/* * 3c359.c (c) 2000 Mike Phillips (mikep@linuxtr.net) All Rights Reserved * * Linux driver for 3Com 3c359 Tokenlink Velocity XL PCI NIC * * Base Driver Olympic: * Written 1999 Peter De Schrijver & Mike Phillips * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * 7/17/00 - Clean up, version number 0.9.0. Ready to release to the world. * * 2/16/01 - Port up to kernel 2.4.2 ready for submission into the kernel. * 3/05/01 - Last clean up stuff before submission. * 2/15/01 - Finally, update to new pci api. * * To Do: */ /* * Technical Card Details * * All access to data is done with 16/8 bit transfers. The transfer * method really sucks. You can only read or write one location at a time. * * Also, the microcode for the card must be uploaded if the card does not have * the flashrom on board. This is a 28K bloat in the driver when compiled * as a module. * * Rx is very simple, status into a ring of descriptors, dma data transfer, * interrupts to tell us when a packet is received. * * Tx is a little more interesting. Similar scenario, descriptor and dma data * transfers, but we don't have to interrupt the card to tell it another packet * is ready for transmission, we are just doing simple memory writes, not io or mmio * writes. The card can be set up to simply poll on the next * descriptor pointer and when this value is non-zero will automatically download * the next packet. The card then interrupts us when the packet is done. * */ #define XL_DEBUG 0 #include <linux/jiffies.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/timer.h> #include <linux/in.h> #include <linux/ioport.h> #include <linux/string.h> #include <linux/proc_fs.h> #include <linux/ptrace.h> #include <linux/skbuff.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/trdevice.h> #include <linux/stddef.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/spinlock.h> #include <linux/bitops.h> #include <linux/firmware.h> #include <linux/slab.h> #include <net/checksum.h> #include <asm/io.h> #include <asm/system.h> #include "3c359.h" static char version[] __devinitdata = "3c359.c v1.2.0 2/17/01 - Mike Phillips (mikep@linuxtr.net)" ; #define FW_NAME "3com/3C359.bin" MODULE_AUTHOR("Mike Phillips <mikep@linuxtr.net>") ; MODULE_DESCRIPTION("3Com 3C359 Velocity XL Token Ring Adapter Driver\n") ; MODULE_FIRMWARE(FW_NAME); /* Module parameters */ /* Ring Speed 0,4,16 * 0 = Autosense * 4,16 = Selected speed only, no autosense * This allows the card to be the first on the ring * and become the active monitor. * * WARNING: Some hubs will allow you to insert * at the wrong speed. * * The adapter will _not_ fail to open if there are no * active monitors on the ring, it will simply open up in * its last known ringspeed if no ringspeed is specified. */ static int ringspeed[XL_MAX_ADAPTERS] = {0,} ; module_param_array(ringspeed, int, NULL, 0); MODULE_PARM_DESC(ringspeed,"3c359: Ringspeed selection - 4,16 or 0") ; /* Packet buffer size */ static int pkt_buf_sz[XL_MAX_ADAPTERS] = {0,} ; module_param_array(pkt_buf_sz, int, NULL, 0) ; MODULE_PARM_DESC(pkt_buf_sz,"3c359: Initial buffer size") ; /* Message Level */ static int message_level[XL_MAX_ADAPTERS] = {0,} ; module_param_array(message_level, int, NULL, 0) ; MODULE_PARM_DESC(message_level, "3c359: Level of reported messages") ; /* * This is a real nasty way of doing this, but otherwise you * will be stuck with 1555 lines of hex #'s in the code. */ static DEFINE_PCI_DEVICE_TABLE(xl_pci_tbl) = { {PCI_VENDOR_ID_3COM,PCI_DEVICE_ID_3COM_3C359, PCI_ANY_ID, PCI_ANY_ID, }, { } /* terminate list */ }; MODULE_DEVICE_TABLE(pci,xl_pci_tbl) ; static int xl_init(struct net_device *dev); static int xl_open(struct net_device *dev); static int xl_open_hw(struct net_device *dev) ; static int xl_hw_reset(struct net_device *dev); static netdev_tx_t xl_xmit(struct sk_buff *skb, struct net_device *dev); static void xl_dn_comp(struct net_device *dev); static int xl_close(struct net_device *dev); static void xl_set_rx_mode(struct net_device *dev); static irqreturn_t xl_interrupt(int irq, void *dev_id); static int xl_set_mac_address(struct net_device *dev, void *addr) ; static void xl_arb_cmd(struct net_device *dev); static void xl_asb_cmd(struct net_device *dev) ; static void xl_srb_cmd(struct net_device *dev, int srb_cmd) ; static void xl_wait_misr_flags(struct net_device *dev) ; static int xl_change_mtu(struct net_device *dev, int mtu); static void xl_srb_bh(struct net_device *dev) ; static void xl_asb_bh(struct net_device *dev) ; static void xl_reset(struct net_device *dev) ; static void xl_freemem(struct net_device *dev) ; /* EEProm Access Functions */ static u16 xl_ee_read(struct net_device *dev, int ee_addr) ; static void xl_ee_write(struct net_device *dev, int ee_addr, u16 ee_value) ; /* Debugging functions */ #if XL_DEBUG static void print_tx_state(struct net_device *dev) ; static void print_rx_state(struct net_device *dev) ; static void print_tx_state(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); struct xl_tx_desc *txd ; u8 __iomem *xl_mmio = xl_priv->xl_mmio ; int i ; printk("tx_ring_head: %d, tx_ring_tail: %d, free_ent: %d\n",xl_priv->tx_ring_head, xl_priv->tx_ring_tail, xl_priv->free_ring_entries) ; printk("Ring , Address , FSH , DnNextPtr, Buffer, Buffer_Len\n"); for (i = 0; i < 16; i++) { txd = &(xl_priv->xl_tx_ring[i]) ; printk("%d, %08lx, %08x, %08x, %08x, %08x\n", i, virt_to_bus(txd), txd->framestartheader, txd->dnnextptr, txd->buffer, txd->buffer_length ) ; } printk("DNLISTPTR = %04x\n", readl(xl_mmio + MMIO_DNLISTPTR) ); printk("DmaCtl = %04x\n", readl(xl_mmio + MMIO_DMA_CTRL) ); printk("Queue status = %0x\n",netif_running(dev) ) ; } static void print_rx_state(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); struct xl_rx_desc *rxd ; u8 __iomem *xl_mmio = xl_priv->xl_mmio ; int i ; printk("rx_ring_tail: %d\n", xl_priv->rx_ring_tail); printk("Ring , Address , FrameState , UPNextPtr, FragAddr, Frag_Len\n"); for (i = 0; i < 16; i++) { /* rxd = (struct xl_rx_desc *)xl_priv->rx_ring_dma_addr + (i * sizeof(struct xl_rx_desc)) ; */ rxd = &(xl_priv->xl_rx_ring[i]) ; printk("%d, %08lx, %08x, %08x, %08x, %08x\n", i, virt_to_bus(rxd), rxd->framestatus, rxd->upnextptr, rxd->upfragaddr, rxd->upfraglen ) ; } printk("UPLISTPTR = %04x\n", readl(xl_mmio + MMIO_UPLISTPTR)); printk("DmaCtl = %04x\n", readl(xl_mmio + MMIO_DMA_CTRL)); printk("Queue status = %0x\n",netif_running(dev)); } #endif /* * Read values from the on-board EEProm. This looks very strange * but you have to wait for the EEProm to get/set the value before * passing/getting the next value from the nic. As with all requests * on this nic it has to be done in two stages, a) tell the nic which * memory address you want to access and b) pass/get the value from the nic. * With the EEProm, you have to wait before and inbetween access a) and b). * As this is only read at initialization time and the wait period is very * small