/* * tms380tr.c: A network driver library for Texas Instruments TMS380-based * Token Ring Adapters. * * Originally sktr.c: Written 1997 by Christoph Goos * * A fine result of the Linux Systems Network Architecture Project. * http://www.linux-sna.org * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * The following modules are currently available for card support: * - tmspci (Generic PCI card support) * - abyss (Madge PCI support) * - tmsisa (SysKonnect TR4/16 ISA) * * Sources: * - The hardware related parts of this driver are take from * the SysKonnect Token Ring driver for Windows NT. * - I used the IBM Token Ring driver 'ibmtr.c' as a base for this * driver, as well as the 'skeleton.c' driver by Donald Becker. * - Also various other drivers in the linux source tree were taken * as samples for some tasks. * - TI TMS380 Second-Generation Token Ring User's Guide * - TI datasheets for respective chips * - David Hein at Texas Instruments * - Various Madge employees * * Maintainer(s): * JS Jay Schulist jschlst@samba.org * CG Christoph Goos cgoos@syskonnect.de * AF Adam Fritzler * MLP Mike Phillips phillim@amtrak.com * JF Jochen Friedrich jochen@scram.de * * Modification History: * 29-Aug-97 CG Created * 04-Apr-98 CG Fixed problems caused by tok_timer_check * 10-Apr-98 CG Fixed lockups at cable disconnection * 27-May-98 JS Formated to Linux Kernel Format * 31-May-98 JS Hacked in PCI support * 16-Jun-98 JS Modulized for multiple cards with one driver * Sep-99 AF Renamed to tms380tr (supports more than SK's) * 23-Sep-99 AF Added Compaq and Thomas-Conrad PCI support * Fixed a bug causing double copies on PCI * Fixed for new multicast stuff (2.2/2.3) * 25-Sep-99 AF Uped TPL_NUM from 3 to 9 * Removed extraneous 'No free TPL' * 22-Dec-99 AF Added Madge PCI Mk2 support and generalized * parts of the initilization procedure. * 30-Dec-99 AF Turned tms380tr into a library ala 8390. * Madge support is provided in the abyss module * Generic PCI support is in the tmspci module. * 30-Nov-00 JF Updated PCI code to support IO MMU via * pci_map_static(). Alpha uses this MMU for ISA * as well. * 14-Jan-01 JF Fix DMA on ifdown/ifup sequences. Some * cleanup. * 13-Jan-02 JF Add spinlock to fix race condition. * 09-Nov-02 JF Fixed printks to not SPAM the console during * normal operation. * 30-Dec-02 JF Removed incorrect __init from * tms380tr_init_card. * 22-Jul-05 JF Converted to dma-mapping. * * To do: * 1. Multi/Broadcast packet handling (this may have fixed itself) * 2. Write a sktrisa module that includes the old ISA support (done) * 3. Allow modules to load their own microcode * 4. Speed up the BUD process -- freezing the kernel for 3+sec is * quite unacceptable. * 5. Still a few remaining stalls when the cable is unplugged. */ #ifdef MODULE static const char version[] = "tms380tr.c: v1.10 30/12/2002 by Christoph Goos, Adam Fritzler\n"; #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tms380tr.h" /* Our Stuff */ /* Use 0 for production, 1 for verification, 2 for debug, and * 3 for very verbose debug. */ #ifndef TMS380TR_DEBUG #define TMS380TR_DEBUG 0 #endif static unsigned int tms380tr_debug = TMS380TR_DEBUG; /* Index to functions, as function prototypes. * Alphabetical by function name. */ /* "A" */ /* "B" */ static int tms380tr_bringup_diags(struct net_device *dev); /* "C" */ static void tms380tr_cancel_tx_queue(struct net_local* tp); static int tms380tr_chipset_init(struct net_device *dev); static void tms380tr_chk_irq(struct net_device *dev); static void tms380tr_chk_outstanding_cmds(struct net_device *dev); static void tms380tr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr); static unsigned char tms380tr_chk_ssb(struct net_local *tp, unsigned short IrqType); int tms380tr_close(struct net_device *dev); static void tms380tr_cmd_status_irq(struct net_device *dev); /* "D" */ static void tms380tr_disable_interrupts(struct net_device *dev); #if TMS380TR_DEBUG > 0 static void tms380tr_dump(unsigned char *Data, int length); #endif /* "E" */ static void tms380tr_enable_interrupts(struct net_device *dev); static void tms380tr_exec_cmd(struct net_device *dev, unsigned short Command); static void tms380tr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue); /* "F" */ /* "G" */ static struct net_device_stats *tms380tr_get_stats(struct net_device *dev); /* "H" */ static netdev_tx_t tms380tr_hardware_send_packet(struct sk_buff *skb, struct net_device *dev); /* "I" */ static int tms380tr_init_adapter(struct net_device *dev); static void tms380tr_init_ipb(struct net_local *tp); static void tms380tr_init_net_local(struct net_device *dev); static void tms380tr_init_opb(struct net_device *dev); /* "M" */ /* "O" */ int tms380tr_open(struct net_device *dev); static void tms380tr_open_adapter(struct net_device *dev); /* "P" */ /* "R" */ static void tms380tr_rcv_status_irq(struct net_device *dev); static int tms380tr_read_ptr(struct net_device *dev); static void tms380tr_read_ram(struct net_device *dev, unsigned char *Data, unsigned short Address, int Length); static int tms380tr_reset_adapter(struct net_device *dev); static void tms380tr_reset_interrupt(struct net_device *dev); static void tms380tr_ring_status_irq(struct net_device *dev); /* "S" */ static netdev_tx_t tms380tr_send_packet(struct sk_buff *skb, struct net_device *dev); static void tms380tr_set_multicast_list(struct net_device *dev); static int tms380tr_set_mac_address(struct net_device *dev, void *addr); /* "T" */ static void tms380tr_timer_chk(unsigned long data); static void tms380tr_timer_end_wait(unsigned long data); static void tms380tr_tx_status_irq(struct net_device *dev); /* "U" */ static void tms380tr_update_rcv_stats(struct net_local *tp, unsigned char DataPtr[], unsigned int Length); /* "W" */ void tms380tr_wait(unsigned long time); static void tms380tr_write_rpl_status(RPL *rpl, unsigned int Status); static void tms380tr_write_tpl_status(TPL *tpl, unsigned int Status); #define SIFREADB(reg) \ (((struct net_local *)netdev_priv(dev))->sifreadb(dev, reg)) #define SIFWRITEB(val, reg) \ (((struct net_local *)netdev_priv(dev))->sifwriteb(dev, val, reg)) #define SIFREADW(reg) \ (((struct net_local *)netdev_priv(dev))->sifreadw(dev, reg)) #define SIFWRITEW(val, reg) \ (((struct net_local *)netdev_priv(dev))->sifwritew(dev, val, reg)) #if 0 /* TMS380TR_DEBUG > 0 */ static int madgemc_sifprobe(struct net_device *dev) { unsigned char old, chk1, chk2; old = SIFREADB(SIFADR); /* Get the old SIFADR value */ chk1 = 0; /* Begin with check value 0 */ do { madgemc_setregpage(dev, 0); /* Write new SIFADR value */ SIFWRITEB(chk1, SIFADR); chk2 = SIFREADB(SIFADR); if (chk2 != chk1) return -1; madgemc_setregpage(dev, 1); /* Read, invert and write */ chk2 = SIFREADB(SIFADD); if (chk2 != chk1) return -1; madgemc_setregpage(dev, 0); chk2 ^= 0x0FE; SIFWRITEB(chk2, SIFADR); /* Read, invert and compare */ madgemc_setregpage(dev, 1); chk2 = SIFREADB(SIFADD); madgemc_setregpage(dev, 0); chk2 ^= 0x0FE; if(chk1 != chk2) return (-1); /* No adapter */ chk1 -= 2; } while(chk1 != 0); /* Repeat 128 times (all byte values) */ madgemc_setregpage(dev, 0); /* sanity */ /* Restore the SIFADR value */ SIFWRITEB(old, SIFADR); return (0); } #endif /* * Open/initialize the board. This is called sometime after * booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ int tms380tr_open(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; /* init the spinlock */ spin_lock_init(&tp->lock); init_timer(&tp->timer); /* Reset the hardware here. Don't forget to set the station address. */ #ifdef CONFIG_ISA if(dev->dma > 0) { unsigned long flags=claim_dma_lock(); disable_dma(dev->dma); set_dma_mode(dev->dma, DMA_MODE_CASCADE); enable_dma(dev->dma); release_dma_lock(flags); } #endif err = tms380tr_chipset_init(dev); if(err) { printk(KERN_INFO "%s: Chipset initialization error\n", dev->name); return (-1); } tp->timer.expires = jiffies + 30*HZ; tp->timer.function = tms380tr_timer_end_wait; tp->timer.data = (unsigned long)dev; add_timer(&tp->timer); printk(KERN_DEBUG "%s: Adapter RAM size: %dK\n", dev->name, tms380tr_read_ptr(dev)); tms380tr_enable_interrupts(dev); tms380tr_open_adapter(dev); netif_start_queue(dev); /* Wait for interrupt from hardware. If interrupt does not come, * there will be a timeout from the timer. */ tp->Sleeping = 1; interruptible_sleep_on(&tp->wait_for_tok_int); del_timer(&tp->timer); /* If AdapterVirtOpenFlag is 1, the adapter is now open for use */ if(tp->AdapterVirtOpenFlag == 0) { tms380tr_disable_interrupts(dev); return (-1); } tp->StartTime = jiffies; /* Start function control timer */ tp->timer.expires = jiffies + 2*HZ; tp->timer.function = tms380tr_timer_chk; tp->timer.data = (unsigned long)dev; add_timer(&tp->timer); return (0); } /* * Timeout function while waiting for event */ static void tms380tr_timer_end_wait(unsigned long data) { struct net_device *dev = (struct net_device*)data; struct net_local *tp = netdev_priv(dev); if(tp->Sleeping) { tp->Sleeping = 0; wake_up_interruptible(&tp->wait_for_tok_int); } return; } /* * Initialize the chipset */ static int tms380tr_chipset_init(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; tms380tr_init_ipb(tp); tms380tr_init_opb(dev); tms380tr_init_net_local(dev); if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Resetting adapter...\n", dev->name); err = tms380tr_reset_adapter(dev); if(err < 0) return (-1); if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Bringup diags...\n", dev->name); err = tms380tr_bringup_diags(dev); if(err < 0) return (-1); if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Init adapter...\n", dev->name); err = tms380tr_init_adapter(dev); if(err < 0) return (-1); if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Done!\n", dev->name); return (0); } /* * Initializes the net_local structure. */ static void tms380tr_init_net_local(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int i; dma_addr_t dmabuf; tp->scb.CMD = 0; tp->scb.Parm[0] = 0; tp->scb.Parm[1] = 0; tp->ssb.STS = 0; tp->ssb.Parm[0] = 0; tp->ssb.Parm[1] = 0; tp->ssb.Parm[2] = 0; tp->CMDqueue = 0; tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 0; tp->ScbInUse = 0; tp->OpenCommandIssued = 0; tp->ReOpenInProgress = 0; tp->HaltInProgress = 0; tp->TransmitHaltScheduled = 0; tp->LobeWireFaultLogged = 0; tp->LastOpenStatus = 0; tp->MaxPacketSize = DEFAULT_PACKET_SIZE; /* Create circular chain of transmit lists */ for (i = 0; i < TPL_NUM; i++) { tp->Tpl[i].NextTPLAddr = htonl(((char *)(&tp->Tpl[(i+1) % TPL_NUM]) - (char *)tp) + tp->dmabuffer); /* DMA buffer may be MMU driven */ tp->Tpl[i].Status = 0; tp->Tpl[i].FrameSize = 0; tp->Tpl[i].FragList[0].DataCount = 0; tp->Tpl[i].FragList[0].DataAddr = 0; tp->Tpl[i].NextTPLPtr = &tp->Tpl[(i+1) % TPL_NUM]; tp->Tpl[i].MData = NULL; tp->Tpl[i].TPLIndex = i; tp->Tpl[i].DMABuff = 0; tp->Tpl[i].BusyFlag = 0; } tp->TplFree = tp->TplBusy = &tp->Tpl[0]; /* Create circular chain of receive lists */ for (i = 0; i < RPL_NUM; i++) { tp->Rpl[i].NextRPLAddr = htonl(((char *)(&tp->Rpl[(i+1) % RPL_NUM]) - (char *)tp) + tp->dmabuffer); /* DMA buffer may be MMU driven */ tp->Rpl[i].Status = (RX_VALID | RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ); tp->Rpl[i].FrameSize = 0; tp->Rpl[i].FragList[0].DataCount = cpu_to_be16((unsigned short)tp->MaxPacketSize); /* Alloc skb and point adapter to data area */ tp->Rpl[i].Skb = dev_alloc_skb(tp->MaxPacketSize); tp->Rpl[i].DMABuff = 0; /* skb == NULL ? then use local buffer */ if(tp->Rpl[i].Skb == NULL) { tp->Rpl[i].SkbStat = SKB_UNAVAILABLE; tp->Rpl[i].FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[i] - (char *)tp) + tp->dmabuffer); tp->Rpl[i].MData = tp->LocalRxBuffers[i]; } else /* SKB != NULL */ { tp->Rpl[i].Skb->dev = dev; skb_put(tp->Rpl[i].Skb, tp->MaxPacketSize); /* data unreachable for DMA ? then use local buffer */ dmabuf = dma_map_single(tp->pdev, tp->Rpl[i].Skb->data, tp->MaxPacketSize, DMA_FROM_DEVICE); if(tp->dmalimit && (dmabuf + tp->MaxPacketSize > tp->dmalimit)) { tp->Rpl[i].SkbStat = SKB_DATA_COPY; tp->Rpl[i].FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[i] - (char *)tp) + tp->dmabuffer); tp->Rpl[i].MData = tp->LocalRxBuffers[i]; } else /* DMA directly in skb->data */ { tp->Rpl[i].SkbStat = SKB_DMA_DIRECT; tp->Rpl[i].FragList[0].DataAddr = htonl(dmabuf); tp->Rpl[i].MData = tp->Rpl[i].Skb->data; tp->Rpl[i].DMABuff = dmabuf; } } tp->Rpl[i].NextRPLPtr = &tp->Rpl[(i+1) % RPL_NUM]; tp->Rpl[i].RPLIndex = i; } tp->RplHead = &tp->Rpl[0]; tp->RplTail = &tp->Rpl[RPL_NUM-1]; tp->RplTail->Status = (RX_START_FRAME | RX_END_FRAME | RX_FRAME_IRQ); return; } /* * Initializes the initialisation parameter block. */ static void tms380tr_init_ipb(struct net_local *tp) { tp->ipb.Init_Options = BURST_MODE; tp->ipb.CMD_Status_IV = 0; tp->ipb.TX_IV = 0; tp->ipb.RX_IV = 0; tp->ipb.Ring_Status_IV = 0; tp->ipb.SCB_Clear_IV = 0; tp->ipb.Adapter_CHK_IV = 0; tp->ipb.RX_Burst_Size = BURST_SIZE; tp->ipb.TX_Burst_Size = BURST_SIZE; tp->ipb.DMA_Abort_Thrhld = DMA_RETRIES; tp->ipb.SCB_Addr = 0; tp->ipb.SSB_Addr = 0; return; } /* * Initializes the open parameter block. */ static void tms380tr_init_opb(struct net_device *dev) { struct net_local *tp; unsigned long Addr; unsigned short RplSize = RPL_SIZE; unsigned short TplSize = TPL_SIZE; unsigned short BufferSize = BUFFER_SIZE; int i; tp = netdev_priv(dev); tp->ocpl.OPENOptions = 0; tp->ocpl.OPENOptions |= ENABLE_FULL_DUPLEX_SELECTION; tp->ocpl.FullDuplex = 0; tp->ocpl.FullDuplex |= OPEN_FULL_DUPLEX_OFF; /* * Set node address * * We go ahead and put it in the OPB even though on * most of the generic adapters this isn't required. * Its simpler this way. -- ASF */ for (i=0;i<6;i++) tp->ocpl.NodeAddr[i] = ((unsigned char *)dev->dev_addr)[i]; tp->ocpl.GroupAddr = 0; tp->ocpl.FunctAddr = 0; tp->ocpl.RxListSize = cpu_to_be16((unsigned short)RplSize); tp->ocpl.TxListSize = cpu_to_be16((unsigned short)TplSize); tp->ocpl.BufSize = cpu_to_be16((unsigned short)BufferSize); tp->ocpl.Reserved = 0; tp->ocpl.TXBufMin = TX_BUF_MIN; tp->ocpl.TXBufMax = TX_BUF_MAX; Addr = htonl(((char *)tp->ProductID - (char *)tp) + tp->dmabuffer); tp->ocpl.ProdIDAddr[0] = LOWORD(Addr); tp->ocpl.ProdIDAddr[1] = HIWORD(Addr); return; } /* * Send OPEN command to adapter */ static void tms380tr_open_adapter(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); if(tp->OpenCommandIssued) return; tp->OpenCommandIssued = 1; tms380tr_exec_cmd(dev, OC_OPEN); return; } /* * Clear the adapter's interrupt flag. Clear system interrupt enable * (SINTEN): disable adapter to system interrupts. */ static void tms380tr_disable_interrupts(struct net_device *dev) { SIFWRITEB(0, SIFACL); return; } /* * Set the adapter's interrupt flag. Set system interrupt enable * (SINTEN): enable adapter to system interrupts. */ static void tms380tr_enable_interrupts(struct net_device *dev) { SIFWRITEB(ACL_SINTEN, SIFACL); return; } /* * Put command in command queue, try to execute it. */ static void tms380tr_exec_cmd(struct net_device *dev, unsigned short Command) { struct net_local *tp = netdev_priv(dev); tp->CMDqueue |= Command; tms380tr_chk_outstanding_cmds(dev); return; } static void tms380tr_timeout(struct net_device *dev) { /* * If we get here, some higher level has decided we are broken. * There should really be a "kick me" function call instead. * * Resetting the token ring adapter takes a long time so just * fake transmission time and go on trying. Our own timeout * routine is in tms380tr_timer_chk() */ dev->trans_start = jiffies; netif_wake_queue(dev); } /* * Gets skb from system, queues it and checks if it can be sent */ static netdev_tx_t tms380tr_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *tp = netdev_priv(dev); netdev_tx_t rc; rc = tms380tr_hardware_send_packet(skb, dev); if(tp->TplFree->NextTPLPtr->BusyFlag) netif_stop_queue(dev); return rc; } /* * Move frames into adapter tx queue */ static netdev_tx_t tms380tr_hardware_send_packet(struct sk_buff *skb, struct net_device *dev) { TPL *tpl; short length; unsigned char *buf; unsigned long flags; int i; dma_addr_t dmabuf, newbuf; struct net_local *tp = netdev_priv(dev); /* Try to get a free TPL from the chain. * * NOTE: We *must* always leave one unused TPL in the chain, * because otherwise the adapter might send frames twice. */ spin_lock_irqsave(&tp->lock, flags); if(tp->TplFree->NextTPLPtr->BusyFlag) { /* No free TPL */ if (tms380tr_debug > 0) printk(KERN_DEBUG "%s: No free TPL\n", dev->name); spin_unlock_irqrestore(&tp->lock, flags); return NETDEV_TX_BUSY; } dmabuf = 0; /* Is buffer reachable for Busmaster-DMA? */ length = skb->len; dmabuf = dma_map_single(tp->pdev, skb->data, length, DMA_TO_DEVICE); if(tp->dmalimit && (dmabuf + length > tp->dmalimit)) { /* Copy frame to local buffer */ dma_unmap_single(tp->pdev, dmabuf, length, DMA_TO_DEVICE); dmabuf = 0; i = tp->TplFree->TPLIndex; buf = tp->LocalTxBuffers[i]; skb_copy_from_linear_data(skb, buf, length); newbuf = ((char *)buf - (char *)tp) + tp->dmabuffer; } else { /* Send direct from skb->data */ newbuf = dmabuf; buf = skb->data; } /* Source address in packet? */ tms380tr_chk_src_addr(buf, dev->dev_addr); tp->LastSendTime = jiffies; tpl = tp->TplFree; /* Get the "free" TPL */ tpl->BusyFlag = 1; /* Mark TPL as busy */ tp->TplFree = tpl->NextTPLPtr; /* Save the skb for delayed return of skb to system */ tpl->Skb = skb; tpl->DMABuff = dmabuf; tpl->FragList[0].DataCount = cpu_to_be16((unsigned short)length); tpl->FragList[0].DataAddr = htonl(newbuf); /* Write the data length in the transmit list. */ tpl->FrameSize = cpu_to_be16((unsigned short)length); tpl->MData = buf; /* Transmit the frame and set the status values. */ tms380tr_write_tpl_status(tpl, TX_VALID | TX_START_FRAME | TX_END_FRAME | TX_PASS_SRC_ADDR | TX_FRAME_IRQ); /* Let adapter send the frame. */ tms380tr_exec_sifcmd(dev, CMD_TX_VALID); spin_unlock_irqrestore(&tp->lock, flags); return NETDEV_TX_OK; } /* * Write the given value to the 'Status' field of the specified TPL. * NOTE: This function should be used whenever the status of any TPL must be * modified by the driver, because the compiler may otherwise change the * order of instructions such that writing the TPL status may be executed at * an undesirable time. When this function is used, the status is always * written when the function is called. */ static void tms380tr_write_tpl_status(TPL *tpl, unsigned int Status) { tpl->Status = Status; } static void tms380tr_chk_src_addr(unsigned char *frame, unsigned char *hw_addr) { unsigned char SRBit; if((((unsigned long)frame[8]) & ~0x80) != 0) /* Compare 4 bytes */ return; if((unsigned short)frame[12] != 0) /* Compare 2 bytes */ return; SRBit = frame[8] & 0x80; memcpy(&frame[8], hw_addr, 6); frame[8] |= SRBit; return; } /* * The timer routine: Check if adapter still open and working, reopen if not. */ static void tms380tr_timer_chk(unsigned long data) { struct net_device *dev = (struct net_device*)data; struct net_local *tp = netdev_priv(dev); if(tp->HaltInProgress) return; tms380tr_chk_outstanding_cmds(dev); if(time_before(tp->LastSendTime + SEND_TIMEOUT, jiffies) && (tp->TplFree != tp->TplBusy)) { /* Anything to send, but stalled too long */ tp->LastSendTime = jiffies; tms380tr_exec_cmd(dev, OC_CLOSE); /* Does reopen automatically */ } tp->timer.expires = jiffies + 2*HZ; add_timer(&tp->timer); if(tp->AdapterOpenFlag || tp->ReOpenInProgress) return; tp->ReOpenInProgress = 1; tms380tr_open_adapter(dev); return; } /* * The typical workload of the driver: Handle the network interface interrupts. */ irqreturn_t tms380tr_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_local *tp; unsigned short irq_type; int handled = 0; tp = netdev_priv(dev); irq_type = SIFREADW(SIFSTS); while(irq_type & STS_SYSTEM_IRQ) { handled = 1; irq_type &= STS_IRQ_MASK; if(!tms380tr_chk_ssb(tp, irq_type)) { printk(KERN_DEBUG "%s: DATA LATE occurred\n", dev->name); break; } switch(irq_type) { case STS_IRQ_RECEIVE_STATUS: tms380tr_reset_interrupt(dev); tms380tr_rcv_status_irq(dev); break; case STS_IRQ_TRANSMIT_STATUS: /* Check if TRANSMIT.HALT command is complete */ if(tp->ssb.Parm[0] & COMMAND_COMPLETE) { tp->TransmitCommandActive = 0; tp->TransmitHaltScheduled = 0; /* Issue a new transmit command. */ tms380tr_exec_cmd(dev, OC_TRANSMIT); } tms380tr_reset_interrupt(dev); tms380tr_tx_status_irq(dev); break; case STS_IRQ_COMMAND_STATUS: /* The SSB contains status of last command * other than receive/transmit. */ tms380tr_cmd_status_irq(dev); break; case STS_IRQ_SCB_CLEAR: /* The SCB is free for another command. */ tp->ScbInUse = 0; tms380tr_chk_outstanding_cmds(dev); break; case STS_IRQ_RING_STATUS: tms380tr_ring_status_irq(dev); break; case STS_IRQ_ADAPTER_CHECK: tms380tr_chk_irq(dev); break; case STS_IRQ_LLC_STATUS: printk(KERN_DEBUG "tms380tr: unexpected LLC status IRQ\n"); break; case STS_IRQ_TIMER: printk(KERN_DEBUG "tms380tr: unexpected Timer IRQ\n"); break; case STS_IRQ_RECEIVE_PENDING: printk(KERN_DEBUG "tms380tr: unexpected Receive Pending IRQ\n"); break; default: printk(KERN_DEBUG "Unknown Token Ring IRQ (0x%04x)\n", irq_type); break; } /* Reset system interrupt if not already done. */ if(irq_type != STS_IRQ_TRANSMIT_STATUS && irq_type != STS_IRQ_RECEIVE_STATUS) { tms380tr_reset_interrupt(dev); } irq_type = SIFREADW(SIFSTS); } return IRQ_RETVAL(handled); } /* * Reset the INTERRUPT SYSTEM bit and issue SSB CLEAR command. */ static void tms380tr_reset_interrupt(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); SSB *ssb = &tp->ssb; /* * [Workaround for "Data Late"] * Set all fields of the SSB to well-defined values so we can * check if the adapter has written the SSB. */ ssb->STS = (unsigned short) -1; ssb->Parm[0] = (unsigned short) -1; ssb->Parm[1] = (unsigned short) -1; ssb->Parm[2] = (unsigned short) -1; /* Free SSB by issuing SSB_CLEAR command after reading IRQ code * and clear STS_SYSTEM_IRQ bit: enable adapter for further interrupts. */ tms380tr_exec_sifcmd(dev, CMD_SSB_CLEAR | CMD_CLEAR_SYSTEM_IRQ); return; } /* * Check if the SSB has actually been written by the adapter. */ static unsigned char tms380tr_chk_ssb(struct net_local *tp, unsigned short IrqType) { SSB *ssb = &tp->ssb; /* The address of the SSB. */ /* C 0 1 2 INTERRUPT CODE * - - - - -------------- * 1 1 1 1 TRANSMIT STATUS * 1 1 1 1 RECEIVE STATUS * 1 ? ? 