpriv->rx_current%RX_RING_SIZE)* sizeof(struct RxFD), scc_addr + CH0BRDA); writel(MTFi|Rdr|Idr, scc_addr + CH0CFG); if (dscc4_do_action(dev, "RDR") < 0) { printk(KERN_ERR "%s: RDO recovery failed(%s)\n", dev->name, "RDR"); goto rdo_end; } writel(MTFi|Idr, scc_addr + CH0CFG); if (dscc4_do_action(dev, "IDR") < 0) { printk(KERN_ERR "%s: RDO recovery failed(%s)\n", dev->name, "IDR"); goto rdo_end; } rdo_end: #endif scc_patchl(0, RxActivate, dpriv, dev, CCR2); goto try; } if (state & Cd) { printk(KERN_INFO "%s: CD transition\n", dev->name); if (!(state &= ~Cd)) /* DEBUG */ goto try; } if (state & Flex) { printk(KERN_DEBUG "%s: Flex. Ttttt...\n", DRV_NAME); if (!(state &= ~Flex)) goto try; } } } /* * I had expected the following to work for the first descriptor * (tx_fd->state = 0xc0000000) * - Hold=1 (don't try and branch to the next descripto); * - No=0 (I want an empty data section, i.e. size=0); * - Fe=1 (required by No=0 or we got an Err irq and must reset). * It failed and locked solid. Thus the introduction of a dummy skb. * Problem is acknowledged in errata sheet DS5. Joy :o/ */ static struct sk_buff *dscc4_init_dummy_skb(struct dscc4_dev_priv *dpriv) { struct sk_buff *skb; skb = dev_alloc_skb(DUMMY_SKB_SIZE); if (skb) { int last = dpriv->tx_dirty%TX_RING_SIZE; struct TxFD *tx_fd = dpriv->tx_fd + last; skb->len = DUMMY_SKB_SIZE; skb_copy_to_linear_data(skb, version, strlen(version) % DUMMY_SKB_SIZE); tx_fd->state = FrameEnd | TO_STATE_TX(DUMMY_SKB_SIZE); tx_fd->data = cpu_to_le32(pci_map_single(dpriv->pci_priv->pdev, skb->data, DUMMY_SKB_SIZE, PCI_DMA_TODEVICE)); dpriv->tx_skbuff[last] = skb; } return skb; } static int dscc4_init_ring(struct net_device *dev) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); struct pci_dev *pdev = dpriv->pci_priv->pdev; struct TxFD *tx_fd; struct RxFD *rx_fd; void *ring; int i; ring = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &dpriv->rx_fd_dma); if (!ring) goto err_out; dpriv->rx_fd = rx_fd = (struct RxFD *) ring; ring = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &dpriv->tx_fd_dma); if (!ring) goto err_free_dma_rx; dpriv->tx_fd = tx_fd = (struct TxFD *) ring; memset(dpriv->tx_skbuff, 0, sizeof(struct sk_buff *)*TX_RING_SIZE); dpriv->tx_dirty = 0xffffffff; i = dpriv->tx_current = 0; do { tx_fd->state = FrameEnd | TO_STATE_TX(2*DUMMY_SKB_SIZE); tx_fd->complete = 0x00000000; /* FIXME: NULL should be ok - to be tried */ tx_fd->data = cpu_to_le32(dpriv->tx_fd_dma); (tx_fd++)->next = cpu_to_le32(dpriv->tx_fd_dma + (++i%TX_RING_SIZE)*sizeof(*tx_fd)); } while (i < TX_RING_SIZE); if (!dscc4_init_dummy_skb(dpriv)) goto err_free_dma_tx; memset(dpriv->rx_skbuff, 0, sizeof(struct sk_buff *)*RX_RING_SIZE); i = dpriv->rx_dirty = dpriv->rx_current = 0; do { /* size set by the host. Multiple of 4 bytes please */ rx_fd->state1 = HiDesc; rx_fd->state2 = 0x00000000; rx_fd->end = cpu_to_le32(0xbabeface); rx_fd->state1 |= TO_STATE_RX(HDLC_MAX_MRU); // FIXME: return value verifiee mais traitement suspect if (try_get_rx_skb(dpriv, dev) >= 0) dpriv->rx_dirty++; (rx_fd++)->next = cpu_to_le32(dpriv->rx_fd_dma + (++i%RX_RING_SIZE)*sizeof(*rx_fd)); } while (i < RX_RING_SIZE); return 0; err_free_dma_tx: pci_free_consistent(pdev, TX_TOTAL_SIZE, ring, dpriv->tx_fd_dma); err_free_dma_rx: pci_free_consistent(pdev, RX_TOTAL_SIZE, rx_fd, dpriv->rx_fd_dma); err_out: return -ENOMEM; } static void __devexit dscc4_remove_one(struct pci_dev *pdev) { struct dscc4_pci_priv *ppriv; struct dscc4_dev_priv *root; void __iomem *ioaddr; int i; ppriv = pci_get_drvdata(pdev); root = ppriv->root; ioaddr = root->base_addr; dscc4_pci_reset(pdev, ioaddr); free_irq(pdev->irq, root); pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), ppriv->iqcfg, ppriv->iqcfg_dma); for (i = 0; i < dev_per_card; i++) { struct dscc4_dev_priv *dpriv = root + i; dscc4_release_ring(dpriv); pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqrx, dpriv->iqrx_dma); pci_free_consistent(pdev, IRQ_RING_SIZE*sizeof(u32), dpriv->iqtx, dpriv->iqtx_dma); } dscc4_free1(pdev); iounmap(ioaddr); pci_release_region(pdev, 1); pci_release_region(pdev, 0); pci_disable_device(pdev); } static int dscc4_hdlc_attach(struct net_device *dev, unsigned short encoding, unsigned short parity) { struct dscc4_dev_priv *dpriv = dscc4_priv(dev); if (encoding != ENCODING_NRZ && encoding != ENCODING_NRZI && encoding != ENCODING_FM_MARK && encoding != ENCODING_FM_SPACE && encoding != ENCODING_MANCHESTER) return -EINVAL; if (parity != PARITY_NONE && parity != PARITY_CRC16_PR0_CCITT && parity != PARITY_CRC16_PR1_CCITT && parity != PARITY_CRC32_PR0_CCITT && parity != PARITY_CRC32_PR1_CCITT) return -EINVAL; dpriv->encoding = encoding; dpriv->parity = parity; return 0; } #ifndef MODULE static int __init dscc4_setup(char *str) { int *args[] = { &debug, &quartz, NULL }, **p = args; while (*p && (get_option(&str, *p) == 2)) p++; return 1; } __setup("dscc4.setup=", dscc4_setup); #endif static struct pci_device_id dscc4_pci_tbl[] = { { PCI_VENDOR_ID_SIEMENS, PCI_DEVICE_ID_SIEMENS_DSCC4, PCI_ANY_ID, PCI_ANY_ID, }, { 0,} }; MODULE_DEVICE_TABLE(pci, dscc4_pci_tbl); static struct pci_driver dscc4_driver = { .name = DRV_NAME, .id_table = dscc4_pci_tbl, .probe = dscc4_init_one, .remove = __devexit_p(dscc4_remove_one), }; static int __init dscc4_init_module(void) { return pci_register_driver(&dscc4_driver); } static void __exit dscc4_cleanup_module(void) { pci_unregister_driver(&dscc4_driver); } module_init(dscc4_init_module); module_exit(dscc4_cleanup_module);