we shouldn't have to worry about scheduling issues. */ static u16 xl_ee_read(struct net_device *dev, int ee_addr) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem *xl_mmio = xl_priv->xl_mmio ; /* Wait for EEProm to not be busy */ writel(IO_WORD_READ | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while ( readw(xl_mmio + MMIO_MACDATA) & EEBUSY ) ; /* Tell EEProm what we want to do and where */ writel(IO_WORD_WRITE | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(EEREAD + ee_addr, xl_mmio + MMIO_MACDATA) ; /* Wait for EEProm to not be busy */ writel(IO_WORD_READ | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while ( readw(xl_mmio + MMIO_MACDATA) & EEBUSY ) ; /* Tell EEProm what we want to do and where */ writel(IO_WORD_WRITE | EECONTROL , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(EEREAD + ee_addr, xl_mmio + MMIO_MACDATA) ; /* Finally read the value from the EEProm */ writel(IO_WORD_READ | EEDATA , xl_mmio + MMIO_MAC_ACCESS_CMD) ; return readw(xl_mmio + MMIO_MACDATA) ; } /* * Write values to the onboard eeprom. As with eeprom read you need to * set which location to write, wait, value to write, wait, with the * added twist of having to enable eeprom writes as well. */ static void xl_ee_write(struct net_device *dev, int ee_addr, u16 ee_value) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem *xl_mmio = xl_priv->xl_mmio ; /* Wait for EEProm to not be busy */ writel(IO_WORD_READ | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while ( readw(xl_mmio + MMIO_MACDATA) & EEBUSY ) ; /* Enable write/erase */ writel(IO_WORD_WRITE | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(EE_ENABLE_WRITE, xl_mmio + MMIO_MACDATA) ; /* Wait for EEProm to not be busy */ writel(IO_WORD_READ | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while ( readw(xl_mmio + MMIO_MACDATA) & EEBUSY ) ; /* Put the value we want to write into EEDATA */ writel(IO_WORD_WRITE | EEDATA, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(ee_value, xl_mmio + MMIO_MACDATA) ; /* Tell EEProm to write eevalue into ee_addr */ writel(IO_WORD_WRITE | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(EEWRITE + ee_addr, xl_mmio + MMIO_MACDATA) ; /* Wait for EEProm to not be busy, to ensure write gets done */ writel(IO_WORD_READ | EECONTROL, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while ( readw(xl_mmio + MMIO_MACDATA) & EEBUSY ) ; return ; } static const struct net_device_ops xl_netdev_ops = { .ndo_open = xl_open, .ndo_stop = xl_close, .ndo_start_xmit = xl_xmit, .ndo_change_mtu = xl_change_mtu, .ndo_set_multicast_list = xl_set_rx_mode, .ndo_set_mac_address = xl_set_mac_address, }; static int __devinit xl_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev ; struct xl_private *xl_priv ; static int card_no = -1 ; int i ; card_no++ ; if (pci_enable_device(pdev)) { return -ENODEV ; } pci_set_master(pdev); if ((i = pci_request_regions(pdev,"3c359"))) { return i ; } ; /* * Allowing init_trdev to allocate the private data will align * xl_private on a 32 bytes boundary which we need for the rx/tx * descriptors */ dev = alloc_trdev(sizeof(struct xl_private)) ; if (!dev) { pci_release_regions(pdev) ; return -ENOMEM ; } xl_priv = netdev_priv(dev); #if XL_DEBUG printk("pci_device: %p, dev:%p, dev->priv: %p, ba[0]: %10x, ba[1]:%10x\n", pdev, dev, netdev_priv(dev), (unsigned int)pdev->resource[0].start, (unsigned int)pdev->resource[1].start); #endif dev->irq=pdev->irq; dev->base_addr=pci_resource_start(pdev,0) ; xl_priv->xl_card_name = pci_name(pdev); xl_priv->xl_mmio=ioremap(pci_resource_start(pdev,1), XL_IO_SPACE); xl_priv->pdev = pdev ; if ((pkt_buf_sz[card_no] < 100) || (pkt_buf_sz[card_no] > 18000) ) xl_priv->pkt_buf_sz = PKT_BUF_SZ ; else xl_priv->pkt_buf_sz = pkt_buf_sz[card_no] ; dev->mtu = xl_priv->pkt_buf_sz - TR_HLEN ; xl_priv->xl_ring_speed = ringspeed[card_no] ; xl_priv->xl_message_level = message_level[card_no] ; xl_priv->xl_functional_addr[0] = xl_priv->xl_functional_addr[1] = xl_priv->xl_functional_addr[2] = xl_priv->xl_functional_addr[3] = 0 ; xl_priv->xl_copy_all_options = 0 ; if((i = xl_init(dev))) { iounmap(xl_priv->xl_mmio) ; free_netdev(dev) ; pci_release_regions(pdev) ; return i ; } dev->netdev_ops = &xl_netdev_ops; SET_NETDEV_DEV(dev, &pdev->dev); pci_set_drvdata(pdev,dev) ; if ((i = register_netdev(dev))) { printk(KERN_ERR "3C359, register netdev failed\n") ; pci_set_drvdata(pdev,NULL) ; iounmap(xl_priv->xl_mmio) ; free_netdev(dev) ; pci_release_regions(pdev) ; return i ; } printk(KERN_INFO "3C359: %s registered as: %s\n",xl_priv->xl_card_name,dev->name) ; return 0; } static int xl_init_firmware(struct xl_private *xl_priv) { int err; err = request_firmware(&xl_priv->fw, FW_NAME, &xl_priv->pdev->dev); if (err) { printk(KERN_ERR "Failed to load firmware \"%s\"\n", FW_NAME); return err; } if (xl_priv->fw->size < 16) { printk(KERN_ERR "Bogus length %zu in \"%s\"\n", xl_priv->fw->size, FW_NAME); release_firmware(xl_priv->fw); err = -EINVAL; } return err; } static int __devinit xl_init(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); int err; printk(KERN_INFO "%s\n", version); printk(KERN_INFO "%s: I/O at %hx, MMIO at %p, using irq %d\n", xl_priv->xl_card_name, (unsigned int)dev->base_addr ,xl_priv->xl_mmio, dev->irq); spin_lock_init(&xl_priv->xl_lock) ; err = xl_init_firmware(xl_priv); if (err == 0) err = xl_hw_reset(dev); return err; } /* * Hardware reset. This needs to be a separate entity as we need to reset the card * when we change the EEProm settings. */ static int xl_hw_reset(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem *xl_mmio = xl_priv->xl_mmio ; unsigned long t ; u16 i ; u16 result_16 ; u8 result_8 ; u16 start ; int j ; if (xl_priv->fw == NULL) return -EINVAL; /* * Reset the card. If the card has got the microcode on board, we have * missed the initialization interrupt, so we must always do this. */ writew( GLOBAL_RESET, xl_mmio + MMIO_COMMAND ) ; /* * Must wait for cmdInProgress bit (12) to clear before continuing with * card configuration. */ t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 40 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL card not responding to global reset.