/* * smctr.c: A network driver for the SMC Token Ring Adapters. * * Written by Jay Schulist <jschlst@samba.org> * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * This device driver works with the following SMC adapters: * - SMC TokenCard Elite (8115T, chips 825/584) * - SMC TokenCard Elite/A MCA (8115T/A, chips 825/594) * * Source(s): * - SMC TokenCard SDK. * * Maintainer(s): * JS Jay Schulist <jschlst@samba.org> * * Changes: * 07102000 JS Fixed a timing problem in smctr_wait_cmd(); * Also added a bit more discriptive error msgs. * 07122000 JS Fixed problem with detecting a card with * module io/irq/mem specified. * * To do: * 1. Multicast support. * * Initial 2.5 cleanup Alan Cox <alan@redhat.com> 2002/10/28 */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/time.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/mca-legacy.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/trdevice.h> #include <linux/bitops.h> #include <linux/firmware.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/irq.h> #if BITS_PER_LONG == 64 #error FIXME: driver does not support 64-bit platforms #endif #include "smctr.h" /* Our Stuff */ static char version[] __initdata = KERN_INFO "smctr.c: v1.4 7/12/00 by jschlst@samba.org\n"; static const char cardname[] = "smctr"; #define SMCTR_IO_EXTENT 20 #ifdef CONFIG_MCA_LEGACY static unsigned int smctr_posid = 0x6ec6; #endif static int ringspeed; /* SMC Name of the Adapter. */ static char smctr_name[] = "SMC TokenCard"; static char *smctr_model = "Unknown"; /* Use 0 for production, 1 for verification, 2 for debug, and * 3 for very verbose debug. */ #ifndef SMCTR_DEBUG #define SMCTR_DEBUG 1 #endif static unsigned int smctr_debug = SMCTR_DEBUG; /* smctr.c prototypes and functions are arranged alphabeticly * for clearity, maintainability and pure old fashion fun. */ /* A */ static int smctr_alloc_shared_memory(struct net_device *dev); /* B */ static int smctr_bypass_state(struct net_device *dev); /* C */ static int smctr_checksum_firmware(struct net_device *dev); static int __init smctr_chk_isa(struct net_device *dev); static int smctr_chg_rx_mask(struct net_device *dev); static int smctr_clear_int(struct net_device *dev); static int smctr_clear_trc_reset(int ioaddr); static int smctr_close(struct net_device *dev); /* D */ static int smctr_decode_firmware(struct net_device *dev, const struct firmware *fw); static int smctr_disable_16bit(struct net_device *dev); static int smctr_disable_adapter_ctrl_store(struct net_device *dev); static int smctr_disable_bic_int(struct net_device *dev); /* E */ static int smctr_enable_16bit(struct net_device *dev); static int smctr_enable_adapter_ctrl_store(struct net_device *dev); static int smctr_enable_adapter_ram(struct net_device *dev); static int smctr_enable_bic_int(struct net_device *dev); /* G */ static int __init smctr_get_boardid(struct net_device *dev, int mca); static int smctr_get_group_address(struct net_device *dev); static int smctr_get_functional_address(struct net_device *dev); static unsigned int smctr_get_num_rx_bdbs(struct net_device *dev); static int smctr_get_physical_drop_number(struct net_device *dev); static __u8 *smctr_get_rx_pointer(struct net_device *dev, short queue); static int smctr_get_station_id(struct net_device *dev); static struct net_device_stats *smctr_get_stats(struct net_device *dev); static FCBlock *smctr_get_tx_fcb(struct net_device *dev, __u16 queue, __u16 bytes_count); static int smctr_get_upstream_neighbor_addr(struct net_device *dev); /* H */ static int smctr_hardware_send_packet(struct net_device *dev, struct net_local *tp); /* I */ static int smctr_init_acbs(struct net_device *dev); static int smctr_init_adapter(struct net_device *dev); static int smctr_init_card_real(struct net_device *dev); static int smctr_init_rx_bdbs(struct net_device *dev); static int smctr_init_rx_fcbs(struct net_device *dev); static int smctr_init_shared_memory(struct net_device *dev); static int smctr_init_tx_bdbs(struct net_device *dev); static int smctr_init_tx_fcbs(struct net_device *dev); static int smctr_internal_self_test(struct net_device *dev); static irqreturn_t smctr_interrupt(int irq, void *dev_id); static int smctr_issue_enable_int_cmd(struct net_device *dev, __u16 interrupt_enable_mask); static int smctr_issue_int_ack(struct net_device *dev, __u16 iack_code, __u16 ibits); static int smctr_issue_init_timers_cmd(struct net_device *dev); static int smctr_issue_init_txrx_cmd(struct net_device *dev); static int smctr_issue_insert_cmd(struct net_device *dev); static int smctr_issue_read_ring_status_cmd(struct net_device *dev); static int smctr_issue_read_word_cmd(struct net_device *dev, __u16 aword_cnt); static int smctr_issue_remove_cmd(struct net_device *dev); static int smctr_issue_resume_acb_cmd(struct net_device *dev); static int smctr_issue_resume_rx_bdb_cmd(struct net_device *dev, __u16 queue); static int smctr_issue_resume_rx_fcb_cmd(struct net_device *dev, __u16 queue); static int smctr_issue_resume_tx_fcb_cmd(struct net_device *dev, __u16 queue); static int smctr_issue_test_internal_rom_cmd(struct net_device *dev); static int smctr_issue_test_hic_cmd(struct net_device *dev); static int smctr_issue_test_mac_reg_cmd(struct net_device *dev); static int smctr_issue_trc_loopback_cmd(struct net_device *dev); static int smctr_issue_tri_loopback_cmd(struct net_device *dev); static int smctr_issue_write_byte_cmd(struct net_device *dev, short aword_cnt, void *byte); static int smctr_issue_write_word_cmd(struct net_device *dev, short aword_cnt, void *word); /* J */ static int smctr_join_complete_state(struct net_device *dev); /* L */ static int smctr_link_tx_fcbs_to_bdbs(struct net_device *dev); static int smctr_load_firmware(struct net_device *dev); static int smctr_load_node_addr(struct net_device *dev); static int smctr_lobe_media_test(struct net_device *dev); static int smctr_lobe_media_test_cmd(struct net_device *dev); static int smctr_lobe_media_test_state(struct net_device *dev); /* M */ static int smctr_make_8025_hdr(struct net_device *dev, MAC_HEADER *rmf, MAC_HEADER *tmf, __u16 ac_fc); static int smctr_make_access_pri(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_addr_mod(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_auth_funct_class(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_corr(struct net_device *dev, MAC_SUB_VECTOR *tsv, __u16 correlator); static int smctr_make_funct_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_group_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_phy_drop_num(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_product_id(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_station_id(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_ring_station_status(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_ring_station_version(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_tx_status_code(struct net_device *dev, MAC_SUB_VECTOR *tsv, __u16 tx_fstatus); static int smctr_make_upstream_neighbor_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv); static int smctr_make_wrap_data(struct net_device *dev, MAC_SUB_VECTOR *tsv); /* O */ static int smctr_open(struct net_device *dev); static int smctr_open_tr(struct net_device *dev); /* P */ struct net_device *smctr_probe(int unit); static int __init smctr_probe1(struct net_device *dev, int ioaddr); static int smctr_process_rx_packet(MAC_HEADER *rmf, __u16 size, struct net_device *dev, __u16 rx_status); /* R */ static int smctr_ram_memory_test(struct net_device *dev); static int smctr_rcv_chg_param(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator); static int smctr_rcv_init(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator); static int smctr_rcv_tx_forward(struct net_device *dev, MAC_HEADER *rmf); static int smctr_rcv_rq_addr_state_attch(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator); static int smctr_rcv_unknown(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator); static int smctr_reset_adapter(struct net_device *dev); static int smctr_restart_tx_chain(struct net_device *dev, short queue); static int smctr_ring_status_chg(struct net_device *dev); static int smctr_rx_frame(struct net_device *dev); /* S */ static int smctr_send_dat(struct net_device *dev); static int smctr_send_packet(struct sk_buff *skb, struct net_device *dev); static int smctr_send_lobe_media_test(struct net_device *dev); static int smctr_send_rpt_addr(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator); static int smctr_send_rpt_attch(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator); static int smctr_send_rpt_state(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator); static int smctr_send_rpt_tx_forward(struct net_device *dev, MAC_HEADER *rmf, __u16 tx_fstatus); static int smctr_send_rsp(struct net_device *dev, MAC_HEADER *rmf, __u16 rcode, __u16 correlator); static int smctr_send_rq_init(struct net_device *dev); static int smctr_send_tx_forward(struct net_device *dev, MAC_HEADER *rmf, __u16 *tx_fstatus); static int smctr_set_auth_access_pri(struct net_device *dev, MAC_SUB_VECTOR *rsv); static int smctr_set_auth_funct_class(struct net_device *dev, MAC_SUB_VECTOR *rsv); static int smctr_set_corr(struct net_device *dev, MAC_SUB_VECTOR *rsv, __u16 *correlator); static int smctr_set_error_timer_value(struct net_device *dev, MAC_SUB_VECTOR *rsv); static int smctr_set_frame_forward(struct net_device *dev, MAC_SUB_VECTOR *rsv, __u8 dc_sc); static int smctr_set_local_ring_num(struct net_device *dev, MAC_SUB_VECTOR *rsv); static unsigned short smctr_set_ctrl_attention(struct net_device *dev); static void smctr_set_multicast_list(struct net_device *dev); static int smctr_set_page(struct net_device *dev, __u8 *buf); static int smctr_set_phy_drop(struct net_device *dev, MAC_SUB_VECTOR *rsv); static int smctr_set_ring_speed(struct net_device *dev); static int smctr_set_rx_look_ahead(struct net_device *dev); static int smctr_set_trc_reset(int ioaddr); static int smctr_setup_single_cmd(struct net_device *dev, __u16 command, __u16 subcommand); static int smctr_setup_single_cmd_w_data(struct net_device *dev, __u16 command, __u16 subcommand); static char *smctr_malloc(struct net_device *dev, __u16 size); static int smctr_status_chg(struct net_device *dev); /* T */ static void smctr_timeout(struct net_device *dev); static int smctr_trc_send_packet(struct net_device *dev, FCBlock *fcb, __u16 queue); static __u16 smctr_tx_complete(struct net_device *dev, __u16 queue); static unsigned short smctr_tx_move_frame(struct net_device *dev, struct sk_buff *skb, __u8 *pbuff, unsigned int bytes); /* U */ static int smctr_update_err_stats(struct net_device *dev); static int smctr_update_rx_chain(struct net_device *dev, __u16 queue); static int smctr_update_tx_chain(struct net_device *dev, FCBlock *fcb, __u16 queue); /* W */ static int smctr_wait_cmd(struct net_device *dev); static int smctr_wait_while_cbusy(struct net_device *dev); #define TO_256_BYTE_BOUNDRY(X) (((X + 0xff) & 0xff00) - X) #define TO_PARAGRAPH_BOUNDRY(X) (((X + 0x0f) & 0xfff0) - X) #define PARAGRAPH_BOUNDRY(X) smctr_malloc(dev, TO_PARAGRAPH_BOUNDRY(X)) /* Allocate Adapter Shared Memory. * IMPORTANT NOTE: Any changes to this function MUST be mirrored in the * function "get_num_rx_bdbs" below!!! * * Order of memory allocation: * * 0. Initial System Configuration Block Pointer * 1. System Configuration Block * 2. System Control Block * 3. Action Command Block * 4. Interrupt Status Block * * 5. MAC TX FCB'S * 6. NON-MAC TX FCB'S * 7. MAC TX BDB'S * 8. NON-MAC TX BDB'S * 9. MAC RX FCB'S * 10. NON-MAC RX FCB'S * 11. MAC RX BDB'S * 12. NON-MAC RX BDB'S * 13. MAC TX Data Buffer( 1, 256 byte buffer) * 14. MAC RX Data Buffer( 1, 256 byte buffer) * * 15. NON-MAC TX Data Buffer * 16. NON-MAC RX Data Buffer */ static int smctr_alloc_shared_memory(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_alloc_shared_memory\n", dev->name); /* Allocate initial System Control Block pointer. * This pointer is located in the last page, last offset - 4. */ tp->iscpb_ptr = (ISCPBlock *)(tp->ram_access + ((__u32)64 * 0x400) - (long)ISCP_BLOCK_SIZE); /* Allocate System Control Blocks. */ tp->scgb_ptr = (SCGBlock *)smctr_malloc(dev, sizeof(SCGBlock)); PARAGRAPH_BOUNDRY(tp->sh_mem_used); tp->sclb_ptr = (SCLBlock *)smctr_malloc(dev, sizeof(SCLBlock)); PARAGRAPH_BOUNDRY(tp->sh_mem_used); tp->acb_head = (ACBlock *)smctr_malloc(dev, sizeof(ACBlock)*tp->num_acbs); PARAGRAPH_BOUNDRY(tp->sh_mem_used); tp->isb_ptr = (ISBlock *)smctr_malloc(dev, sizeof(ISBlock)); PARAGRAPH_BOUNDRY(tp->sh_mem_used); tp->misc_command_data = (__u16 *)smctr_malloc(dev, MISC_DATA_SIZE); PARAGRAPH_BOUNDRY(tp->sh_mem_used); /* Allocate transmit FCBs. */ tp->tx_fcb_head[MAC_QUEUE] = (FCBlock *)smctr_malloc(dev, sizeof(FCBlock) * tp->num_tx_fcbs[MAC_QUEUE]); tp->tx_fcb_head[NON_MAC_QUEUE] = (FCBlock *)smctr_malloc(dev, sizeof(FCBlock) * tp->num_tx_fcbs[NON_MAC_QUEUE]); tp->tx_fcb_head[BUG_QUEUE] = (FCBlock *)smctr_malloc(dev, sizeof(FCBlock) * tp->num_tx_fcbs[BUG_QUEUE]); /* Allocate transmit BDBs. */ tp->tx_bdb_head[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, sizeof(BDBlock) * tp->num_tx_bdbs[MAC_QUEUE]); tp->tx_bdb_head[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, sizeof(BDBlock) * tp->num_tx_bdbs[NON_MAC_QUEUE]); tp->tx_bdb_head[BUG_QUEUE] = (BDBlock *)smctr_malloc(dev, sizeof(BDBlock) * tp->num_tx_bdbs[BUG_QUEUE]); /* Allocate receive FCBs. */ tp->rx_fcb_head[MAC_QUEUE] = (FCBlock *)smctr_malloc(dev, sizeof(FCBlock) * tp->num_rx_fcbs[MAC_QUEUE]); tp->rx_fcb_head[NON_MAC_QUEUE] = (FCBlock *)smctr_malloc(dev, sizeof(FCBlock) * tp->num_rx_fcbs[NON_MAC_QUEUE]); /* Allocate receive BDBs. */ tp->rx_bdb_head[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, sizeof(BDBlock) * tp->num_rx_bdbs[MAC_QUEUE]); tp->rx_bdb_end[MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, 0); tp->rx_bdb_head[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, sizeof(BDBlock) * tp->num_rx_bdbs[NON_MAC_QUEUE]); tp->rx_bdb_end[NON_MAC_QUEUE] = (BDBlock *)smctr_malloc(dev, 0); /* Allocate MAC transmit buffers. * MAC Tx Buffers doen't have to be on an ODD Boundry. */ tp->tx_buff_head[MAC_QUEUE] = (__u16 *)smctr_malloc(dev, tp->tx_buff_size[MAC_QUEUE]); tp->tx_buff_curr[MAC_QUEUE] = tp->tx_buff_head[MAC_QUEUE]; tp->tx_buff_end [MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0); /* Allocate BUG transmit buffers. */ tp->tx_buff_head[BUG_QUEUE] = (__u16 *)smctr_malloc(dev, tp->tx_buff_size[BUG_QUEUE]); tp->tx_buff_curr[BUG_QUEUE] = tp->tx_buff_head[BUG_QUEUE]; tp->tx_buff_end[BUG_QUEUE] = (__u16 *)smctr_malloc(dev, 0); /* Allocate MAC receive data buffers. * MAC Rx buffer doesn't have to be on a 256 byte boundary. */ tp->rx_buff_head[MAC_QUEUE] = (__u16 *)smctr_malloc(dev, RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[MAC_QUEUE]); tp->rx_buff_end[MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0); /* Allocate Non-MAC transmit buffers. * ?? For maximum Netware performance, put Tx Buffers on * ODD Boundry and then restore malloc to Even Boundrys. */ smctr_malloc(dev, 1L); tp->tx_buff_head[NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, tp->tx_buff_size[NON_MAC_QUEUE]); tp->tx_buff_curr[NON_MAC_QUEUE] = tp->tx_buff_head[NON_MAC_QUEUE]; tp->tx_buff_end [NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0); smctr_malloc(dev, 1L); /* Allocate Non-MAC receive data buffers. * To guarantee a minimum of 256 contigous memory to * UM_Receive_Packet's lookahead pointer, before a page * change or ring end is encountered, place each rx buffer on * a 256 byte boundary. */ smctr_malloc(dev, TO_256_BYTE_BOUNDRY(tp->sh_mem_used)); tp->rx_buff_head[NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[NON_MAC_QUEUE]); tp->rx_buff_end[NON_MAC_QUEUE] = (__u16 *)smctr_malloc(dev, 0); return (0); } /* Enter Bypass state. */ static int smctr_bypass_state(struct net_device *dev) { int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_bypass_state\n", dev->name); err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE, JS_BYPASS_STATE); return (err); } static int smctr_checksum_firmware(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); __u16 i, checksum = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_checksum_firmware\n", dev->name); smctr_enable_adapter_ctrl_store(dev); for(i = 0; i < CS_RAM_SIZE; i += 2) checksum += *((__u16 *)(tp->ram_access + i)); tp->microcode_version = *(__u16 *)(tp->ram_access + CS_RAM_VERSION_OFFSET); tp->microcode_version >>= 8; smctr_disable_adapter_ctrl_store(dev); if(checksum) return (checksum); return (0); } static int __init smctr_chk_mca(struct net_device *dev) { #ifdef CONFIG_MCA_LEGACY struct net_local *tp = netdev_priv(dev); int current_slot; __u8 r1, r2, r3, r4, r5; current_slot = mca_find_unused_adapter(smctr_posid, 0); if(current_slot == MCA_NOTFOUND) return (-ENODEV); mca_set_adapter_name(current_slot, smctr_name); mca_mark_as_used(current_slot); tp->slot_num = current_slot; r1 = mca_read_stored_pos(tp->slot_num, 2); r2 = mca_read_stored_pos(tp->slot_num, 3); if(tp->slot_num) outb(CNFG_POS_CONTROL_REG, (__u8)((tp->slot_num - 1) | CNFG_SLOT_ENABLE_BIT)); else outb(CNFG_POS_CONTROL_REG, (__u8)((tp->slot_num) | CNFG_SLOT_ENABLE_BIT)); r1 = inb(CNFG_POS_REG1); r2 = inb(CNFG_POS_REG0); tp->bic_type = BIC_594_CHIP; /* IO */ r2 = mca_read_stored_pos(tp->slot_num, 2); r2 &= 0xF0; dev->base_addr = ((__u16)r2 << 8) + (__u16)0x800; request_region(dev->base_addr, SMCTR_IO_EXTENT, smctr_name); /* IRQ */ r5 = mca_read_stored_pos(tp->slot_num, 5); r5 &= 0xC; switch(r5) { case 0: dev->irq = 3; break; case 0x4: dev->irq = 4; break; case 0x8: dev->irq = 10; break; default: dev->irq = 15; break; } if (request_irq(dev->irq, smctr_interrupt, IRQF_SHARED, smctr_name, dev)) { release_region(dev->base_addr, SMCTR_IO_EXTENT); return -ENODEV; } /* Get RAM base */ r3 = mca_read_stored_pos(tp->slot_num, 3); tp->ram_base = ((__u32)(r3 & 0x7) << 13) + 0x0C0000; if (r3 & 0x8) tp->ram_base += 0x010000; if (r3 & 0x80) tp->ram_base += 0xF00000; /* Get Ram Size */ r3 &= 0x30; r3 >>= 4; tp->ram_usable = (__u16)CNFG_SIZE_8KB << r3; tp->ram_size = (__u16)CNFG_SIZE_64KB; tp->board_id |= TOKEN_MEDIA; r4 = mca_read_stored_pos(tp->slot_num, 4); tp->rom_base = ((__u32)(r4 & 0x7) << 13) + 0x0C0000; if (r4 & 0x8) tp->rom_base += 0x010000; /* Get ROM size. */ r4 >>= 4; switch (r4) { case 0: tp->rom_size = CNFG_SIZE_8KB; break; case 1: tp->rom_size = CNFG_SIZE_16KB; break; case 2: tp->rom_size = CNFG_SIZE_32KB; break; default: tp->rom_size = ROM_DISABLE; } /* Get Media Type. */ r5 = mca_read_stored_pos(tp->slot_num, 5); r5 &= CNFG_MEDIA_TYPE_MASK; switch(r5) { case (0): tp->media_type = MEDIA_STP_4; break; case (1): tp->media_type = MEDIA_STP_16; break; case (3): tp->media_type = MEDIA_UTP_16; break; default: tp->media_type = MEDIA_UTP_4; break; } tp->media_menu = 14; r2 = mca_read_stored_pos(tp->slot_num, 2); if(!(r2 & 0x02)) tp->mode_bits |= EARLY_TOKEN_REL; /* Disable slot */ outb(CNFG_POS_CONTROL_REG, 0); tp->board_id = smctr_get_boardid(dev, 1); switch(tp->board_id & 0xffff) { case WD8115TA: smctr_model = "8115T/A"; break; case WD8115T: if(tp->extra_info & CHIP_REV_MASK) smctr_model = "8115T rev XE"; else smctr_model = "8115T rev XD"; break; default: smctr_model = "Unknown"; break; } return (0); #else return (-1); #endif /* CONFIG_MCA_LEGACY */ } static int smctr_chg_rx_mask(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_chg_rx_mask\n", dev->name); smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); if(tp->mode_bits & LOOPING_MODE_MASK) tp->config_word0 |= RX_OWN_BIT; else tp->config_word0 &= ~RX_OWN_BIT; if(tp->receive_mask & PROMISCUOUS_MODE) tp->config_word0 |= PROMISCUOUS_BIT; else tp->config_word0 &= ~PROMISCUOUS_BIT; if(tp->receive_mask & ACCEPT_ERR_PACKETS) tp->config_word0 |= SAVBAD_BIT; else tp->config_word0 &= ~SAVBAD_BIT; if(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES) tp->config_word0 |= RXATMAC; else tp->config_word0 &= ~RXATMAC; if(tp->receive_mask & ACCEPT_MULTI_PROM) tp->config_word1 |= MULTICAST_ADDRESS_BIT; else tp->config_word1 &= ~MULTICAST_ADDRESS_BIT; if(tp->receive_mask & ACCEPT_SOURCE_ROUTING_SPANNING) tp->config_word1 |= SOURCE_ROUTING_SPANNING_BITS; else { if(tp->receive_mask & ACCEPT_SOURCE_ROUTING) tp->config_word1 |= SOURCE_ROUTING_EXPLORER_BIT; else tp->config_word1 &= ~SOURCE_ROUTING_SPANNING_BITS; } if((err = smctr_issue_write_word_cmd(dev, RW_CONFIG_REGISTER_0, &tp->config_word0))) { return (err); } if((err = smctr_issue_write_word_cmd(dev, RW_CONFIG_REGISTER_1, &tp->config_word1))) { return (err); } smctr_disable_16bit(dev); return (0); } static int smctr_clear_int(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); outb((tp->trc_mask | CSR_CLRTINT), dev->base_addr + CSR); return (0); } static int smctr_clear_trc_reset(int ioaddr) { __u8 r; r = inb(ioaddr + MSR); outb(~MSR_RST & r, ioaddr + MSR); return (0); } /* * The inverse routine to smctr_open(). */ static int smctr_close(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); struct sk_buff *skb; int err; netif_stop_queue(dev); tp->cleanup = 1; /* Check to see if adapter is already in a closed state. */ if(tp->status != OPEN) return (0); smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); if((err = smctr_issue_remove_cmd(dev))) { smctr_disable_16bit(dev); return (err); } for(;;) { skb = skb_dequeue(&tp->SendSkbQueue); if(skb == NULL) break; tp->QueueSkb++; dev_kfree_skb(skb); } return (0); } static int smctr_decode_firmware(struct net_device *dev, const struct firmware *fw) { struct net_local *tp = netdev_priv(dev); short bit = 0x80, shift = 12; DECODE_TREE_NODE *tree; short branch, tsize; __u16 buff = 0; long weight; __u8 *ucode; __u16 *mem; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_decode_firmware\n", dev->name); weight = *(long *)(fw->data + WEIGHT_OFFSET); tsize = *(__u8 *)(fw->data + TREE_SIZE_OFFSET); tree = (DECODE_TREE_NODE *)(fw->data + TREE_OFFSET); ucode = (__u8 *)(fw->data + TREE_OFFSET + (tsize * sizeof(DECODE_TREE_NODE))); mem = (__u16 *)(tp->ram_access); while(weight) { branch = ROOT; while((tree + branch)->tag != LEAF && weight) { branch = *ucode & bit ? (tree + branch)->llink : (tree + branch)->rlink; bit >>= 1; weight--; if(bit == 0) { bit = 0x80; ucode++; } } buff |= (tree + branch)->info << shift; shift -= 4; if(shift < 0) { *(mem++) = SWAP_BYTES(buff); buff = 0; shift = 12; } } /* The following assumes the Control Store Memory has * been initialized to zero. If the last partial word * is zero, it will not be written. */ if(buff) *(mem++) = SWAP_BYTES(buff); return (0); } static int smctr_disable_16bit(struct net_device *dev) { return (0); } /* * On Exit, Adapter is: * 1. TRC is in a reset state and un-initialized. * 2. Adapter memory is enabled. * 3. Control Store memory is out of context (-WCSS is 1). */ static int smctr_disable_adapter_ctrl_store(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_disable_adapter_ctrl_store\n", dev->name); tp->trc_mask |= CSR_WCSS; outb(tp->trc_mask, ioaddr + CSR); return (0); } static int smctr_disable_bic_int(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; tp->trc_mask = CSR_MSK_ALL | CSR_MSKCBUSY | CSR_MSKTINT | CSR_WCSS; outb(tp->trc_mask, ioaddr + CSR); return (0); } static int smctr_enable_16bit(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); __u8 r; if(tp->adapter_bus == BUS_ISA16_TYPE) { r = inb(dev->base_addr + LAAR); outb((r | LAAR_MEM16ENB), dev->base_addr + LAAR); } return (0); } /* * To enable the adapter control store memory: * 1. Adapter must be in a RESET state. * 2. Adapter memory must be enabled. * 3. Control Store Memory is in context (-WCSS is 0). */ static int smctr_enable_adapter_ctrl_store(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_enable_adapter_ctrl_store\n", dev->name); smctr_set_trc_reset(ioaddr); smctr_enable_adapter_ram(dev); tp->trc_mask &= ~CSR_WCSS; outb(tp->trc_mask, ioaddr + CSR); return (0); } static int smctr_enable_adapter_ram(struct net_device *dev) { int ioaddr = dev->base_addr; __u8 r; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_enable_adapter_ram\n", dev->name); r = inb(ioaddr + MSR); outb(MSR_MEMB | r, ioaddr + MSR); return (0); } static int smctr_enable_bic_int(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; __u8 r; switch(tp->bic_type) { case (BIC_584_CHIP): tp->trc_mask = CSR_MSKCBUSY | CSR_WCSS; outb(tp->trc_mask, ioaddr + CSR); r = inb(ioaddr + IRR); outb(r | IRR_IEN, ioaddr + IRR); break; case (BIC_594_CHIP): tp->trc_mask = CSR_MSKCBUSY | CSR_WCSS; outb(tp->trc_mask, ioaddr + CSR); r = inb(ioaddr + IMCCR); outb(r | IMCCR_EIL, ioaddr + IMCCR); break; } return (0); } static int __init smctr_chk_isa(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; __u8 r1, r2, b, chksum = 0; __u16 r; int i; int err = -ENODEV; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_chk_isa %#4x\n", dev->name, ioaddr); if((ioaddr & 0x1F) != 0) goto out; /* Grab the region so that no one else tries to probe our ioports. */ if (!request_region(ioaddr, SMCTR_IO_EXTENT, smctr_name)) { err = -EBUSY; goto out; } /* Checksum SMC node address */ for(i = 0; i < 8; i++) { b = inb(ioaddr + LAR0 + i); chksum += b; } if (chksum != NODE_ADDR_CKSUM) goto out2; b = inb(ioaddr + BDID); if(b != BRD_ID_8115T) { printk(KERN_ERR "%s: The adapter found is not supported\n", dev->name); goto out2; } /* Check for 8115T Board ID */ r2 = 0; for(r = 0; r < 8; r++) { r1 = inb(ioaddr + 0x8 + r); r2 += r1; } /* value of RegF adds up the sum to 0xFF */ if((r2 != 0xFF) && (r2 != 0xEE)) goto out2; /* Get adapter ID */ tp->board_id = smctr_get_boardid(dev, 0); switch(tp->board_id & 0xffff) { case WD8115TA: smctr_model = "8115T/A"; break; case WD8115T: if(tp->extra_info & CHIP_REV_MASK) smctr_model = "8115T rev XE"; else smctr_model = "8115T rev XD"; break; default: smctr_model = "Unknown"; break; } /* Store BIC type. */ tp->bic_type = BIC_584_CHIP; tp->nic_type = NIC_825_CHIP; /* Copy Ram Size */ tp->ram_usable = CNFG_SIZE_16KB; tp->ram_size = CNFG_SIZE_64KB; /* Get 58x Ram Base */ r1 = inb(ioaddr); r1 &= 0x3F; r2 = inb(ioaddr + CNFG_LAAR_584); r2 &= CNFG_LAAR_MASK; r2 <<= 3; r2 |= ((r1 & 0x38) >> 3); tp->ram_base = ((__u32)r2 << 16) + (((__u32)(r1 & 0x7)) << 13); /* Get 584 Irq */ r1 = 0; r1 = inb(ioaddr + CNFG_ICR_583); r1 &= CNFG_ICR_IR2_584; r2 = inb(ioaddr + CNFG_IRR_583); r2 &= CNFG_IRR_IRQS; /* 0x60 */ r2 >>= 5; switch(r2) { case 0: if(r1 == 0) dev->irq = 2; else dev->irq = 10; break; case 1: if(r1 == 0) dev->irq = 3; else dev->irq = 11; break; case 2: if(r1 == 0) { if(tp->extra_info & ALTERNATE_IRQ_BIT) dev->irq = 5; else dev->irq = 4; } else dev->irq = 15; break; case 3: if(r1 == 0) dev->irq = 7; else dev->irq = 4; break; default: printk(KERN_ERR "%s: No IRQ found aborting\n", dev->name); goto out2; } if (request_irq(dev->irq, smctr_interrupt, IRQF_SHARED, smctr_name, dev)) goto out2; /* Get 58x Rom Base */ r1 = inb(ioaddr + CNFG_BIO_583); r1 &= 0x3E; r1 |= 0x40; tp->rom_base = (__u32)r1 << 13; /* Get 58x Rom Size */ r1 = inb(ioaddr + CNFG_BIO_583); r1 &= 0xC0; if(r1 == 0) tp->rom_size = ROM_DISABLE; else { r1 >>= 6; tp->rom_size = (__u16)CNFG_SIZE_8KB << r1; } /* Get 58x Boot Status */ r1 = inb(ioaddr + CNFG_GP2); tp->mode_bits &= (~BOOT_STATUS_MASK); if(r1 & CNFG_GP2_BOOT_NIBBLE) tp->mode_bits |= BOOT_TYPE_1; /* Get 58x Zero Wait State */ tp->mode_bits &= (~ZERO_WAIT_STATE_MASK); r1 = inb(ioaddr + CNFG_IRR_583); if(r1 & CNFG_IRR_ZWS) tp->mode_bits |= ZERO_WAIT_STATE_8_BIT; if(tp->board_id & BOARD_16BIT) { r1 = inb(ioaddr + CNFG_LAAR_584); if(r1 & CNFG_LAAR_ZWS) tp->mode_bits |= ZERO_WAIT_STATE_16_BIT; } /* Get 584 Media Menu */ tp->media_menu = 14; r1 = inb(ioaddr + CNFG_IRR_583); tp->mode_bits &= 0xf8ff; /* (~CNFG_INTERFACE_TYPE_MASK) */ if((tp->board_id & TOKEN_MEDIA) == TOKEN_MEDIA) { /* Get Advanced Features */ if(((r1 & 0x6) >> 1) == 0x3) tp->media_type |= MEDIA_UTP_16; else { if(((r1 & 0x6) >> 1) == 0x2) tp->media_type |= MEDIA_STP_16; else { if(((r1 & 0x6) >> 1) == 0x1) tp->media_type |= MEDIA_UTP_4; else tp->media_type |= MEDIA_STP_4; } } r1 = inb(ioaddr + CNFG_GP2); if(!(r1 & 0x2) ) /* GP2_ETRD */ tp->mode_bits |= EARLY_TOKEN_REL; /* see if the chip is corrupted if(smctr_read_584_chksum(ioaddr)) { printk(KERN_ERR "%s: EEPROM Checksum Failure\n", dev->name); free_irq(dev->irq, dev); goto out2; } */ } return (0); out2: release_region(ioaddr, SMCTR_IO_EXTENT); out: return err; } static int __init smctr_get_boardid(struct net_device *dev, int mca) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; __u8 r, r1, IdByte; __u16 BoardIdMask; tp->board_id = BoardIdMask = 0; if(mca) { BoardIdMask |= (MICROCHANNEL+INTERFACE_CHIP+TOKEN_MEDIA+PAGED_RAM+BOARD_16BIT); tp->extra_info |= (INTERFACE_594_CHIP+RAM_SIZE_64K+NIC_825_BIT+ALTERNATE_IRQ_BIT+SLOT_16BIT); } else { BoardIdMask|=(INTERFACE_CHIP+TOKEN_MEDIA+PAGED_RAM+BOARD_16BIT); tp->extra_info |= (INTERFACE_584_CHIP + RAM_SIZE_64K + NIC_825_BIT + ALTERNATE_IRQ_BIT); } if(!mca) { r = inb(ioaddr + BID_REG_1); r &= 0x0c; outb(r, ioaddr + BID_REG_1); r = inb(ioaddr + BID_REG_1); if(r & BID_SIXTEEN_BIT_BIT) { tp->extra_info |= SLOT_16BIT; tp->adapter_bus = BUS_ISA16_TYPE; } else tp->adapter_bus = BUS_ISA8_TYPE; } else tp->adapter_bus = BUS_MCA_TYPE; /* Get Board Id Byte */ IdByte = inb(ioaddr + BID_BOARD_ID_BYTE); /* if Major version > 1.0 then * return; */ if(IdByte & 0xF8) return (-1); r1 = inb(ioaddr + BID_REG_1); r1 &= BID_ICR_MASK; r1 |= BID_OTHER_BIT; outb(r1, ioaddr + BID_REG_1); r1 = inb(ioaddr + BID_REG_3); r1 &= BID_EAR_MASK; r1 |= BID_ENGR_PAGE; outb(r1, ioaddr + BID_REG_3); r1 = inb(ioaddr + BID_REG_1); r1 &= BID_ICR_MASK; r1 |= (BID_RLA | BID_OTHER_BIT); outb(r1, ioaddr + BID_REG_1); r1 = inb(ioaddr + BID_REG_1); while(r1 & BID_RECALL_DONE_MASK) r1 = inb(ioaddr + BID_REG_1); r = inb(ioaddr + BID_LAR_0 + BID_REG_6); /* clear chip rev bits */ tp->extra_info &= ~CHIP_REV_MASK; tp->extra_info |= ((r & BID_EEPROM_CHIP_REV_MASK) << 6); r1 = inb(ioaddr + BID_REG_1); r1 &= BID_ICR_MASK; r1 |= BID_OTHER_BIT; outb(r1, ioaddr + BID_REG_1); r1 = inb(ioaddr + BID_REG_3); r1 &= BID_EAR_MASK; r1 |= BID_EA6; outb(r1, ioaddr + BID_REG_3); r1 = inb(ioaddr + BID_REG_1); r1 &= BID_ICR_MASK; r1 |= BID_RLA; outb(r1, ioaddr + BID_REG_1); r1 = inb(ioaddr + BID_REG_1); while(r1 & BID_RECALL_DONE_MASK) r1 = inb(ioaddr + BID_REG_1); return (BoardIdMask); } static int smctr_get_group_address(struct net_device *dev) { smctr_issue_read_word_cmd(dev, RW_INDIVIDUAL_GROUP_ADDR); return(smctr_wait_cmd(dev)); } static int smctr_get_functional_address(struct net_device *dev) { smctr_issue_read_word_cmd(dev, RW_FUNCTIONAL_ADDR); return(smctr_wait_cmd(dev)); } /* Calculate number of Non-MAC receive BDB's and data buffers. * This function must simulate allocateing shared memory exactly * as the allocate_shared_memory function above. */ static unsigned int smctr_get_num_rx_bdbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int mem_used = 0; /* Allocate System Control Blocks. */ mem_used += sizeof(SCGBlock); mem_used += TO_PARAGRAPH_BOUNDRY(mem_used); mem_used += sizeof(SCLBlock); mem_used += TO_PARAGRAPH_BOUNDRY(mem_used); mem_used += sizeof(ACBlock) * tp->num_acbs; mem_used += TO_PARAGRAPH_BOUNDRY(mem_used); mem_used += sizeof(ISBlock); mem_used += TO_PARAGRAPH_BOUNDRY(mem_used); mem_used += MISC_DATA_SIZE; /* Allocate transmit FCB's. */ mem_used += TO_PARAGRAPH_BOUNDRY(mem_used); mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[MAC_QUEUE]; mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[NON_MAC_QUEUE]; mem_used += sizeof(FCBlock) * tp->num_tx_fcbs[BUG_QUEUE]; /* Allocate transmit BDBs. */ mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[MAC_QUEUE]; mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[NON_MAC_QUEUE]; mem_used += sizeof(BDBlock) * tp->num_tx_bdbs[BUG_QUEUE]; /* Allocate receive FCBs. */ mem_used += sizeof(FCBlock) * tp->num_rx_fcbs[MAC_QUEUE]; mem_used += sizeof(FCBlock) * tp->num_rx_fcbs[NON_MAC_QUEUE]; /* Allocate receive BDBs. */ mem_used += sizeof(BDBlock) * tp->num_rx_bdbs[MAC_QUEUE]; /* Allocate MAC transmit buffers. * MAC transmit buffers don't have to be on an ODD Boundry. */ mem_used += tp->tx_buff_size[MAC_QUEUE]; /* Allocate BUG transmit buffers. */ mem_used += tp->tx_buff_size[BUG_QUEUE]; /* Allocate MAC receive data buffers. * MAC receive buffers don't have to be on a 256 byte boundary. */ mem_used += RX_DATA_BUFFER_SIZE * tp->num_rx_bdbs[MAC_QUEUE]; /* Allocate Non-MAC transmit buffers. * For maximum Netware performance, put Tx Buffers on * ODD Boundry,and then restore malloc to Even Boundrys. */ mem_used += 1L; mem_used += tp->tx_buff_size[NON_MAC_QUEUE]; mem_used += 1L; /* CALCULATE NUMBER OF NON-MAC RX BDB'S * AND NON-MAC RX DATA BUFFERS * * Make sure the mem_used offset at this point is the * same as in allocate_shared memory or the following * boundary adjustment will be incorrect (i.e. not allocating * the non-mac receive buffers above cannot change the 256 * byte offset). * * Since this cannot be guaranteed, adding the full 256 bytes * to the amount of shared memory used at this point will guaranteed * that the rx data buffers do not overflow shared memory. */ mem_used += 0x100; return((0xffff - mem_used) / (RX_DATA_BUFFER_SIZE + sizeof(BDBlock))); } static int smctr_get_physical_drop_number(struct net_device *dev) { smctr_issue_read_word_cmd(dev, RW_PHYSICAL_DROP_NUMBER); return(smctr_wait_cmd(dev)); } static __u8 * smctr_get_rx_pointer(struct net_device *dev, short queue) { struct net_local *tp = netdev_priv(dev); BDBlock *bdb; bdb = (BDBlock *)((__u32)tp->ram_access + (__u32)(tp->rx_fcb_curr[queue]->trc_bdb_ptr)); tp->rx_fcb_curr[queue]->bdb_ptr = bdb; return ((__u8 *)bdb->data_block_ptr); } static int smctr_get_station_id(struct net_device *dev) { smctr_issue_read_word_cmd(dev, RW_INDIVIDUAL_MAC_ADDRESS); return(smctr_wait_cmd(dev)); } /* * Get the current statistics. This may be called with the card open * or closed. */ static struct net_device_stats *smctr_get_stats(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); return ((struct net_device_stats *)&tp->MacStat); } static FCBlock *smctr_get_tx_fcb(struct net_device *dev, __u16 queue, __u16 bytes_count) { struct net_local *tp = netdev_priv(dev); FCBlock *pFCB; BDBlock *pbdb; unsigned short alloc_size; unsigned short *temp; if(smctr_debug > 20) printk(KERN_DEBUG "smctr_get_tx_fcb\n"); /* check if there is enough FCB blocks */ if(tp->num_tx_fcbs_used[queue] >= tp->num_tx_fcbs[queue]) return ((FCBlock *)(-1L)); /* round off the input pkt size to the nearest even number */ alloc_size = (bytes_count + 1) & 0xfffe; /* check if enough mem */ if((tp->tx_buff_used[queue] + alloc_size) > tp->tx_buff_size[queue]) return ((FCBlock *)(-1L)); /* check if past the end ; * if exactly enough mem to end of ring, alloc from front. * this avoids update of curr when curr = end */ if(((unsigned long)(tp->tx_buff_curr[queue]) + alloc_size) >= (unsigned long)(tp->tx_buff_end[queue])) { /* check if enough memory from ring head */ alloc_size = alloc_size + (__u16)((__u32)tp->tx_buff_end[queue] - (__u32)tp->tx_buff_curr[queue]); if((tp->tx_buff_used[queue] + alloc_size) > tp->tx_buff_size[queue]) { return ((FCBlock *)(-1L)); } /* ring wrap */ tp->tx_buff_curr[queue] = tp->tx_buff_head[queue]; } tp->tx_buff_used[queue] += alloc_size; tp->num_tx_fcbs_used[queue]++; tp->tx_fcb_curr[queue]->frame_length = bytes_count; tp->tx_fcb_curr[queue]->memory_alloc = alloc_size; temp = tp->tx_buff_curr[queue]; tp->tx_buff_curr[queue] = (__u16 *)((__u32)temp + (__u32)((bytes_count + 1) & 0xfffe)); pbdb = tp->tx_fcb_curr[queue]->bdb_ptr; pbdb->buffer_length = bytes_count; pbdb->data_block_ptr = temp; pbdb->trc_data_block_ptr = TRC_POINTER(temp); pFCB = tp->tx_fcb_curr[queue]; tp->tx_fcb_curr[queue] = tp->tx_fcb_curr[queue]->next_ptr; return (pFCB); } static int smctr_get_upstream_neighbor_addr(struct net_device *dev) { smctr_issue_read_word_cmd(dev, RW_UPSTREAM_NEIGHBOR_ADDRESS); return(smctr_wait_cmd(dev)); } static int smctr_hardware_send_packet(struct net_device *dev, struct net_local *tp) { struct tr_statistics *tstat = &tp->MacStat; struct sk_buff *skb; FCBlock *fcb; if(smctr_debug > 10) printk(KERN_DEBUG"%s: smctr_hardware_send_packet\n", dev->name); if(tp->status != OPEN) return (-1); if(tp->monitor_state_ready != 1) return (-1); for(;;) { /* Send first buffer from queue */ skb = skb_dequeue(&tp->SendSkbQueue); if(skb == NULL) return (-1); tp->QueueSkb++; if(skb->len < SMC_HEADER_SIZE || skb->len > tp->max_packet_size) return (-1); smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); if((fcb = smctr_get_tx_fcb(dev, NON_MAC_QUEUE, skb->len)) == (FCBlock *)(-1L)) { smctr_disable_16bit(dev); return (-1); } smctr_tx_move_frame(dev, skb, (__u8 *)fcb->bdb_ptr->data_block_ptr, skb->len); smctr_set_page(dev, (__u8 *)fcb); smctr_trc_send_packet(dev, fcb, NON_MAC_QUEUE); dev_kfree_skb(skb); tstat->tx_packets++; smctr_disable_16bit(dev); } return (0); } static int smctr_init_acbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i; ACBlock *acb; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_init_acbs\n", dev->name); acb = tp->acb_head; acb->cmd_done_status = (ACB_COMMAND_DONE | ACB_COMMAND_SUCCESSFUL); acb->cmd_info = ACB_CHAIN_END; acb->cmd = 0; acb->subcmd = 0; acb->data_offset_lo = 0; acb->data_offset_hi = 0; acb->next_ptr = (ACBlock *)(((char *)acb) + sizeof(ACBlock)); acb->trc_next_ptr = TRC_POINTER(acb->next_ptr); for(i = 1; i < tp->num_acbs; i++) { acb = acb->next_ptr; acb->cmd_done_status = (ACB_COMMAND_DONE | ACB_COMMAND_SUCCESSFUL); acb->cmd_info = ACB_CHAIN_END; acb->cmd = 0; acb->subcmd = 0; acb->data_offset_lo = 0; acb->data_offset_hi = 0; acb->next_ptr = (ACBlock *)(((char *)acb) + sizeof(ACBlock)); acb->trc_next_ptr = TRC_POINTER(acb->next_ptr); } acb->next_ptr = tp->acb_head; acb->trc_next_ptr = TRC_POINTER(tp->acb_head); tp->acb_next = tp->acb_head->next_ptr; tp->acb_curr = tp->acb_head->next_ptr; tp->num_acbs_used = 0; return (0); } static int smctr_init_adapter(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_init_adapter\n", dev->name); tp->status = CLOSED; tp->page_offset_mask = (tp->ram_usable * 1024) - 1; skb_queue_head_init(&tp->SendSkbQueue); tp->QueueSkb = MAX_TX_QUEUE; if(!(tp->group_address_0 & 0x0080)) tp->group_address_0 |= 0x00C0; if(!(tp->functional_address_0 & 0x00C0)) tp->functional_address_0 |= 0x00C0; tp->functional_address[0] &= 0xFF7F; if(tp->authorized_function_classes == 0) tp->authorized_function_classes = 0x7FFF; if(tp->authorized_access_priority == 0) tp->authorized_access_priority = 0x06; smctr_disable_bic_int(dev); smctr_set_trc_reset(dev->base_addr); smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); if(smctr_checksum_firmware(dev)) { printk(KERN_ERR "%s: Previously loaded firmware is missing\n",dev->name); return (-ENOENT); } if((err = smctr_ram_memory_test(dev))) { printk(KERN_ERR "%s: RAM memory test failed.\n", dev->name); return (-EIO); } smctr_set_rx_look_ahead(dev); smctr_load_node_addr(dev); /* Initialize adapter for Internal Self Test. */ smctr_reset_adapter(dev); if((err = smctr_init_card_real(dev))) { printk(KERN_ERR "%s: Initialization of card failed (%d)\n", dev->name, err); return (-EINVAL); } /* This routine clobbers the TRC's internal registers. */ if((err = smctr_internal_self_test(dev))) { printk(KERN_ERR "%s: Card failed internal self test (%d)\n", dev->name, err); return (-EINVAL); } /* Re-Initialize adapter's internal registers */ smctr_reset_adapter(dev); if((err = smctr_init_card_real(dev))) { printk(KERN_ERR "%s: Initialization of card failed (%d)\n", dev->name, err); return (-EINVAL); } smctr_enable_bic_int(dev); if((err = smctr_issue_enable_int_cmd(dev, TRC_INTERRUPT_ENABLE_MASK))) return (err); smctr_disable_16bit(dev); return (0); } static int smctr_init_card_real(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_init_card_real\n", dev->name); tp->sh_mem_used = 0; tp->num_acbs = NUM_OF_ACBS; /* Range Check Max Packet Size */ if(tp->max_packet_size < 256) tp->max_packet_size = 256; else { if(tp->max_packet_size > NON_MAC_TX_BUFFER_MEMORY) tp->max_packet_size = NON_MAC_TX_BUFFER_MEMORY; } tp->num_of_tx_buffs = (NON_MAC_TX_BUFFER_MEMORY / tp->max_packet_size) - 1; if(tp->num_of_tx_buffs > NUM_NON_MAC_TX_FCBS) tp->num_of_tx_buffs = NUM_NON_MAC_TX_FCBS; else { if(tp->num_of_tx_buffs == 0) tp->num_of_tx_buffs = 1; } /* Tx queue constants */ tp->num_tx_fcbs [BUG_QUEUE] = NUM_BUG_TX_FCBS; tp->num_tx_bdbs [BUG_QUEUE] = NUM_BUG_TX_BDBS; tp->tx_buff_size [BUG_QUEUE] = BUG_TX_BUFFER_MEMORY; tp->tx_buff_used [BUG_QUEUE] = 0; tp->tx_queue_status [BUG_QUEUE] = NOT_TRANSMITING; tp->num_tx_fcbs [MAC_QUEUE] = NUM_MAC_TX_FCBS; tp->num_tx_bdbs [MAC_QUEUE] = NUM_MAC_TX_BDBS; tp->tx_buff_size [MAC_QUEUE] = MAC_TX_BUFFER_MEMORY; tp->tx_buff_used [MAC_QUEUE] = 0; tp->tx_queue_status [MAC_QUEUE] = NOT_TRANSMITING; tp->num_tx_fcbs [NON_MAC_QUEUE] = NUM_NON_MAC_TX_FCBS; tp->num_tx_bdbs [NON_MAC_QUEUE] = NUM_NON_MAC_TX_BDBS; tp->tx_buff_size [NON_MAC_QUEUE] = NON_MAC_TX_BUFFER_MEMORY; tp->tx_buff_used [NON_MAC_QUEUE] = 0; tp->tx_queue_status [NON_MAC_QUEUE] = NOT_TRANSMITING; /* Receive Queue Constants */ tp->num_rx_fcbs[MAC_QUEUE] = NUM_MAC_RX_FCBS; tp->num_rx_bdbs[MAC_QUEUE] = NUM_MAC_RX_BDBS; if(tp->extra_info & CHIP_REV_MASK) tp->num_rx_fcbs[NON_MAC_QUEUE] = 78; /* 825 Rev. XE */ else tp->num_rx_fcbs[NON_MAC_QUEUE] = 7; /* 825 Rev. XD */ tp->num_rx_bdbs[NON_MAC_QUEUE] = smctr_get_num_rx_bdbs(dev); smctr_alloc_shared_memory(dev); smctr_init_shared_memory(dev); if((err = smctr_issue_init_timers_cmd(dev))) return (err); if((err = smctr_issue_init_txrx_cmd(dev))) { printk(KERN_ERR "%s: Hardware failure\n", dev->name); return (err); } return (0); } static int smctr_init_rx_bdbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, j; BDBlock *bdb; __u16 *buf; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_init_rx_bdbs\n", dev->name); for(i = 0; i < NUM_RX_QS_USED; i++) { bdb = tp->rx_bdb_head[i]; buf = tp->rx_buff_head[i]; bdb->info = (BDB_CHAIN_END | BDB_NO_WARNING); bdb->buffer_length = RX_DATA_BUFFER_SIZE; bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock)); bdb->data_block_ptr = buf; bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr); if(i == NON_MAC_QUEUE) bdb->trc_data_block_ptr = RX_BUFF_TRC_POINTER(buf); else bdb->trc_data_block_ptr = TRC_POINTER(buf); for(j = 1; j < tp->num_rx_bdbs[i]; j++) { bdb->next_ptr->back_ptr = bdb; bdb = bdb->next_ptr; buf = (__u16 *)((char *)buf + RX_DATA_BUFFER_SIZE); bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING); bdb->buffer_length = RX_DATA_BUFFER_SIZE; bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock)); bdb->data_block_ptr = buf; bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr); if(i == NON_MAC_QUEUE) bdb->trc_data_block_ptr = RX_BUFF_TRC_POINTER(buf); else bdb->trc_data_block_ptr = TRC_POINTER(buf); } bdb->next_ptr = tp->rx_bdb_head[i]; bdb->trc_next_ptr = TRC_POINTER(tp->rx_bdb_head[i]); tp->rx_bdb_head[i]->back_ptr = bdb; tp->rx_bdb_curr[i] = tp->rx_bdb_head[i]->next_ptr; } return (0); } static int smctr_init_rx_fcbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, j; FCBlock *fcb; for(i = 0; i < NUM_RX_QS_USED; i++) { fcb = tp->rx_fcb_head[i]; fcb->frame_status = 0; fcb->frame_length = 0; fcb->info = FCB_CHAIN_END; fcb->next_ptr = (FCBlock *)(((char*)fcb) + sizeof(FCBlock)); if(i == NON_MAC_QUEUE) fcb->trc_next_ptr = RX_FCB_TRC_POINTER(fcb->next_ptr); else fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr); for(j = 1; j < tp->num_rx_fcbs[i]; j++) { fcb->next_ptr->back_ptr = fcb; fcb = fcb->next_ptr; fcb->frame_status = 0; fcb->frame_length = 0; fcb->info = FCB_WARNING; fcb->next_ptr = (FCBlock *)(((char *)fcb) + sizeof(FCBlock)); if(i == NON_MAC_QUEUE) fcb->trc_next_ptr = RX_FCB_TRC_POINTER(fcb->next_ptr); else fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr); } fcb->next_ptr = tp->rx_fcb_head[i]; if(i == NON_MAC_QUEUE) fcb->trc_next_ptr = RX_FCB_TRC_POINTER(fcb->next_ptr); else fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr); tp->rx_fcb_head[i]->back_ptr = fcb; tp->rx_fcb_curr[i] = tp->rx_fcb_head[i]->next_ptr; } return(0); } static int smctr_init_shared_memory(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i; __u32 *iscpb; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_init_shared_memory\n", dev->name); smctr_set_page(dev, (__u8 *)(unsigned int)tp->iscpb_ptr); /* Initialize Initial System Configuration Point. (ISCP) */ iscpb = (__u32 *)PAGE_POINTER(&tp->iscpb_ptr->trc_scgb_ptr); *iscpb = (__u32)(SWAP_WORDS(TRC_POINTER(tp->scgb_ptr))); smctr_set_page(dev, (__u8 *)tp->ram_access); /* Initialize System Configuration Pointers. (SCP) */ tp->scgb_ptr->config = (SCGB_ADDRESS_POINTER_FORMAT | SCGB_MULTI_WORD_CONTROL | SCGB_DATA_FORMAT | SCGB_BURST_LENGTH); tp->scgb_ptr->trc_sclb_ptr = TRC_POINTER(tp->sclb_ptr); tp->scgb_ptr->trc_acb_ptr = TRC_POINTER(tp->acb_head); tp->scgb_ptr->trc_isb_ptr = TRC_POINTER(tp->isb_ptr); tp->scgb_ptr->isbsiz = (sizeof(ISBlock)) - 2; /* Initialize System Control Block. (SCB) */ tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_NOP; tp->sclb_ptr->iack_code = 0; tp->sclb_ptr->resume_control = 0; tp->sclb_ptr->int_mask_control = 0; tp->sclb_ptr->int_mask_state = 0; /* Initialize Interrupt Status Block. (ISB) */ for(i = 0; i < NUM_OF_INTERRUPTS; i++) { tp->isb_ptr->IStatus[i].IType = 0xf0; tp->isb_ptr->IStatus[i].ISubtype = 0; } tp->current_isb_index = 0; /* Initialize Action Command Block. (ACB) */ smctr_init_acbs(dev); /* Initialize transmit FCB's and BDB's. */ smctr_link_tx_fcbs_to_bdbs(dev); smctr_init_tx_bdbs(dev); smctr_init_tx_fcbs(dev); /* Initialize receive FCB's and BDB's. */ smctr_init_rx_bdbs(dev); smctr_init_rx_fcbs(dev); return (0); } static int smctr_init_tx_bdbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, j; BDBlock *bdb; for(i = 0; i < NUM_TX_QS_USED; i++) { bdb = tp->tx_bdb_head[i]; bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING); bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof(BDBlock)); bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr); for(j = 1; j < tp->num_tx_bdbs[i]; j++) { bdb->next_ptr->back_ptr = bdb; bdb = bdb->next_ptr; bdb->info = (BDB_NOT_CHAIN_END | BDB_NO_WARNING); bdb->next_ptr = (BDBlock *)(((char *)bdb) + sizeof( BDBlock)); bdb->trc_next_ptr = TRC_POINTER(bdb->next_ptr); } bdb->next_ptr = tp->tx_bdb_head[i]; bdb->trc_next_ptr = TRC_POINTER(tp->tx_bdb_head[i]); tp->tx_bdb_head[i]->back_ptr = bdb; } return (0); } static int smctr_init_tx_fcbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, j; FCBlock *fcb; for(i = 0; i < NUM_TX_QS_USED; i++) { fcb = tp->tx_fcb_head[i]; fcb->frame_status = 0; fcb->frame_length = 0; fcb->info = FCB_CHAIN_END; fcb->next_ptr = (FCBlock *)(((char *)fcb) + sizeof(FCBlock)); fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr); for(j = 1; j < tp->num_tx_fcbs[i]; j++) { fcb->next_ptr->back_ptr = fcb; fcb = fcb->next_ptr; fcb->frame_status = 0; fcb->frame_length = 0; fcb->info = FCB_CHAIN_END; fcb->next_ptr = (FCBlock *)(((char *)fcb) + sizeof(FCBlock)); fcb->trc_next_ptr = TRC_POINTER(fcb->next_ptr); } fcb->next_ptr = tp->tx_fcb_head[i]; fcb->trc_next_ptr = TRC_POINTER(tp->tx_fcb_head[i]); tp->tx_fcb_head[i]->back_ptr = fcb; tp->tx_fcb_end[i] = tp->tx_fcb_head[i]->next_ptr; tp->tx_fcb_curr[i] = tp->tx_fcb_head[i]->next_ptr; tp->num_tx_fcbs_used[i] = 0; } return (0); } static int smctr_internal_self_test(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if((err = smctr_issue_test_internal_rom_cmd(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); if(tp->acb_head->cmd_done_status & 0xff) return (-1); if((err = smctr_issue_test_hic_cmd(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); if(tp->acb_head->cmd_done_status & 0xff) return (-1); if((err = smctr_issue_test_mac_reg_cmd(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); if(tp->acb_head->cmd_done_status & 0xff) return (-1); return (0); } /* * The typical workload of the driver: Handle the network interface interrupts. */ static irqreturn_t smctr_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_local *tp; int ioaddr; __u16 interrupt_unmask_bits = 0, interrupt_ack_code = 0xff00; __u16 err1, err = NOT_MY_INTERRUPT; __u8 isb_type, isb_subtype; __u16 isb_index; ioaddr = dev->base_addr; tp = netdev_priv(dev); if(tp->status == NOT_INITIALIZED) return IRQ_NONE; spin_lock(&tp->lock); smctr_disable_bic_int(dev); smctr_enable_16bit(dev); smctr_clear_int(dev); /* First read the LSB */ while((tp->isb_ptr->IStatus[tp->current_isb_index].IType & 0xf0) == 0) { isb_index = tp->current_isb_index; isb_type = tp->isb_ptr->IStatus[isb_index].IType; isb_subtype = tp->isb_ptr->IStatus[isb_index].ISubtype; (tp->current_isb_index)++; if(tp->current_isb_index == NUM_OF_INTERRUPTS) tp->current_isb_index = 0; if(isb_type >= 0x10) { smctr_disable_16bit(dev); spin_unlock(&tp->lock); return IRQ_HANDLED; } err = HARDWARE_FAILED; interrupt_ack_code = isb_index; tp->isb_ptr->IStatus[isb_index].IType |= 0xf0; interrupt_unmask_bits |= (1 << (__u16)isb_type); switch(isb_type) { case ISB_IMC_MAC_TYPE_3: smctr_disable_16bit(dev); switch(isb_subtype) { case 0: tp->monitor_state = MS_MONITOR_FSM_INACTIVE; break; case 1: tp->monitor_state = MS_REPEAT_BEACON_STATE; break; case 2: tp->monitor_state = MS_REPEAT_CLAIM_TOKEN_STATE; break; case 3: tp->monitor_state = MS_TRANSMIT_CLAIM_TOKEN_STATE; break; case 4: tp->monitor_state = MS_STANDBY_MONITOR_STATE; break; case 5: tp->monitor_state = MS_TRANSMIT_BEACON_STATE; break; case 6: tp->monitor_state = MS_ACTIVE_MONITOR_STATE; break; case 7: tp->monitor_state = MS_TRANSMIT_RING_PURGE_STATE; break; case 8: /* diagnostic state */ break; case 9: tp->monitor_state = MS_BEACON_TEST_STATE; if(smctr_lobe_media_test(dev)) { tp->ring_status_flags = RING_STATUS_CHANGED; tp->ring_status = AUTO_REMOVAL_ERROR; smctr_ring_status_chg(dev); smctr_bypass_state(dev); } else smctr_issue_insert_cmd(dev); break; /* case 0x0a-0xff, illegal states */ default: break; } tp->ring_status_flags = MONITOR_STATE_CHANGED; err = smctr_ring_status_chg(dev); smctr_enable_16bit(dev); break; /* Type 0x02 - MAC Error Counters Interrupt * One or more MAC Error Counter is half full * MAC Error Counters * Lost_FR_Error_Counter * RCV_Congestion_Counter * FR_copied_Error_Counter * FREQ_Error_Counter * Token_Error_Counter * Line_Error_Counter * Internal_Error_Count */ case ISB_IMC_MAC_ERROR_COUNTERS: /* Read 802.5 Error Counters */ err = smctr_issue_read_ring_status_cmd(dev); break; /* Type 0x04 - MAC Type 2 Interrupt * HOST needs to enqueue MAC Frame for transmission * SubType Bit 15 - RQ_INIT_PDU( Request Initialization) * Changed from RQ_INIT_PDU to * TRC_Status_Changed_Indicate */ case ISB_IMC_MAC_TYPE_2: err = smctr_issue_read_ring_status_cmd(dev); break; /* Type 0x05 - TX Frame Interrupt (FI). */ case ISB_IMC_TX_FRAME: /* BUG QUEUE for TRC stuck receive BUG */ if(isb_subtype & TX_PENDING_PRIORITY_2) { if((err = smctr_tx_complete(dev, BUG_QUEUE)) != SUCCESS) break; } /* NON-MAC frames only */ if(isb_subtype & TX_PENDING_PRIORITY_1) { if((err = smctr_tx_complete(dev, NON_MAC_QUEUE)) != SUCCESS) break; } /* MAC frames only */ if(isb_subtype & TX_PENDING_PRIORITY_0) err = smctr_tx_complete(dev, MAC_QUEUE); break; /* Type 0x06 - TX END OF QUEUE (FE) */ case ISB_IMC_END_OF_TX_QUEUE: /* BUG queue */ if(isb_subtype & TX_PENDING_PRIORITY_2) { /* ok to clear Receive FIFO overrun * imask send_BUG now completes. */ interrupt_unmask_bits |= 0x800; tp->tx_queue_status[BUG_QUEUE] = NOT_TRANSMITING; if((err = smctr_tx_complete(dev, BUG_QUEUE)) != SUCCESS) break; if((err = smctr_restart_tx_chain(dev, BUG_QUEUE)) != SUCCESS) break; } /* NON-MAC queue only */ if(isb_subtype & TX_PENDING_PRIORITY_1) { tp->tx_queue_status[NON_MAC_QUEUE] = NOT_TRANSMITING; if((err = smctr_tx_complete(dev, NON_MAC_QUEUE)) != SUCCESS) break; if((err = smctr_restart_tx_chain(dev, NON_MAC_QUEUE)) != SUCCESS) break; } /* MAC queue only */ if(isb_subtype & TX_PENDING_PRIORITY_0) { tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING; if((err = smctr_tx_complete(dev, MAC_QUEUE)) != SUCCESS) break; err = smctr_restart_tx_chain(dev, MAC_QUEUE); } break; /* Type 0x07 - NON-MAC RX Resource Interrupt * Subtype bit 12 - (BW) BDB warning * Subtype bit 13 - (FW) FCB warning * Subtype bit 14 - (BE) BDB End of chain * Subtype bit 15 - (FE) FCB End of chain */ case ISB_IMC_NON_MAC_RX_RESOURCE: tp->rx_fifo_overrun_count = 0; tp->receive_queue_number = NON_MAC_QUEUE; err1 = smctr_rx_frame(dev); if(isb_subtype & NON_MAC_RX_RESOURCE_FE) { if((err = smctr_issue_resume_rx_fcb_cmd( dev, NON_MAC_QUEUE)) != SUCCESS) break; if(tp->ptr_rx_fcb_overruns) (*tp->ptr_rx_fcb_overruns)++; } if(isb_subtype & NON_MAC_RX_RESOURCE_BE) { if((err = smctr_issue_resume_rx_bdb_cmd( dev, NON_MAC_QUEUE)) != SUCCESS) break; if(tp->ptr_rx_bdb_overruns) (*tp->ptr_rx_bdb_overruns)++; } err = err1; break; /* Type 0x08 - MAC RX Resource Interrupt * Subtype bit 12 - (BW) BDB warning * Subtype bit 13 - (FW) FCB warning * Subtype bit 14 - (BE) BDB End of chain * Subtype bit 15 - (FE) FCB End of chain */ case ISB_IMC_MAC_RX_RESOURCE: tp->receive_queue_number = MAC_QUEUE; err1 = smctr_rx_frame(dev); if(isb_subtype & MAC_RX_RESOURCE_FE) { if((err = smctr_issue_resume_rx_fcb_cmd( dev, MAC_QUEUE)) != SUCCESS) break; if(tp->ptr_rx_fcb_overruns) (*tp->ptr_rx_fcb_overruns)++; } if(isb_subtype & MAC_RX_RESOURCE_BE) { if((err = smctr_issue_resume_rx_bdb_cmd( dev, MAC_QUEUE)) != SUCCESS) break; if(tp->ptr_rx_bdb_overruns) (*tp->ptr_rx_bdb_overruns)++; } err = err1; break; /* Type 0x09 - NON_MAC RX Frame Interrupt */ case ISB_IMC_NON_MAC_RX_FRAME: tp->rx_fifo_overrun_count = 0; tp->receive_queue_number = NON_MAC_QUEUE; err = smctr_rx_frame(dev); break; /* Type 0x0A - MAC RX Frame Interrupt */ case ISB_IMC_MAC_RX_FRAME: tp->receive_queue_number = MAC_QUEUE; err = smctr_rx_frame(dev); break; /* Type 0x0B - TRC status * TRC has encountered an error condition * subtype bit 14 - transmit FIFO underrun * subtype bit 15 - receive FIFO overrun */ case ISB_IMC_TRC_FIFO_STATUS: if(isb_subtype & TRC_FIFO_STATUS_TX_UNDERRUN) { if(tp->ptr_tx_fifo_underruns) (*tp->ptr_tx_fifo_underruns)++; } if(isb_subtype & TRC_FIFO_STATUS_RX_OVERRUN) { /* update overrun stuck receive counter * if >= 3, has to clear it by sending * back to back frames. We pick * DAT(duplicate address MAC frame) */ tp->rx_fifo_overrun_count++; if(tp->rx_fifo_overrun_count >= 3) { tp->rx_fifo_overrun_count = 0; /* delay clearing fifo overrun * imask till send_BUG tx * complete posted */ interrupt_unmask_bits &= (~0x800); printk(KERN_CRIT "Jay please send bug\n");// smctr_send_bug(dev); } if(tp->ptr_rx_fifo_overruns) (*tp->ptr_rx_fifo_overruns)++; } err = SUCCESS; break; /* Type 0x0C - Action Command Status Interrupt * Subtype bit 14 - CB end of command chain (CE) * Subtype bit 15 - CB command interrupt (CI) */ case ISB_IMC_COMMAND_STATUS: err = SUCCESS; if(tp->acb_head->cmd == ACB_CMD_HIC_NOP) { printk(KERN_ERR "i1\n"); smctr_disable_16bit(dev); /* XXXXXXXXXXXXXXXXX */ /* err = UM_Interrupt(dev); */ smctr_enable_16bit(dev); } else { if((tp->acb_head->cmd == ACB_CMD_READ_TRC_STATUS) && (tp->acb_head->subcmd == RW_TRC_STATUS_BLOCK)) { if(tp->ptr_bcn_type) { *(tp->ptr_bcn_type) = (__u32)((SBlock *)tp->misc_command_data)->BCN_Type; } if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & ERROR_COUNTERS_CHANGED) { smctr_update_err_stats(dev); } if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & TI_NDIS_RING_STATUS_CHANGED) { tp->ring_status = ((SBlock*)tp->misc_command_data)->TI_NDIS_Ring_Status; smctr_disable_16bit(dev); err = smctr_ring_status_chg(dev); smctr_enable_16bit(dev); if((tp->ring_status & REMOVE_RECEIVED) && (tp->config_word0 & NO_AUTOREMOVE)) { smctr_issue_remove_cmd(dev); } if(err != SUCCESS) { tp->acb_pending = 0; break; } } if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & UNA_CHANGED) { if(tp->ptr_una) { tp->ptr_una[0] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[0]); tp->ptr_una[1] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[1]); tp->ptr_una[2] = SWAP_BYTES(((SBlock *)tp->misc_command_data)->UNA[2]); } } if(((SBlock *)tp->misc_command_data)->Status_CHG_Indicate & READY_TO_SEND_RQ_INIT) { err = smctr_send_rq_init(dev); } } } tp->acb_pending = 0; break; /* Type 0x0D - MAC Type 1 interrupt * Subtype -- 00 FR_BCN received at S12 * 01 FR_BCN received at S21 * 02 FR_DAT(DA=MA, A<>0) received at S21 * 03 TSM_EXP at S21 * 04 FR_REMOVE received at S42 * 05 TBR_EXP, BR_FLAG_SET at S42 * 06 TBT_EXP at S53 */ case ISB_IMC_MAC_TYPE_1: if(isb_subtype > 8) { err = HARDWARE_FAILED; break; } err = SUCCESS; switch(isb_subtype) { case 0: tp->join_state = JS_BYPASS_STATE; if(tp->status != CLOSED) { tp->status = CLOSED; err = smctr_status_chg(dev); } break; case 1: tp->join_state = JS_LOBE_TEST_STATE; break; case 2: tp->join_state = JS_DETECT_MONITOR_PRESENT_STATE; break; case 3: tp->join_state = JS_AWAIT_NEW_MONITOR_STATE; break; case 4: tp->join_state = JS_DUPLICATE_ADDRESS_TEST_STATE; break; case 5: tp->join_state = JS_NEIGHBOR_NOTIFICATION_STATE; break; case 6: tp->join_state = JS_REQUEST_INITIALIZATION_STATE; break; case 7: tp->join_state = JS_JOIN_COMPLETE_STATE; tp->status = OPEN; err = smctr_status_chg(dev); break; case 8: tp->join_state = JS_BYPASS_WAIT_STATE; break; } break ; /* Type 0x0E - TRC Initialization Sequence Interrupt * Subtype -- 00-FF Initializatin sequence complete */ case ISB_IMC_TRC_INTRNL_TST_STATUS: tp->status = INITIALIZED; smctr_disable_16bit(dev); err = smctr_status_chg(dev); smctr_enable_16bit(dev); break; /* other interrupt types, illegal */ default: break; } if(err != SUCCESS) break; } /* Checking the ack code instead of the unmask bits here is because : * while fixing the stuck receive, DAT frame are sent and mask off * FIFO overrun interrupt temporarily (interrupt_unmask_bits = 0) * but we still want to issue ack to ISB */ if(!(interrupt_ack_code & 0xff00)) smctr_issue_int_ack(dev, interrupt_ack_code, interrupt_unmask_bits); smctr_disable_16bit(dev); smctr_enable_bic_int(dev); spin_unlock(&tp->lock); return IRQ_HANDLED; } static int smctr_issue_enable_int_cmd(struct net_device *dev, __u16 interrupt_enable_mask) { struct net_local *tp = netdev_priv(dev); int err; if((err = smctr_wait_while_cbusy(dev))) return (err); tp->sclb_ptr->int_mask_control = interrupt_enable_mask; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_CLEAR_INTERRUPT_MASK; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_int_ack(struct net_device *dev, __u16 iack_code, __u16 ibits) { struct net_local *tp = netdev_priv(dev); if(smctr_wait_while_cbusy(dev)) return (-1); tp->sclb_ptr->int_mask_control = ibits; tp->sclb_ptr->iack_code = iack_code << 1; /* use the offset from base */ tp->sclb_ptr->resume_control = 0; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_IACK_CODE_VALID | SCLB_CMD_CLEAR_INTERRUPT_MASK; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_init_timers_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i; int err; __u16 *pTimer_Struc = (__u16 *)tp->misc_command_data; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); tp->config_word0 = THDREN | DMA_TRIGGER | USETPT | NO_AUTOREMOVE; tp->config_word1 = 0; if((tp->media_type == MEDIA_STP_16) || (tp->media_type == MEDIA_UTP_16) || (tp->media_type == MEDIA_STP_16_UTP_16)) { tp->config_word0 |= FREQ_16MB_BIT; } if(tp->mode_bits & EARLY_TOKEN_REL) tp->config_word0 |= ETREN; if(tp->mode_bits & LOOPING_MODE_MASK) tp->config_word0 |= RX_OWN_BIT; else tp->config_word0 &= ~RX_OWN_BIT; if(tp->receive_mask & PROMISCUOUS_MODE) tp->config_word0 |= PROMISCUOUS_BIT; else tp->config_word0 &= ~PROMISCUOUS_BIT; if(tp->receive_mask & ACCEPT_ERR_PACKETS) tp->config_word0 |= SAVBAD_BIT; else tp->config_word0 &= ~SAVBAD_BIT; if(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES) tp->config_word0 |= RXATMAC; else tp->config_word0 &= ~RXATMAC; if(tp->receive_mask & ACCEPT_MULTI_PROM) tp->config_word1 |= MULTICAST_ADDRESS_BIT; else tp->config_word1 &= ~MULTICAST_ADDRESS_BIT; if(tp->receive_mask & ACCEPT_SOURCE_ROUTING_SPANNING) tp->config_word1 |= SOURCE_ROUTING_SPANNING_BITS; else { if(tp->receive_mask & ACCEPT_SOURCE_ROUTING) tp->config_word1 |= SOURCE_ROUTING_EXPLORER_BIT; else tp->config_word1 &= ~SOURCE_ROUTING_SPANNING_BITS; } if((tp->media_type == MEDIA_STP_16) || (tp->media_type == MEDIA_UTP_16) || (tp->media_type == MEDIA_STP_16_UTP_16)) { tp->config_word1 |= INTERFRAME_SPACING_16; } else tp->config_word1 |= INTERFRAME_SPACING_4; *pTimer_Struc++ = tp->config_word0; *pTimer_Struc++ = tp->config_word1; if((tp->media_type == MEDIA_STP_4) || (tp->media_type == MEDIA_UTP_4) || (tp->media_type == MEDIA_STP_4_UTP_4)) { *pTimer_Struc++ = 0x00FA; /* prescale */ *pTimer_Struc++ = 0x2710; /* TPT_limit */ *pTimer_Struc++ = 0x2710; /* TQP_limit */ *pTimer_Struc++ = 0x0A28; /* TNT_limit */ *pTimer_Struc++ = 0x3E80; /* TBT_limit */ *pTimer_Struc++ = 0x3A98; /* TSM_limit */ *pTimer_Struc++ = 0x1B58; /* TAM_limit */ *pTimer_Struc++ = 0x00C8; /* TBR_limit */ *pTimer_Struc++ = 0x07D0; /* TER_limit */ *pTimer_Struc++ = 0x000A; /* TGT_limit */ *pTimer_Struc++ = 0x1162; /* THT_limit */ *pTimer_Struc++ = 0x07D0; /* TRR_limit */ *pTimer_Struc++ = 0x1388; /* TVX_limit */ *pTimer_Struc++ = 0x0000; /* reserved */ } else { *pTimer_Struc++ = 0x03E8; /* prescale */ *pTimer_Struc++ = 0x9C40; /* TPT_limit */ *pTimer_Struc++ = 0x9C40; /* TQP_limit */ *pTimer_Struc++ = 0x0A28; /* TNT_limit */ *pTimer_Struc++ = 0x3E80; /* TBT_limit */ *pTimer_Struc++ = 0x3A98; /* TSM_limit */ *pTimer_Struc++ = 0x1B58; /* TAM_limit */ *pTimer_Struc++ = 0x00C8; /* TBR_limit */ *pTimer_Struc++ = 0x07D0; /* TER_limit */ *pTimer_Struc++ = 0x000A; /* TGT_limit */ *pTimer_Struc++ = 0x4588; /* THT_limit */ *pTimer_Struc++ = 0x1F40; /* TRR_limit */ *pTimer_Struc++ = 0x4E20; /* TVX_limit */ *pTimer_Struc++ = 0x0000; /* reserved */ } /* Set node address. */ *pTimer_Struc++ = dev->dev_addr[0] << 8 | (dev->dev_addr[1] & 0xFF); *pTimer_Struc++ = dev->dev_addr[2] << 8 | (dev->dev_addr[3] & 0xFF); *pTimer_Struc++ = dev->dev_addr[4] << 8 | (dev->dev_addr[5] & 0xFF); /* Set group address. */ *pTimer_Struc++ = tp->group_address_0 << 8 | tp->group_address_0 >> 8; *pTimer_Struc++ = tp->group_address[0] << 8 | tp->group_address[0] >> 8; *pTimer_Struc++ = tp->group_address[1] << 8 | tp->group_address[1] >> 8; /* Set functional address. */ *pTimer_Struc++ = tp->functional_address_0 << 8 | tp->functional_address_0 >> 8; *pTimer_Struc++ = tp->functional_address[0] << 8 | tp->functional_address[0] >> 8; *pTimer_Struc++ = tp->functional_address[1] << 8 | tp->functional_address[1] >> 8; /* Set Bit-Wise group address. */ *pTimer_Struc++ = tp->bitwise_group_address[0] << 8 | tp->bitwise_group_address[0] >> 8; *pTimer_Struc++ = tp->bitwise_group_address[1] << 8 | tp->bitwise_group_address[1] >> 8; /* Set ring number address. */ *pTimer_Struc++ = tp->source_ring_number; *pTimer_Struc++ = tp->target_ring_number; /* Physical drop number. */ *pTimer_Struc++ = (unsigned short)0; *pTimer_Struc++ = (unsigned short)0; /* Product instance ID. */ for(i = 0; i < 9; i++) *pTimer_Struc++ = (unsigned short)0; err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_INIT_TRC_TIMERS, 0); return (err); } static int smctr_issue_init_txrx_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i; int err; void **txrx_ptrs = (void *)tp->misc_command_data; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) { printk(KERN_ERR "%s: Hardware failure\n", dev->name); return (err); } /* Initialize Transmit Queue Pointers that are used, to point to * a single FCB. */ for(i = 0; i < NUM_TX_QS_USED; i++) *txrx_ptrs++ = (void *)TRC_POINTER(tp->tx_fcb_head[i]); /* Initialize Transmit Queue Pointers that are NOT used to ZERO. */ for(; i < MAX_TX_QS; i++) *txrx_ptrs++ = (void *)0; /* Initialize Receive Queue Pointers (MAC and Non-MAC) that are * used, to point to a single FCB and a BDB chain of buffers. */ for(i = 0; i < NUM_RX_QS_USED; i++) { *txrx_ptrs++ = (void *)TRC_POINTER(tp->rx_fcb_head[i]); *txrx_ptrs++ = (void *)TRC_POINTER(tp->rx_bdb_head[i]); } /* Initialize Receive Queue Pointers that are NOT used to ZERO. */ for(; i < MAX_RX_QS; i++) { *txrx_ptrs++ = (void *)0; *txrx_ptrs++ = (void *)0; } err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_INIT_TX_RX, 0); return (err); } static int smctr_issue_insert_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_INSERT, ACB_SUB_CMD_NOP); return (err); } static int smctr_issue_read_ring_status_cmd(struct net_device *dev) { int err; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_READ_TRC_STATUS, RW_TRC_STATUS_BLOCK); return (err); } static int smctr_issue_read_word_cmd(struct net_device *dev, __u16 aword_cnt) { int err; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_READ_VALUE, aword_cnt); return (err); } static int smctr_issue_remove_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if((err = smctr_wait_while_cbusy(dev))) return (err); tp->sclb_ptr->resume_control = 0; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_CMD_REMOVE; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_resume_acb_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if((err = smctr_wait_while_cbusy(dev))) return (err); tp->sclb_ptr->resume_control = SCLB_RC_ACB; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID; tp->acb_pending = 1; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_resume_rx_bdb_cmd(struct net_device *dev, __u16 queue) { struct net_local *tp = netdev_priv(dev); int err; if((err = smctr_wait_while_cbusy(dev))) return (err); if(queue == MAC_QUEUE) tp->sclb_ptr->resume_control = SCLB_RC_RX_MAC_BDB; else tp->sclb_ptr->resume_control = SCLB_RC_RX_NON_MAC_BDB; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_resume_rx_fcb_cmd(struct net_device *dev, __u16 queue) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_issue_resume_rx_fcb_cmd\n", dev->name); if(smctr_wait_while_cbusy(dev)) return (-1); if(queue == MAC_QUEUE) tp->sclb_ptr->resume_control = SCLB_RC_RX_MAC_FCB; else tp->sclb_ptr->resume_control = SCLB_RC_RX_NON_MAC_FCB; tp->sclb_ptr->valid_command = SCLB_VALID | SCLB_RESUME_CONTROL_VALID; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_resume_tx_fcb_cmd(struct net_device *dev, __u16 queue) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_issue_resume_tx_fcb_cmd\n", dev->name); if(smctr_wait_while_cbusy(dev)) return (-1); tp->sclb_ptr->resume_control = (SCLB_RC_TFCB0 << queue); tp->sclb_ptr->valid_command = SCLB_RESUME_CONTROL_VALID | SCLB_VALID; smctr_set_ctrl_attention(dev); return (0); } static int smctr_issue_test_internal_rom_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST, TRC_INTERNAL_ROM_TEST); return (err); } static int smctr_issue_test_hic_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_HIC_TEST, TRC_HOST_INTERFACE_REG_TEST); return (err); } static int smctr_issue_test_mac_reg_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST, TRC_MAC_REGISTERS_TEST); return (err); } static int smctr_issue_trc_loopback_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST, TRC_INTERNAL_LOOPBACK); return (err); } static int smctr_issue_tri_loopback_cmd(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST, TRC_TRI_LOOPBACK); return (err); } static int smctr_issue_write_byte_cmd(struct net_device *dev, short aword_cnt, void *byte) { struct net_local *tp = netdev_priv(dev); unsigned int iword, ibyte; int err; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); for(iword = 0, ibyte = 0; iword < (unsigned int)(aword_cnt & 0xff); iword++, ibyte += 2) { tp->misc_command_data[iword] = (*((__u8 *)byte + ibyte) << 8) | (*((__u8 *)byte + ibyte + 1)); } return (smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_WRITE_VALUE, aword_cnt)); } static int smctr_issue_write_word_cmd(struct net_device *dev, short aword_cnt, void *word) { struct net_local *tp = netdev_priv(dev); unsigned int i, err; if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = smctr_wait_cmd(dev))) return (err); for(i = 0; i < (unsigned int)(aword_cnt & 0xff); i++) tp->misc_command_data[i] = *((__u16 *)word + i); err = smctr_setup_single_cmd_w_data(dev, ACB_CMD_MCT_WRITE_VALUE, aword_cnt); return (err); } static int smctr_join_complete_state(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE, JS_JOIN_COMPLETE_STATE); return (err); } static int smctr_link_tx_fcbs_to_bdbs(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, j; FCBlock *fcb; BDBlock *bdb; for(i = 0; i < NUM_TX_QS_USED; i++) { fcb = tp->tx_fcb_head[i]; bdb = tp->tx_bdb_head[i]; for(j = 0; j < tp->num_tx_fcbs[i]; j++) { fcb->bdb_ptr = bdb; fcb->trc_bdb_ptr = TRC_POINTER(bdb); fcb = (FCBlock *)((char *)fcb + sizeof(FCBlock)); bdb = (BDBlock *)((char *)bdb + sizeof(BDBlock)); } } return (0); } static int smctr_load_firmware(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); const struct firmware *fw; __u16 i, checksum = 0; int err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_load_firmware\n", dev->name); if (request_firmware(&fw, "tr_smctr.bin", &dev->dev)) { printk(KERN_ERR "%s: firmware not found\n", dev->name); return (UCODE_NOT_PRESENT); } tp->num_of_tx_buffs = 4; tp->mode_bits |= UMAC; tp->receive_mask = 0; tp->max_packet_size = 4177; /* Can only upload the firmware once per adapter reset. */ if (tp->microcode_version != 0) { err = (UCODE_PRESENT); goto out; } /* Verify the firmware exists and is there in the right amount. */ if (!fw->data || (*(fw->data + UCODE_VERSION_OFFSET) < UCODE_VERSION)) { err = (UCODE_NOT_PRESENT); goto out; } /* UCODE_SIZE is not included in Checksum. */ for(i = 0; i < *((__u16 *)(fw->data + UCODE_SIZE_OFFSET)); i += 2) checksum += *((__u16 *)(fw->data + 2 + i)); if (checksum) { err = (UCODE_NOT_PRESENT); goto out; } /* At this point we have a valid firmware image, lets kick it on up. */ smctr_enable_adapter_ram(dev); smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); if((smctr_checksum_firmware(dev)) || (*(fw->data + UCODE_VERSION_OFFSET) > tp->microcode_version)) { smctr_enable_adapter_ctrl_store(dev); /* Zero out ram space for firmware. */ for(i = 0; i < CS_RAM_SIZE; i += 2) *((__u16 *)(tp->ram_access + i)) = 0; smctr_decode_firmware(dev, fw); tp->microcode_version = *(fw->data + UCODE_VERSION_OFFSET); *((__u16 *)(tp->ram_access + CS_RAM_VERSION_OFFSET)) = (tp->microcode_version << 8); *((__u16 *)(tp->ram_access + CS_RAM_CHECKSUM_OFFSET)) = ~(tp->microcode_version << 8) + 1; smctr_disable_adapter_ctrl_store(dev); if(smctr_checksum_firmware(dev)) err = HARDWARE_FAILED; } else err = UCODE_PRESENT; smctr_disable_16bit(dev); out: release_firmware(fw); return (err); } static int smctr_load_node_addr(struct net_device *dev) { int ioaddr = dev->base_addr; unsigned int i; __u8 r; for(i = 0; i < 6; i++) { r = inb(ioaddr + LAR0 + i); dev->dev_addr[i] = (char)r; } dev->addr_len = 6; return (0); } /* Lobe Media Test. * During the transmission of the initial 1500 lobe media MAC frames, * the phase lock loop in the 805 chip may lock, and then un-lock, causing * the 825 to go into a PURGE state. When performing a PURGE, the MCT * microcode will not transmit any frames given to it by the host, and * will consequently cause a timeout. * * NOTE 1: If the monitor_state is MS_BEACON_TEST_STATE, all transmit * queues other then the one used for the lobe_media_test should be * disabled.!? * * NOTE 2: If the monitor_state is MS_BEACON_TEST_STATE and the receive_mask * has any multi-cast or promiscous bits set, the receive_mask needs to * be changed to clear the multi-cast or promiscous mode bits, the lobe_test * run, and then the receive mask set back to its original value if the test * is successful. */ static int smctr_lobe_media_test(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, perror = 0; unsigned short saved_rcv_mask; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_lobe_media_test\n", dev->name); /* Clear receive mask for lobe test. */ saved_rcv_mask = tp->receive_mask; tp->receive_mask = 0; smctr_chg_rx_mask(dev); /* Setup the lobe media test. */ smctr_lobe_media_test_cmd(dev); if(smctr_wait_cmd(dev)) { smctr_reset_adapter(dev); tp->status = CLOSED; return (LOBE_MEDIA_TEST_FAILED); } /* Tx lobe media test frames. */ for(i = 0; i < 1500; ++i) { if(smctr_send_lobe_media_test(dev)) { if(perror) { smctr_reset_adapter(dev); tp->state = CLOSED; return (LOBE_MEDIA_TEST_FAILED); } else { perror = 1; if(smctr_lobe_media_test_cmd(dev)) { smctr_reset_adapter(dev); tp->state = CLOSED; return (LOBE_MEDIA_TEST_FAILED); } } } } if(smctr_send_dat(dev)) { if(smctr_send_dat(dev)) { smctr_reset_adapter(dev); tp->state = CLOSED; return (LOBE_MEDIA_TEST_FAILED); } } /* Check if any frames received during test. */ if((tp->rx_fcb_curr[MAC_QUEUE]->frame_status) || (tp->rx_fcb_curr[NON_MAC_QUEUE]->frame_status)) { smctr_reset_adapter(dev); tp->state = CLOSED; return (LOBE_MEDIA_TEST_FAILED); } /* Set receive mask to "Promisc" mode. */ tp->receive_mask = saved_rcv_mask; smctr_chg_rx_mask(dev); return (0); } static int smctr_lobe_media_test_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_lobe_media_test_cmd\n", dev->name); /* Change to lobe media test state. */ if(tp->monitor_state != MS_BEACON_TEST_STATE) { smctr_lobe_media_test_state(dev); if(smctr_wait_cmd(dev)) { printk(KERN_ERR "Lobe Failed test state\n"); return (LOBE_MEDIA_TEST_FAILED); } } err = smctr_setup_single_cmd(dev, ACB_CMD_MCT_TEST, TRC_LOBE_MEDIA_TEST); return (err); } static int smctr_lobe_media_test_state(struct net_device *dev) { int err; err = smctr_setup_single_cmd(dev, ACB_CMD_CHANGE_JOIN_STATE, JS_LOBE_TEST_STATE); return (err); } static int smctr_make_8025_hdr(struct net_device *dev, MAC_HEADER *rmf, MAC_HEADER *tmf, __u16 ac_fc) { tmf->ac = MSB(ac_fc); /* msb is access control */ tmf->fc = LSB(ac_fc); /* lsb is frame control */ tmf->sa[0] = dev->dev_addr[0]; tmf->sa[1] = dev->dev_addr[1]; tmf->sa[2] = dev->dev_addr[2]; tmf->sa[3] = dev->dev_addr[3]; tmf->sa[4] = dev->dev_addr[4]; tmf->sa[5] = dev->dev_addr[5]; switch(tmf->vc) { /* Send RQ_INIT to RPS */ case RQ_INIT: tmf->da[0] = 0xc0; tmf->da[1] = 0x00; tmf->da[2] = 0x00; tmf->da[3] = 0x00; tmf->da[4] = 0x00; tmf->da[5] = 0x02; break; /* Send RPT_TX_FORWARD to CRS */ case RPT_TX_FORWARD: tmf->da[0] = 0xc0; tmf->da[1] = 0x00; tmf->da[2] = 0x00; tmf->da[3] = 0x00; tmf->da[4] = 0x00; tmf->da[5] = 0x10; break; /* Everything else goes to sender */ default: tmf->da[0] = rmf->sa[0]; tmf->da[1] = rmf->sa[1]; tmf->da[2] = rmf->sa[2]; tmf->da[3] = rmf->sa[3]; tmf->da[4] = rmf->sa[4]; tmf->da[5] = rmf->sa[5]; break; } return (0); } static int smctr_make_access_pri(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); tsv->svi = AUTHORIZED_ACCESS_PRIORITY; tsv->svl = S_AUTHORIZED_ACCESS_PRIORITY; tsv->svv[0] = MSB(tp->authorized_access_priority); tsv->svv[1] = LSB(tp->authorized_access_priority); return (0); } static int smctr_make_addr_mod(struct net_device *dev, MAC_SUB_VECTOR *tsv) { tsv->svi = ADDRESS_MODIFER; tsv->svl = S_ADDRESS_MODIFER; tsv->svv[0] = 0; tsv->svv[1] = 0; return (0); } static int smctr_make_auth_funct_class(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); tsv->svi = AUTHORIZED_FUNCTION_CLASS; tsv->svl = S_AUTHORIZED_FUNCTION_CLASS; tsv->svv[0] = MSB(tp->authorized_function_classes); tsv->svv[1] = LSB(tp->authorized_function_classes); return (0); } static int smctr_make_corr(struct net_device *dev, MAC_SUB_VECTOR *tsv, __u16 correlator) { tsv->svi = CORRELATOR; tsv->svl = S_CORRELATOR; tsv->svv[0] = MSB(correlator); tsv->svv[1] = LSB(correlator); return (0); } static int smctr_make_funct_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); smctr_get_functional_address(dev); tsv->svi = FUNCTIONAL_ADDRESS; tsv->svl = S_FUNCTIONAL_ADDRESS; tsv->svv[0] = MSB(tp->misc_command_data[0]); tsv->svv[1] = LSB(tp->misc_command_data[0]); tsv->svv[2] = MSB(tp->misc_command_data[1]); tsv->svv[3] = LSB(tp->misc_command_data[1]); return (0); } static int smctr_make_group_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); smctr_get_group_address(dev); tsv->svi = GROUP_ADDRESS; tsv->svl = S_GROUP_ADDRESS; tsv->svv[0] = MSB(tp->misc_command_data[0]); tsv->svv[1] = LSB(tp->misc_command_data[0]); tsv->svv[2] = MSB(tp->misc_command_data[1]); tsv->svv[3] = LSB(tp->misc_command_data[1]); /* Set Group Address Sub-vector to all zeros if only the * Group Address/Functional Address Indicator is set. */ if(tsv->svv[0] == 0x80 && tsv->svv[1] == 0x00 && tsv->svv[2] == 0x00 && tsv->svv[3] == 0x00) tsv->svv[0] = 0x00; return (0); } static int smctr_make_phy_drop_num(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); smctr_get_physical_drop_number(dev); tsv->svi = PHYSICAL_DROP; tsv->svl = S_PHYSICAL_DROP; tsv->svv[0] = MSB(tp->misc_command_data[0]); tsv->svv[1] = LSB(tp->misc_command_data[0]); tsv->svv[2] = MSB(tp->misc_command_data[1]); tsv->svv[3] = LSB(tp->misc_command_data[1]); return (0); } static int smctr_make_product_id(struct net_device *dev, MAC_SUB_VECTOR *tsv) { int i; tsv->svi = PRODUCT_INSTANCE_ID; tsv->svl = S_PRODUCT_INSTANCE_ID; for(i = 0; i < 18; i++) tsv->svv[i] = 0xF0; return (0); } static int smctr_make_station_id(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); smctr_get_station_id(dev); tsv->svi = STATION_IDENTIFER; tsv->svl = S_STATION_IDENTIFER; tsv->svv[0] = MSB(tp->misc_command_data[0]); tsv->svv[1] = LSB(tp->misc_command_data[0]); tsv->svv[2] = MSB(tp->misc_command_data[1]); tsv->svv[3] = LSB(tp->misc_command_data[1]); tsv->svv[4] = MSB(tp->misc_command_data[2]); tsv->svv[5] = LSB(tp->misc_command_data[2]); return (0); } static int smctr_make_ring_station_status(struct net_device *dev, MAC_SUB_VECTOR * tsv) { tsv->svi = RING_STATION_STATUS; tsv->svl = S_RING_STATION_STATUS; tsv->svv[0] = 0; tsv->svv[1] = 0; tsv->svv[2] = 0; tsv->svv[3] = 0; tsv->svv[4] = 0; tsv->svv[5] = 0; return (0); } static int smctr_make_ring_station_version(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); tsv->svi = RING_STATION_VERSION_NUMBER; tsv->svl = S_RING_STATION_VERSION_NUMBER; tsv->svv[0] = 0xe2; /* EBCDIC - S */ tsv->svv[1] = 0xd4; /* EBCDIC - M */ tsv->svv[2] = 0xc3; /* EBCDIC - C */ tsv->svv[3] = 0x40; /* EBCDIC - */ tsv->svv[4] = 0xe5; /* EBCDIC - V */ tsv->svv[5] = 0xF0 + (tp->microcode_version >> 4); tsv->svv[6] = 0xF0 + (tp->microcode_version & 0x0f); tsv->svv[7] = 0x40; /* EBCDIC - */ tsv->svv[8] = 0xe7; /* EBCDIC - X */ if(tp->extra_info & CHIP_REV_MASK) tsv->svv[9] = 0xc5; /* EBCDIC - E */ else tsv->svv[9] = 0xc4; /* EBCDIC - D */ return (0); } static int smctr_make_tx_status_code(struct net_device *dev, MAC_SUB_VECTOR *tsv, __u16 tx_fstatus) { tsv->svi = TRANSMIT_STATUS_CODE; tsv->svl = S_TRANSMIT_STATUS_CODE; tsv->svv[0] = ((tx_fstatus & 0x0100 >> 6) | IBM_PASS_SOURCE_ADDR); /* Stripped frame status of Transmitted Frame */ tsv->svv[1] = tx_fstatus & 0xff; return (0); } static int smctr_make_upstream_neighbor_addr(struct net_device *dev, MAC_SUB_VECTOR *tsv) { struct net_local *tp = netdev_priv(dev); smctr_get_upstream_neighbor_addr(dev); tsv->svi = UPSTREAM_NEIGHBOR_ADDRESS; tsv->svl = S_UPSTREAM_NEIGHBOR_ADDRESS; tsv->svv[0] = MSB(tp->misc_command_data[0]); tsv->svv[1] = LSB(tp->misc_command_data[0]); tsv->svv[2] = MSB(tp->misc_command_data[1]); tsv->svv[3] = LSB(tp->misc_command_data[1]); tsv->svv[4] = MSB(tp->misc_command_data[2]); tsv->svv[5] = LSB(tp->misc_command_data[2]); return (0); } static int smctr_make_wrap_data(struct net_device *dev, MAC_SUB_VECTOR *tsv) { tsv->svi = WRAP_DATA; tsv->svl = S_WRAP_DATA; return (0); } /* * Open/initialize the board. This is called sometime after * booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int smctr_open(struct net_device *dev) { int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_open\n", dev->name); err = smctr_init_adapter(dev); if(err < 0) return (err); return (err); } /* Interrupt driven open of Token card. */ static int smctr_open_tr(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned long flags; int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_open_tr\n", dev->name); /* Now we can actually open the adapter. */ if(tp->status == OPEN) return (0); if(tp->status != INITIALIZED) return (-1); /* FIXME: it would work a lot better if we masked the irq sources on the card here, then we could skip the locking and poll nicely */ spin_lock_irqsave(&tp->lock, flags); smctr_set_page(dev, (__u8 *)tp->ram_access); if((err = smctr_issue_resume_rx_fcb_cmd(dev, (short)MAC_QUEUE))) goto out; if((err = smctr_issue_resume_rx_bdb_cmd(dev, (short)MAC_QUEUE))) goto out; if((err = smctr_issue_resume_rx_fcb_cmd(dev, (short)NON_MAC_QUEUE))) goto out; if((err = smctr_issue_resume_rx_bdb_cmd(dev, (short)NON_MAC_QUEUE))) goto out; tp->status = CLOSED; /* Insert into the Ring or Enter Loopback Mode. */ if((tp->mode_bits & LOOPING_MODE_MASK) == LOOPBACK_MODE_1) { tp->status = CLOSED; if(!