/* drivers/net/tulip/interrupt.c Maintained by Valerie Henson <val_henson@linux.intel.com> Copyright 2000,2001 The Linux Kernel Team Written/copyright 1994-2001 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License, incorporated herein by reference. Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html} for more information on this driver, or visit the project Web page at http://sourceforge.net/projects/tulip/ */ #include <linux/pci.h> #include "tulip.h" #include <linux/etherdevice.h> int tulip_rx_copybreak; unsigned int tulip_max_interrupt_work; #ifdef CONFIG_TULIP_NAPI_HW_MITIGATION #define MIT_SIZE 15 #define MIT_TABLE 15 /* We use 0 or max */ static unsigned int mit_table[MIT_SIZE+1] = { /* CRS11 21143 hardware Mitigation Control Interrupt We use only RX mitigation we other techniques for TX intr. mitigation. 31 Cycle Size (timer control) 30:27 TX timer in 16 * Cycle size 26:24 TX No pkts before Int. 23:20 RX timer in Cycle size 19:17 RX No pkts before Int. 16 Continues Mode (CM) */ 0x0, /* IM disabled */ 0x80150000, /* RX time = 1, RX pkts = 2, CM = 1 */ 0x80150000, 0x80270000, 0x80370000, 0x80490000, 0x80590000, 0x80690000, 0x807B0000, 0x808B0000, 0x809D0000, 0x80AD0000, 0x80BD0000, 0x80CF0000, 0x80DF0000, // 0x80FF0000 /* RX time = 16, RX pkts = 7, CM = 1 */ 0x80F10000 /* RX time = 16, RX pkts = 0, CM = 1 */ }; #endif int tulip_refill_rx(struct net_device *dev) { struct tulip_private *tp = netdev_priv(dev); int entry; int refilled = 0; /* Refill the Rx ring buffers. */ for (; tp->cur_rx - tp->dirty_rx > 0; tp->dirty_rx++) { entry = tp->dirty_rx % RX_RING_SIZE; if (tp->rx_buffers[entry].skb == NULL) { struct sk_buff *skb; dma_addr_t mapping; skb = tp->rx_buffers[entry].skb = dev_alloc_skb(PKT_BUF_SZ); if (skb == NULL) break; mapping = pci_map_single(tp->pdev, skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); tp->rx_buffers[entry].mapping = mapping; skb->dev = dev; /* Mark as being used by this device. */ tp->rx_ring[entry].buffer1 = cpu_to_le32(mapping); refilled++; } tp->rx_ring[entry].status = cpu_to_le32(DescOwned); } if(tp->chip_id == LC82C168) { if(((ioread32(tp->base_addr + CSR5)>>17)&0x07) == 4) { /* Rx stopped due to out of buffers, * restart it */ iowrite32(0x01, tp->base_addr + CSR2); } } return refilled; } #ifdef CONFIG_TULIP_NAPI void oom_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; netif_rx_schedule(dev); } int tulip_poll(struct net_device *dev, int *budget) { struct tulip_private *tp = netdev_priv(dev); int entry = tp->cur_rx % RX_RING_SIZE; int rx_work_limit = *budget; int received = 0; if (!netif_running(dev)) goto done; if (rx_work_limit > dev->quota) rx_work_limit = dev->quota; #ifdef CONFIG_TULIP_NAPI_HW_MITIGATION /* that one buffer is needed for mit activation; or might be a bug in the ring buffer code; check later -- JHS*/ if (rx_work_limit >=RX_RING_SIZE) rx_work_limit--; #endif if (tulip_debug > 4) printk(KERN_DEBUG " In tulip_rx(), entry %d %8.8x.\n", entry, tp->rx_ring[entry].status); do { if (ioread32(tp->base_addr + CSR5) == 0xffffffff) { printk(KERN_DEBUG " In tulip_poll(), hardware disappeared.\n"); break; } /* Acknowledge current RX interrupt sources. */ iowrite32((RxIntr | RxNoBuf), tp->base_addr + CSR5); /* If we own the next entry, it is a new packet. Send it up. */ while ( ! (tp->rx_ring[entry].status & cpu_to_le32(DescOwned))) { s32 status = le32_to_cpu(tp->rx_ring[entry].status); if (tp->dirty_rx + RX_RING_SIZE == tp->cur_rx) break; if (tulip_debug > 5) printk(KERN_DEBUG "%s: In tulip_rx(), entry %d %8.8x.