\n", dev->name); return -ENODEV; } } /* * Enable pmbar by setting bit in CPAttention */ writel( (IO_BYTE_READ | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; result_8 = readb(xl_mmio + MMIO_MACDATA) ; result_8 = result_8 | CPA_PMBARVIS ; writel( (IO_BYTE_WRITE | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(result_8, xl_mmio + MMIO_MACDATA) ; /* * Read cpHold bit in pmbar, if cleared we have got Flashrom on board. * If not, we need to upload the microcode to the card */ writel( (IO_WORD_READ | PMBAR),xl_mmio + MMIO_MAC_ACCESS_CMD); #if XL_DEBUG printk(KERN_INFO "Read from PMBAR = %04x\n", readw(xl_mmio + MMIO_MACDATA)); #endif if ( readw( (xl_mmio + MMIO_MACDATA)) & PMB_CPHOLD ) { /* Set PmBar, privateMemoryBase bits (8:2) to 0 */ writel( (IO_WORD_READ | PMBAR),xl_mmio + MMIO_MAC_ACCESS_CMD); result_16 = readw(xl_mmio + MMIO_MACDATA) ; result_16 = result_16 & ~((0x7F) << 2) ; writel( (IO_WORD_WRITE | PMBAR), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(result_16,xl_mmio + MMIO_MACDATA) ; /* Set CPAttention, memWrEn bit */ writel( (IO_BYTE_READ | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; result_8 = readb(xl_mmio + MMIO_MACDATA) ; result_8 = result_8 | CPA_MEMWREN ; writel( (IO_BYTE_WRITE | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(result_8, xl_mmio + MMIO_MACDATA) ; /* * Now to write the microcode into the shared ram * The microcode must finish at position 0xFFFF, * so we must subtract to get the start position for the code * * Looks strange but ensures compiler only uses * 16 bit unsigned int */ start = (0xFFFF - (xl_priv->fw->size) + 1) ; printk(KERN_INFO "3C359: Uploading Microcode: "); for (i = start, j = 0; j < xl_priv->fw->size; i++, j++) { writel(MEM_BYTE_WRITE | 0XD0000 | i, xl_mmio + MMIO_MAC_ACCESS_CMD); writeb(xl_priv->fw->data[j], xl_mmio + MMIO_MACDATA); if (j % 1024 == 0) printk("."); } printk("\n") ; for (i = 0; i < 16; i++) { writel((MEM_BYTE_WRITE | 0xDFFF0) + i, xl_mmio + MMIO_MAC_ACCESS_CMD); writeb(xl_priv->fw->data[xl_priv->fw->size - 16 + i], xl_mmio + MMIO_MACDATA); } /* * Have to write the start address of the upload to FFF4, but * the address must be >> 4. You do not want to know how long * it took me to discover this. */ writel(MEM_WORD_WRITE | 0xDFFF4, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(start >> 4, xl_mmio + MMIO_MACDATA); /* Clear the CPAttention, memWrEn Bit */ writel( (IO_BYTE_READ | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; result_8 = readb(xl_mmio + MMIO_MACDATA) ; result_8 = result_8 & ~CPA_MEMWREN ; writel( (IO_BYTE_WRITE | CPATTENTION), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(result_8, xl_mmio + MMIO_MACDATA) ; /* Clear the cpHold bit in pmbar */ writel( (IO_WORD_READ | PMBAR),xl_mmio + MMIO_MAC_ACCESS_CMD); result_16 = readw(xl_mmio + MMIO_MACDATA) ; result_16 = result_16 & ~PMB_CPHOLD ; writel( (IO_WORD_WRITE | PMBAR), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(result_16,xl_mmio + MMIO_MACDATA) ; } /* If microcode upload required */ /* * The card should now go though a self test procedure and get itself ready * to be opened, we must wait for an srb response with the initialization * information. */ #if XL_DEBUG printk(KERN_INFO "%s: Microcode uploaded, must wait for the self test to complete\n", dev->name); #endif writew(SETINDENABLE | 0xFFF, xl_mmio + MMIO_COMMAND) ; t=jiffies; while ( !(readw(xl_mmio + MMIO_INTSTATUS_AUTO) & INTSTAT_SRB) ) { schedule(); if (time_after(jiffies, t + 15 * HZ)) { printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); return -ENODEV; } } /* * Write the RxBufArea with D000, RxEarlyThresh, TxStartThresh, * DnPriReqThresh, read the tech docs if you want to know what * values they need to be. */ writel(MMIO_WORD_WRITE | RXBUFAREA, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(0xD000, xl_mmio + MMIO_MACDATA) ; writel(MMIO_WORD_WRITE | RXEARLYTHRESH, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(0X0020, xl_mmio + MMIO_MACDATA) ; writew( SETTXSTARTTHRESH | 0x40 , xl_mmio + MMIO_COMMAND) ; writeb(0x04, xl_mmio + MMIO_DNBURSTTHRESH) ; writeb(0x04, xl_mmio + DNPRIREQTHRESH) ; /* * Read WRBR to provide the location of the srb block, have to use byte reads not word reads. * Tech docs have this wrong !!!! */ writel(MMIO_BYTE_READ | WRBR, xl_mmio + MMIO_MAC_ACCESS_CMD) ; xl_priv->srb = readb(xl_mmio + MMIO_MACDATA) << 8 ; writel( (MMIO_BYTE_READ | WRBR) + 1, xl_mmio + MMIO_MAC_ACCESS_CMD) ; xl_priv->srb = xl_priv->srb | readb(xl_mmio + MMIO_MACDATA) ; #if XL_DEBUG writel(IO_WORD_READ | SWITCHSETTINGS, xl_mmio + MMIO_MAC_ACCESS_CMD) ; if ( readw(xl_mmio + MMIO_MACDATA) & 2) { printk(KERN_INFO "Default ring speed 4 mbps\n"); } else { printk(KERN_INFO "Default ring speed 16 mbps\n"); } printk(KERN_INFO "%s: xl_priv->srb = %04x\n",xl_priv->xl_card_name, xl_priv->srb); #endif return 0; } static int xl_open(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); u8 __iomem *xl_mmio = xl_priv->xl_mmio ; u8 i ; __le16 hwaddr[3] ; /* Should be u8[6] but we get word return values */ int open_err ; u16 switchsettings, switchsettings_eeprom ; if (request_irq(dev->irq, xl_interrupt, IRQF_SHARED , "3c359", dev)) return -EAGAIN; /* * Read the information from the EEPROM that we need. */ hwaddr[0] = cpu_to_le16(xl_ee_read(dev,0x10)); hwaddr[1] = cpu_to_le16(xl_ee_read(dev,0x11)); hwaddr[2] = cpu_to_le16(xl_ee_read(dev,0x12)); /* Ring speed */ switchsettings_eeprom = xl_ee_read(dev,0x08) ; switchsettings = switchsettings_eeprom ; if (xl_priv->xl_ring_speed != 0) { if (xl_priv->xl_ring_speed == 4) switchsettings = switchsettings | 0x02 ; else switchsettings = switchsettings & ~0x02 ; } /* Only write EEProm if there has been a change */ if (switchsettings != switchsettings_eeprom) { xl_ee_write(dev,0x08,switchsettings) ; /* Hardware reset after changing EEProm */ xl_hw_reset(dev) ; } memcpy(dev->dev_addr,hwaddr,dev->addr_len) ; open_err = xl_open_hw(dev) ; /* * This really needs to be cleaned up with better error reporting. */ if (open_err != 0) { /* Something went wrong with the open command */ if (open_err & 0x07) { /* Wrong speed, retry at different speed */ printk(KERN_WARNING "%s: Open Error, retrying at different ringspeed\n", dev->name); switchsettings = switchsettings ^ 2 ; xl_ee_write(dev,0x08,switchsettings) ; xl_hw_reset(dev) ; open_err = xl_open_hw(dev) ; if (open_err != 0) { printk(KERN_WARNING "%s: Open error returned a second time, we're bombing out now\n", dev->name); free_irq(dev->irq,dev) ; return -ENODEV ; } } else { printk(KERN_WARNING "%s: Open Error = %04x\n", dev->name, open_err) ; free_irq(dev->irq,dev) ; return -ENODEV ; } } /* * Now to set up the Rx and Tx buffer structures */ /* These MUST be on 8 byte boundaries */ xl_priv->xl_tx_ring = kzalloc((sizeof(struct xl_tx_desc) * XL_TX_RING_SIZE) + 7, GFP_DMA | GFP_KERNEL); if (xl_priv->xl_tx_ring == NULL) { printk(KERN_WARNING "%s: Not enough memory to allocate tx buffers.\n", dev->name); free_irq(dev->irq,dev); return -ENOMEM; } xl_priv->xl_rx_ring = kzalloc((sizeof(struct xl_rx_desc) * XL_RX_RING_SIZE) +7, GFP_DMA | GFP_KERNEL); if (xl_priv->xl_rx_ring == NULL) { printk(KERN_WARNING "%s: Not enough memory to allocate rx buffers.