0 COMMAND STATUS * 0 0 0 0 SCB CLEAR * 1 1 0 0 RING STATUS * 0 0 0 0 ADAPTER CHECK * * 0 = SSB field not affected by interrupt * 1 = SSB field is affected by interrupt * * C = SSB ADDRESS +0: COMMAND * 0 = SSB ADDRESS +2: STATUS 0 * 1 = SSB ADDRESS +4: STATUS 1 * 2 = SSB ADDRESS +6: STATUS 2 */ /* Check if this interrupt does use the SSB. */ if(IrqType != STS_IRQ_TRANSMIT_STATUS && IrqType != STS_IRQ_RECEIVE_STATUS && IrqType != STS_IRQ_COMMAND_STATUS && IrqType != STS_IRQ_RING_STATUS) { return (1); /* SSB not involved. */ } /* Note: All fields of the SSB have been set to all ones (-1) after it * has last been used by the software (see DriverIsr()). * * Check if the affected SSB fields are still unchanged. */ if(ssb->STS == (unsigned short) -1) return (0); /* Command field not yet available. */ if(IrqType == STS_IRQ_COMMAND_STATUS) return (1); /* Status fields not always affected. */ if(ssb->Parm[0] == (unsigned short) -1) return (0); /* Status 1 field not yet available. */ if(IrqType == STS_IRQ_RING_STATUS) return (1); /* Status 2 & 3 fields not affected. */ /* Note: At this point, the interrupt is either TRANSMIT or RECEIVE. */ if(ssb->Parm[1] == (unsigned short) -1) return (0); /* Status 2 field not yet available. */ if(ssb->Parm[2] == (unsigned short) -1) return (0); /* Status 3 field not yet available. */ return (1); /* All SSB fields have been written by the adapter. */ } /* * Evaluates the command results status in the SSB status field. */ static void tms380tr_cmd_status_irq(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned short ssb_cmd, ssb_parm_0; unsigned short ssb_parm_1; char *open_err = "Open error -"; char *code_err = "Open code -"; /* Copy the ssb values to local variables */ ssb_cmd = tp->ssb.STS; ssb_parm_0 = tp->ssb.Parm[0]; ssb_parm_1 = tp->ssb.Parm[1]; if(ssb_cmd == OPEN) { tp->Sleeping = 0; if(!tp->ReOpenInProgress) wake_up_interruptible(&tp->wait_for_tok_int); tp->OpenCommandIssued = 0; tp->ScbInUse = 0; if((ssb_parm_0 & 0x00FF) == GOOD_COMPLETION) { /* Success, the adapter is open. */ tp->LobeWireFaultLogged = 0; tp->AdapterOpenFlag = 1; tp->AdapterVirtOpenFlag = 1; tp->TransmitCommandActive = 0; tms380tr_exec_cmd(dev, OC_TRANSMIT); tms380tr_exec_cmd(dev, OC_RECEIVE); if(tp->ReOpenInProgress) tp->ReOpenInProgress = 0; return; } else /* The adapter did not open. */ { if(ssb_parm_0 & NODE_ADDR_ERROR) printk(KERN_INFO "%s: Node address error\n", dev->name); if(ssb_parm_0 & LIST_SIZE_ERROR) printk(KERN_INFO "%s: List size error\n", dev->name); if(ssb_parm_0 & BUF_SIZE_ERROR) printk(KERN_INFO "%s: Buffer size error\n", dev->name); if(ssb_parm_0 & TX_BUF_COUNT_ERROR) printk(KERN_INFO "%s: Tx buffer count error\n", dev->name); if(ssb_parm_0 & INVALID_OPEN_OPTION) printk(KERN_INFO "%s: Invalid open option\n", dev->name); if(ssb_parm_0 & OPEN_ERROR) { /* Show the open phase. */ switch(ssb_parm_0 & OPEN_PHASES_MASK) { case LOBE_MEDIA_TEST: if(!tp->LobeWireFaultLogged) { tp->LobeWireFaultLogged = 1; printk(KERN_INFO "%s: %s Lobe wire fault (check cable !).\n", dev->name, open_err); } tp->ReOpenInProgress = 1; tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 1; tms380tr_open_adapter(dev); return; case PHYSICAL_INSERTION: printk(KERN_INFO "%s: %s Physical insertion.\n", dev->name, open_err); break; case ADDRESS_VERIFICATION: printk(KERN_INFO "%s: %s Address verification.\n", dev->name, open_err); break; case PARTICIPATION_IN_RING_POLL: printk(KERN_INFO "%s: %s Participation in ring poll.\n", dev->name, open_err); break; case REQUEST_INITIALISATION: printk(KERN_INFO "%s: %s Request initialisation.\n", dev->name, open_err); break; case FULLDUPLEX_CHECK: printk(KERN_INFO "%s: %s Full duplex check.\n", dev->name, open_err); break; default: printk(KERN_INFO "%s: %s Unknown open phase\n", dev->name, open_err); break; } /* Show the open errors. */ switch(ssb_parm_0 & OPEN_ERROR_CODES_MASK) { case OPEN_FUNCTION_FAILURE: printk(KERN_INFO "%s: %s OPEN_FUNCTION_FAILURE", dev->name, code_err); tp->LastOpenStatus = OPEN_FUNCTION_FAILURE; break; case OPEN_SIGNAL_LOSS: printk(KERN_INFO "%s: %s OPEN_SIGNAL_LOSS\n", dev->name, code_err); tp->LastOpenStatus = OPEN_SIGNAL_LOSS; break; case OPEN_TIMEOUT: printk(KERN_INFO "%s: %s OPEN_TIMEOUT\n", dev->name, code_err); tp->LastOpenStatus = OPEN_TIMEOUT; break; case OPEN_RING_FAILURE: printk(KERN_INFO "%s: %s OPEN_RING_FAILURE\n", dev->name, code_err); tp->LastOpenStatus = OPEN_RING_FAILURE; break; case OPEN_RING_BEACONING: printk(KERN_INFO "%s: %s OPEN_RING_BEACONING\n", dev->name, code_err); tp->LastOpenStatus = OPEN_RING_BEACONING; break; case OPEN_DUPLICATE_NODEADDR: printk(KERN_INFO "%s: %s OPEN_DUPLICATE_NODEADDR\n", dev->name, code_err); tp->LastOpenStatus = OPEN_DUPLICATE_NODEADDR; break; case OPEN_REQUEST_INIT: printk(KERN_INFO "%s: %s OPEN_REQUEST_INIT\n", dev->name, code_err); tp->LastOpenStatus = OPEN_REQUEST_INIT; break; case OPEN_REMOVE_RECEIVED: printk(KERN_INFO "%s: %s OPEN_REMOVE_RECEIVED", dev->name, code_err); tp->LastOpenStatus = OPEN_REMOVE_RECEIVED; break; case OPEN_FULLDUPLEX_SET: printk(KERN_INFO "%s: %s OPEN_FULLDUPLEX_SET\n", dev->name, code_err); tp->LastOpenStatus = OPEN_FULLDUPLEX_SET; break; default: printk(KERN_INFO "%s: %s Unknown open err code", dev->name, code_err); tp->LastOpenStatus = OPEN_FUNCTION_FAILURE; break; } } tp->AdapterOpenFlag = 0; tp->AdapterVirtOpenFlag = 0; return; } } else { if(ssb_cmd != READ_ERROR_LOG) return; /* Add values from the error log table to the MAC * statistics counters and update the errorlogtable * memory. */ tp->MacStat.line_errors += tp->errorlogtable.Line_Error; tp->MacStat.burst_errors += tp->errorlogtable.Burst_Error; tp->MacStat.A_C_errors += tp->errorlogtable.ARI_FCI_Error; tp->MacStat.lost_frames += tp->errorlogtable.Lost_Frame_Error; tp->MacStat.recv_congest_count += tp->errorlogtable.Rx_Congest_Error; tp->MacStat.rx_errors += tp->errorlogtable.Rx_Congest_Error; tp->MacStat.frame_copied_errors += tp->errorlogtable.Frame_Copied_Error; tp->MacStat.token_errors += tp->errorlogtable.Token_Error; tp->MacStat.dummy1 += tp->errorlogtable.DMA_Bus_Error; tp->MacStat.dummy1 += tp->errorlogtable.DMA_Parity_Error; tp->MacStat.abort_delimiters += tp->errorlogtable.AbortDelimeters; tp->MacStat.frequency_errors += tp->errorlogtable.Frequency_Error; tp->MacStat.internal_errors += tp->errorlogtable.Internal_Error; } return; } /* * The inverse routine to tms380tr_open(). */ int