\n", dev->name, entry, status); if (--rx_work_limit < 0) goto not_done; if ((status & 0x38008300) != 0x0300) { if ((status & 0x38000300) != 0x0300) { /* Ingore earlier buffers. */ if ((status & 0xffff) != 0x7fff) { if (tulip_debug > 1) printk(KERN_WARNING "%s: Oversized Ethernet frame " "spanned multiple buffers, status %8.8x!\n", dev->name, status); tp->stats.rx_length_errors++; } } else if (status & RxDescFatalErr) { /* There was a fatal error. */ if (tulip_debug > 2) printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n", dev->name, status); tp->stats.rx_errors++; /* end of a packet.*/ if (status & 0x0890) tp->stats.rx_length_errors++; if (status & 0x0004) tp->stats.rx_frame_errors++; if (status & 0x0002) tp->stats.rx_crc_errors++; if (status & 0x0001) tp->stats.rx_fifo_errors++; } } else { /* Omit the four octet CRC from the length. */ short pkt_len = ((status >> 16) & 0x7ff) - 4; struct sk_buff *skb; #ifndef final_version if (pkt_len > 1518) { printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n", dev->name, pkt_len, pkt_len); pkt_len = 1518; tp->stats.rx_length_errors++; } #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < tulip_rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ pci_dma_sync_single_for_cpu(tp->pdev, tp->rx_buffers[entry].mapping, pkt_len, PCI_DMA_FROMDEVICE); #if ! defined(__alpha__) eth_copy_and_sum(skb, tp->rx_buffers[entry].skb->data, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), tp->rx_buffers[entry].skb->data, pkt_len); #endif pci_dma_sync_single_for_device(tp->pdev, tp->rx_buffers[entry].mapping, pkt_len, PCI_DMA_FROMDEVICE); } else { /* Pass up the skb already on the Rx ring. */ char *temp = skb_put(skb = tp->rx_buffers[entry].skb, pkt_len); #ifndef final_version if (tp->rx_buffers[entry].mapping != le32_to_cpu(tp->rx_ring[entry].buffer1)) { printk(KERN_ERR "%s: Internal fault: The skbuff addresses " "do not match in tulip_rx: %08x vs. %08llx %p / %p.\n", dev->name, le32_to_cpu(tp->rx_ring[entry].buffer1), (unsigned long long)tp->rx_buffers[entry].mapping, skb->head, temp); } #endif pci_unmap_single(tp->pdev, tp->rx_buffers[entry].mapping, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); tp->rx_buffers[entry].skb = NULL; tp->rx_buffers[entry].mapping = 0; } skb->protocol = eth_type_trans(skb, dev); netif_receive_skb(skb); dev->last_rx = jiffies; tp->stats.rx_packets++; tp->stats.rx_bytes += pkt_len; } received++; entry = (++tp->cur_rx) % RX_RING_SIZE; if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/4) tulip_refill_rx(dev); } /* New ack strategy... irq does not ack Rx any longer hopefully this helps */ /* Really bad things can happen here... If new packet arrives * and an irq arrives (tx or just due to occasionally unset * mask), it will be acked by irq handler, but new thread * is not scheduled. It is major hole in design. * No idea how to fix this if "playing with fire" will fail * tomorrow (night 011029). If it will not fail, we won * finally: amount of IO did not increase at all. */ } while ((ioread32(tp->base_addr + CSR5) & RxIntr)); done: #ifdef CONFIG_TULIP_NAPI_HW_MITIGATION /* We use this simplistic scheme