\n", dev->name); free_irq(dev->irq,dev); kfree(xl_priv->xl_tx_ring); return -ENOMEM; } /* Setup Rx Ring */ for (i=0 ; i < XL_RX_RING_SIZE ; i++) { struct sk_buff *skb ; skb = dev_alloc_skb(xl_priv->pkt_buf_sz) ; if (skb==NULL) break ; skb->dev = dev ; xl_priv->xl_rx_ring[i].upfragaddr = cpu_to_le32(pci_map_single(xl_priv->pdev, skb->data,xl_priv->pkt_buf_sz, PCI_DMA_FROMDEVICE)); xl_priv->xl_rx_ring[i].upfraglen = cpu_to_le32(xl_priv->pkt_buf_sz) | RXUPLASTFRAG; xl_priv->rx_ring_skb[i] = skb ; } if (i==0) { printk(KERN_WARNING "%s: Not enough memory to allocate rx buffers. Adapter disabled\n",dev->name); free_irq(dev->irq,dev) ; kfree(xl_priv->xl_tx_ring); kfree(xl_priv->xl_rx_ring); return -EIO ; } xl_priv->rx_ring_no = i ; xl_priv->rx_ring_tail = 0 ; xl_priv->rx_ring_dma_addr = pci_map_single(xl_priv->pdev,xl_priv->xl_rx_ring, sizeof(struct xl_rx_desc) * XL_RX_RING_SIZE, PCI_DMA_TODEVICE) ; for (i=0;i<(xl_priv->rx_ring_no-1);i++) { xl_priv->xl_rx_ring[i].upnextptr = cpu_to_le32(xl_priv->rx_ring_dma_addr + (sizeof (struct xl_rx_desc) * (i+1))); } xl_priv->xl_rx_ring[i].upnextptr = 0 ; writel(xl_priv->rx_ring_dma_addr, xl_mmio + MMIO_UPLISTPTR) ; /* Setup Tx Ring */ xl_priv->tx_ring_dma_addr = pci_map_single(xl_priv->pdev,xl_priv->xl_tx_ring, sizeof(struct xl_tx_desc) * XL_TX_RING_SIZE,PCI_DMA_TODEVICE) ; xl_priv->tx_ring_head = 1 ; xl_priv->tx_ring_tail = 255 ; /* Special marker for first packet */ xl_priv->free_ring_entries = XL_TX_RING_SIZE ; /* * Setup the first dummy DPD entry for polling to start working. */ xl_priv->xl_tx_ring[0].framestartheader = TXDPDEMPTY; xl_priv->xl_tx_ring[0].buffer = 0 ; xl_priv->xl_tx_ring[0].buffer_length = 0 ; xl_priv->xl_tx_ring[0].dnnextptr = 0 ; writel(xl_priv->tx_ring_dma_addr, xl_mmio + MMIO_DNLISTPTR) ; writel(DNUNSTALL, xl_mmio + MMIO_COMMAND) ; writel(UPUNSTALL, xl_mmio + MMIO_COMMAND) ; writel(DNENABLE, xl_mmio + MMIO_COMMAND) ; writeb(0x40, xl_mmio + MMIO_DNPOLL) ; /* * Enable interrupts on the card */ writel(SETINTENABLE | INT_MASK, xl_mmio + MMIO_COMMAND) ; writel(SETINDENABLE | INT_MASK, xl_mmio + MMIO_COMMAND) ; netif_start_queue(dev) ; return 0; } static int xl_open_hw(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); u8 __iomem *xl_mmio = xl_priv->xl_mmio ; u16 vsoff ; char ver_str[33]; int open_err ; int i ; unsigned long t ; /* * Okay, let's build up the Open.NIC srb command * */ writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb), xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(OPEN_NIC, xl_mmio + MMIO_MACDATA) ; /* * Use this as a test byte, if it comes back with the same value, the command didn't work */ writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb)+ 2, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0xff,xl_mmio + MMIO_MACDATA) ; /* Open options */ writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb) + 8, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0x00, xl_mmio + MMIO_MACDATA) ; writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb) + 9, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0x00, xl_mmio + MMIO_MACDATA) ; /* * Node address, be careful here, the docs say you can just put zeros here and it will use * the hardware address, it doesn't, you must include the node address in the open command. */ if (xl_priv->xl_laa[0]) { /* If using a LAA address */ for (i=10;i<16;i++) { writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb) + i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(xl_priv->xl_laa[i-10],xl_mmio + MMIO_MACDATA) ; } memcpy(dev->dev_addr,xl_priv->xl_laa,dev->addr_len) ; } else { /* Regular hardware address */ for (i=10;i<16;i++) { writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb) + i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(dev->dev_addr[i-10], xl_mmio + MMIO_MACDATA) ; } } /* Default everything else to 0 */ for (i = 16; i < 34; i++) { writel( (MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb) + i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0x00,xl_mmio + MMIO_MACDATA) ; } /* * Set the csrb bit in the MISR register */ xl_wait_misr_flags(dev) ; writel(MEM_BYTE_WRITE | MF_CSRB, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0xFF, xl_mmio + MMIO_MACDATA) ; writel(MMIO_BYTE_WRITE | MISR_SET, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(MISR_CSRB , xl_mmio + MMIO_MACDATA) ; /* * Now wait for the command to run */ t=jiffies; while (! (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) { schedule(); if (time_after(jiffies, t + 40 * HZ)) { printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); break ; } } /* * Let's interpret the open response */ writel( (MEM_BYTE_READ | 0xD0000 | xl_priv->srb)+2, xl_mmio + MMIO_MAC_ACCESS_CMD) ; if (readb(xl_mmio + MMIO_MACDATA)!=0) { open_err = readb(xl_mmio + MMIO_MACDATA) << 8 ; writel( (MEM_BYTE_READ | 0xD0000 | xl_priv->srb) + 7, xl_mmio + MMIO_MAC_ACCESS_CMD) ; open_err |= readb(xl_mmio + MMIO_MACDATA) ; return open_err ; } else { writel( (MEM_WORD_READ | 0xD0000 | xl_priv->srb) + 8, xl_mmio + MMIO_MAC_ACCESS_CMD) ; xl_priv->asb = swab16(readw(xl_mmio + MMIO_MACDATA)) ; printk(KERN_INFO "%s: Adapter Opened Details: ",dev->name) ; printk("ASB: %04x",xl_priv->asb ) ; writel( (MEM_WORD_READ | 0xD0000 | xl_priv->srb) + 10, xl_mmio + MMIO_MAC_ACCESS_CMD) ; printk(", SRB: %04x",swab16(readw(xl_mmio + MMIO_MACDATA)) ) ; writel( (MEM_WORD_READ | 0xD0000 | xl_priv->srb) + 12, xl_mmio + MMIO_MAC_ACCESS_CMD) ; xl_priv->arb = swab16(readw(xl_mmio + MMIO_MACDATA)) ; printk(", ARB: %04x\n",xl_priv->arb ); writel( (MEM_WORD_READ | 0xD0000 | xl_priv->srb) + 14, xl_mmio + MMIO_MAC_ACCESS_CMD) ; vsoff = swab16(readw(xl_mmio + MMIO_MACDATA)) ; /* * Interesting, sending the individual characters directly to printk was causing klogd to use * use 100% of processor time, so we build up the string and print that instead. */ for (i=0;i<0x20;i++) { writel( (MEM_BYTE_READ | 0xD0000 | vsoff) + i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; ver_str[i] = readb(xl_mmio + MMIO_MACDATA) ; } ver_str[i] = '\0' ; printk(KERN_INFO "%s: Microcode version String: %s\n",dev->name,ver_str); } /* * Issue the AckInterrupt */ writew(ACK_INTERRUPT | SRBRACK | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; return 0 ; } /* * There are two ways of implementing rx on the 359 NIC, either * interrupt driven or polling. We are going to uses interrupts, * it is the easier way of doing things. * * The Rx works with a ring of Rx descriptors. At initialise time the ring * entries point to the next entry except for the last entry in the ring * which points to 0. The card is programmed with the location of the first * available descriptor and keeps reading the next_ptr until next_ptr is set * to 0. Hopefully with a ring size of 16 the card will never get to read a next_ptr * of 0. As the Rx interrupt is received we copy the frame up to the protocol layers * and then point the end of the ring to our current position and point our current * position to 0, therefore making the current position the last position on the ring. * The last position on the ring therefore loops continually loops around the rx ring. * * rx_ring_tail is the position on the ring to process next. (Think of a snake, the head * expands as the card adds new packets and we go around eating the tail processing the * packets.) * * Undoubtably it could be streamlined