/* * smc911x.c * This is a driver for SMSC's LAN911{5,6,7,8} single-chip Ethernet devices. * * Copyright (C) 2005 Sensoria Corp * Derived from the unified SMC91x driver by Nicolas Pitre * and the smsc911x.c reference driver by SMSC * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Arguments: * watchdog = TX watchdog timeout * tx_fifo_kb = Size of TX FIFO in KB * * History: * 04/16/05 Dustin McIntire Initial version */ static const char version[] = "smc911x.c: v1.0 04-16-2005 by Dustin McIntire <dustin@sensoria.com>\n"; /* Debugging options */ #define ENABLE_SMC_DEBUG_RX 0 #define ENABLE_SMC_DEBUG_TX 0 #define ENABLE_SMC_DEBUG_DMA 0 #define ENABLE_SMC_DEBUG_PKTS 0 #define ENABLE_SMC_DEBUG_MISC 0 #define ENABLE_SMC_DEBUG_FUNC 0 #define SMC_DEBUG_RX ((ENABLE_SMC_DEBUG_RX ? 1 : 0) << 0) #define SMC_DEBUG_TX ((ENABLE_SMC_DEBUG_TX ? 1 : 0) << 1) #define SMC_DEBUG_DMA ((ENABLE_SMC_DEBUG_DMA ? 1 : 0) << 2) #define SMC_DEBUG_PKTS ((ENABLE_SMC_DEBUG_PKTS ? 1 : 0) << 3) #define SMC_DEBUG_MISC ((ENABLE_SMC_DEBUG_MISC ? 1 : 0) << 4) #define SMC_DEBUG_FUNC ((ENABLE_SMC_DEBUG_FUNC ? 1 : 0) << 5) #ifndef SMC_DEBUG #define SMC_DEBUG ( SMC_DEBUG_RX | \ SMC_DEBUG_TX | \ SMC_DEBUG_DMA | \ SMC_DEBUG_PKTS | \ SMC_DEBUG_MISC | \ SMC_DEBUG_FUNC \ ) #endif #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/crc32.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/workqueue.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <asm/io.h> #include <asm/irq.h> #include "smc911x.h" /* * Transmit timeout, default 5 seconds. */ static int watchdog = 5000; module_param(watchdog, int, 0400); MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); static int tx_fifo_kb=8; module_param(tx_fifo_kb, int, 0400); MODULE_PARM_DESC(tx_fifo_kb,"transmit FIFO size in KB (1<x<15)(default=8)"); MODULE_LICENSE("GPL"); /* * The internal workings of the driver. If you are changing anything * here with the SMC stuff, you should have the datasheet and know * what you are doing. */ #define CARDNAME "smc911x" /* * Use power-down feature of the chip */ #define POWER_DOWN 1 /* store this information for the driver.. */ struct smc911x_local { /* * If I have to wait until the DMA is finished and ready to reload a * packet, I will store the skbuff here. Then, the DMA will send it * out and free it. */ struct sk_buff *pending_tx_skb; /* * these are things that the kernel wants me to keep, so users * can find out semi-useless statistics of how well the card is * performing */ struct net_device_stats stats; /* version/revision of the SMC911x chip */ u16 version; u16 revision; /* FIFO sizes */ int tx_fifo_kb; int tx_fifo_size; int rx_fifo_size; int afc_cfg; /* Contains the current active receive/phy mode */ int ctl_rfduplx; int ctl_rspeed; u32 msg_enable; u32 phy_type; struct mii_if_info mii; /* work queue */ struct work_struct phy_configure; int work_pending; int tx_throttle; spinlock_t lock; struct net_device *netdev; #ifdef SMC_USE_DMA /* DMA needs the physical address of the chip */ u_long physaddr; int rxdma; int txdma; int rxdma_active; int txdma_active; struct sk_buff *current_rx_skb; struct sk_buff *current_tx_skb; struct device *dev; #endif }; #if SMC_DEBUG > 0 #define DBG(n, args...) \ do { \ if (SMC_DEBUG & (n)) \ printk(args); \ } while (0) #define PRINTK(args...) printk(args) #else #define DBG(n, args...) do { } while (0) #define PRINTK(args...) printk(KERN_DEBUG args) #endif #if SMC_DEBUG_PKTS > 0 static void PRINT_PKT(u_char *buf, int length) { int i; int remainder; int lines; lines = length / 16; remainder = length % 16; for (i = 0; i < lines ; i ++) { int cur; for (cur = 0; cur < 8; cur++) { u_char a, b; a = *buf++; b = *buf++; printk("%02x%02x ", a, b); } printk("\n"); } for (i = 0; i < remainder/2 ; i++) { u_char a, b; a = *buf++; b = *buf++; printk("%02x%02x ", a, b); } printk("\n"); } #else #define PRINT_PKT(x...) do { } while (0) #endif /* this enables an interrupt in the interrupt mask register */ #define SMC_ENABLE_INT(x) do { \ unsigned int __mask; \ unsigned long __flags; \ spin_lock_irqsave(&lp->lock, __flags); \ __mask = SMC_GET_INT_EN(); \ __mask |= (x); \ SMC_SET_INT_EN(__mask); \ spin_unlock_irqrestore(&lp->lock, __flags); \ } while (0) /* this disables an interrupt from the interrupt mask register */ #define SMC_DISABLE_INT(x) do { \ unsigned int __mask; \ unsigned long __flags; \ spin_lock_irqsave(&lp->lock, __flags); \ __mask = SMC_GET_INT_EN(); \ __mask &= ~(x); \ SMC_SET_INT_EN(__mask); \ spin_unlock_irqrestore(&lp->lock, __flags); \ } while (0) /* * this does a soft reset on the device */ static void smc911x_reset(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned int reg, timeout=0, resets=1; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); /* Take out of PM setting first */ if ((SMC_GET_PMT_CTRL() & PMT_CTRL_READY_) == 0) { /* Write to the bytetest will take out of powerdown */ SMC_SET_BYTE_TEST(0); timeout=10; do { udelay(10); reg = SMC_GET_PMT_CTRL() & PMT_CTRL_READY_; } while ( timeout-- && !reg); if (timeout == 0) { PRINTK("%s: smc911x_reset timeout waiting for PM restore\n", dev->name); return; } } /* Disable all interrupts */ spin_lock_irqsave(&lp->lock, flags); SMC_SET_INT_EN(0); spin_unlock_irqrestore(&lp->lock, flags); while (resets--) { SMC_SET_HW_CFG(HW_CFG_SRST_); timeout=10; do { udelay(10); reg = SMC_GET_HW_CFG(); /* If chip indicates reset timeout then try again */ if (reg & HW_CFG_SRST_TO_) { PRINTK("%s: chip reset timeout, retrying...\n", dev->name); resets++; break; } } while ( timeout-- && (reg & HW_CFG_SRST_)); } if (timeout == 0) { PRINTK("%s: smc911x_reset timeout waiting for reset\n", dev->name); return; } /* make sure EEPROM has finished loading before setting GPIO_CFG */ timeout=1000; while ( timeout-- && (SMC_GET_E2P_CMD() & E2P_CMD_EPC_BUSY_)) { udelay(10); } if (timeout == 0){ PRINTK("%s: smc911x_reset timeout waiting for EEPROM busy\n", dev->name); return; } /* Initialize interrupts */ SMC_SET_INT_EN(0); SMC_ACK_INT(-1); /* Reset the FIFO level and flow control settings */ SMC_SET_HW_CFG((lp->tx_fifo_kb & 0xF) << 16); //TODO: Figure out what appropriate pause time is SMC_SET_FLOW(FLOW_FCPT_ | FLOW_FCEN_); SMC_SET_AFC_CFG(lp->afc_cfg); /* Set to LED outputs */ SMC_SET_GPIO_CFG(0x70070000); /* * Deassert IRQ for 1*10us for edge type interrupts * and drive IRQ pin push-pull */ SMC_SET_IRQ_CFG( (1 << 24) | INT_CFG_IRQ_EN_ | INT_CFG_IRQ_TYPE_ ); /* clear anything saved */ if (lp->pending_tx_skb != NULL) { dev_kfree_skb (lp->pending_tx_skb); lp->pending_tx_skb = NULL; lp->stats.tx_errors++; lp->stats.tx_aborted_errors++; } } /* * Enable Interrupts, Receive, and Transmit */ static void smc911x_enable(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned mask, cfg, cr; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); SMC_SET_MAC_ADDR(dev->dev_addr); /* Enable TX */ cfg = SMC_GET_HW_CFG(); cfg &= HW_CFG_TX_FIF_SZ_ | 0xFFF; cfg |= HW_CFG_SF_; SMC_SET_HW_CFG(cfg); SMC_SET_FIFO_TDA(0xFF); /* Update TX stats on every 64 packets received or every 1 sec */ SMC_SET_FIFO_TSL(64); SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000); spin_lock_irqsave(&lp->lock, flags); SMC_GET_MAC_CR(cr); cr |= MAC_CR_TXEN_ | MAC_CR_HBDIS_; SMC_SET_MAC_CR(cr); SMC_SET_TX_CFG(TX_CFG_TX_ON_); spin_unlock_irqrestore(&lp->lock, flags); /* Add 2 byte padding to start of packets */ SMC_SET_RX_CFG((2<<8) & RX_CFG_RXDOFF_); /* Turn on receiver and enable RX */ if (cr & MAC_CR_RXEN_) DBG(SMC_DEBUG_RX, "%s: Receiver already enabled\n", dev->name); spin_lock_irqsave(&lp->lock, flags); SMC_SET_MAC_CR( cr | MAC_CR_RXEN_ ); spin_unlock_irqrestore(&lp->lock, flags); /* Interrupt on every received packet */ SMC_SET_FIFO_RSA(0x01); SMC_SET_FIFO_RSL(0x00); /* now, enable interrupts */ mask = INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_ | INT_EN_RSFL_EN_ | INT_EN_GPT_INT_EN_ | INT_EN_RXDFH_INT_EN_ | INT_EN_RXE_EN_ | INT_EN_PHY_INT_EN_; if (IS_REV_A(lp->revision)) mask|=INT_EN_RDFL_EN_; else { mask|=INT_EN_RDFO_EN_; } SMC_ENABLE_INT(mask); } /* * this puts the device in an inactive state */ static void smc911x_shutdown(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned cr; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", CARDNAME, __FUNCTION__); /* Disable IRQ's */ SMC_SET_INT_EN(0); /* Turn of Rx and TX */ spin_lock_irqsave(&lp->lock, flags); SMC_GET_MAC_CR(cr); cr &= ~(MAC_CR_TXEN_ | MAC_CR_RXEN_ | MAC_CR_HBDIS_); SMC_SET_MAC_CR(cr); SMC_SET_TX_CFG(TX_CFG_STOP_TX_); spin_unlock_irqrestore(&lp->lock, flags); } static inline void smc911x_drop_pkt(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; unsigned int fifo_count, timeout, reg; DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n", CARDNAME, __FUNCTION__); fifo_count = SMC_GET_RX_FIFO_INF() & 0xFFFF; if (fifo_count <= 4) { /* Manually dump the packet data */ while (fifo_count--) SMC_GET_RX_FIFO(); } else { /* Fast forward through the bad packet */ SMC_SET_RX_DP_CTRL(RX_DP_CTRL_FFWD_BUSY_); timeout=50; do { udelay(10); reg = SMC_GET_RX_DP_CTRL() & RX_DP_CTRL_FFWD_BUSY_; } while ( timeout-- && reg); if (timeout == 0) { PRINTK("%s: timeout waiting for RX fast forward\n", dev->name); } } } /* * This is the procedure to handle the receipt of a packet. * It should be called after checking for packet presence in * the RX status FIFO. It must be called with the spin lock * already held. */ static inline void smc911x_rcv(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; unsigned int pkt_len, status; struct sk_buff *skb; unsigned char *data; DBG(SMC_DEBUG_FUNC | SMC_DEBUG_RX, "%s: --> %s\n", dev->name, __FUNCTION__); status = SMC_GET_RX_STS_FIFO(); DBG(SMC_DEBUG_RX, "%s: Rx pkt len %d status 0x%08x \n", dev->name, (status & 0x3fff0000) >> 16, status & 0xc000ffff); pkt_len = (status & RX_STS_PKT_LEN_) >> 16; if (status & RX_STS_ES_) { /* Deal with a bad packet */ lp->stats.rx_errors++; if (status & RX_STS_CRC_ERR_) lp->stats.rx_crc_errors++; else { if (status & RX_STS_LEN_ERR_) lp->stats.rx_length_errors++; if (status & RX_STS_MCAST_) lp->stats.multicast++; } /* Remove the bad packet data from the RX FIFO */ smc911x_drop_pkt(dev); } else { /* Receive a valid packet */ /* Alloc a buffer with extra room for DMA alignment */ skb=dev_alloc_skb(pkt_len+32); if (unlikely(skb == NULL)) { PRINTK( "%s: Low memory, rcvd packet dropped.\n", dev->name); lp->stats.rx_dropped++; smc911x_drop_pkt(dev); return; } /* Align IP header to 32 bits * Note that the device is configured to add a 2 * byte padding to the packet start, so we really * want to write to the orignal data pointer */ data = skb->data; skb_reserve(skb, 2); skb_put(skb,pkt_len-4); #ifdef SMC_USE_DMA { unsigned int fifo; /* Lower the FIFO threshold if possible */ fifo = SMC_GET_FIFO_INT(); if (fifo & 0xFF) fifo--; DBG(SMC_DEBUG_RX, "%s: Setting RX stat FIFO threshold to %d\n", dev->name, fifo & 0xff); SMC_SET_FIFO_INT(fifo); /* Setup RX DMA */ SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN16_ | ((2<<8) & RX_CFG_RXDOFF_)); lp->rxdma_active = 1; lp->current_rx_skb = skb; SMC_PULL_DATA(data, (pkt_len+2+15) & ~15); /* Packet processing deferred to DMA RX interrupt */ } #else SMC_SET_RX_CFG(RX_CFG_RX_END_ALGN4_ | ((2<<8) & RX_CFG_RXDOFF_)); SMC_PULL_DATA(data, pkt_len+2+3); DBG(SMC_DEBUG_PKTS, "%s: Received packet\n", dev->name,); PRINT_PKT(data, ((pkt_len - 4) <= 64) ? pkt_len - 4 : 64); dev->last_rx = jiffies; skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len-4; #endif } } /* * This is called to actually send a packet to the chip. */ static void smc911x_hardware_send_pkt(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; struct sk_buff *skb; unsigned int cmdA, cmdB, len; unsigned char *buf; unsigned long flags; DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__); BUG_ON(lp->pending_tx_skb == NULL); skb = lp->pending_tx_skb; lp->pending_tx_skb = NULL; /* cmdA {25:24] data alignment [20:16] start offset [10:0] buffer length */ /* cmdB {31:16] pkt tag [10:0] length */ #ifdef SMC_USE_DMA /* 16 byte buffer alignment mode */ buf = (char*)((u32)(skb->data) & ~0xF); len = (skb->len + 0xF + ((u32)skb->data & 0xF)) & ~0xF; cmdA = (1<<24) | (((u32)skb->data & 0xF)<<16) | TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ | skb->len; #else buf = (char*)((u32)skb->data & ~0x3); len = (skb->len + 3 + ((u32)skb->data & 3)) & ~0x3; cmdA = (((u32)skb->data & 0x3) << 16) | TX_CMD_A_INT_FIRST_SEG_ | TX_CMD_A_INT_LAST_SEG_ | skb->len; #endif /* tag is