for IM. It's proven by real life installations. We can have IM enabled continuesly but this would cause unnecessary latency. Unfortunely we can't use all the NET_RX_* feedback here. This would turn on IM for devices that is not contributing to backlog congestion with unnecessary latency. We monitor the the device RX-ring and have: HW Interrupt Mitigation either ON or OFF. ON: More then 1 pkt received (per intr.) OR we are dropping OFF: Only 1 pkt received Note. We only use min and max (0, 15) settings from mit_table */ if( tp->flags & HAS_INTR_MITIGATION) { if( received > 1 ) { if( ! tp->mit_on ) { tp->mit_on = 1; iowrite32(mit_table[MIT_TABLE], tp->base_addr + CSR11); } } else { if( tp->mit_on ) { tp->mit_on = 0; iowrite32(0, tp->base_addr + CSR11); } } } #endif /* CONFIG_TULIP_NAPI_HW_MITIGATION */ dev->quota -= received; *budget -= received; tulip_refill_rx(dev); /* If RX ring is not full we are out of memory. */ if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom; /* Remove us from polling list and enable RX intr. */ netif_rx_complete(dev); iowrite32(tulip_tbl[tp->chip_id].valid_intrs, tp->base_addr+CSR7); /* The last op happens after poll completion. Which means the following: * 1. it can race with disabling irqs in irq handler * 2. it can race with dise/enabling irqs in other poll threads * 3. if an irq raised after beginning loop, it will be immediately * triggered here. * * Summarizing: the logic results in some redundant irqs both * due to races in masking and due to too late acking of already * processed irqs. But it must not result in losing events. */ return 0; not_done: if (!received) { received = dev->quota; /* Not to happen */ } dev->quota -= received; *budget -= received; if (tp->cur_rx - tp->dirty_rx > RX_RING_SIZE/2 || tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) tulip_refill_rx(dev); if (tp->rx_buffers[tp->dirty_rx % RX_RING_SIZE].skb == NULL) goto oom; return 1; oom: /* Executed with RX ints disabled */ /* Start timer, stop polling, but do not enable rx interrupts. */ mod_timer(&tp->oom_timer, jiffies+1); /* Think: timer_pending() was an explicit signature of bug. * Timer can be pending now but fired and completed * before we did netif_rx_complete(). See? We would lose it. */ /* remove ourselves from the polling list */ netif_rx_complete(dev); return 0; } #else /* CONFIG_TULIP_NAPI */ static int tulip_rx(struct net_device *dev) { struct tulip_private *tp = netdev_priv(dev); int entry = tp->cur_rx % RX_RING_SIZE; int rx_work_limit = tp->dirty_rx + RX_RING_SIZE - tp->cur_rx; int received = 0; if (tulip_debug > 4) printk(KERN_DEBUG " In tulip_rx(), entry %d %8.8x.\n", entry, tp->rx_ring[entry].status); /* If we own the next entry, it is a new packet. Send it up. */ while ( ! (tp->rx_ring[entry].status & cpu_to_le32(DescOwned))) { s32 status = le32_to_cpu(tp->rx_ring[entry].status); if (tulip_debug > 5) printk(KERN_DEBUG "%s: In tulip_rx(), entry %d %8.8x.\n", dev->name, entry, status); if (--rx_work_limit < 0) break; if ((status & 0x38008300) != 0x0300) { if ((status & 0x38000300) != 0x0300) { /* Ingore earlier buffers. */ if ((status & 0xffff) != 0x7fff) { if (tulip_debug > 1) printk(KERN_WARNING "%s: Oversized Ethernet frame " "spanned multiple buffers, status %8.8x!