(err = smctr_issue_trc_loopback_cmd(dev))) { if(!(err = smctr_wait_cmd(dev))) tp->status = OPEN; } smctr_status_chg(dev); } else { if((tp->mode_bits & LOOPING_MODE_MASK) == LOOPBACK_MODE_2) { tp->status = CLOSED; if(!(err = smctr_issue_tri_loopback_cmd(dev))) { if(!(err = smctr_wait_cmd(dev))) tp->status = OPEN; } smctr_status_chg(dev); } else { if((tp->mode_bits & LOOPING_MODE_MASK) == LOOPBACK_MODE_3) { tp->status = CLOSED; if(!(err = smctr_lobe_media_test_cmd(dev))) { if(!(err = smctr_wait_cmd(dev))) tp->status = OPEN; } smctr_status_chg(dev); } else { if(!(err = smctr_lobe_media_test(dev))) err = smctr_issue_insert_cmd(dev); else { if(err == LOBE_MEDIA_TEST_FAILED) printk(KERN_WARNING "%s: Lobe Media Test Failure - Check cable?\n", dev->name); } } } } out: spin_unlock_irqrestore(&tp->lock, flags); return (err); } /* Check for a network adapter of this type, * and return device structure if one exists. */ struct net_device __init *smctr_probe(int unit) { struct net_device *dev = alloc_trdev(sizeof(struct net_local)); static const unsigned ports[] = { 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0, 0x300, 0x320, 0x340, 0x360, 0x380, 0 }; const unsigned *port; int err = 0; if (!dev) return ERR_PTR(-ENOMEM); if (unit >= 0) { sprintf(dev->name, "tr%d", unit); netdev_boot_setup_check(dev); } if (dev->base_addr > 0x1ff) /* Check a single specified location. */ err = smctr_probe1(dev, dev->base_addr); else if(dev->base_addr != 0) /* Don't probe at all. */ err =-ENXIO; else { for (port = ports; *port; port++) { err = smctr_probe1(dev, *port); if (!err) break; } } if (err) goto out; err = register_netdev(dev); if (err) goto out1; return dev; out1: #ifdef CONFIG_MCA_LEGACY { struct net_local *tp = netdev_priv(dev); if (tp->slot_num) mca_mark_as_unused(tp->slot_num); } #endif release_region(dev->base_addr, SMCTR_IO_EXTENT); free_irq(dev->irq, dev); out: free_netdev(dev); return ERR_PTR(err); } static int __init smctr_probe1(struct net_device *dev, int ioaddr) { static unsigned version_printed; struct net_local *tp = netdev_priv(dev); int err; __u32 *ram; if(smctr_debug && version_printed++ == 0) printk(version); spin_lock_init(&tp->lock); dev->base_addr = ioaddr; /* Actually detect an adapter now. */ err = smctr_chk_isa(dev); if(err < 0) { if ((err = smctr_chk_mca(dev)) < 0) { err = -ENODEV; goto out; } } tp = netdev_priv(dev); dev->mem_start = tp->ram_base; dev->mem_end = dev->mem_start + 0x10000; ram = (__u32 *)phys_to_virt(dev->mem_start); tp->ram_access = *(__u32 *)&ram; tp->status = NOT_INITIALIZED; err = smctr_load_firmware(dev); if(err != UCODE_PRESENT && err != SUCCESS) { printk(KERN_ERR "%s: Firmware load failed (%d)\n", dev->name, err); err = -EIO; goto out; } /* Allow user to specify ring speed on module insert. */ if(ringspeed == 4) tp->media_type = MEDIA_UTP_4; else tp->media_type = MEDIA_UTP_16; printk(KERN_INFO "%s: %s %s at Io %#4x, Irq %d, Rom %#4x, Ram %#4x.\n", dev->name, smctr_name, smctr_model, (unsigned int)dev->base_addr, dev->irq, tp->rom_base, tp->ram_base); dev->open = smctr_open; dev->stop = smctr_close; dev->hard_start_xmit = smctr_send_packet; dev->tx_timeout = smctr_timeout; dev->watchdog_timeo = HZ; dev->get_stats = smctr_get_stats; dev->set_multicast_list = &smctr_set_multicast_list; return (0); out: return err; } static int smctr_process_rx_packet(MAC_HEADER *rmf, __u16 size, struct net_device *dev, __u16 rx_status) { struct net_local *tp = netdev_priv(dev); struct sk_buff *skb; __u16 rcode, correlator; int err = 0; __u8 xframe = 1; rmf->vl = SWAP_BYTES(rmf->vl); if(rx_status & FCB_RX_STATUS_DA_MATCHED) { switch(rmf->vc) { /* Received MAC Frames Processed by RS. */ case INIT: if((rcode = smctr_rcv_init(dev, rmf, &correlator)) == HARDWARE_FAILED) { return (rcode); } if((err = smctr_send_rsp(dev, rmf, rcode, correlator))) { return (err); } break; case CHG_PARM: if((rcode = smctr_rcv_chg_param(dev, rmf, &correlator)) ==HARDWARE_FAILED) { return (rcode); } if((err = smctr_send_rsp(dev, rmf, rcode, correlator))) { return (err); } break; case RQ_ADDR: if((rcode = smctr_rcv_rq_addr_state_attch(dev, rmf, &correlator)) != POSITIVE_ACK) { if(rcode == HARDWARE_FAILED) return (rcode); else return (smctr_send_rsp(dev, rmf, rcode, correlator)); } if((err = smctr_send_rpt_addr(dev, rmf, correlator))) { return (err); } break; case RQ_ATTCH: if((rcode = smctr_rcv_rq_addr_state_attch(dev, rmf, &correlator)) != POSITIVE_ACK) { if(rcode == HARDWARE_FAILED) return (rcode); else return (smctr_send_rsp(dev, rmf, rcode, correlator)); } if((err = smctr_send_rpt_attch(dev, rmf, correlator))) { return (err); } break; case RQ_STATE: if((rcode = smctr_rcv_rq_addr_state_attch(dev, rmf, &correlator)) != POSITIVE_ACK) { if(rcode == HARDWARE_FAILED) return (rcode); else return (smctr_send_rsp(dev, rmf, rcode, correlator)); } if((err = smctr_send_rpt_state(dev, rmf, correlator))) { return (err); } break; case TX_FORWARD: { __u16 uninitialized_var(tx_fstatus); if((rcode = smctr_rcv_tx_forward(dev, rmf)) != POSITIVE_ACK) { if(rcode == HARDWARE_FAILED) return (rcode); else return (smctr_send_rsp(dev, rmf, rcode, correlator)); } if((err = smctr_send_tx_forward(dev, rmf, &tx_fstatus)) == HARDWARE_FAILED) { return (err); } if(err == A_FRAME_WAS_FORWARDED) { if((err = smctr_send_rpt_tx_forward(dev, rmf, tx_fstatus)) == HARDWARE_FAILED) { return (err); } } break; } /* Received MAC Frames Processed by CRS/REM/RPS. */ case RSP: case RQ_INIT: case RPT_NEW_MON: case RPT_SUA_CHG: case RPT_ACTIVE_ERR: case RPT_NN_INCMP: case RPT_ERROR: case RPT_ATTCH: case RPT_STATE: case RPT_ADDR: break; /* Rcvd Att. MAC Frame (if RXATMAC set) or UNKNOWN */ default: xframe = 0; if(!(tp->receive_mask & ACCEPT_ATT_MAC_FRAMES)) { rcode = smctr_rcv_unknown(dev, rmf, &correlator); if((err = smctr_send_rsp(dev, rmf,rcode, correlator))) { return (err); } } break; } } else { /* 1. DA doesn't match (Promiscuous Mode). * 2. Parse for Extended MAC Frame Type. */ switch(rmf->vc) { case RSP: case INIT: case RQ_INIT: case RQ_ADDR: case RQ_ATTCH: case RQ_STATE: case CHG_PARM: case RPT_ADDR: case RPT_ERROR: case RPT_ATTCH: case RPT_STATE: case RPT_NEW_MON: case RPT_SUA_CHG: case RPT_NN_INCMP: case RPT_ACTIVE_ERR: break; default: xframe = 0; break; } } /* NOTE: UNKNOWN MAC frames will NOT be passed up unless * ACCEPT_ATT_MAC_FRAMES is set. */ if(((tp->receive_mask & ACCEPT_ATT_MAC_FRAMES) && (xframe == (__u8)0)) || ((tp->receive_mask & ACCEPT_EXT_MAC_FRAMES) && (xframe == (__u8)1))) { rmf->vl = SWAP_BYTES(rmf->vl); if (!(skb = dev_alloc_skb(size))) return -ENOMEM; skb->len = size; /* Slide data into a sleek skb. */ skb_put(skb, skb->len); skb_copy_to_linear_data(skb, rmf, skb->len); /* Update Counters */ tp->MacStat.rx_packets++; tp->MacStat.rx_bytes += skb->len; /* Kick the packet on up. */ skb->protocol = tr_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; err = 0; } return (err); } /* Adapter RAM test. Incremental word ODD boundary data test. */ static int smctr_ram_memory_test(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); __u16 page, pages_of_ram, start_pattern = 0, word_pattern = 0, word_read = 0, err_word = 0, err_pattern = 0; unsigned int err_offset; __u32 j, pword; __u8 err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_ram_memory_test\n", dev->name); start_pattern = 0x0001; pages_of_ram = tp->ram_size / tp->ram_usable; pword = tp->ram_access; /* Incremental word ODD boundary test. */ for(page = 0; (page < pages_of_ram) && (~err); page++, start_pattern += 0x8000) { smctr_set_page(dev, (__u8 *)(tp->ram_access + (page * tp->ram_usable * 1024) + 1)); word_pattern = start_pattern; for(j = 1; j < (__u32)(tp->ram_usable * 1024) - 1; j += 2) *(__u16 *)(pword + j) = word_pattern++; word_pattern = start_pattern; for(j = 1; j < (__u32)(tp->ram_usable * 1024) - 1 && (~err); j += 2, word_pattern++) { word_read = *(__u16 *)(pword + j); if(word_read != word_pattern) { err = (__u8)1; err_offset = j; err_word = word_read; err_pattern = word_pattern; return (RAM_TEST_FAILED); } } } /* Zero out memory. */ for(page = 0; page < pages_of_ram && (~err); page++) { smctr_set_page(dev, (__u8 *)(tp->ram_access + (page * tp->ram_usable * 1024))); word_pattern = 0; for(j = 0; j < (__u32)tp->ram_usable * 1024; j +=2) *(__u16 *)(pword + j) = word_pattern; for(j =0; j < (__u32)tp->ram_usable * 1024 && (~err); j += 2) { word_read = *(__u16 *)(pword + j); if(word_read != word_pattern) { err = (__u8)1; err_offset = j; err_word = word_read; err_pattern = word_pattern; return (RAM_TEST_FAILED); } } } smctr_set_page(dev, (__u8 *)tp->ram_access); return (0); } static int smctr_rcv_chg_param(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator) { MAC_SUB_VECTOR *rsv; signed short vlen; __u16 rcode = POSITIVE_ACK; unsigned int svectors = F_NO_SUB_VECTORS_FOUND; /* This Frame can only come from a CRS */ if((rmf->dc_sc & SC_MASK) != SC_CRS) return(E_INAPPROPRIATE_SOURCE_CLASS); /* Remove MVID Length from total length. */ vlen = (signed short)rmf->vl - 4; /* Point to First SVID */ rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER)); /* Search for Appropriate SVID's. */ while((vlen > 0) && (rcode == POSITIVE_ACK)) { switch(rsv->svi) { case CORRELATOR: svectors |= F_CORRELATOR; rcode = smctr_set_corr(dev, rsv, correlator); break; case LOCAL_RING_NUMBER: svectors |= F_LOCAL_RING_NUMBER; rcode = smctr_set_local_ring_num(dev, rsv); break; case ASSIGN_PHYSICAL_DROP: svectors |= F_ASSIGN_PHYSICAL_DROP; rcode = smctr_set_phy_drop(dev, rsv); break; case ERROR_TIMER_VALUE: svectors |= F_ERROR_TIMER_VALUE; rcode = smctr_set_error_timer_value(dev, rsv); break; case AUTHORIZED_FUNCTION_CLASS: svectors |= F_AUTHORIZED_FUNCTION_CLASS; rcode = smctr_set_auth_funct_class(dev, rsv); break; case AUTHORIZED_ACCESS_PRIORITY: svectors |= F_AUTHORIZED_ACCESS_PRIORITY; rcode = smctr_set_auth_access_pri(dev, rsv); break; default: rcode = E_SUB_VECTOR_UNKNOWN; break; } /* Let Sender Know if SUM of SV length's is * larger then length in MVID length field */ if((vlen -= rsv->svl) < 0) rcode = E_VECTOR_LENGTH_ERROR; rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl); } if(rcode == POSITIVE_ACK) { /* Let Sender Know if MVID length field * is larger then SUM of SV length's */ if(vlen != 0) rcode = E_VECTOR_LENGTH_ERROR; else { /* Let Sender Know if Expected SVID Missing */ if((svectors & R_CHG_PARM) ^ R_CHG_PARM) rcode = E_MISSING_SUB_VECTOR; } } return (rcode); } static int smctr_rcv_init(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator) { MAC_SUB_VECTOR *rsv; signed short vlen; __u16 rcode = POSITIVE_ACK; unsigned int svectors = F_NO_SUB_VECTORS_FOUND; /* This Frame can only come from a RPS */ if((rmf->dc_sc & SC_MASK) != SC_RPS) return (E_INAPPROPRIATE_SOURCE_CLASS); /* Remove MVID Length from total length. */ vlen = (signed short)rmf->vl - 4; /* Point to First SVID */ rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER)); /* Search for Appropriate SVID's */ while((vlen > 0) && (rcode == POSITIVE_ACK)) { switch(rsv->svi) { case CORRELATOR: svectors |= F_CORRELATOR; rcode = smctr_set_corr(dev, rsv, correlator); break; case LOCAL_RING_NUMBER: svectors |= F_LOCAL_RING_NUMBER; rcode = smctr_set_local_ring_num(dev, rsv); break; case ASSIGN_PHYSICAL_DROP: svectors |= F_ASSIGN_PHYSICAL_DROP; rcode = smctr_set_phy_drop(dev, rsv); break; case ERROR_TIMER_VALUE: svectors |= F_ERROR_TIMER_VALUE; rcode = smctr_set_error_timer_value(dev, rsv); break; default: rcode = E_SUB_VECTOR_UNKNOWN; break; } /* Let Sender Know if SUM of SV length's is * larger then length in MVID length field */ if((vlen -= rsv->svl) < 0) rcode = E_VECTOR_LENGTH_ERROR; rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl); } if(rcode == POSITIVE_ACK) { /* Let Sender Know if MVID length field * is larger then SUM of SV length's */ if(vlen != 0) rcode = E_VECTOR_LENGTH_ERROR; else { /* Let Sender Know if Expected SV Missing */ if((svectors & R_INIT) ^ R_INIT) rcode = E_MISSING_SUB_VECTOR; } } return (rcode); } static int smctr_rcv_tx_forward(struct net_device *dev, MAC_HEADER *rmf) { MAC_SUB_VECTOR *rsv; signed short vlen; __u16 rcode = POSITIVE_ACK; unsigned int svectors = F_NO_SUB_VECTORS_FOUND; /* This Frame can only come from a CRS */ if((rmf->dc_sc & SC_MASK) != SC_CRS) return (E_INAPPROPRIATE_SOURCE_CLASS); /* Remove MVID Length from total length */ vlen = (signed short)rmf->vl - 4; /* Point to First SVID */ rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER)); /* Search for Appropriate SVID's */ while((vlen > 0) && (rcode == POSITIVE_ACK)) { switch(rsv->svi) { case FRAME_FORWARD: svectors |= F_FRAME_FORWARD; rcode = smctr_set_frame_forward(dev, rsv, rmf->dc_sc); break; default: rcode = E_SUB_VECTOR_UNKNOWN; break; } /* Let Sender Know if SUM of SV length's is * larger then length in MVID length field */ if((vlen -= rsv->svl) < 0) rcode = E_VECTOR_LENGTH_ERROR; rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl); } if(rcode == POSITIVE_ACK) { /* Let Sender Know if MVID length field * is larger then SUM of SV length's */ if(vlen != 0) rcode = E_VECTOR_LENGTH_ERROR; else { /* Let Sender Know if Expected SV Missing */ if((svectors & R_TX_FORWARD) ^ R_TX_FORWARD) rcode = E_MISSING_SUB_VECTOR; } } return (rcode); } static int smctr_rcv_rq_addr_state_attch(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator) { MAC_SUB_VECTOR *rsv; signed short vlen; __u16 rcode = POSITIVE_ACK; unsigned int svectors = F_NO_SUB_VECTORS_FOUND; /* Remove MVID Length from total length */ vlen = (signed short)rmf->vl - 4; /* Point to First SVID */ rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER)); /* Search for Appropriate SVID's */ while((vlen > 0) && (rcode == POSITIVE_ACK)) { switch(rsv->svi) { case CORRELATOR: svectors |= F_CORRELATOR; rcode = smctr_set_corr(dev, rsv, correlator); break; default: rcode = E_SUB_VECTOR_UNKNOWN; break; } /* Let Sender Know if SUM of SV length's is * larger then length in MVID length field */ if((vlen -= rsv->svl) < 0) rcode = E_VECTOR_LENGTH_ERROR; rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl); } if(rcode == POSITIVE_ACK) { /* Let Sender Know if MVID length field * is larger then SUM of SV length's */ if(vlen != 0) rcode = E_VECTOR_LENGTH_ERROR; else { /* Let Sender Know if Expected SVID Missing */ if((svectors & R_RQ_ATTCH_STATE_ADDR) ^ R_RQ_ATTCH_STATE_ADDR) rcode = E_MISSING_SUB_VECTOR; } } return (rcode); } static int smctr_rcv_unknown(struct net_device *dev, MAC_HEADER *rmf, __u16 *correlator) { MAC_SUB_VECTOR *rsv; signed short vlen; *correlator = 0; /* Remove MVID Length from total length */ vlen = (signed short)rmf->vl - 4; /* Point to First SVID */ rsv = (MAC_SUB_VECTOR *)((__u32)rmf + sizeof(MAC_HEADER)); /* Search for CORRELATOR for RSP to UNKNOWN */ while((vlen > 0) && (*correlator == 0)) { switch(rsv->svi) { case CORRELATOR: smctr_set_corr(dev, rsv, correlator); break; default: break; } vlen -= rsv->svl; rsv = (MAC_SUB_VECTOR *)((__u32)rsv + rsv->svl); } return (E_UNRECOGNIZED_VECTOR_ID); } /* * Reset the 825 NIC and exit w: * 1. The NIC reset cleared (non-reset state), halted and un-initialized. * 2. TINT masked. * 3. CBUSY masked. * 4. TINT clear. * 5. CBUSY clear. */ static int smctr_reset_adapter(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; /* Reseting the NIC will put it in a halted and un-initialized state. */ smctr_set_trc_reset(ioaddr); mdelay(200); /* ~2 ms */ smctr_clear_trc_reset(ioaddr); mdelay(200); /* ~2 ms */ /* Remove any latched interrupts that occurred prior to reseting the * adapter or possibily caused by line glitches due to the reset. */ outb(tp->trc_mask | CSR_CLRTINT | CSR_CLRCBUSY, ioaddr + CSR); return (0); } static int smctr_restart_tx_chain(struct net_device *dev, short queue) { struct net_local *tp = netdev_priv(dev); int err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_restart_tx_chain\n", dev->name); if(tp->num_tx_fcbs_used[queue] != 0 && tp->tx_queue_status[queue] == NOT_TRANSMITING) { tp->tx_queue_status[queue] = TRANSMITING; err = smctr_issue_resume_tx_fcb_cmd(dev, queue); } return (err); } static int smctr_ring_status_chg(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_ring_status_chg\n", dev->name); /* Check for ring_status_flag: whenever MONITOR_STATE_BIT * Bit is set, check value of monitor_state, only then we * enable and start transmit/receive timeout (if and only * if it is MS_ACTIVE_MONITOR_STATE or MS_STANDBY_MONITOR_STATE) */ if(tp->ring_status_flags == MONITOR_STATE_CHANGED) { if((tp->monitor_state == MS_ACTIVE_MONITOR_STATE) || (tp->monitor_state == MS_STANDBY_MONITOR_STATE)) { tp->monitor_state_ready = 1; } else { /* if adapter is NOT in either active monitor * or standby monitor state => Disable * transmit/receive timeout. */ tp->monitor_state_ready = 0; /* Ring speed problem, switching to auto mode. */ if(tp->monitor_state == MS_MONITOR_FSM_INACTIVE && !tp->cleanup) { printk(KERN_INFO "%s: Incorrect ring speed switching.\n", dev->name); smctr_set_ring_speed(dev); } } } if(!(tp->ring_status_flags & RING_STATUS_CHANGED)) return (0); switch(tp->ring_status) { case RING_RECOVERY: printk(KERN_INFO "%s: Ring Recovery\n", dev->name); tp->current_ring_status |= RING_RECOVERY; break; case SINGLE_STATION: printk(KERN_INFO "%s: Single Statinon\n", dev->name); tp->current_ring_status |= SINGLE_STATION; break; case COUNTER_OVERFLOW: printk(KERN_INFO "%s: Counter Overflow\n", dev->name); tp->current_ring_status |= COUNTER_OVERFLOW; break; case REMOVE_RECEIVED: printk(KERN_INFO "%s: Remove Received\n", dev->name); tp->current_ring_status |= REMOVE_RECEIVED; break; case AUTO_REMOVAL_ERROR: printk(KERN_INFO "%s: Auto Remove Error\n", dev->name); tp->current_ring_status |= AUTO_REMOVAL_ERROR; break; case LOBE_WIRE_FAULT: printk(KERN_INFO "%s: Lobe Wire Fault\n", dev->name); tp->current_ring_status |= LOBE_WIRE_FAULT; break; case TRANSMIT_BEACON: printk(KERN_INFO "%s: Transmit Beacon\n", dev->name); tp->current_ring_status |= TRANSMIT_BEACON; break; case SOFT_ERROR: printk(KERN_INFO "%s: Soft Error\n", dev->name); tp->current_ring_status |= SOFT_ERROR; break; case HARD_ERROR: printk(KERN_INFO "%s: Hard Error\n", dev->name); tp->current_ring_status |= HARD_ERROR; break; case SIGNAL_LOSS: printk(KERN_INFO "%s: Signal Loss\n", dev->name); tp->current_ring_status |= SIGNAL_LOSS; break; default: printk(KERN_INFO "%s: Unknown ring status change\n", dev->name); break; } return (0); } static int smctr_rx_frame(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); __u16 queue, status, rx_size, err = 0; __u8 *pbuff; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_rx_frame\n", dev->name); queue = tp->receive_queue_number; while((status = tp->rx_fcb_curr[queue]->frame_status) != SUCCESS) { err = HARDWARE_FAILED; if(((status & 0x007f) == 0) || ((tp->receive_mask & ACCEPT_ERR_PACKETS) != 0)) { /* frame length less the CRC (4 bytes) + FS (1 byte) */ rx_size = tp->rx_fcb_curr[queue]->frame_length - 5; pbuff = smctr_get_rx_pointer(dev, queue); smctr_set_page(dev, pbuff); smctr_disable_16bit(dev); /* pbuff points to addr within one page */ pbuff = (__u8 *)PAGE_POINTER(pbuff); if(queue == NON_MAC_QUEUE) { struct sk_buff *skb; skb = dev_alloc_skb(rx_size); if (skb) { skb_put(skb, rx_size); skb_copy_to_linear_data(skb, pbuff, rx_size); /* Update Counters */ tp->MacStat.rx_packets++; tp->MacStat.rx_bytes += skb->len; /* Kick the packet on up. */ skb->protocol = tr_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; } else { } } else smctr_process_rx_packet((MAC_HEADER *)pbuff, rx_size, dev, status); } smctr_enable_16bit(dev); smctr_set_page(dev, (__u8 *)tp->ram_access); smctr_update_rx_chain(dev, queue); if(err != SUCCESS) break; } return (err); } static int smctr_send_dat(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int i, err; MAC_HEADER *tmf; FCBlock *fcb; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_send_dat\n", dev->name); if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER))) == (FCBlock *)(-1L)) { return (OUT_OF_RESOURCES); } /* Initialize DAT Data Fields. */ tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->ac = MSB(AC_FC_DAT); tmf->fc = LSB(AC_FC_DAT); for(i = 0; i < 6; i++) { tmf->sa[i] = dev->dev_addr[i]; tmf->da[i] = dev->dev_addr[i]; } tmf->vc = DAT; tmf->dc_sc = DC_RS | SC_RS; tmf->vl = 4; tmf->vl = SWAP_BYTES(tmf->vl); /* Start Transmit. */ if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE))) return (err); /* Wait for Transmit to Complete */ for(i = 0; i < 10000; i++) { if(fcb->frame_status & FCB_COMMAND_DONE) break; mdelay(1); } /* Check if GOOD frame Tx'ed. */ if(!(fcb->frame_status & FCB_COMMAND_DONE) || fcb->frame_status & (FCB_TX_STATUS_E | FCB_TX_AC_BITS)) { return (INITIALIZE_FAILED); } /* De-allocated Tx FCB and Frame Buffer * The FCB must be de-allocated manually if executing with * interrupts disabled, other wise the ISR (LM_Service_Events) * will de-allocate it when the interrupt occurs. */ tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING; smctr_update_tx_chain(dev, fcb, MAC_QUEUE); return (0); } static void smctr_timeout(struct net_device *dev) { /* * If we get here, some higher level has decided we are broken. * There should really be a "kick me" function call instead. * * Resetting the token ring adapter takes a long time so just * fake transmission time and go on trying. Our own timeout * routine is in sktr_timer_chk() */ dev->trans_start = jiffies; netif_wake_queue(dev); } /* * Gets skb from system, queues it and checks if it can be sent */ static int smctr_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_send_packet\n", dev->name); /* * Block a transmit overlap */ netif_stop_queue(dev); if(tp->QueueSkb == 0) return (1); /* Return with tbusy set: queue full */ tp->QueueSkb--; skb_queue_tail(&tp->SendSkbQueue, skb); smctr_hardware_send_packet(dev, tp); if(tp->QueueSkb > 0) netif_wake_queue(dev); return (0); } static int smctr_send_lobe_media_test(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); MAC_SUB_VECTOR *tsv; MAC_HEADER *tmf; FCBlock *fcb; __u32 i; int err; if(smctr_debug > 15) printk(KERN_DEBUG "%s: smctr_send_lobe_media_test\n", dev->name); if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(struct trh_hdr) + S_WRAP_DATA + S_WRAP_DATA)) == (FCBlock *)(-1L)) { return (OUT_OF_RESOURCES); } /* Initialize DAT Data Fields. */ tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->ac = MSB(AC_FC_LOBE_MEDIA_TEST); tmf->fc = LSB(AC_FC_LOBE_MEDIA_TEST); for(i = 0; i < 6; i++) { tmf->da[i] = 0; tmf->sa[i] = dev->dev_addr[i]; } tmf->vc = LOBE_MEDIA_TEST; tmf->dc_sc = DC_RS | SC_RS; tmf->vl = 4; tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_wrap_data(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_wrap_data(dev, tsv); tmf->vl += tsv->svl; /* Start Transmit. */ tmf->vl = SWAP_BYTES(tmf->vl); if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE))) return (err); /* Wait for Transmit to Complete. (10 ms). */ for(i=0; i < 10000; i++) { if(fcb->frame_status & FCB_COMMAND_DONE) break; mdelay(1); } /* Check if GOOD frame Tx'ed */ if(!(fcb->frame_status & FCB_COMMAND_DONE) || fcb->frame_status & (FCB_TX_STATUS_E | FCB_TX_AC_BITS)) { return (LOBE_MEDIA_TEST_FAILED); } /* De-allocated Tx FCB and Frame Buffer * The FCB must be de-allocated manually if executing with * interrupts disabled, other wise the ISR (LM_Service_Events) * will de-allocate it when the interrupt occurs. */ tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING; smctr_update_tx_chain(dev, fcb, MAC_QUEUE); return (0); } static int smctr_send_rpt_addr(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator) { MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_CORRELATOR + S_PHYSICAL_DROP + S_UPSTREAM_NEIGHBOR_ADDRESS + S_ADDRESS_MODIFER + S_GROUP_ADDRESS + S_FUNCTIONAL_ADDRESS)) == (FCBlock *)(-1L)) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RPT_ADDR; tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4; tmf->vl = 4; smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_ADDR); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_corr(dev, tsv, correlator); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_phy_drop_num(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_upstream_neighbor_addr(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_addr_mod(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_group_addr(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_funct_addr(dev, tsv); tmf->vl += tsv->svl; /* Subtract out MVID and MVL which is * include in both vl and MAC_HEADER */ /* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4; fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4; */ tmf->vl = SWAP_BYTES(tmf->vl); return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE)); } static int smctr_send_rpt_attch(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator) { MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_CORRELATOR + S_PRODUCT_INSTANCE_ID + S_FUNCTIONAL_ADDRESS + S_AUTHORIZED_FUNCTION_CLASS + S_AUTHORIZED_ACCESS_PRIORITY)) == (FCBlock *)(-1L)) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RPT_ATTCH; tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4; tmf->vl = 4; smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_ATTCH); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_corr(dev, tsv, correlator); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_product_id(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_funct_addr(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_auth_funct_class(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_access_pri(dev, tsv); tmf->vl += tsv->svl; /* Subtract out MVID and MVL which is * include in both vl and MAC_HEADER */ /* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4; fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4; */ tmf->vl = SWAP_BYTES(tmf->vl); return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE)); } static int smctr_send_rpt_state(struct net_device *dev, MAC_HEADER *rmf, __u16 correlator) { MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_CORRELATOR + S_RING_STATION_VERSION_NUMBER + S_RING_STATION_STATUS + S_STATION_IDENTIFER)) == (FCBlock *)(-1L)) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RPT_STATE; tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4; tmf->vl = 4; smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_STATE); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_corr(dev, tsv, correlator); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_ring_station_version(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_ring_station_status(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_station_id(dev, tsv); tmf->vl += tsv->svl; /* Subtract out MVID and MVL which is * include in both vl and MAC_HEADER */ /* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4; fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4; */ tmf->vl = SWAP_BYTES(tmf->vl); return (smctr_trc_send_packet(dev, fcb, MAC_QUEUE)); } static int smctr_send_rpt_tx_forward(struct net_device *dev, MAC_HEADER *rmf, __u16 tx_fstatus) { MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_TRANSMIT_STATUS_CODE)) == (FCBlock *)(-1L)) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RPT_TX_FORWARD; tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4; tmf->vl = 4; smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RPT_TX_FORWARD); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_tx_status_code(dev, tsv, tx_fstatus); tmf->vl += tsv->svl; /* Subtract out MVID and MVL which is * include in both vl and MAC_HEADER */ /* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4; fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4; */ tmf->vl = SWAP_BYTES(tmf->vl); return(smctr_trc_send_packet(dev, fcb, MAC_QUEUE)); } static int smctr_send_rsp(struct net_device *dev, MAC_HEADER *rmf, __u16 rcode, __u16 correlator) { MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_CORRELATOR + S_RESPONSE_CODE)) == (FCBlock *)(-1L)) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RSP; tmf->dc_sc = (rmf->dc_sc & SC_MASK) << 4; tmf->vl = 4; smctr_make_8025_hdr(dev, rmf, tmf, AC_FC_RSP); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_corr(dev, tsv, correlator); return (0); } static int smctr_send_rq_init(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); MAC_HEADER *tmf; MAC_SUB_VECTOR *tsv; FCBlock *fcb; unsigned int i, count = 0; __u16 fstatus; int err; do { if(((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, sizeof(MAC_HEADER) + S_PRODUCT_INSTANCE_ID + S_UPSTREAM_NEIGHBOR_ADDRESS + S_RING_STATION_VERSION_NUMBER + S_ADDRESS_MODIFER)) == (FCBlock *)(-1L))) { return (0); } tmf = (MAC_HEADER *)fcb->bdb_ptr->data_block_ptr; tmf->vc = RQ_INIT; tmf->dc_sc = DC_RPS | SC_RS; tmf->vl = 4; smctr_make_8025_hdr(dev, NULL, tmf, AC_FC_RQ_INIT); tsv = (MAC_SUB_VECTOR *)((__u32)tmf + sizeof(MAC_HEADER)); smctr_make_product_id(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_upstream_neighbor_addr(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_ring_station_version(dev, tsv); tmf->vl += tsv->svl; tsv = (MAC_SUB_VECTOR *)((__u32)tsv + tsv->svl); smctr_make_addr_mod(dev, tsv); tmf->vl += tsv->svl; /* Subtract out MVID and MVL which is * include in both vl and MAC_HEADER */ /* fcb->frame_length = tmf->vl + sizeof(MAC_HEADER) - 4; fcb->bdb_ptr->buffer_length = tmf->vl + sizeof(MAC_HEADER) - 4; */ tmf->vl = SWAP_BYTES(tmf->vl); if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE))) return (err); /* Wait for Transmit to Complete */ for(i = 0; i < 10000; i++) { if(fcb->frame_status & FCB_COMMAND_DONE) break; mdelay(1); } /* Check if GOOD frame Tx'ed */ fstatus = fcb->frame_status; if(!