packet length so we can use this in stats update later */ cmdB = (skb->len << 16) | (skb->len & 0x7FF); DBG(SMC_DEBUG_TX, "%s: TX PKT LENGTH 0x%04x (%d) BUF 0x%p CMDA 0x%08x CMDB 0x%08x\n", dev->name, len, len, buf, cmdA, cmdB); SMC_SET_TX_FIFO(cmdA); SMC_SET_TX_FIFO(cmdB); DBG(SMC_DEBUG_PKTS, "%s: Transmitted packet\n", dev->name); PRINT_PKT(buf, len <= 64 ? len : 64); /* Send pkt via PIO or DMA */ #ifdef SMC_USE_DMA lp->current_tx_skb = skb; SMC_PUSH_DATA(buf, len); /* DMA complete IRQ will free buffer and set jiffies */ #else SMC_PUSH_DATA(buf, len); dev->trans_start = jiffies; dev_kfree_skb(skb); #endif spin_lock_irqsave(&lp->lock, flags); if (!lp->tx_throttle) { netif_wake_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); SMC_ENABLE_INT(INT_EN_TDFA_EN_ | INT_EN_TSFL_EN_); } /* * Since I am not sure if I will have enough room in the chip's ram * to store the packet, I call this routine which either sends it * now, or set the card to generates an interrupt when ready * for the packet. */ static int smc911x_hard_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; unsigned int free; unsigned long flags; DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__); BUG_ON(lp->pending_tx_skb != NULL); free = SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TDFREE_; DBG(SMC_DEBUG_TX, "%s: TX free space %d\n", dev->name, free); /* Turn off the flow when running out of space in FIFO */ if (free <= SMC911X_TX_FIFO_LOW_THRESHOLD) { DBG(SMC_DEBUG_TX, "%s: Disabling data flow due to low FIFO space (%d)\n", dev->name, free); spin_lock_irqsave(&lp->lock, flags); /* Reenable when at least 1 packet of size MTU present */ SMC_SET_FIFO_TDA((SMC911X_TX_FIFO_LOW_THRESHOLD)/64); lp->tx_throttle = 1; netif_stop_queue(dev); spin_unlock_irqrestore(&lp->lock, flags); } /* Drop packets when we run out of space in TX FIFO * Account for overhead required for: * * Tx command words 8 bytes * Start offset 15 bytes * End padding 15 bytes */ if (unlikely(free < (skb->len + 8 + 15 + 15))) { printk("%s: No Tx free space %d < %d\n", dev->name, free, skb->len); lp->pending_tx_skb = NULL; lp->stats.tx_errors++; lp->stats.tx_dropped++; dev_kfree_skb(skb); return 0; } #ifdef SMC_USE_DMA { /* If the DMA is already running then defer this packet Tx until * the DMA IRQ starts it */ spin_lock_irqsave(&lp->lock, flags); if (lp->txdma_active) { DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Tx DMA running, deferring packet\n", dev->name); lp->pending_tx_skb = skb; netif_stop_queue(dev); spin_unlock_irqrestore(&lp->lock, flags); return 0; } else { DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: Activating Tx DMA\n", dev->name); lp->txdma_active = 1; } spin_unlock_irqrestore(&lp->lock, flags); } #endif lp->pending_tx_skb = skb; smc911x_hardware_send_pkt(dev); return 0; } /* * This handles a TX status interrupt, which is only called when: * - a TX error occurred, or * - TX of a packet completed. */ static void smc911x_tx(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned int tx_status; DBG(SMC_DEBUG_FUNC | SMC_DEBUG_TX, "%s: --> %s\n", dev->name, __FUNCTION__); /* Collect the TX status */ while (((SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16) != 0) { DBG(SMC_DEBUG_TX, "%s: Tx stat FIFO used 0x%04x\n", dev->name, (SMC_GET_TX_FIFO_INF() & TX_FIFO_INF_TSUSED_) >> 16); tx_status = SMC_GET_TX_STS_FIFO(); lp->stats.tx_packets++; lp->stats.tx_bytes+=tx_status>>16; DBG(SMC_DEBUG_TX, "%s: Tx FIFO tag 0x%04x status 0x%04x\n", dev->name, (tx_status & 0xffff0000) >> 16, tx_status & 0x0000ffff); /* count Tx errors, but ignore lost carrier errors when in * full-duplex mode */ if ((tx_status & TX_STS_ES_) && !(lp->ctl_rfduplx && !