tms380tr_close(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); netif_stop_queue(dev); del_timer(&tp->timer); /* Flush the Tx and disable Rx here. */ tp->HaltInProgress = 1; tms380tr_exec_cmd(dev, OC_CLOSE); tp->timer.expires = jiffies + 1*HZ; tp->timer.function = tms380tr_timer_end_wait; tp->timer.data = (unsigned long)dev; add_timer(&tp->timer); tms380tr_enable_interrupts(dev); tp->Sleeping = 1; interruptible_sleep_on(&tp->wait_for_tok_int); tp->TransmitCommandActive = 0; del_timer(&tp->timer); tms380tr_disable_interrupts(dev); #ifdef CONFIG_ISA if(dev->dma > 0) { unsigned long flags=claim_dma_lock(); disable_dma(dev->dma); release_dma_lock(flags); } #endif SIFWRITEW(0xFF00, SIFCMD); #if 0 if(dev->dma > 0) /* what the? */ SIFWRITEB(0xff, POSREG); #endif tms380tr_cancel_tx_queue(tp); return (0); } /* * Get the current statistics. This may be called with the card open * or closed. */ static struct net_device_stats *tms380tr_get_stats(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); return ((struct net_device_stats *)&tp->MacStat); } /* * Set or clear the multicast filter for this adapter. */ static void tms380tr_set_multicast_list(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int OpenOptions; OpenOptions = tp->ocpl.OPENOptions & ~(PASS_ADAPTER_MAC_FRAMES | PASS_ATTENTION_FRAMES | PASS_BEACON_MAC_FRAMES | COPY_ALL_MAC_FRAMES | COPY_ALL_NON_MAC_FRAMES); tp->ocpl.FunctAddr = 0; if(dev->flags & IFF_PROMISC) /* Enable promiscuous mode */ OpenOptions |= COPY_ALL_NON_MAC_FRAMES | COPY_ALL_MAC_FRAMES; else { if(dev->flags & IFF_ALLMULTI) { /* Disable promiscuous mode, use normal mode. */ tp->ocpl.FunctAddr = 0xFFFFFFFF; } else { struct dev_mc_list *mclist; netdev_for_each_mc_addr(mclist, dev) { ((char *)(&tp->ocpl.FunctAddr))[0] |= mclist->dmi_addr[2]; ((char *)(&tp->ocpl.FunctAddr))[1] |= mclist->dmi_addr[3]; ((char *)(&tp->ocpl.FunctAddr))[2] |= mclist->dmi_addr[4]; ((char *)(&tp->ocpl.FunctAddr))[3] |= mclist->dmi_addr[5]; } } tms380tr_exec_cmd(dev, OC_SET_FUNCT_ADDR); } tp->ocpl.OPENOptions = OpenOptions; tms380tr_exec_cmd(dev, OC_MODIFY_OPEN_PARMS); return; } /* * Wait for some time (microseconds) */ void tms380tr_wait(unsigned long time) { #if 0 long tmp; tmp = jiffies + time/(1000000/HZ); do { tmp = schedule_timeout_interruptible(tmp); } while(time_after(tmp, jiffies)); #else udelay(time); #endif return; } /* * Write a command value to the SIFCMD register */ static void tms380tr_exec_sifcmd(struct net_device *dev, unsigned int WriteValue) { unsigned short cmd; unsigned short SifStsValue; unsigned long loop_counter; WriteValue = ((WriteValue ^ CMD_SYSTEM_IRQ) | CMD_INTERRUPT_ADAPTER); cmd = (unsigned short)WriteValue; loop_counter = 0,5 * 800000; do { SifStsValue = SIFREADW(SIFSTS); } while((SifStsValue & CMD_INTERRUPT_ADAPTER) && loop_counter--); SIFWRITEW(cmd, SIFCMD); return; } /* * Processes adapter hardware reset, halts adapter and downloads firmware, * clears the halt bit. */ static int tms380tr_reset_adapter(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned short *fw_ptr; unsigned short count, c, count2; const struct firmware *fw_entry = NULL; if (request_firmware(&fw_entry, "tms380tr.bin", tp->pdev) != 0) { printk(KERN_ALERT "%s: firmware %s is missing, cannot start.\n", dev->name, "tms380tr.bin"); return (-1); } fw_ptr = (unsigned short *)fw_entry->data; count2 = fw_entry->size / 2; /* Hardware adapter reset */ SIFWRITEW(ACL_ARESET, SIFACL); tms380tr_wait(40); c = SIFREADW(SIFACL); tms380tr_wait(20); if(dev->dma == 0) /* For PCI adapters */ { c &= ~(ACL_NSELOUT0 | ACL_NSELOUT1); /* Clear bits */ if(tp->setnselout) c |= (*tp->setnselout)(dev); } /* In case a command is pending - forget it */ tp->ScbInUse = 0; c &= ~ACL_ARESET; /* Clear adapter reset bit */ c |= ACL_CPHALT; /* Halt adapter CPU, allow download */ c |= ACL_BOOT; c |= ACL_SINTEN; c &= ~ACL_PSDMAEN; /* Clear pseudo dma bit */ SIFWRITEW(c, SIFACL); tms380tr_wait(40); count = 0; /* Download firmware via DIO interface: */ do { if (count2 < 3) continue; /* Download first address part */ SIFWRITEW(*fw_ptr, SIFADX); fw_ptr++; count2--; /* Download second address part */ SIFWRITEW(*fw_ptr, SIFADD); fw_ptr++; count2--; if((count = *fw_ptr) != 0) /* Load loop counter */ { fw_ptr++; /* Download block data */ count2--; if (count > count2) continue; for(; count > 0; count--) { SIFWRITEW(*fw_ptr, SIFINC); fw_ptr++; count2--; } } else /* Stop, if last block downloaded */ { c = SIFREADW(SIFACL); c &= (~ACL_CPHALT | ACL_SINTEN); /* Clear CPHALT and start BUD */ SIFWRITEW(c, SIFACL); if (fw_entry) release_firmware(fw_entry); return (1); } } while(count == 0); if (fw_entry) release_firmware(fw_entry); printk(KERN_INFO "%s: Adapter Download Failed\n", dev->name); return (-1); } MODULE_FIRMWARE("tms380tr.bin"); /* * Starts bring up diagnostics of token ring adapter and evaluates * diagnostic results. */ static int tms380tr_bringup_diags(struct net_device *dev) { int loop_cnt, retry_cnt; unsigned short Status; tms380tr_wait(HALF_SECOND); tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET); tms380tr_wait(HALF_SECOND); retry_cnt = BUD_MAX_RETRIES; /* maximal number of retrys */ do { retry_cnt--; if(tms380tr_debug > 3) printk(KERN_DEBUG "BUD-Status: "); loop_cnt = BUD_MAX_LOOPCNT; /* maximum: three seconds*/ do { /* Inspect BUD results */ loop_cnt--; tms380tr_wait(HALF_SECOND); Status = SIFREADW(SIFSTS); Status &= STS_MASK; if(tms380tr_debug > 3) printk(KERN_DEBUG " %04X\n", Status); /* BUD successfully completed */ if(Status == STS_INITIALIZE) return (1); /* Unrecoverable hardware error, BUD not completed? */ } while((loop_cnt > 0) && ((Status & (STS_ERROR | STS_TEST)) != (STS_ERROR | STS_TEST))); /* Error preventing completion of BUD */ if(retry_cnt > 0) { printk(KERN_INFO "%s: Adapter Software Reset.\n", dev->name); tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET); tms380tr_wait(HALF_SECOND); } } while(retry_cnt > 0); Status = SIFREADW(SIFSTS); printk(KERN_INFO "%s: Hardware error\n", dev->name); /* Hardware error occurred! */ Status &= 0x001f; if (Status & 0x0010) printk(KERN_INFO "%s: BUD Error: Timeout\n", dev->name); else if ((Status & 0x000f) > 6) printk(KERN_INFO "%s: BUD Error: Illegal Failure\n", dev->name); else printk(KERN_INFO "%s: Bring Up Diagnostics Error (%04X) occurred\n", dev->name, Status & 0x000f); return (-1); } /* * Copy initialisation data to adapter memory, beginning at address * 1:0A00; Starting DMA test and evaluating result bits. */ static int tms380tr_init_adapter(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); const unsigned char SCB_Test[6] = {0x00, 0x00, 0xC1, 0xE2, 0xD4, 0x8B}; const unsigned char SSB_Test[8] = {0xFF, 0xFF, 0xD1, 0xD7, 0xC5, 0xD9, 0xC3, 0xD4}; void *ptr = (void *)&tp->ipb; unsigned short *ipb_ptr = (unsigned short *)ptr; unsigned char *cb_ptr = (unsigned char *) &tp->scb; unsigned char *sb_ptr = (unsigned char *) &tp->ssb; unsigned short Status; int i, loop_cnt, retry_cnt; /* Normalize: byte order low/high, word order high/low! (only IPB!) */ tp->ipb.SCB_Addr = SWAPW(((char *)&tp->scb - (char *)tp) + tp->dmabuffer); tp->ipb.SSB_Addr = SWAPW(((char *)&tp->ssb - (char *)tp) + tp->dmabuffer); if(tms380tr_debug > 3) { printk(KERN_DEBUG "%s: buffer (real): %lx\n", dev->name, (long) &tp->scb); printk(KERN_DEBUG "%s: buffer (virt): %lx\n", dev->name, (long) ((char *)&tp->scb - (char *)tp) + (long) tp->dmabuffer); printk(KERN_DEBUG "%s: buffer (DMA) : %lx\n", dev->name, (long) tp->dmabuffer); printk(KERN_DEBUG "%s: buffer (tp) : %lx\n", dev->name, (long) tp); } /* Maximum: three initialization retries */ retry_cnt = INIT_MAX_RETRIES; do { retry_cnt--; /* Transfer initialization block */ SIFWRITEW(0x0001, SIFADX); /* To address 0001:0A00 of adapter RAM */ SIFWRITEW(0x0A00, SIFADD); /* Write 11 words to adapter RAM */ for(i = 0; i < 11; i++) SIFWRITEW(ipb_ptr[i], SIFINC); /* Execute SCB adapter command */ tms380tr_exec_sifcmd(dev, CMD_EXECUTE); loop_cnt = INIT_MAX_LOOPCNT; /* Maximum: 11 seconds */ /* While remaining retries, no error and not completed */ do { Status = 0; loop_cnt--; tms380tr_wait(HALF_SECOND); /* Mask interesting status bits */ Status = SIFREADW(SIFSTS); Status &= STS_MASK; } while(((Status &(STS_INITIALIZE | STS_ERROR | STS_TEST)) != 0) && ((Status & STS_ERROR) == 0) && (loop_cnt != 0)); if((Status & (STS_INITIALIZE | STS_ERROR | STS_TEST)) == 0) { /* Initialization completed without error */ i = 0; do { /* Test if contents of SCB is valid */ if(SCB_Test[i] != *(cb_ptr + i)) { printk(KERN_INFO "%s: DMA failed\n", dev->name); /* DMA data error: wrong data in SCB */ return (-1); } i++; } while(i < 6); i = 0; do { /* Test if contents of SSB is valid */ if(SSB_Test[i] != *(sb_ptr + i)) /* DMA data error: wrong data in SSB */ return (-1); i++; } while (i < 8); return (1); /* Adapter successfully initialized */ } else { if((Status & STS_ERROR) != 0) { /* Initialization error occurred */ Status = SIFREADW(SIFSTS); Status &= STS_ERROR_MASK; /* ShowInitialisationErrorCode(Status); */ printk(KERN_INFO "%s: Status error: %d\n", dev->name, Status); return (-1); /* Unrecoverable error */ } else { if(retry_cnt > 0) { /* Reset adapter and try init again */ tms380tr_exec_sifcmd(dev, EXEC_SOFT_RESET); tms380tr_wait(HALF_SECOND); } } } } while(retry_cnt > 0); printk(KERN_INFO "%s: Retry exceeded\n", dev->name); return (-1); } /* * Check for outstanding commands in command queue and tries to execute * command immediately. Corresponding command flag in command queue is cleared. */ static void tms380tr_chk_outstanding_cmds(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned long Addr = 0; if(tp->CMDqueue == 0) return; /* No command execution */ /* If SCB in use: no command */ if(tp->ScbInUse == 1) return; /* Check if adapter is opened, avoiding COMMAND_REJECT * interrupt by the adapter! */ if(tp->AdapterOpenFlag == 0) { if(tp->CMDqueue & OC_OPEN) { /* Execute OPEN command */ tp->CMDqueue ^= OC_OPEN; Addr = htonl(((char *)&tp->ocpl - (char *)tp) + tp->dmabuffer); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = OPEN; } else /* No OPEN command queued, but adapter closed. Note: * We'll try to re-open the adapter in DriverPoll() */ return; /* No adapter command issued */ } else { /* Adapter is open; evaluate command queue: try to execute * outstanding commands (depending on priority!) CLOSE * command queued */ if(tp->CMDqueue & OC_CLOSE) { tp->CMDqueue ^= OC_CLOSE; tp->AdapterOpenFlag = 0; tp->scb.Parm[0] = 0; /* Parm[0], Parm[1] are ignored */ tp->scb.Parm[1] = 0; /* but should be set to zero! */ tp->scb.CMD = CLOSE; if(!tp->HaltInProgress) tp->CMDqueue |= OC_OPEN; /* re-open adapter */ else tp->CMDqueue = 0; /* no more commands */ } else { if(tp->CMDqueue & OC_RECEIVE) { tp->CMDqueue ^= OC_RECEIVE; Addr = htonl(((char *)tp->RplHead - (char *)tp) + tp->dmabuffer); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = RECEIVE; } else { if(tp->CMDqueue & OC_TRANSMIT_HALT) { /* NOTE: TRANSMIT.HALT must be checked * before TRANSMIT. */ tp->CMDqueue ^= OC_TRANSMIT_HALT; tp->scb.CMD = TRANSMIT_HALT; /* Parm[0] and Parm[1] are ignored * but should be set to zero! */ tp->scb.Parm[0] = 0; tp->scb.Parm[1] = 0; } else { if(tp->CMDqueue & OC_TRANSMIT) { /* NOTE: TRANSMIT must be * checked after TRANSMIT.HALT */ if(tp->TransmitCommandActive) { if(!tp->TransmitHaltScheduled) { tp->TransmitHaltScheduled = 1; tms380tr_exec_cmd(dev, OC_TRANSMIT_HALT) ; } tp->TransmitCommandActive = 0; return; } tp->CMDqueue ^= OC_TRANSMIT; tms380tr_cancel_tx_queue(tp); Addr = htonl(((char *)tp->TplBusy - (char *)tp) + tp->dmabuffer); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = TRANSMIT; tp->TransmitCommandActive = 1; } else { if(tp->CMDqueue & OC_MODIFY_OPEN_PARMS) { tp->CMDqueue ^= OC_MODIFY_OPEN_PARMS; tp->scb.Parm[0] = tp->ocpl.OPENOptions; /* new OPEN options*/ tp->scb.Parm[0] |= ENABLE_FULL_DUPLEX_SELECTION; tp->scb.Parm[1] = 0; /* is ignored but should be zero */ tp->scb.CMD = MODIFY_OPEN_PARMS; } else { if(tp->CMDqueue & OC_SET_FUNCT_ADDR) { tp->CMDqueue ^= OC_SET_FUNCT_ADDR; tp->scb.Parm[0] = LOWORD(tp->ocpl.FunctAddr); tp->scb.Parm[1] = HIWORD(tp->ocpl.FunctAddr); tp->scb.CMD = SET_FUNCT_ADDR; } else { if(tp->CMDqueue & OC_SET_GROUP_ADDR) { tp->CMDqueue ^= OC_SET_GROUP_ADDR; tp->scb.Parm[0] = LOWORD(tp->ocpl.GroupAddr); tp->scb.Parm[1] = HIWORD(tp->ocpl.GroupAddr); tp->scb.CMD = SET_GROUP_ADDR; } else { if(tp->CMDqueue & OC_READ_ERROR_LOG) { tp->CMDqueue ^= OC_READ_ERROR_LOG; Addr = htonl(((char *)&tp->errorlogtable - (char *)tp) + tp->dmabuffer); tp->scb.Parm[0] = LOWORD(Addr); tp->scb.Parm[1] = HIWORD(Addr); tp->scb.CMD = READ_ERROR_LOG; } else { printk(KERN_WARNING "CheckForOutstandingCommand: unknown Command\n"); tp->CMDqueue = 0; return; } } } } } } } } } tp->ScbInUse = 1; /* Set semaphore: SCB in use. */ /* Execute SCB and generate IRQ when done. */ tms380tr_exec_sifcmd(dev, CMD_EXECUTE | CMD_SCB_REQUEST); return; } /* * IRQ conditions: signal loss on the ring, transmit or receive of beacon * frames (disabled if bit 1 of OPEN option is set); report error MAC * frame transmit (disabled if bit 2 of OPEN option is set); open or short * circuit fault on the lobe is detected; remove MAC frame received; * error counter overflow (255); opened adapter is the only station in ring. * After some of the IRQs the adapter is closed! */ static void tms380tr_ring_status_irq(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); tp->CurrentRingStatus = be16_to_cpu((unsigned short)tp->ssb.Parm[0]); /* First: fill up statistics */ if(tp->ssb.Parm[0] & SIGNAL_LOSS) { printk(KERN_INFO "%s: Signal Loss\n", dev->name); tp->MacStat.line_errors++; } /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & LOBE_WIRE_FAULT) { printk(KERN_INFO "%s: Lobe Wire Fault, Reopen Adapter\n", dev->name); tp->MacStat.line_errors++; } if(tp->ssb.Parm[0] & RING_RECOVERY) printk(KERN_INFO "%s: Ring Recovery\n", dev->name); /* Counter overflow: read error log */ if(tp->ssb.Parm[0] & COUNTER_OVERFLOW) { printk(KERN_INFO "%s: Counter Overflow\n", dev->name); tms380tr_exec_cmd(dev, OC_READ_ERROR_LOG); } /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & REMOVE_RECEIVED) printk(KERN_INFO "%s: Remove Received, Reopen Adapter\n", dev->name); /* Adapter is closed, but initialized */ if(tp->ssb.Parm[0] & AUTO_REMOVAL_ERROR) printk(KERN_INFO "%s: Auto Removal Error, Reopen