(fstatus & FCB_COMMAND_DONE)) return (HARDWARE_FAILED); if(!(fstatus & FCB_TX_STATUS_E)) count++; /* De-allocated Tx FCB and Frame Buffer * The FCB must be de-allocated manually if executing with * interrupts disabled, other wise the ISR (LM_Service_Events) * will de-allocate it when the interrupt occurs. */ tp->tx_queue_status[MAC_QUEUE] = NOT_TRANSMITING; smctr_update_tx_chain(dev, fcb, MAC_QUEUE); } while(count < 4 && ((fstatus & FCB_TX_AC_BITS) ^ FCB_TX_AC_BITS)); return (smctr_join_complete_state(dev)); } static int smctr_send_tx_forward(struct net_device *dev, MAC_HEADER *rmf, __u16 *tx_fstatus) { struct net_local *tp = netdev_priv(dev); FCBlock *fcb; unsigned int i; int err; /* Check if this is the END POINT of the Transmit Forward Chain. */ if(rmf->vl <= 18) return (0); /* Allocate Transmit FCB only by requesting 0 bytes * of data buffer. */ if((fcb = smctr_get_tx_fcb(dev, MAC_QUEUE, 0)) == (FCBlock *)(-1L)) return (0); /* Set pointer to Transmit Frame Buffer to the data * portion of the received TX Forward frame, making * sure to skip over the Vector Code (vc) and Vector * length (vl). */ fcb->bdb_ptr->trc_data_block_ptr = TRC_POINTER((__u32)rmf + sizeof(MAC_HEADER) + 2); fcb->bdb_ptr->data_block_ptr = (__u16 *)((__u32)rmf + sizeof(MAC_HEADER) + 2); fcb->frame_length = rmf->vl - 4 - 2; fcb->bdb_ptr->buffer_length = rmf->vl - 4 - 2; if((err = smctr_trc_send_packet(dev, fcb, MAC_QUEUE))) return (err); /* Wait for Transmit to Complete */ for(i = 0; i < 10000; i++) { if(fcb->frame_status & FCB_COMMAND_DONE) break; mdelay(1); } /* Check if GOOD frame Tx'ed */ if(!(fcb->frame_status & FCB_COMMAND_DONE)) { if((err = smctr_issue_resume_tx_fcb_cmd(dev, MAC_QUEUE))) return (err); for(i = 0; i < 10000; i++) { if(fcb->frame_status & FCB_COMMAND_DONE) break; mdelay(1); } if(!(fcb->frame_status & FCB_COMMAND_DONE)) return (HARDWARE_FAILED); } *tx_fstatus = fcb->frame_status; return (A_FRAME_WAS_FORWARDED); } static int smctr_set_auth_access_pri(struct net_device *dev, MAC_SUB_VECTOR *rsv) { struct net_local *tp = netdev_priv(dev); if(rsv->svl != S_AUTHORIZED_ACCESS_PRIORITY) return (E_SUB_VECTOR_LENGTH_ERROR); tp->authorized_access_priority = (rsv->svv[0] << 8 | rsv->svv[1]); return (POSITIVE_ACK); } static int smctr_set_auth_funct_class(struct net_device *dev, MAC_SUB_VECTOR *rsv) { struct net_local *tp = netdev_priv(dev); if(rsv->svl != S_AUTHORIZED_FUNCTION_CLASS) return (E_SUB_VECTOR_LENGTH_ERROR); tp->authorized_function_classes = (rsv->svv[0] << 8 | rsv->svv[1]); return (POSITIVE_ACK); } static int smctr_set_corr(struct net_device *dev, MAC_SUB_VECTOR *rsv, __u16 *correlator) { if(rsv->svl != S_CORRELATOR) return (E_SUB_VECTOR_LENGTH_ERROR); *correlator = (rsv->svv[0] << 8 | rsv->svv[1]); return (POSITIVE_ACK); } static int smctr_set_error_timer_value(struct net_device *dev, MAC_SUB_VECTOR *rsv) { __u16 err_tval; int err; if(rsv->svl != S_ERROR_TIMER_VALUE) return (E_SUB_VECTOR_LENGTH_ERROR); err_tval = (rsv->svv[0] << 8 | rsv->svv[1])*10; smctr_issue_write_word_cmd(dev, RW_TER_THRESHOLD, &err_tval); if((err = smctr_wait_cmd(dev))) return (err); return (POSITIVE_ACK); } static int smctr_set_frame_forward(struct net_device *dev, MAC_SUB_VECTOR *rsv, __u8 dc_sc) { if((rsv->svl < 2) || (rsv->svl > S_FRAME_FORWARD)) return (E_SUB_VECTOR_LENGTH_ERROR); if((dc_sc & DC_MASK) != DC_CRS) { if(rsv->svl >= 2 && rsv->svl < 20) return (E_TRANSMIT_FORWARD_INVALID); if((rsv->svv[0] != 0) || (rsv->svv[1] != 0)) return (E_TRANSMIT_FORWARD_INVALID); } return (POSITIVE_ACK); } static int smctr_set_local_ring_num(struct net_device *dev, MAC_SUB_VECTOR *rsv) { struct net_local *tp = netdev_priv(dev); if(rsv->svl != S_LOCAL_RING_NUMBER) return (E_SUB_VECTOR_LENGTH_ERROR); if(tp->ptr_local_ring_num) *(__u16 *)(tp->ptr_local_ring_num) = (rsv->svv[0] << 8 | rsv->svv[1]); return (POSITIVE_ACK); } static unsigned short smctr_set_ctrl_attention(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int ioaddr = dev->base_addr; if(tp->bic_type == BIC_585_CHIP) outb((tp->trc_mask | HWR_CA), ioaddr + HWR); else { outb((tp->trc_mask | CSR_CA), ioaddr + CSR); outb(tp->trc_mask, ioaddr + CSR); } return (0); } static void smctr_set_multicast_list(struct net_device *dev) { if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_set_multicast_list\n", dev->name); return; } static int smctr_set_page(struct net_device *dev, __u8 *buf) { struct net_local *tp = netdev_priv(dev); __u8 amask; __u32 tptr; tptr = (__u32)buf - (__u32)tp->ram_access; amask = (__u8)((tptr & PR_PAGE_MASK) >> 8); outb(amask, dev->base_addr + PR); return (0); } static int smctr_set_phy_drop(struct net_device *dev, MAC_SUB_VECTOR *rsv) { int err; if(rsv->svl != S_PHYSICAL_DROP) return (E_SUB_VECTOR_LENGTH_ERROR); smctr_issue_write_byte_cmd(dev, RW_PHYSICAL_DROP_NUMBER, &rsv->svv[0]); if((err = smctr_wait_cmd(dev))) return (err); return (POSITIVE_ACK); } /* Reset the ring speed to the opposite of what it was. This auto-pilot * mode requires a complete reset and re-init of the adapter. */ static int smctr_set_ring_speed(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); int err; if(tp->media_type == MEDIA_UTP_16) tp->media_type = MEDIA_UTP_4; else tp->media_type = MEDIA_UTP_16; smctr_enable_16bit(dev); /* Re-Initialize adapter's internal registers */ smctr_reset_adapter(dev); if((err = smctr_init_card_real(dev))) return (err); smctr_enable_bic_int(dev); if((err = smctr_issue_enable_int_cmd(dev, TRC_INTERRUPT_ENABLE_MASK))) return (err); smctr_disable_16bit(dev); return (0); } static int smctr_set_rx_look_ahead(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); __u16 sword, rword; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_set_rx_look_ahead_flag\n", dev->name); tp->adapter_flags &= ~(FORCED_16BIT_MODE); tp->adapter_flags |= RX_VALID_LOOKAHEAD; if(tp->adapter_bus == BUS_ISA16_TYPE) { sword = *((__u16 *)(tp->ram_access)); *((__u16 *)(tp->ram_access)) = 0x1234; smctr_disable_16bit(dev); rword = *((__u16 *)(tp->ram_access)); smctr_enable_16bit(dev); if(rword != 0x1234) tp->adapter_flags |= FORCED_16BIT_MODE; *((__u16 *)(tp->ram_access)) = sword; } return (0); } static int smctr_set_trc_reset(int ioaddr) { __u8 r; r = inb(ioaddr + MSR); outb(MSR_RST | r, ioaddr + MSR); return (0); } /* * This function can be called if the adapter is busy or not. */ static int smctr_setup_single_cmd(struct net_device *dev, __u16 command, __u16 subcommand) { struct net_local *tp = netdev_priv(dev); unsigned int err; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_setup_single_cmd\n", dev->name); if((err = smctr_wait_while_cbusy(dev))) return (err); if((err = (unsigned int)smctr_wait_cmd(dev))) return (err); tp->acb_head->cmd_done_status = 0; tp->acb_head->cmd = command; tp->acb_head->subcmd = subcommand; err = smctr_issue_resume_acb_cmd(dev); return (err); } /* * This function can not be called with the adapter busy. */ static int smctr_setup_single_cmd_w_data(struct net_device *dev, __u16 command, __u16 subcommand) { struct net_local *tp = netdev_priv(dev); tp->acb_head->cmd_done_status = ACB_COMMAND_NOT_DONE; tp->acb_head->cmd = command; tp->acb_head->subcmd = subcommand; tp->acb_head->data_offset_lo = (__u16)TRC_POINTER(tp->misc_command_data); return(smctr_issue_resume_acb_cmd(dev)); } static char *smctr_malloc(struct net_device *dev, __u16 size) { struct net_local *tp = netdev_priv(dev); char *m; m = (char *)(tp->ram_access + tp->sh_mem_used); tp->sh_mem_used += (__u32)size; return (m); } static int smctr_status_chg(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_status_chg\n", dev->name); switch(tp->status) { case OPEN: break; case CLOSED: break; /* Interrupt driven open() completion. XXX */ case INITIALIZED: tp->group_address_0 = 0; tp->group_address[0] = 0; tp->group_address[1] = 0; tp->functional_address_0 = 0; tp->functional_address[0] = 0; tp->functional_address[1] = 0; smctr_open_tr(dev); break; default: printk(KERN_INFO "%s: status change unknown %x\n", dev->name, tp->status); break; } return (0); } static int smctr_trc_send_packet(struct net_device *dev, FCBlock *fcb, __u16 queue) { struct net_local *tp = netdev_priv(dev); int err = 0; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_trc_send_packet\n", dev->name); fcb->info = FCB_CHAIN_END | FCB_ENABLE_TFS; if(tp->num_tx_fcbs[queue] != 1) fcb->back_ptr->info = FCB_INTERRUPT_ENABLE | FCB_ENABLE_TFS; if(tp->tx_queue_status[queue] == NOT_TRANSMITING) { tp->tx_queue_status[queue] = TRANSMITING; err = smctr_issue_resume_tx_fcb_cmd(dev, queue); } return (err); } static __u16 smctr_tx_complete(struct net_device *dev, __u16 queue) { struct net_local *tp = netdev_priv(dev); __u16 status, err = 0; int cstatus; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_tx_complete\n", dev->name); while((status = tp->tx_fcb_end[queue]->frame_status) != SUCCESS) { if(status & 0x7e00 ) { err = HARDWARE_FAILED; break; } if((err = smctr_update_tx_chain(dev, tp->tx_fcb_end[queue], queue)) != SUCCESS) break; smctr_disable_16bit(dev); if(tp->mode_bits & UMAC) { if(!(status & (FCB_TX_STATUS_AR1 | FCB_TX_STATUS_AR2))) cstatus = NO_SUCH_DESTINATION; else { if(!(status & (FCB_TX_STATUS_CR1 | FCB_TX_STATUS_CR2))) cstatus = DEST_OUT_OF_RESOURCES; else { if(status & FCB_TX_STATUS_E) cstatus = MAX_COLLISIONS; else cstatus = SUCCESS; } } } else cstatus = SUCCESS; if(queue == BUG_QUEUE) err = SUCCESS; smctr_enable_16bit(dev); if(err != SUCCESS) break; } return (err); } static unsigned short smctr_tx_move_frame(struct net_device *dev, struct sk_buff *skb, __u8 *pbuff, unsigned int bytes) { struct net_local *tp = netdev_priv(dev); unsigned int ram_usable; __u32 flen, len, offset = 0; __u8 *frag, *page; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_tx_move_frame\n", dev->name); ram_usable = ((unsigned int)tp->ram_usable) << 10; frag = skb->data; flen = skb->len; while(flen > 0 && bytes > 0) { smctr_set_page(dev, pbuff); offset = SMC_PAGE_OFFSET(pbuff); if(offset + flen > ram_usable) len = ram_usable - offset; else len = flen; if(len > bytes) len = bytes; page = (char *) (offset + tp->ram_access); memcpy(page, frag, len); flen -=len; bytes -= len; frag += len; pbuff += len; } return (0); } /* Update the error statistic counters for this adapter. */ static int smctr_update_err_stats(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); struct tr_statistics *tstat = &tp->MacStat; if(tstat->internal_errors) tstat->internal_errors += *(tp->misc_command_data + 0) & 0x00ff; if(tstat->line_errors) tstat->line_errors += *(tp->misc_command_data + 0) >> 8; if(tstat->A_C_errors) tstat->A_C_errors += *(tp->misc_command_data + 1) & 0x00ff; if(tstat->burst_errors) tstat->burst_errors += *(tp->misc_command_data + 1) >> 8; if(tstat->abort_delimiters) tstat->abort_delimiters += *(tp->misc_command_data + 2) >> 8; if(tstat->recv_congest_count) tstat->recv_congest_count += *(tp->misc_command_data + 3) & 0x00ff; if(tstat->lost_frames) tstat->lost_frames += *(tp->misc_command_data + 3) >> 8; if(tstat->frequency_errors) tstat->frequency_errors += *(tp->misc_command_data + 4) & 0x00ff; if(tstat->frame_copied_errors) tstat->frame_copied_errors += *(tp->misc_command_data + 4) >> 8; if(tstat->token_errors) tstat->token_errors += *(tp->misc_command_data + 5) >> 8; return (0); } static int smctr_update_rx_chain(struct net_device *dev, __u16 queue) { struct net_local *tp = netdev_priv(dev); FCBlock *fcb; BDBlock *bdb; __u16 size, len; fcb = tp->rx_fcb_curr[queue]; len = fcb->frame_length; fcb->frame_status = 0; fcb->info = FCB_CHAIN_END; fcb->back_ptr->info = FCB_WARNING; tp->rx_fcb_curr[queue] = tp->rx_fcb_curr[queue]->next_ptr; /* update RX BDBs */ size = (len >> RX_BDB_SIZE_SHIFT); if(len & RX_DATA_BUFFER_SIZE_MASK) size += sizeof(BDBlock); size &= (~RX_BDB_SIZE_MASK); /* check if wrap around */ bdb = (BDBlock *)((__u32)(tp->rx_bdb_curr[queue]) + (__u32)(size)); if((__u32)bdb >= (__u32)tp->rx_bdb_end[queue]) { bdb = (BDBlock *)((__u32)(tp->rx_bdb_head[queue]) + (__u32)(bdb) - (__u32)(tp->rx_bdb_end[queue])); } bdb->back_ptr->info = BDB_CHAIN_END; tp->rx_bdb_curr[queue]->back_ptr->info = BDB_NOT_CHAIN_END; tp->rx_bdb_curr[queue] = bdb; return (0); } static int smctr_update_tx_chain(struct net_device *dev, FCBlock *fcb, __u16 queue) { struct net_local *tp = netdev_priv(dev); if(smctr_debug > 20) printk(KERN_DEBUG "smctr_update_tx_chain\n"); if(tp->num_tx_fcbs_used[queue] <= 0) return (HARDWARE_FAILED); else { if(tp->tx_buff_used[queue] < fcb->memory_alloc) { tp->tx_buff_used[queue] = 0; return (HARDWARE_FAILED); } tp->tx_buff_used[queue] -= fcb->memory_alloc; /* if all transmit buffer are cleared * need to set the tx_buff_curr[] to tx_buff_head[] * otherwise, tx buffer will be segregate and cannot * accommodate and buffer greater than (curr - head) and * (end - curr) since we do not allow wrap around allocation. */ if(tp->tx_buff_used[queue] == 0) tp->tx_buff_curr[queue] = tp->tx_buff_head[queue]; tp->num_tx_fcbs_used[queue]--; fcb->frame_status = 0; tp->tx_fcb_end[queue] = fcb->next_ptr; netif_wake_queue(dev); return (0); } } static int smctr_wait_cmd(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int loop_count = 0x20000; if(smctr_debug > 10) printk(KERN_DEBUG "%s: smctr_wait_cmd\n", dev->name); while(loop_count) { if(tp->acb_head->cmd_done_status & ACB_COMMAND_DONE) break; udelay(1); loop_count--; } if(loop_count == 0) return(HARDWARE_FAILED); if(tp->acb_head->cmd_done_status & 0xff) return(HARDWARE_FAILED); return (0); } static int smctr_wait_while_cbusy(struct net_device *dev) { struct net_local *tp = netdev_priv(dev); unsigned int timeout = 0x20000; int ioaddr = dev->base_addr; __u8 r; if(tp->bic_type == BIC_585_CHIP) { while(timeout) { r = inb(ioaddr + HWR); if((r & HWR_CBUSY) == 0) break; timeout--; } } else { while(timeout) { r = inb(ioaddr + CSR); if((r & CSR_CBUSY) == 0) break; timeout--; } } if(timeout) return (0); else return (HARDWARE_FAILED); } #ifdef MODULE static struct net_device* dev_smctr[SMCTR_MAX_ADAPTERS]; static int io[SMCTR_MAX_ADAPTERS]; static int irq[SMCTR_MAX_ADAPTERS]; MODULE_LICENSE("GPL"); MODULE_FIRMWARE("tr_smctr.bin"); module_param_array(io, int, NULL, 0); module_param_array(irq, int, NULL, 0); module_param(ringspeed, int, 0); static struct net_device * __init setup_card(int n) { struct net_device *dev = alloc_trdev(sizeof(struct net_local)); int err; if (!dev) return ERR_PTR(-ENOMEM); dev->irq = irq[n]; err = smctr_probe1(dev, io[n]); if (err) goto out; err = register_netdev(dev); if (err) goto out1; return dev; out1: #ifdef CONFIG_MCA_LEGACY { struct net_local *tp = netdev_priv(dev); if (tp->slot_num) mca_mark_as_unused(tp->slot_num); } #endif release_region(dev->base_addr, SMCTR_IO_EXTENT); free_irq(dev->irq, dev); out: free_netdev(dev); return ERR_PTR(err); } int __init init_module(void) { int i, found = 0; struct net_device *dev; for(i = 0; i < SMCTR_MAX_ADAPTERS; i++) { dev = io[0]? setup_card(i) : smctr_probe(-1); if (!IS_ERR(dev)) { ++found; dev_smctr[i] = dev; } } return found ? 0 : -ENODEV; } void __exit cleanup_module(void) { int i; for(i = 0; i < SMCTR_MAX_ADAPTERS; i++) { struct net_device *dev = dev_smctr[i]; if (dev) { unregister_netdev(dev); #ifdef CONFIG_MCA_LEGACY { struct net_local *tp = netdev_priv(dev); if (tp->slot_num) mca_mark_as_unused(tp->slot_num); } #endif release_region(dev->base_addr, SMCTR_IO_EXTENT); if (dev->irq) free_irq(dev->irq, dev); free_netdev(dev); } } } #endif /* MODULE */