and improved upon, but at the moment it works * and the fast path through the routine is fine. * * adv_rx_ring could be inlined to increase performance, but its called a *lot* of times * in xl_rx so would increase the size of the function significantly. */ static void adv_rx_ring(struct net_device *dev) /* Advance rx_ring, cut down on bloat in xl_rx */ { struct xl_private *xl_priv=netdev_priv(dev); int n = xl_priv->rx_ring_tail; int prev_ring_loc; prev_ring_loc = (n + XL_RX_RING_SIZE - 1) & (XL_RX_RING_SIZE - 1); xl_priv->xl_rx_ring[prev_ring_loc].upnextptr = cpu_to_le32(xl_priv->rx_ring_dma_addr + (sizeof (struct xl_rx_desc) * n)); xl_priv->xl_rx_ring[n].framestatus = 0; xl_priv->xl_rx_ring[n].upnextptr = 0; xl_priv->rx_ring_tail++; xl_priv->rx_ring_tail &= (XL_RX_RING_SIZE-1); } static void xl_rx(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; struct sk_buff *skb, *skb2 ; int frame_length = 0, copy_len = 0 ; int temp_ring_loc ; /* * Receive the next frame, loop around the ring until all frames * have been received. */ while (xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].framestatus & (RXUPDCOMPLETE | RXUPDFULL) ) { /* Descriptor to process */ if (xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].framestatus & RXUPDFULL ) { /* UpdFull, Multiple Descriptors used for the frame */ /* * This is a pain, you need to go through all the descriptors until the last one * for this frame to find the framelength */ temp_ring_loc = xl_priv->rx_ring_tail ; while (xl_priv->xl_rx_ring[temp_ring_loc].framestatus & RXUPDFULL ) { temp_ring_loc++ ; temp_ring_loc &= (XL_RX_RING_SIZE-1) ; } frame_length = le32_to_cpu(xl_priv->xl_rx_ring[temp_ring_loc].framestatus) & 0x7FFF; skb = dev_alloc_skb(frame_length) ; if (skb==NULL) { /* No memory for frame, still need to roll forward the rx ring */ printk(KERN_WARNING "%s: dev_alloc_skb failed - multi buffer !\n", dev->name) ; while (xl_priv->rx_ring_tail != temp_ring_loc) adv_rx_ring(dev) ; adv_rx_ring(dev) ; /* One more time just for luck :) */ dev->stats.rx_dropped++ ; writel(ACK_INTERRUPT | UPCOMPACK | LATCH_ACK , xl_mmio + MMIO_COMMAND) ; return ; } while (xl_priv->rx_ring_tail != temp_ring_loc) { copy_len = le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfraglen) & 0x7FFF; frame_length -= copy_len ; pci_dma_sync_single_for_cpu(xl_priv->pdev,le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr),xl_priv->pkt_buf_sz,PCI_DMA_FROMDEVICE); skb_copy_from_linear_data(xl_priv->rx_ring_skb[xl_priv->rx_ring_tail], skb_put(skb, copy_len), copy_len); pci_dma_sync_single_for_device(xl_priv->pdev,le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr),xl_priv->pkt_buf_sz,PCI_DMA_FROMDEVICE); adv_rx_ring(dev) ; } /* Now we have found the last fragment */ pci_dma_sync_single_for_cpu(xl_priv->pdev,le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr),xl_priv->pkt_buf_sz,PCI_DMA_FROMDEVICE); skb_copy_from_linear_data(xl_priv->rx_ring_skb[xl_priv->rx_ring_tail], skb_put(skb,copy_len), frame_length); /* memcpy(skb_put(skb,frame_length), bus_to_virt(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr), frame_length) ; */ pci_dma_sync_single_for_device(xl_priv->pdev,le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr),xl_priv->pkt_buf_sz,PCI_DMA_FROMDEVICE); adv_rx_ring(dev) ; skb->protocol = tr_type_trans(skb,dev) ; netif_rx(skb) ; } else { /* Single Descriptor Used, simply swap buffers over, fast path */ frame_length = le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].framestatus) & 0x7FFF; skb = dev_alloc_skb(xl_priv->pkt_buf_sz) ; if (skb==NULL) { /* Still need to fix the rx ring */ printk(KERN_WARNING "%s: dev_alloc_skb failed in rx, single buffer\n",dev->name); adv_rx_ring(dev) ; dev->stats.rx_dropped++ ; writel(ACK_INTERRUPT | UPCOMPACK | LATCH_ACK , xl_mmio + MMIO_COMMAND) ; return ; } skb2 = xl_priv->rx_ring_skb[xl_priv->rx_ring_tail] ; pci_unmap_single(xl_priv->pdev, le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr), xl_priv->pkt_buf_sz,PCI_DMA_FROMDEVICE) ; skb_put(skb2, frame_length) ; skb2->protocol = tr_type_trans(skb2,dev) ; xl_priv->rx_ring_skb[xl_priv->rx_ring_tail] = skb ; xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr = cpu_to_le32(pci_map_single(xl_priv->pdev,skb->data,xl_priv->pkt_buf_sz, PCI_DMA_FROMDEVICE)); xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfraglen = cpu_to_le32(xl_priv->pkt_buf_sz) | RXUPLASTFRAG; adv_rx_ring(dev) ; dev->stats.rx_packets++ ; dev->stats.rx_bytes += frame_length ; netif_rx(skb2) ; } /* if multiple buffers */ } /* while packet to do */ /* Clear the updComplete interrupt */ writel(ACK_INTERRUPT | UPCOMPACK | LATCH_ACK , xl_mmio + MMIO_COMMAND) ; return ; } /* * This is ruthless, it doesn't care what state the card is in it will * completely reset the adapter. */ static void xl_reset(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; unsigned long t; writew( GLOBAL_RESET, xl_mmio + MMIO_COMMAND ) ; /* * Must wait for cmdInProgress bit (12) to clear before continuing with * card configuration. */ t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { if (time_after(jiffies, t + 40 * HZ)) { printk(KERN_ERR "3COM 3C359 Velocity XL card not responding.\n"); break ; } } } static void xl_freemem(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); int i ; for (i=0;i<XL_RX_RING_SIZE;i++) { dev_kfree_skb_irq(xl_priv->rx_ring_skb[xl_priv->rx_ring_tail]) ; pci_unmap_single(xl_priv->pdev,le32_to_cpu(xl_priv->xl_rx_ring[xl_priv->rx_ring_tail].upfragaddr),xl_priv->pkt_buf_sz, PCI_DMA_FROMDEVICE); xl_priv->rx_ring_tail++ ; xl_priv->rx_ring_tail &= XL_RX_RING_SIZE-1; } /* unmap ring */ pci_unmap_single(xl_priv->pdev,xl_priv->rx_ring_dma_addr, sizeof(struct xl_rx_desc) * XL_RX_RING_SIZE, PCI_DMA_FROMDEVICE) ; pci_unmap_single(xl_priv->pdev,xl_priv->tx_ring_dma_addr, sizeof(struct xl_tx_desc) * XL_TX_RING_SIZE, PCI_DMA_TODEVICE) ; kfree(xl_priv->xl_rx_ring) ; kfree(xl_priv->xl_tx_ring) ; return ; } static irqreturn_t xl_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct xl_private *xl_priv =netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; u16 intstatus, macstatus ; intstatus = readw(xl_mmio + MMIO_INTSTATUS) ; if (!