\n", dev->name, status); tp->stats.rx_length_errors++; } } else if (status & RxDescFatalErr) { /* There was a fatal error. */ if (tulip_debug > 2) printk(KERN_DEBUG "%s: Receive error, Rx status %8.8x.\n", dev->name, status); tp->stats.rx_errors++; /* end of a packet.*/ if (status & 0x0890) tp->stats.rx_length_errors++; if (status & 0x0004) tp->stats.rx_frame_errors++; if (status & 0x0002) tp->stats.rx_crc_errors++; if (status & 0x0001) tp->stats.rx_fifo_errors++; } } else { /* Omit the four octet CRC from the length. */ short pkt_len = ((status >> 16) & 0x7ff) - 4; struct sk_buff *skb; #ifndef final_version if (pkt_len > 1518) { printk(KERN_WARNING "%s: Bogus packet size of %d (%#x).\n", dev->name, pkt_len, pkt_len); pkt_len = 1518; tp->stats.rx_length_errors++; } #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < tulip_rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ pci_dma_sync_single_for_cpu(tp->pdev, tp->rx_buffers[entry].mapping, pkt_len, PCI_DMA_FROMDEVICE); #if ! defined(__alpha__) eth_copy_and_sum(skb, tp->rx_buffers[entry].skb->data, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), tp->rx_buffers[entry].skb->data, pkt_len); #endif pci_dma_sync_single_for_device(tp->pdev, tp->rx_buffers[entry].mapping, pkt_len, PCI_DMA_FROMDEVICE); } else { /* Pass up the skb already on the Rx ring. */ char *temp = skb_put(skb = tp->rx_buffers[entry].skb, pkt_len); #ifndef final_version if (tp->rx_buffers[entry].mapping != le32_to_cpu(tp->rx_ring[entry].buffer1)) { printk(KERN_ERR "%s: Internal fault: The skbuff addresses " "do not match in tulip_rx: %08x vs. %Lx %p / %p.\n", dev->name, le32_to_cpu(tp->rx_ring[entry].buffer1), (long long)tp->rx_buffers[entry].mapping, skb->head, temp); } #endif pci_unmap_single(tp->pdev, tp->rx_buffers[entry].mapping, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); tp->rx_buffers[entry].skb = NULL; tp->rx_buffers[entry].mapping = 0; } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; tp->stats.rx_packets++; tp->stats.rx_bytes += pkt_len; } received++; entry = (++tp->cur_rx) % RX_RING_SIZE; } return received; } #endif /* CONFIG_TULIP_NAPI */ static inline unsigned int phy_interrupt (struct net_device *dev) { #ifdef __hppa__ struct tulip_private *tp = netdev_priv(dev); int csr12 = ioread32(tp->base_addr + CSR12) & 0xff; if (csr12 != tp->csr12_shadow) { /* ack interrupt */ iowrite32(csr12 | 0x02, tp->base_addr + CSR12); tp->csr12_shadow = csr12; /* do link change stuff */ spin_lock(&tp->lock); tulip_check_duplex(dev); spin_unlock(&tp->lock); /* clear irq ack bit */ iowrite32(csr12 & ~0x02, tp->base_addr + CSR12); return 1; } #endif return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ irqreturn_t tulip_interrupt(int irq, void *dev_instance) { struct net_device *dev = (struct net_device *)dev_instance; struct tulip_private *tp = netdev_priv(dev); void __iomem *ioaddr = tp->base_addr; int csr5; int missed; int rx = 0; int tx = 0; int oi = 0; int maxrx = RX_RING_SIZE; int maxtx = TX_RING_SIZE; int maxoi = TX_RING_SIZE; #ifdef CONFIG_TULIP_NAPI int rxd = 0; #else int entry; #endif unsigned int work_count = tulip_max_interrupt_work; unsigned int handled = 0; /* Let's see whether the interrupt really is for us */ csr5 = ioread32(ioaddr + CSR5); if (tp->flags & HAS_PHY_IRQ) handled = phy_interrupt (dev); if ((csr5 & (NormalIntr|AbnormalIntr)) == 0) return IRQ_RETVAL(handled); tp->nir++; do { #ifdef CONFIG_TULIP_NAPI if (!rxd && (csr5 & (RxIntr | RxNoBuf))) { rxd++; /* Mask RX intrs and add the device to poll list. */ iowrite32(tulip_tbl[tp->chip_id].valid_intrs&~RxPollInt, ioaddr + CSR7); netif_rx_schedule(dev); if (!