Adapter\n", dev->name); if(tp->ssb.Parm[0] & HARD_ERROR) printk(KERN_INFO "%s: Hard Error\n", dev->name); if(tp->ssb.Parm[0] & SOFT_ERROR) printk(KERN_INFO "%s: Soft Error\n", dev->name); if(tp->ssb.Parm[0] & TRANSMIT_BEACON) printk(KERN_INFO "%s: Transmit Beacon\n", dev->name); if(tp->ssb.Parm[0] & SINGLE_STATION) printk(KERN_INFO "%s: Single Station\n", dev->name); /* Check if adapter has been closed */ if(tp->ssb.Parm[0] & ADAPTER_CLOSED) { printk(KERN_INFO "%s: Adapter closed (Reopening)," "CurrentRingStat %x\n", dev->name, tp->CurrentRingStatus); tp->AdapterOpenFlag = 0; tms380tr_open_adapter(dev); } return; } /* * Issued if adapter has encountered an unrecoverable hardware * or software error. */ static void tms380tr_chk_irq(struct net_device *dev) { int i; unsigned short AdapterCheckBlock[4]; struct net_local *tp = netdev_priv(dev); tp->AdapterOpenFlag = 0; /* Adapter closed now */ /* Page number of adapter memory */ SIFWRITEW(0x0001, SIFADX); /* Address offset */ SIFWRITEW(CHECKADDR, SIFADR); /* Reading 8 byte adapter check block. */ for(i = 0; i < 4; i++) AdapterCheckBlock[i] = SIFREADW(SIFINC); if(tms380tr_debug > 3) { printk(KERN_DEBUG "%s: AdapterCheckBlock: ", dev->name); for (i = 0; i < 4; i++) printk("%04X", AdapterCheckBlock[i]); printk("\n"); } switch(AdapterCheckBlock[0]) { case DIO_PARITY: printk(KERN_INFO "%s: DIO parity error\n", dev->name); break; case DMA_READ_ABORT: printk(KERN_INFO "%s DMA read operation aborted:\n", dev->name); switch (AdapterCheckBlock[1]) { case 0: printk(KERN_INFO "Timeout\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 1: printk(KERN_INFO "Parity error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 2: printk(KERN_INFO "Bus error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; default: printk(KERN_INFO "Unknown error.\n"); break; } break; case DMA_WRITE_ABORT: printk(KERN_INFO "%s: DMA write operation aborted:\n", dev->name); switch (AdapterCheckBlock[1]) { case 0: printk(KERN_INFO "Timeout\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 1: printk(KERN_INFO "Parity error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; case 2: printk(KERN_INFO "Bus error\n"); printk(KERN_INFO "Address: %04X %04X\n", AdapterCheckBlock[2], AdapterCheckBlock[3]); break; default: printk(KERN_INFO "Unknown error.\n"); break; } break; case ILLEGAL_OP_CODE: printk(KERN_INFO "%s: Illegal operation code in firmware\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case PARITY_ERRORS: printk(KERN_INFO "%s: Adapter internal bus parity error\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case RAM_DATA_ERROR: printk(KERN_INFO "%s: RAM data error\n", dev->name); /* Parm[0-1]: MSW/LSW address of RAM location. */ break; case RAM_PARITY_ERROR: printk(KERN_INFO "%s: RAM parity error\n", dev->name); /* Parm[0-1]: MSW/LSW address of RAM location. */ break; case RING_UNDERRUN: printk(KERN_INFO "%s: Internal DMA underrun detected\n", dev->name); break; case INVALID_IRQ: printk(KERN_INFO "%s: Unrecognized interrupt detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case INVALID_ERROR_IRQ: printk(KERN_INFO "%s: Unrecognized error interrupt detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; case INVALID_XOP: printk(KERN_INFO "%s: Unrecognized XOP request detected\n", dev->name); /* Parm[0-3]: adapter internal register R13-R15 */ break; default: printk(KERN_INFO "%s: Unknown status", dev->name); break; } if(tms380tr_chipset_init(dev) == 1) { /* Restart of firmware successful */ tp->AdapterOpenFlag = 1; } return; } /* * Internal adapter pointer to RAM data are copied from adapter into * host system. */ static int tms380tr_read_ptr(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned short adapterram; tms380tr_read_ram(dev, (unsigned char *)&tp->intptrs.BurnedInAddrPtr, ADAPTER_INT_PTRS, 16); tms380tr_read_ram(dev, (unsigned char *)&adapterram, cpu_to_be16((unsigned short)tp->intptrs.AdapterRAMPtr), 2); return be16_to_cpu(adapterram); } /* * Reads a number of bytes from adapter to system memory. */ static void tms380tr_read_ram(struct net_device *dev, unsigned char *Data, unsigned short Address, int Length) { int i; unsigned short old_sifadx, old_sifadr, InWord; /* Save the current values */ old_sifadx = SIFREADW(SIFADX); old_sifadr = SIFREADW(SIFADR); /* Page number of adapter memory */ SIFWRITEW(0x0001, SIFADX); /* Address offset in adapter RAM */ SIFWRITEW(Address, SIFADR); /* Copy len byte from adapter memory to system data area. */ i = 0; for(;;) { InWord = SIFREADW(SIFINC); *(Data + i) = HIBYTE(InWord); /* Write first byte */ if(++i == Length) /* All is done break */ break; *(Data + i) = LOBYTE(InWord); /* Write second byte */ if (++i == Length) /* All is done break */ break; } /* Restore original values */ SIFWRITEW(old_sifadx, SIFADX); SIFWRITEW(old_sifadr, SIFADR); return; } /* * Cancel all queued packets in the transmission queue. */ static void tms380tr_cancel_tx_queue(struct net_local* tp) { TPL *tpl; /* * NOTE: There must not be an active TRANSMIT command pending, when * this function is called. */ if(tp->TransmitCommandActive) return; for(;;) { tpl = tp->TplBusy; if(!tpl->BusyFlag) break; /* "Remove" TPL from busy list. */ tp->TplBusy = tpl->NextTPLPtr; tms380tr_write_tpl_status(tpl, 0); /* Clear VALID bit */ tpl->BusyFlag = 0; /* "free" TPL */ printk(KERN_INFO "Cancel tx (%08lXh).\n", (unsigned long)tpl); if (tpl->DMABuff) dma_unmap_single(tp->pdev, tpl->DMABuff, tpl->Skb->len, DMA_TO_DEVICE); dev_kfree_skb_any(tpl->Skb); } return; } /* * This function is called whenever a transmit interrupt is generated by the * adapter. For a command complete interrupt, it is checked if we have to * issue a new transmit command or not. */ static void tms380tr_tx_status_irq(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned char HighByte, HighAc, LowAc; TPL *tpl; /* NOTE: At this point the SSB from TRANSMIT STATUS is no longer * available, because the CLEAR SSB command has already been issued. * * Process all complete transmissions. */ for(;;) { tpl = tp->TplBusy; if(!tpl->BusyFlag || (tpl->Status & (TX_VALID | TX_FRAME_COMPLETE)) != TX_FRAME_COMPLETE) { break; } /* "Remove" TPL from busy list. */ tp->TplBusy = tpl->NextTPLPtr ; /* Check the transmit status field only for directed frames*/ if(DIRECTED_FRAME(tpl) && (tpl->Status & TX_ERROR) == 0) { HighByte = GET_TRANSMIT_STATUS_HIGH_BYTE(tpl->Status); HighAc = GET_FRAME_STATUS_HIGH_AC(HighByte); LowAc = GET_FRAME_STATUS_LOW_AC(HighByte); if((HighAc != LowAc) || (HighAc == AC_NOT_RECOGNIZED)) { printk(KERN_DEBUG "%s: (DA=%08lX not recognized)\n", dev->name, *(unsigned long *)&tpl->MData[2+2]); } else { if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Directed frame tx'd\n", dev->name); } } else { if(!DIRECTED_FRAME(tpl)) { if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Broadcast frame tx'd\n", dev->name); } } tp->MacStat.tx_packets++; if (tpl->DMABuff) dma_unmap_single(tp->pdev, tpl->DMABuff, tpl->Skb->len, DMA_TO_DEVICE); dev_kfree_skb_irq(tpl->Skb); tpl->BusyFlag = 0; /* "free" TPL */ } if(!tp->TplFree->NextTPLPtr->BusyFlag) netif_wake_queue(dev); return; } /* * Called if a frame receive interrupt is generated by the adapter. * Check