(tx_status & 0x00000306))) { lp->stats.tx_errors++; } if (tx_status & TX_STS_MANY_COLL_) { lp->stats.collisions+=16; lp->stats.tx_aborted_errors++; } else { lp->stats.collisions+=(tx_status & TX_STS_COLL_CNT_) >> 3; } /* carrier error only has meaning for half-duplex communication */ if ((tx_status & (TX_STS_LOC_ | TX_STS_NO_CARR_)) && !lp->ctl_rfduplx) { lp->stats.tx_carrier_errors++; } if (tx_status & TX_STS_LATE_COLL_) { lp->stats.collisions++; lp->stats.tx_aborted_errors++; } } } /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/ /* * Reads a register from the MII Management serial interface */ static int smc911x_phy_read(struct net_device *dev, int phyaddr, int phyreg) { unsigned long ioaddr = dev->base_addr; unsigned int phydata; SMC_GET_MII(phyreg, phyaddr, phydata); DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%02x, phydata=0x%04x\n", __FUNCTION__, phyaddr, phyreg, phydata); return phydata; } /* * Writes a register to the MII Management serial interface */ static void smc911x_phy_write(struct net_device *dev, int phyaddr, int phyreg, int phydata) { unsigned long ioaddr = dev->base_addr; DBG(SMC_DEBUG_MISC, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n", __FUNCTION__, phyaddr, phyreg, phydata); SMC_SET_MII(phyreg, phyaddr, phydata); } /* * Finds and reports the PHY address (115 and 117 have external * PHY interface 118 has internal only */ static void smc911x_phy_detect(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); int phyaddr; unsigned int cfg, id1, id2; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); lp->phy_type = 0; /* * Scan all 32 PHY addresses if necessary, starting at * PHY#1 to PHY#31, and then PHY#0 last. */ switch(lp->version) { case 0x115: case 0x117: cfg = SMC_GET_HW_CFG(); if (cfg & HW_CFG_EXT_PHY_DET_) { cfg &= ~HW_CFG_PHY_CLK_SEL_; cfg |= HW_CFG_PHY_CLK_SEL_CLK_DIS_; SMC_SET_HW_CFG(cfg); udelay(10); /* Wait for clocks to stop */ cfg |= HW_CFG_EXT_PHY_EN_; SMC_SET_HW_CFG(cfg); udelay(10); /* Wait for clocks to stop */ cfg &= ~HW_CFG_PHY_CLK_SEL_; cfg |= HW_CFG_PHY_CLK_SEL_EXT_PHY_; SMC_SET_HW_CFG(cfg); udelay(10); /* Wait for clocks to stop */ cfg |= HW_CFG_SMI_SEL_; SMC_SET_HW_CFG(cfg); for (phyaddr = 1; phyaddr < 32; ++phyaddr) { /* Read the PHY identifiers */ SMC_GET_PHY_ID1(phyaddr & 31, id1); SMC_GET_PHY_ID2(phyaddr & 31, id2); /* Make sure it is a valid identifier */ if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 && id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) { /* Save the PHY's address */ lp->mii.phy_id = phyaddr & 31; lp->phy_type = id1 << 16 | id2; break; } } } default: /* Internal media only */ SMC_GET_PHY_ID1(1, id1); SMC_GET_PHY_ID2(1, id2); /* Save the PHY's address */ lp->mii.phy_id = 1; lp->phy_type = id1 << 16 | id2; } DBG(SMC_DEBUG_MISC, "%s: phy_id1=0x%x, phy_id2=0x%x phyaddr=0x%d\n", dev->name, id1, id2, lp->mii.phy_id); } /* * Sets the PHY to a configuration as determined by the user. * Called with spin_lock held. */ static int smc911x_phy_fixed(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int phyaddr = lp->mii.phy_id; int bmcr; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); /* Enter Link Disable state */ SMC_GET_PHY_BMCR(phyaddr, bmcr); bmcr |= BMCR_PDOWN; SMC_SET_PHY_BMCR(phyaddr, bmcr); /* * Set our fixed capabilities * Disable auto-negotiation */ bmcr &= ~BMCR_ANENABLE; if (lp->ctl_rfduplx) bmcr |= BMCR_FULLDPLX; if (lp->ctl_rspeed == 100) bmcr |= BMCR_SPEED100; /* Write our capabilities to the phy control register */ SMC_SET_PHY_BMCR(phyaddr, bmcr); /* Re-Configure the Receive/Phy Control register */ bmcr &= ~BMCR_PDOWN; SMC_SET_PHY_BMCR(phyaddr, bmcr); return 1; } /* * smc911x_phy_reset - reset the phy * @dev: net device * @phy: phy address * * Issue a software reset for the specified PHY and * wait up to 100ms for the reset to complete. We should * not access the PHY for 50ms after issuing the reset. * * The time to wait appears to be dependent on the PHY. * */ static int smc911x_phy_reset(struct net_device *dev, int phy) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int timeout; unsigned long flags; unsigned int reg; DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__); spin_lock_irqsave(&lp->lock, flags); reg = SMC_GET_PMT_CTRL(); reg &= ~0xfffff030; reg |= PMT_CTRL_PHY_RST_; SMC_SET_PMT_CTRL(reg); spin_unlock_irqrestore(&lp->lock, flags); for (timeout = 2; timeout; timeout--) { msleep(50); spin_lock_irqsave(&lp->lock, flags); reg = SMC_GET_PMT_CTRL(); spin_unlock_irqrestore(&lp->lock, flags); if (!(reg & PMT_CTRL_PHY_RST_)) { /* extra delay required because the phy may * not be completed with its reset * when PHY_BCR_RESET_ is cleared. 