(intstatus & 1)) /* We didn't generate the interrupt */ return IRQ_NONE; spin_lock(&xl_priv->xl_lock) ; /* * Process the interrupt */ /* * Something fishy going on here, we shouldn't get 0001 ints, not fatal though. */ if (intstatus == 0x0001) { writel(ACK_INTERRUPT | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; printk(KERN_INFO "%s: 00001 int received\n",dev->name); } else { if (intstatus & (HOSTERRINT | SRBRINT | ARBCINT | UPCOMPINT | DNCOMPINT | HARDERRINT | (1<<8) | TXUNDERRUN | ASBFINT)) { /* * Host Error. * It may be possible to recover from this, but usually it means something * is seriously fubar, so we just close the adapter. */ if (intstatus & HOSTERRINT) { printk(KERN_WARNING "%s: Host Error, performing global reset, intstatus = %04x\n",dev->name,intstatus); writew( GLOBAL_RESET, xl_mmio + MMIO_COMMAND ) ; printk(KERN_WARNING "%s: Resetting hardware:\n", dev->name); netif_stop_queue(dev) ; xl_freemem(dev) ; free_irq(dev->irq,dev); xl_reset(dev) ; writel(ACK_INTERRUPT | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; spin_unlock(&xl_priv->xl_lock) ; return IRQ_HANDLED; } /* Host Error */ if (intstatus & SRBRINT ) { /* Srbc interrupt */ writel(ACK_INTERRUPT | SRBRACK | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; if (xl_priv->srb_queued) xl_srb_bh(dev) ; } /* SRBR Interrupt */ if (intstatus & TXUNDERRUN) { /* Issue DnReset command */ writel(DNRESET, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { /* Wait for command to run */ /* !!! FIX-ME !!!! Must put a timeout check here ! */ /* Empty Loop */ } printk(KERN_WARNING "%s: TX Underrun received\n",dev->name); writel(ACK_INTERRUPT | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; } /* TxUnderRun */ if (intstatus & ARBCINT ) { /* Arbc interrupt */ xl_arb_cmd(dev) ; } /* Arbc */ if (intstatus & ASBFINT) { if (xl_priv->asb_queued == 1) { xl_asb_cmd(dev) ; } else if (xl_priv->asb_queued == 2) { xl_asb_bh(dev) ; } else { writel(ACK_INTERRUPT | LATCH_ACK | ASBFACK, xl_mmio + MMIO_COMMAND) ; } } /* Asbf */ if (intstatus & UPCOMPINT ) /* UpComplete */ xl_rx(dev) ; if (intstatus & DNCOMPINT ) /* DnComplete */ xl_dn_comp(dev) ; if (intstatus & HARDERRINT ) { /* Hardware error */ writel(MMIO_WORD_READ | MACSTATUS, xl_mmio + MMIO_MAC_ACCESS_CMD) ; macstatus = readw(xl_mmio + MMIO_MACDATA) ; printk(KERN_WARNING "%s: MacStatusError, details: ", dev->name); if (macstatus & (1<<14)) printk(KERN_WARNING "tchk error: Unrecoverable error\n"); if (macstatus & (1<<3)) printk(KERN_WARNING "eint error: Internal watchdog timer expired\n"); if (macstatus & (1<<2)) printk(KERN_WARNING "aint error: Host tried to perform invalid operation\n"); printk(KERN_WARNING "Instatus = %02x, macstatus = %02x\n",intstatus,macstatus) ; printk(KERN_WARNING "%s: Resetting hardware:\n", dev->name); netif_stop_queue(dev) ; xl_freemem(dev) ; free_irq(dev->irq,dev); unregister_netdev(dev) ; free_netdev(dev) ; xl_reset(dev) ; writel(ACK_INTERRUPT | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; spin_unlock(&xl_priv->xl_lock) ; return IRQ_HANDLED; } } else { printk(KERN_WARNING "%s: Received Unknown interrupt : %04x\n", dev->name, intstatus); writel(ACK_INTERRUPT | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; } } /* Turn interrupts back on */ writel( SETINDENABLE | INT_MASK, xl_mmio + MMIO_COMMAND) ; writel( SETINTENABLE | INT_MASK, xl_mmio + MMIO_COMMAND) ; spin_unlock(&xl_priv->xl_lock) ; return IRQ_HANDLED; } /* * Tx - Polling configuration */ static netdev_tx_t xl_xmit(struct sk_buff *skb, struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); struct xl_tx_desc *txd ; int tx_head, tx_tail, tx_prev ; unsigned long flags ; spin_lock_irqsave(&xl_priv->xl_lock,flags) ; netif_stop_queue(dev) ; if (xl_priv->free_ring_entries > 1 ) { /* * Set up the descriptor for the packet */ tx_head = xl_priv->tx_ring_head ; tx_tail = xl_priv->tx_ring_tail ; txd = &(xl_priv->xl_tx_ring[tx_head]) ; txd->dnnextptr = 0 ; txd->framestartheader = cpu_to_le32(skb->len) | TXDNINDICATE; txd->buffer = cpu_to_le32(pci_map_single(xl_priv->pdev, skb->data, skb->len, PCI_DMA_TODEVICE)); txd->buffer_length = cpu_to_le32(skb->len) | TXDNFRAGLAST; xl_priv->tx_ring_skb[tx_head] = skb ; dev->stats.tx_packets++ ; dev->stats.tx_bytes += skb->len ; /* * Set the nextptr of the previous descriptor equal to this descriptor, add XL_TX_RING_SIZE -1 * to ensure no negative numbers in unsigned locations. */ tx_prev = (xl_priv->tx_ring_head + XL_TX_RING_SIZE - 1) & (XL_TX_RING_SIZE - 1) ; xl_priv->tx_ring_head++ ; xl_priv->tx_ring_head &= (XL_TX_RING_SIZE - 1) ; xl_priv->free_ring_entries-- ; xl_priv->xl_tx_ring[tx_prev].dnnextptr = cpu_to_le32(xl_priv->tx_ring_dma_addr + (sizeof (struct xl_tx_desc) * tx_head)); /* Sneaky, by doing a read on DnListPtr we can force the card to poll on the DnNextPtr */ /* readl(xl_mmio + MMIO_DNLISTPTR) ; */ netif_wake_queue(dev) ; spin_unlock_irqrestore(&xl_priv->xl_lock,flags) ; return NETDEV_TX_OK; } else { spin_unlock_irqrestore(&xl_priv->xl_lock,flags) ; return NETDEV_TX_BUSY; } } /* * The NIC has told us that a packet has been downloaded onto the card, we must * find out which packet it has done, clear the skb and information for the packet * then advance around the ring for all tranmitted packets */ static void xl_dn_comp(struct net_device *dev) { struct xl_private *xl_priv=netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; struct xl_tx_desc *txd ; if (xl_priv->tx_ring_tail == 255) {/* First time */ xl_priv->xl_tx_ring[0].framestartheader = 0 ; xl_priv->xl_tx_ring[0].dnnextptr = 0 ; xl_priv->tx_ring_tail = 1 ; } while (xl_priv->xl_tx_ring[xl_priv->tx_ring_tail].framestartheader & TXDNCOMPLETE ) { txd = &(xl_priv->xl_tx_ring[xl_priv->tx_ring_tail]) ; pci_unmap_single(xl_priv->pdev, le32_to_cpu(txd->buffer), xl_priv->tx_ring_skb[xl_priv->tx_ring_tail]->len, PCI_DMA_TODEVICE); txd->framestartheader = 0 ; txd->buffer = cpu_to_le32(0xdeadbeef); txd->buffer_length = 0 ; dev_kfree_skb_irq(xl_priv->tx_ring_skb[xl_priv->tx_ring_tail]) ; xl_priv->tx_ring_tail++ ; xl_priv->tx_ring_tail &= (XL_TX_RING_SIZE - 1) ; xl_priv->free_ring_entries++ ; } netif_wake_queue(dev) ; writel(ACK_INTERRUPT | DNCOMPACK | LATCH_ACK , xl_mmio + MMIO_COMMAND) ; } /* * Close the adapter properly. * This srb reply cannot be handled from interrupt context as we have * to free the interrupt from the driver. */ static int xl_close(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; unsigned long t ; netif_stop_queue(dev) ; /* * Close the adapter, need to stall the rx and tx queues. */ writew(DNSTALL, xl_mmio + MMIO_COMMAND) ; t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNSTALL not responding.\n", dev->name); break ; } } writew(DNDISABLE, xl_mmio + MMIO_COMMAND) ; t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNDISABLE not responding.\n", dev->name); break ; } } writew(UPSTALL, xl_mmio + MMIO_COMMAND) ; t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPSTALL not responding.\n", dev->name); break ; } } /* Turn off interrupts, we will still get the indication though * so we can trap it */ writel(SETINTENABLE, xl_mmio + MMIO_COMMAND) ; xl_srb_cmd(dev,CLOSE_NIC) ; t=jiffies; while (!(readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_SRB)) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-CLOSENIC not responding.