if the frame is valid and indicate it to system. */ static void tms380tr_rcv_status_irq(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned char *ReceiveDataPtr; struct sk_buff *skb; unsigned int Length, Length2; RPL *rpl; RPL *SaveHead; dma_addr_t dmabuf; /* NOTE: At this point the SSB from RECEIVE STATUS is no longer * available, because the CLEAR SSB command has already been issued. * * Process all complete receives. */ for(;;) { rpl = tp->RplHead; if(rpl->Status & RX_VALID) break; /* RPL still in use by adapter */ /* Forward RPLHead pointer to next list. */ SaveHead = tp->RplHead; tp->RplHead = rpl->NextRPLPtr; /* Get the frame size (Byte swap for Intel). * Do this early (see workaround comment below) */ Length = be16_to_cpu(rpl->FrameSize); /* Check if the Frame_Start, Frame_End and * Frame_Complete bits are set. */ if((rpl->Status & VALID_SINGLE_BUFFER_FRAME) == VALID_SINGLE_BUFFER_FRAME) { ReceiveDataPtr = rpl->MData; /* Workaround for delayed write of FrameSize on ISA * (FrameSize is false but valid-bit is reset) * Frame size is set to zero when the RPL is freed. * Length2 is there because there have also been * cases where the FrameSize was partially written */ Length2 = be16_to_cpu(rpl->FrameSize); if(Length == 0 || Length != Length2) { tp->RplHead = SaveHead; break; /* Return to tms380tr_interrupt */ } tms380tr_update_rcv_stats(tp,ReceiveDataPtr,Length); if(tms380tr_debug > 3) printk(KERN_DEBUG "%s: Packet Length %04X (%d)\n", dev->name, Length, Length); /* Indicate the received frame to system the * adapter does the Source-Routing padding for * us. See: OpenOptions in tms380tr_init_opb() */ skb = rpl->Skb; if(rpl->SkbStat == SKB_UNAVAILABLE) { /* Try again to allocate skb */ skb = dev_alloc_skb(tp->MaxPacketSize); if(skb == NULL) { /* Update Stats ?? */ } else { skb_put(skb, tp->MaxPacketSize); rpl->SkbStat = SKB_DATA_COPY; ReceiveDataPtr = rpl->MData; } } if(skb && (rpl->SkbStat == SKB_DATA_COPY || rpl->SkbStat == SKB_DMA_DIRECT)) { if(rpl->SkbStat == SKB_DATA_COPY) skb_copy_to_linear_data(skb, ReceiveDataPtr, Length); /* Deliver frame to system */ rpl->Skb = NULL; skb_trim(skb,Length); skb->protocol = tr_type_trans(skb,dev); netif_rx(skb); } } else /* Invalid frame */ { if(rpl->Skb != NULL) dev_kfree_skb_irq(rpl->Skb); /* Skip list. */ if(rpl->Status & RX_START_FRAME) /* Frame start bit is set -> overflow. */ tp->MacStat.rx_errors++; } if (rpl->DMABuff) dma_unmap_single(tp->pdev, rpl->DMABuff, tp->MaxPacketSize, DMA_TO_DEVICE); rpl->DMABuff = 0; /* Allocate new skb for rpl */ rpl->Skb = dev_alloc_skb(tp->MaxPacketSize); /* skb == NULL ? then use local buffer */ if(rpl->Skb == NULL) { rpl->SkbStat = SKB_UNAVAILABLE; rpl->FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[rpl->RPLIndex] - (char *)tp) + tp->dmabuffer); rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex]; } else /* skb != NULL */ { rpl->Skb->dev = dev; skb_put(rpl->Skb, tp->MaxPacketSize); /* Data unreachable for DMA ? then use local buffer */ dmabuf = dma_map_single(tp->pdev, rpl->Skb->data, tp->MaxPacketSize, DMA_FROM_DEVICE); if(tp->dmalimit && (dmabuf + tp->MaxPacketSize > tp->dmalimit)) { rpl->SkbStat = SKB_DATA_COPY; rpl->FragList[0].DataAddr = htonl(((char *)tp->LocalRxBuffers[rpl->RPLIndex] - (char *)tp) + tp->dmabuffer); rpl->MData = tp->LocalRxBuffers[rpl->RPLIndex]; } else { /* DMA directly in skb->data */ rpl->SkbStat = SKB_DMA_DIRECT; rpl->FragList[0].DataAddr = htonl(dmabuf); rpl->MData = rpl->Skb->data; rpl->DMABuff = dmabuf; } } rpl->FragList[0].DataCount = cpu_to_be16((unsigned short)tp->MaxPacketSize); rpl->FrameSize = 0; /* Pass the last RPL back to the adapter */ tp->RplTail->FrameSize = 0; /* Reset the CSTAT field in the list. */ tms380tr_write_rpl_status(tp->RplTail, RX_VALID | RX_FRAME_IRQ); /* Current RPL becomes last one in list. */ tp->RplTail = tp->RplTail->NextRPLPtr; /* Inform adapter about RPL valid. */ tms380tr_exec_sifcmd(dev, CMD_RX_VALID); } return; } /* * This function should be used whenever the status of any RPL must be * modified by the driver, because the compiler may otherwise change the * order of instructions such that writing the RPL status may be executed * at an undesirable time. When this function is used, the status is * always written when the function is called. */ static void tms380tr_write_rpl_status(RPL *rpl, unsigned int Status) { rpl->Status = Status; return; } /* * The function updates the statistic counters in mac->MacStat. * It differtiates between directed and broadcast/multicast ( ==functional) * frames. */ static void tms380tr_update_rcv_stats(struct net_local *tp, unsigned char DataPtr[], unsigned int Length) { tp->MacStat.rx_packets++; tp->MacStat.rx_bytes += Length; /* Test functional bit */ if(DataPtr[2] & GROUP_BIT) tp->MacStat.multicast++; return; } static int tms380tr_set_mac_address(struct net_device *dev, void *addr) { struct net_local *tp = netdev_priv(dev); struct sockaddr *saddr = addr; if (tp->AdapterOpenFlag || tp->AdapterVirtOpenFlag) { printk(KERN_WARNING "%s: Cannot set MAC/LAA address while card is open\n", dev->name); return -EIO; } memcpy(dev->dev_addr, saddr->sa_data, dev->addr_len); return 0; } #if TMS380TR_DEBUG > 0 /* * Dump Packet (data) */ static void tms380tr_dump(unsigned char *Data, int length) { int i, j; for (i = 0, j = 0; i < length / 8; i++, j += 8) { printk(KERN_DEBUG "%02x %02x %02x %02x %02x %02x %02x %02x\n", Data[j+0],Data[j+1],Data[j+2],Data[j+3], Data[j+4],Data[j+5],Data[j+6],Data[j+7]); } return; } #endif void tmsdev_term(struct net_device *dev) { struct net_local *tp; tp = netdev_priv(dev); dma_unmap_single(tp->pdev, tp->dmabuffer, sizeof(struct net_local), DMA_BIDIRECTIONAL); } const struct net_device_ops tms380tr_netdev_ops = { .ndo_open = tms380tr_open, .ndo_stop = tms380tr_close, .ndo_start_xmit = tms380tr_send_packet, .ndo_tx_timeout = tms380tr_timeout, .ndo_get_stats = tms380tr_get_stats, .ndo_set_multicast_list = tms380tr_set_multicast_list, .ndo_set_mac_address = tms380tr_set_mac_address, }; EXPORT_SYMBOL(tms380tr_netdev_ops); int tmsdev_init(struct net_device *dev, struct device *pdev) { struct net_local *tms_local; memset(netdev_priv(dev), 0, sizeof(struct net_local)); tms_local = netdev_priv(dev); init_waitqueue_head(&tms_local->wait_for_tok_int); if (pdev->dma_mask) tms_local->dmalimit = *pdev->dma_mask; else return -ENOMEM; tms_local->pdev = pdev; tms_local->dmabuffer = dma_map_single(pdev, (void *)tms_local, sizeof(struct net_local), DMA_BIDIRECTIONAL); if (tms_local->dmabuffer + sizeof(struct net_local) > tms_local->dmalimit) { printk(KERN_INFO "%s: Memory not accessible for DMA\n", dev->name); tmsdev_term(dev); return -ENOMEM; } dev->netdev_ops = &tms380tr_netdev_ops; dev->watchdog_timeo = HZ; return 0; } EXPORT_SYMBOL(tms380tr_open); EXPORT_SYMBOL(tms380tr_close); EXPORT_SYMBOL(tms380tr_interrupt); EXPORT_SYMBOL(tmsdev_init); EXPORT_SYMBOL(tmsdev_term); EXPORT_SYMBOL(tms380tr_wait); #ifdef MODULE static struct module *TMS380_module = NULL; int init_module(void) { printk(KERN_DEBUG "%s", version); TMS380_module = &__this_module; return 0; } void cleanup_module(void) { TMS380_module = NULL; } #endif MODULE_LICENSE("GPL");