256us * should suffice, but use 500us to be safe */ udelay(500); break; } } return reg & PMT_CTRL_PHY_RST_; } /* * smc911x_phy_powerdown - powerdown phy * @dev: net device * @phy: phy address * * Power down the specified PHY */ static void smc911x_phy_powerdown(struct net_device *dev, int phy) { unsigned long ioaddr = dev->base_addr; unsigned int bmcr; /* Enter Link Disable state */ SMC_GET_PHY_BMCR(phy, bmcr); bmcr |= BMCR_PDOWN; SMC_SET_PHY_BMCR(phy, bmcr); } /* * smc911x_phy_check_media - check the media status and adjust BMCR * @dev: net device * @init: set true for initialisation * * Select duplex mode depending on negotiation state. This * also updates our carrier state. */ static void smc911x_phy_check_media(struct net_device *dev, int init) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int phyaddr = lp->mii.phy_id; unsigned int bmcr, cr; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) { /* duplex state has changed */ SMC_GET_PHY_BMCR(phyaddr, bmcr); SMC_GET_MAC_CR(cr); if (lp->mii.full_duplex) { DBG(SMC_DEBUG_MISC, "%s: Configuring for full-duplex mode\n", dev->name); bmcr |= BMCR_FULLDPLX; cr |= MAC_CR_RCVOWN_; } else { DBG(SMC_DEBUG_MISC, "%s: Configuring for half-duplex mode\n", dev->name); bmcr &= ~BMCR_FULLDPLX; cr &= ~MAC_CR_RCVOWN_; } SMC_SET_PHY_BMCR(phyaddr, bmcr); SMC_SET_MAC_CR(cr); } } /* * Configures the specified PHY through the MII management interface * using Autonegotiation. * Calls smc911x_phy_fixed() if the user has requested a certain config. * If RPC ANEG bit is set, the media selection is dependent purely on * the selection by the MII (either in the MII BMCR reg or the result * of autonegotiation.) If the RPC ANEG bit is cleared, the selection * is controlled by the RPC SPEED and RPC DPLX bits. */ static void smc911x_phy_configure(struct work_struct *work) { struct smc911x_local *lp = container_of(work, struct smc911x_local, phy_configure); struct net_device *dev = lp->netdev; unsigned long ioaddr = dev->base_addr; int phyaddr = lp->mii.phy_id; int my_phy_caps; /* My PHY capabilities */ int my_ad_caps; /* My Advertised capabilities */ int status; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s()\n", dev->name, __FUNCTION__); /* * We should not be called if phy_type is zero. */ if (lp->phy_type == 0) goto smc911x_phy_configure_exit_nolock; if (smc911x_phy_reset(dev, phyaddr)) { printk("%s: PHY reset timed out\n", dev->name); goto smc911x_phy_configure_exit_nolock; } spin_lock_irqsave(&lp->lock, flags); /* * Enable PHY Interrupts (for register 18) * Interrupts listed here are enabled */ SMC_SET_PHY_INT_MASK(phyaddr, PHY_INT_MASK_ENERGY_ON_ | PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_REMOTE_FAULT_ | PHY_INT_MASK_LINK_DOWN_); /* If the user requested no auto neg, then go set his request */ if (lp->mii.force_media) { smc911x_phy_fixed(dev); goto smc911x_phy_configure_exit; } /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */ SMC_GET_PHY_BMSR(phyaddr, my_phy_caps); if (!(my_phy_caps & BMSR_ANEGCAPABLE)) { printk(KERN_INFO "Auto negotiation NOT supported\n"); smc911x_phy_fixed(dev); goto smc911x_phy_configure_exit; } /* CSMA capable w/ both pauses */ my_ad_caps = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if (my_phy_caps & BMSR_100BASE4) my_ad_caps |= ADVERTISE_100BASE4; if (my_phy_caps & BMSR_100FULL) my_ad_caps |= ADVERTISE_100FULL; if (my_phy_caps & BMSR_100HALF) my_ad_caps |= ADVERTISE_100HALF; if (my_phy_caps & BMSR_10FULL) my_ad_caps |= ADVERTISE_10FULL; if (my_phy_caps & BMSR_10HALF) my_ad_caps |= ADVERTISE_10HALF; /* Disable capabilities not selected by our user */ if (lp->ctl_rspeed != 100) my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF); if (!lp->ctl_rfduplx) my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL); /* Update our Auto-Neg Advertisement Register */ SMC_SET_PHY_MII_ADV(phyaddr, my_ad_caps); lp->mii.advertising = my_ad_caps; /* * Read the register back. Without this, it appears that when * auto-negotiation is restarted, sometimes it isn't ready and * the link does not come up. */ udelay(10); SMC_GET_PHY_MII_ADV(phyaddr, status); DBG(SMC_DEBUG_MISC, "%s: phy caps=0x%04x\n", dev->name, my_phy_caps); DBG(SMC_DEBUG_MISC, "%s: phy advertised caps=0x%04x\n", dev->name, my_ad_caps); /* Restart auto-negotiation process in order to advertise my caps */ SMC_SET_PHY_BMCR(phyaddr, BMCR_ANENABLE | BMCR_ANRESTART); smc911x_phy_check_media(dev, 1); smc911x_phy_configure_exit: spin_unlock_irqrestore(&lp->lock, flags); smc911x_phy_configure_exit_nolock: lp->work_pending = 0; } /* * smc911x_phy_interrupt * * Purpose: Handle interrupts relating to PHY register 18. This is * called from the "hard" interrupt handler under our private spinlock. */ static void smc911x_phy_interrupt(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int phyaddr = lp->mii.phy_id; int status; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); if (lp->phy_type == 0) return; smc911x_phy_check_media(dev, 0); /* read to clear status bits */ SMC_GET_PHY_INT_SRC(phyaddr,status); DBG(SMC_DEBUG_MISC, "%s: PHY interrupt status 0x%04x\n", dev->name, status & 0xffff); DBG(SMC_DEBUG_MISC, "%s: AFC_CFG 0x%08x\n", dev->name, SMC_GET_AFC_CFG()); } /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/ /* * This is the main routine of the driver, to handle the device when * it needs some attention. */ static irqreturn_t smc911x_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned int status, mask, timeout; unsigned int rx_overrun=0, cr, pkts; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); spin_lock_irqsave(&lp->lock, flags); /* Spurious interrupt check */ if ((SMC_GET_IRQ_CFG() & (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) != (INT_CFG_IRQ_INT_ | INT_CFG_IRQ_EN_)) { spin_unlock_irqrestore(&lp->lock, flags); return IRQ_NONE; } mask = SMC_GET_INT_EN(); SMC_SET_INT_EN(0); /* set a timeout value, so I don't stay here forever */ timeout = 8; do { status = SMC_GET_INT(); DBG(SMC_DEBUG_MISC, "%s: INT 0x%08x MASK 0x%08x OUTSIDE MASK 0x%08x\n", dev->name, status, mask, status & ~mask); status &= mask; if (!status) break; /* Handle SW interrupt condition */ if (status & INT_STS_SW_INT_) { SMC_ACK_INT(INT_STS_SW_INT_); mask &= ~INT_EN_SW_INT_EN_; } /* Handle various error conditions */ if (status & INT_STS_RXE_) { SMC_ACK_INT(INT_STS_RXE_); lp->stats.rx_errors++; } if (status & INT_STS_RXDFH_INT_) { SMC_ACK_INT(INT_STS_RXDFH_INT_); lp->stats.rx_dropped+=SMC_GET_RX_DROP(); } /* Undocumented interrupt-what is the right thing to do here? */ if (status & INT_STS_RXDF_INT_) { SMC_ACK_INT(INT_STS_RXDF_INT_); } /* Rx Data FIFO exceeds set level */ if (status & INT_STS_RDFL_) { if (IS_REV_A(lp->revision)) { rx_overrun=1; SMC_GET_MAC_CR(cr); cr &= ~MAC_CR_RXEN_; SMC_SET_MAC_CR(cr); DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name); lp->stats.rx_errors++; lp->stats.rx_fifo_errors++; } SMC_ACK_INT(INT_STS_RDFL_); } if (status & INT_STS_RDFO_) { if (!IS_REV_A(lp->revision)) { SMC_GET_MAC_CR(cr); cr &= ~MAC_CR_RXEN_; SMC_SET_MAC_CR(cr); rx_overrun=1; DBG(SMC_DEBUG_RX, "%s: RX overrun\n", dev->name); lp->stats.rx_errors++; lp->stats.rx_fifo_errors++; } SMC_ACK_INT(INT_STS_RDFO_); } /* Handle receive condition */ if ((status & INT_STS_RSFL_) || rx_overrun) { unsigned int fifo; DBG(SMC_DEBUG_RX, "%s: RX irq\n", dev->name); fifo = SMC_GET_RX_FIFO_INF(); pkts = (fifo & RX_FIFO_INF_RXSUSED_) >> 16; DBG(SMC_DEBUG_RX, "%s: Rx FIFO pkts %d, bytes %d\n", dev->name, pkts, fifo & 0xFFFF ); if (pkts != 0) { #ifdef SMC_USE_DMA unsigned int fifo; if (lp->rxdma_active){ DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA active\n", dev->name); /* The DMA is already running so up the IRQ threshold */ fifo = SMC_GET_FIFO_INT() & ~0xFF; fifo |= pkts & 0xFF; DBG(SMC_DEBUG_RX, "%s: Setting RX stat FIFO threshold to %d\n", dev->name, fifo & 0xff); SMC_SET_FIFO_INT(fifo); } else #endif smc911x_rcv(dev); } SMC_ACK_INT(INT_STS_RSFL_); } /* Handle transmit FIFO available */ if (status & INT_STS_TDFA_) { DBG(SMC_DEBUG_TX, "%s: TX data FIFO space available irq\n", dev->name); SMC_SET_FIFO_TDA(0xFF); lp->tx_throttle = 0; #ifdef SMC_USE_DMA if (!lp->txdma_active) #endif netif_wake_queue(dev); SMC_ACK_INT(INT_STS_TDFA_); } /* Handle