\n", dev->name); break ; } } /* Read the srb response from the adapter */ writel(MEM_BYTE_READ | 0xd0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD); if (readb(xl_mmio + MMIO_MACDATA) != CLOSE_NIC) { printk(KERN_INFO "%s: CLOSE_NIC did not get a CLOSE_NIC response\n",dev->name); } else { writel((MEM_BYTE_READ | 0xd0000 | xl_priv->srb) +2, xl_mmio + MMIO_MAC_ACCESS_CMD) ; if (readb(xl_mmio + MMIO_MACDATA)==0) { printk(KERN_INFO "%s: Adapter has been closed\n",dev->name); writew(ACK_INTERRUPT | SRBRACK | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; xl_freemem(dev) ; free_irq(dev->irq,dev) ; } else { printk(KERN_INFO "%s: Close nic command returned error code %02x\n",dev->name, readb(xl_mmio + MMIO_MACDATA)) ; } } /* Reset the upload and download logic */ writew(UPRESET, xl_mmio + MMIO_COMMAND) ; t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-UPRESET not responding.\n", dev->name); break ; } } writew(DNRESET, xl_mmio + MMIO_COMMAND) ; t=jiffies; while (readw(xl_mmio + MMIO_INTSTATUS) & INTSTAT_CMD_IN_PROGRESS) { schedule(); if (time_after(jiffies, t + 10 * HZ)) { printk(KERN_ERR "%s: 3COM 3C359 Velocity XL-DNRESET not responding.\n", dev->name); break ; } } xl_hw_reset(dev) ; return 0 ; } static void xl_set_rx_mode(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); struct netdev_hw_addr *ha; unsigned char dev_mc_address[4] ; u16 options ; if (dev->flags & IFF_PROMISC) options = 0x0004 ; else options = 0x0000 ; if (options ^ xl_priv->xl_copy_all_options) { /* Changed, must send command */ xl_priv->xl_copy_all_options = options ; xl_srb_cmd(dev, SET_RECEIVE_MODE) ; return ; } dev_mc_address[0] = dev_mc_address[1] = dev_mc_address[2] = dev_mc_address[3] = 0 ; netdev_for_each_mc_addr(ha, dev) { dev_mc_address[0] |= ha->addr[2]; dev_mc_address[1] |= ha->addr[3]; dev_mc_address[2] |= ha->addr[4]; dev_mc_address[3] |= ha->addr[5]; } if (memcmp(xl_priv->xl_functional_addr,dev_mc_address,4) != 0) { /* Options have changed, run the command */ memcpy(xl_priv->xl_functional_addr, dev_mc_address,4) ; xl_srb_cmd(dev, SET_FUNC_ADDRESS) ; } return ; } /* * We issued an srb command and now we must read * the response from the completed command. */ static void xl_srb_bh(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; u8 srb_cmd, ret_code ; int i ; writel(MEM_BYTE_READ | 0xd0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; srb_cmd = readb(xl_mmio + MMIO_MACDATA) ; writel((MEM_BYTE_READ | 0xd0000 | xl_priv->srb) +2, xl_mmio + MMIO_MAC_ACCESS_CMD) ; ret_code = readb(xl_mmio + MMIO_MACDATA) ; /* Ret_code is standard across all commands */ switch (ret_code) { case 1: printk(KERN_INFO "%s: Command: %d - Invalid Command code\n",dev->name,srb_cmd) ; break ; case 4: printk(KERN_INFO "%s: Command: %d - Adapter is closed, must be open for this command\n",dev->name,srb_cmd); break ; case 6: printk(KERN_INFO "%s: Command: %d - Options Invalid for command\n",dev->name,srb_cmd); break ; case 0: /* Successful command execution */ switch (srb_cmd) { case READ_LOG: /* Returns 14 bytes of data from the NIC */ if(xl_priv->xl_message_level) printk(KERN_INFO "%s: READ.LOG 14 bytes of data ",dev->name) ; /* * We still have to read the log even if message_level = 0 and we don't want * to see it */ for (i=0;i<14;i++) { writel(MEM_BYTE_READ | 0xd0000 | xl_priv->srb | i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; if(xl_priv->xl_message_level) printk("%02x:",readb(xl_mmio + MMIO_MACDATA)) ; } printk("\n") ; break ; case SET_FUNC_ADDRESS: if(xl_priv->xl_message_level) printk(KERN_INFO "%s: Functional Address Set\n",dev->name); break ; case CLOSE_NIC: if(xl_priv->xl_message_level) printk(KERN_INFO "%s: Received CLOSE_NIC interrupt in interrupt handler\n",dev->name); break ; case SET_MULTICAST_MODE: if(xl_priv->xl_message_level) printk(KERN_INFO "%s: Multicast options successfully changed\n",dev->name) ; break ; case SET_RECEIVE_MODE: if(xl_priv->xl_message_level) { if (xl_priv->xl_copy_all_options == 0x0004) printk(KERN_INFO "%s: Entering promiscuous mode\n", dev->name); else printk(KERN_INFO "%s: Entering normal receive mode\n",dev->name); } break ; } /* switch */ break ; } /* switch */ return ; } static int xl_set_mac_address (struct net_device *dev, void *addr) { struct sockaddr *saddr = addr ; struct xl_private *xl_priv = netdev_priv(dev); if (netif_running(dev)) { printk(KERN_WARNING "%s: Cannot set mac/laa address while card is open\n", dev->name) ; return -EIO ; } memcpy(xl_priv->xl_laa, saddr->sa_data,dev->addr_len) ; if (xl_priv->xl_message_level) { printk(KERN_INFO "%s: MAC/LAA Set to = %x.%x.%x.%x.%x.%x\n",dev->name, xl_priv->xl_laa[0], xl_priv->xl_laa[1], xl_priv->xl_laa[2], xl_priv->xl_laa[3], xl_priv->xl_laa[4], xl_priv->xl_laa[5]); } return 0 ; } static void xl_arb_cmd(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; u8 arb_cmd ; u16 lan_status, lan_status_diff ; writel( ( MEM_BYTE_READ | 0xD0000 | xl_priv->arb), xl_mmio + MMIO_MAC_ACCESS_CMD) ; arb_cmd = readb(xl_mmio + MMIO_MACDATA) ; if (arb_cmd == RING_STATUS_CHANGE) { /* Ring.Status.Change */ writel( ( (MEM_WORD_READ | 0xD0000 | xl_priv->arb) + 6), xl_mmio + MMIO_MAC_ACCESS_CMD) ; printk(KERN_INFO "%s: Ring Status Change: New Status = %04x\n", dev->name, swab16(readw(xl_mmio + MMIO_MACDATA) )) ; lan_status = swab16(readw(xl_mmio + MMIO_MACDATA)); /* Acknowledge interrupt, this tells nic we are done with the arb */ writel(ACK_INTERRUPT | ARBCACK | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; lan_status_diff = xl_priv->xl_lan_status ^ lan_status ; if (lan_status_diff & (LSC_LWF | LSC_ARW | LSC_FPE | LSC_RR) ) { if (lan_status_diff & LSC_LWF) printk(KERN_WARNING "%s: Short circuit detected on the lobe\n",dev->name); if (lan_status_diff & LSC_ARW) printk(KERN_WARNING "%s: Auto removal error\n",dev->name); if (lan_status_diff & LSC_FPE) printk(KERN_WARNING "%s: FDX Protocol Error\n",dev->name); if (lan_status_diff & LSC_RR) printk(KERN_WARNING "%s: Force remove MAC frame received\n",dev->name); /* Adapter has been closed by the hardware */ netif_stop_queue(dev); xl_freemem(dev) ; free_irq(dev->irq,dev); printk(KERN_WARNING "%s: Adapter has been closed\n", dev->name); } /* If serious error */ if (xl_priv->xl_message_level) { if (lan_status_diff & LSC_SIG_LOSS) printk(KERN_WARNING "%s: No receive signal detected\n", dev->name); if (lan_status_diff & LSC_HARD_ERR) printk(KERN_INFO "%s: Beaconing\n",dev->name); if (lan_status_diff & LSC_SOFT_ERR) printk(KERN_WARNING "%s: Adapter transmitted Soft Error Report Mac Frame\n",dev->name); if (lan_status_diff & LSC_TRAN_BCN) printk(KERN_INFO "%s: We are tranmitting the beacon, aaah\n",dev->name); if (lan_status_diff & LSC_SS) printk(KERN_INFO "%s: Single Station on the ring\n", dev->name); if (lan_status_diff & LSC_RING_REC) printk(KERN_INFO "%s: Ring recovery ongoing\n",dev->name); if (lan_status_diff & LSC_FDX_MODE) printk(KERN_INFO "%s: Operating in FDX mode\n",dev->name); } if (lan_status_diff & LSC_CO) { if (xl_priv->xl_message_level) printk(KERN_INFO "%s: Counter Overflow\n", dev->name); /* Issue READ.LOG command */ xl_srb_cmd(dev, READ_LOG) ; } /* There is no command in the tech docs to issue the read_sr_counters */ if (lan_status_diff & LSC_SR_CO) { if (xl_priv->xl_message_level) printk(KERN_INFO "%s: Source routing counters overflow\n", dev->name); } xl_priv->xl_lan_status = lan_status ; } /* Lan.change.status */ else if ( arb_cmd == RECEIVE_DATA) { /* Received.Data */ #if XL_DEBUG printk(KERN_INFO "Received.Data\n"); #endif writel( ((MEM_WORD_READ | 0xD0000 | xl_priv->arb) + 6), xl_mmio + MMIO_MAC_ACCESS_CMD) ; xl_priv->mac_buffer = swab16(readw(xl_mmio + MMIO_MACDATA)) ; /* Now we are going to be really basic here and not do anything * with the data at all. The tech docs do not give me enough * information to calculate the buffers properly so we're * just going to tell the nic that we've dealt with the frame * anyway. */ /* Acknowledge interrupt, this tells nic we are done with the arb */ writel(ACK_INTERRUPT | ARBCACK | LATCH_ACK, xl_mmio + MMIO_COMMAND) ; /* Is the ASB free ? */ xl_priv->asb_queued = 0 ; writel( ((MEM_BYTE_READ | 0xD0000 | xl_priv->asb) + 2), xl_mmio + MMIO_MAC_ACCESS_CMD) ; if (readb(xl_mmio + MMIO_MACDATA) != 0xff) { xl_priv->asb_queued = 1 ; xl_wait_misr_flags(dev) ; writel(MEM_BYTE_WRITE | MF_ASBFR, xl_mmio + MMIO_MAC_ACCESS_CMD); writeb(0xff, xl_mmio + MMIO_MACDATA) ; writel(MMIO_BYTE_WRITE | MISR_SET, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(MISR_ASBFR, xl_mmio + MMIO_MACDATA) ; return ; /* Drop out and wait for the bottom half to be run */ } xl_asb_cmd(dev) ; } else { printk(KERN_WARNING "%s: Received unknown arb (xl_priv) command: %02x\n",dev->name,arb_cmd); } /* Acknowledge the arb interrupt */ writel(ACK_INTERRUPT | ARBCACK | LATCH_ACK , xl_mmio + MMIO_COMMAND) ; return ; } /* * There is only one asb command, but we can get called from different * places. */ static void xl_asb_cmd(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; if (xl_priv->asb_queued == 1) writel(ACK_INTERRUPT | LATCH_ACK | ASBFACK, xl_mmio + MMIO_COMMAND) ; writel(MEM_BYTE_WRITE | 0xd0000 | xl_priv->asb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0x81, xl_mmio + MMIO_MACDATA) ; writel(MEM_WORD_WRITE | 0xd0000 | xl_priv->asb | 6, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(swab16(xl_priv->mac_buffer), xl_mmio + MMIO_MACDATA) ; xl_wait_misr_flags(dev) ; writel(MEM_BYTE_WRITE | MF_RASB, xl_mmio + MMIO_MAC_ACCESS_CMD); writeb(0xff, xl_mmio + MMIO_MACDATA) ; writel(MMIO_BYTE_WRITE | MISR_SET, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(MISR_RASB, xl_mmio + MMIO_MACDATA) ; xl_priv->asb_queued = 2 ; return ; } /* * This will only get called if there was an error * from the asb cmd. */ static void xl_asb_bh(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; u8 ret_code ; writel(MMIO_BYTE_READ | 0xd0000 | xl_priv->asb | 2, xl_mmio + MMIO_MAC_ACCESS_CMD) ; ret_code = readb(xl_mmio + MMIO_MACDATA) ; switch (ret_code) { case 0x01: printk(KERN_INFO "%s: ASB Command, unrecognized command code\n",dev->name); break ; case 0x26: printk(KERN_INFO "%s: ASB Command, unexpected receive buffer\n", dev->name); break ; case 0x40: printk(KERN_INFO "%s: ASB Command, Invalid Station ID\n", dev->name); break ; } xl_priv->asb_queued = 0 ; writel(ACK_INTERRUPT | LATCH_ACK | ASBFACK, xl_mmio + MMIO_COMMAND) ; return ; } /* * Issue srb commands to the nic */ static void xl_srb_cmd(struct net_device *dev, int srb_cmd) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; switch (srb_cmd) { case READ_LOG: writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(READ_LOG, xl_mmio + MMIO_MACDATA) ; break; case CLOSE_NIC: writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(CLOSE_NIC, xl_mmio + MMIO_MACDATA) ; break ; case SET_RECEIVE_MODE: writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(SET_RECEIVE_MODE, xl_mmio + MMIO_MACDATA) ; writel(MEM_WORD_WRITE | 0xD0000 | xl_priv->srb | 4, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writew(xl_priv->xl_copy_all_options, xl_mmio + MMIO_MACDATA) ; break ; case SET_FUNC_ADDRESS: writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(SET_FUNC_ADDRESS, xl_mmio + MMIO_MACDATA) ; writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb | 6 , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(xl_priv->xl_functional_addr[0], xl_mmio + MMIO_MACDATA) ; writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb | 7 , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(xl_priv->xl_functional_addr[1], xl_mmio + MMIO_MACDATA) ; writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb | 8 , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(xl_priv->xl_functional_addr[2], xl_mmio + MMIO_MACDATA) ; writel(MEM_BYTE_WRITE | 0xD0000 | xl_priv->srb | 9 , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(xl_priv->xl_functional_addr[3], xl_mmio + MMIO_MACDATA) ; break ; } /* switch */ xl_wait_misr_flags(dev) ; /* Write 0xff to the CSRB flag */ writel(MEM_BYTE_WRITE | MF_CSRB , xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0xFF, xl_mmio + MMIO_MACDATA) ; /* Set csrb bit in MISR register to process command */ writel(MMIO_BYTE_WRITE | MISR_SET, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(MISR_CSRB, xl_mmio + MMIO_MACDATA) ; xl_priv->srb_queued = 1 ; return ; } /* * This is nasty, to use the MISR command you have to wait for 6 memory locations * to be zero. This is the way the driver does on other OS'es so we should be ok with * the empty loop. */ static void xl_wait_misr_flags(struct net_device *dev) { struct xl_private *xl_priv = netdev_priv(dev); u8 __iomem * xl_mmio = xl_priv->xl_mmio ; int i ; writel(MMIO_BYTE_READ | MISR_RW, xl_mmio + MMIO_MAC_ACCESS_CMD) ; if (readb(xl_mmio + MMIO_MACDATA) != 0) { /* Misr not clear */ for (i=0; i<6; i++) { writel(MEM_BYTE_READ | 0xDFFE0 | i, xl_mmio + MMIO_MAC_ACCESS_CMD) ; while (readb(xl_mmio + MMIO_MACDATA) != 0 ) {} ; /* Empty Loop */ } } writel(MMIO_BYTE_WRITE | MISR_AND, xl_mmio + MMIO_MAC_ACCESS_CMD) ; writeb(0x80, xl_mmio + MMIO_MACDATA) ; return ; } /* * Change mtu size, this should work the same as olympic */ static int xl_change_mtu(struct net_device *dev, int mtu) { struct xl_private *xl_priv = netdev_priv(dev); u16 max_mtu ; if (xl_priv->xl_ring_speed == 4) max_mtu = 4500 ; else max_mtu = 18000 ; if (mtu > max_mtu) return -EINVAL ; if (mtu < 100) return -EINVAL ; dev->mtu = mtu ; xl_priv->pkt_buf_sz = mtu + TR_HLEN ; return 0 ; } static void __devexit xl_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct xl_private *xl_priv=netdev_priv(dev); release_firmware(xl_priv->fw); unregister_netdev(dev); iounmap(xl_priv->xl_mmio) ; pci_release_regions(pdev) ; pci_set_drvdata(pdev,NULL) ; free_netdev(dev); return ; } static struct pci_driver xl_3c359_driver = { .name = "3c359", .id_table = xl_pci_tbl, .probe = xl_probe, .remove = __devexit_p(xl_remove_one), }; static int __init xl_pci_init (void) { return pci_register_driver(&xl_3c359_driver); } static void __exit xl_pci_cleanup (void) { pci_unregister_driver (&xl_3c359_driver); } module_init(xl_pci_init); module_exit(xl_pci_cleanup); MODULE_LICENSE("GPL") ;