(csr5&~(AbnormalIntr|NormalIntr|RxPollInt|TPLnkPass))) break; } /* Acknowledge the interrupt sources we handle here ASAP the poll function does Rx and RxNoBuf acking */ iowrite32(csr5 & 0x0001ff3f, ioaddr + CSR5); #else /* Acknowledge all of the current interrupt sources ASAP. */ iowrite32(csr5 & 0x0001ffff, ioaddr + CSR5); if (csr5 & (RxIntr | RxNoBuf)) { rx += tulip_rx(dev); tulip_refill_rx(dev); } #endif /* CONFIG_TULIP_NAPI */ if (tulip_debug > 4) printk(KERN_DEBUG "%s: interrupt csr5=%#8.8x new csr5=%#8.8x.\n", dev->name, csr5, ioread32(ioaddr + CSR5)); if (csr5 & (TxNoBuf | TxDied | TxIntr | TimerInt)) { unsigned int dirty_tx; spin_lock(&tp->lock); for (dirty_tx = tp->dirty_tx; tp->cur_tx - dirty_tx > 0; dirty_tx++) { int entry = dirty_tx % TX_RING_SIZE; int status = le32_to_cpu(tp->tx_ring[entry].status); if (status < 0) break; /* It still has not been Txed */ /* Check for Rx filter setup frames. */ if (tp->tx_buffers[entry].skb == NULL) { /* test because dummy frames not mapped */ if (tp->tx_buffers[entry].mapping) pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, sizeof(tp->setup_frame), PCI_DMA_TODEVICE); continue; } if (status & 0x8000) { /* There was an major error, log it. */ #ifndef final_version if (tulip_debug > 1) printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n", dev->name, status); #endif tp->stats.tx_errors++; if (status & 0x4104) tp->stats.tx_aborted_errors++; if (status & 0x0C00) tp->stats.tx_carrier_errors++; if (status & 0x0200) tp->stats.tx_window_errors++; if (status & 0x0002) tp->stats.tx_fifo_errors++; if ((status & 0x0080) && tp->full_duplex == 0) tp->stats.tx_heartbeat_errors++; } else { tp->stats.tx_bytes += tp->tx_buffers[entry].skb->len; tp->stats.collisions += (status >> 3) & 15; tp->stats.tx_packets++; } pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping, tp->tx_buffers[entry].skb->len, PCI_DMA_TODEVICE); /* Free the original skb. */ dev_kfree_skb_irq(tp->tx_buffers[entry].skb); tp->tx_buffers[entry].skb = NULL; tp->tx_buffers[entry].mapping = 0; tx++; } #ifndef final_version if (tp->cur_tx - dirty_tx > TX_RING_SIZE) { printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d.\n", dev->name, dirty_tx, tp->cur_tx); dirty_tx += TX_RING_SIZE; } #endif if (tp->cur_tx - dirty_tx < TX_RING_SIZE - 2) netif_wake_queue(dev); tp->dirty_tx = dirty_tx; if (csr5 & TxDied) { if (tulip_debug > 2) printk(KERN_WARNING "%s: The transmitter stopped." " CSR5 is %x, CSR6 %x, new CSR6 %x.\n", dev->name, csr5, ioread32(ioaddr + CSR6), tp->csr6); tulip_restart_rxtx(tp); } spin_unlock(&tp->lock); } /* Log errors. */ if (csr5 & AbnormalIntr) { /* Abnormal error summary bit. */ if (csr5 == 0xffffffff) break; if (csr5 & TxJabber) tp->stats.tx_errors++; if (csr5 & TxFIFOUnderflow) { if ((tp->csr6 & 0xC000) != 0xC000) tp->csr6 += 0x4000; /* Bump up the Tx threshold */ else tp->csr6 |= 0x00200000; /* Store-n-forward. */ /* Restart the transmit process. */ tulip_restart_rxtx(tp); iowrite32(0, ioaddr + CSR1); } if (csr5 & (RxDied | RxNoBuf)) { if (tp->flags & COMET_MAC_ADDR) { iowrite32(tp->mc_filter[0], ioaddr + 0xAC); iowrite32(tp->mc_filter[1], ioaddr + 0xB0); } } if (csr5 & RxDied) { /* Missed a Rx frame. */ tp->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff; tp->stats.rx_errors++; tulip_start_rxtx(tp); } /* * NB: t21142_lnk_change() does a del_timer_sync(), so be careful if this * call is ever done under the spinlock */ if (csr5 & (TPLnkPass | TPLnkFail | 0x08000000)) { if (tp->link_change) (tp->link_change)(dev, csr5); } if (csr5 & SytemError) { int error = (csr5 >> 23) & 7; /* oops, we hit a PCI error. The code produced corresponds * to the reason: * 0 - parity error * 1 - master abort * 2 - target abort * Note that on parity error, we should do a software reset * of the chip to get it back into a sane state (according * to the 21142/3 docs that is). * -- rmk */ printk(KERN_ERR "%s: (%lu) System Error occurred (%d)\n", dev->name, tp->nir, error); } /* Clear all error sources, included undocumented ones! */ iowrite32(0x0800f7ba, ioaddr + CSR5); oi++; } if (csr5 & TimerInt) { if (tulip_debug > 2) printk(KERN_ERR "%s: Re-enabling interrupts, %8.8x.\n", dev->name, csr5); iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7); tp->ttimer = 0; oi++; } if (tx > maxtx || rx > maxrx || oi > maxoi) { if (tulip_debug > 1) printk(KERN_WARNING "%s: Too much work during an interrupt, " "csr5=0x%8.8x. (%lu) (%d,%d,%d)\n", dev->name, csr5, tp->nir, tx, rx, oi); /* Acknowledge all interrupt sources. */ iowrite32(0x8001ffff, ioaddr + CSR5); if (tp->flags & HAS_INTR_MITIGATION) { /* Josip Loncaric at ICASE did extensive experimentation to develop a good interrupt mitigation setting.*/ iowrite32(0x8b240000, ioaddr + CSR11); } else if (tp->chip_id == LC82C168) { /* the LC82C168 doesn't have a hw timer.*/ iowrite32(0x00, ioaddr + CSR7); mod_timer(&tp->timer, RUN_AT(HZ/50)); } else { /* Mask all interrupting sources, set timer to re-enable. */ iowrite32(((~csr5) & 0x0001ebef) | AbnormalIntr | TimerInt, ioaddr + CSR7); iowrite32(0x0012, ioaddr + CSR11); } break; } work_count--; if (work_count == 0) break; csr5 = ioread32(ioaddr + CSR5); #ifdef CONFIG_TULIP_NAPI if (rxd) csr5 &= ~RxPollInt; } while ((csr5 & (TxNoBuf | TxDied | TxIntr | TimerInt | /* Abnormal intr. */ RxDied | TxFIFOUnderflow | TxJabber | TPLnkFail | SytemError )) != 0); #else } while ((csr5 & (NormalIntr|AbnormalIntr)) != 0); tulip_refill_rx(dev); /* check if the card is in suspend mode */ entry = tp->dirty_rx % RX_RING_SIZE; if (tp->rx_buffers[entry].skb == NULL) { if (tulip_debug > 1) printk(KERN_WARNING "%s: in rx suspend mode: (%lu) (tp->cur_rx = %u, ttimer = %d, rx = %d) go/stay in suspend mode\n", dev->name, tp->nir, tp->cur_rx, tp->ttimer, rx); if (tp->chip_id == LC82C168) { iowrite32(0x00, ioaddr + CSR7); mod_timer(&tp->timer, RUN_AT(HZ/50)); } else { if (tp->ttimer == 0 || (ioread32(ioaddr + CSR11) & 0xffff) == 0) { if (tulip_debug > 1) printk(KERN_WARNING "%s: in rx suspend mode: (%lu) set timer\n", dev->name, tp->nir); iowrite32(tulip_tbl[tp->chip_id].valid_intrs | TimerInt, ioaddr + CSR7); iowrite32(TimerInt, ioaddr + CSR5); iowrite32(12, ioaddr + CSR11); tp->ttimer = 1; } } } #endif /* CONFIG_TULIP_NAPI */ if ((missed = ioread32(ioaddr + CSR8) & 0x1ffff)) { tp->stats.rx_dropped += missed & 0x10000 ? 0x10000 : missed; } if (tulip_debug > 4) printk(KERN_DEBUG "%s: exiting interrupt, csr5=%#4.4x.\n", dev->name, ioread32(ioaddr + CSR5)); return IRQ_HANDLED; }