transmit done condition */ #if 1 if (status & (INT_STS_TSFL_ | INT_STS_GPT_INT_)) { DBG(SMC_DEBUG_TX | SMC_DEBUG_MISC, "%s: Tx stat FIFO limit (%d) /GPT irq\n", dev->name, (SMC_GET_FIFO_INT() & 0x00ff0000) >> 16); smc911x_tx(dev); SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000); SMC_ACK_INT(INT_STS_TSFL_); SMC_ACK_INT(INT_STS_TSFL_ | INT_STS_GPT_INT_); } #else if (status & INT_STS_TSFL_) { DBG(SMC_DEBUG_TX, "%s: TX status FIFO limit (%d) irq \n", dev->name, ); smc911x_tx(dev); SMC_ACK_INT(INT_STS_TSFL_); } if (status & INT_STS_GPT_INT_) { DBG(SMC_DEBUG_RX, "%s: IRQ_CFG 0x%08x FIFO_INT 0x%08x RX_CFG 0x%08x\n", dev->name, SMC_GET_IRQ_CFG(), SMC_GET_FIFO_INT(), SMC_GET_RX_CFG()); DBG(SMC_DEBUG_RX, "%s: Rx Stat FIFO Used 0x%02x " "Data FIFO Used 0x%04x Stat FIFO 0x%08x\n", dev->name, (SMC_GET_RX_FIFO_INF() & 0x00ff0000) >> 16, SMC_GET_RX_FIFO_INF() & 0xffff, SMC_GET_RX_STS_FIFO_PEEK()); SMC_SET_GPT_CFG(GPT_CFG_TIMER_EN_ | 10000); SMC_ACK_INT(INT_STS_GPT_INT_); } #endif /* Handle PHY interupt condition */ if (status & INT_STS_PHY_INT_) { DBG(SMC_DEBUG_MISC, "%s: PHY irq\n", dev->name); smc911x_phy_interrupt(dev); SMC_ACK_INT(INT_STS_PHY_INT_); } } while (--timeout); /* restore mask state */ SMC_SET_INT_EN(mask); DBG(SMC_DEBUG_MISC, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout); spin_unlock_irqrestore(&lp->lock, flags); DBG(3, "%s: Interrupt done (%d loops)\n", dev->name, 8-timeout); return IRQ_HANDLED; } #ifdef SMC_USE_DMA static void smc911x_tx_dma_irq(int dma, void *data) { struct net_device *dev = (struct net_device *)data; struct smc911x_local *lp = netdev_priv(dev); struct sk_buff *skb = lp->current_tx_skb; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: TX DMA irq handler\n", dev->name); /* Clear the DMA interrupt sources */ SMC_DMA_ACK_IRQ(dev, dma); BUG_ON(skb == NULL); dma_unmap_single(NULL, tx_dmabuf, tx_dmalen, DMA_TO_DEVICE); dev->trans_start = jiffies; dev_kfree_skb_irq(skb); lp->current_tx_skb = NULL; if (lp->pending_tx_skb != NULL) smc911x_hardware_send_pkt(dev); else { DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: No pending Tx packets. DMA disabled\n", dev->name); spin_lock_irqsave(&lp->lock, flags); lp->txdma_active = 0; if (!lp->tx_throttle) { netif_wake_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); } DBG(SMC_DEBUG_TX | SMC_DEBUG_DMA, "%s: TX DMA irq completed\n", dev->name); } static void smc911x_rx_dma_irq(int dma, void *data) { struct net_device *dev = (struct net_device *)data; unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); struct sk_buff *skb = lp->current_rx_skb; unsigned long flags; unsigned int pkts; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA irq handler\n", dev->name); /* Clear the DMA interrupt sources */ SMC_DMA_ACK_IRQ(dev, dma); dma_unmap_single(NULL, rx_dmabuf, rx_dmalen, DMA_FROM_DEVICE); BUG_ON(skb == NULL); lp->current_rx_skb = NULL; PRINT_PKT(skb->data, skb->len); dev->last_rx = jiffies; skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += skb->len; spin_lock_irqsave(&lp->lock, flags); pkts = (SMC_GET_RX_FIFO_INF() & RX_FIFO_INF_RXSUSED_) >> 16; if (pkts != 0) { smc911x_rcv(dev); }else { lp->rxdma_active = 0; } spin_unlock_irqrestore(&lp->lock, flags); DBG(SMC_DEBUG_RX | SMC_DEBUG_DMA, "%s: RX DMA irq completed. DMA RX FIFO PKTS %d\n", dev->name, pkts); } #endif /* SMC_USE_DMA */ #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling receive - used by netconsole and other diagnostic tools * to allow network i/o with interrupts disabled. */ static void smc911x_poll_controller(struct net_device *dev) { disable_irq(dev->irq); smc911x_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* Our watchdog timed out. Called by the networking layer */ static void smc911x_timeout(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int status, mask; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); spin_lock_irqsave(&lp->lock, flags); status = SMC_GET_INT(); mask = SMC_GET_INT_EN(); spin_unlock_irqrestore(&lp->lock, flags); DBG(SMC_DEBUG_MISC, "%s: INT 0x%02x MASK 0x%02x \n", dev->name, status, mask); /* Dump the current TX FIFO contents and restart */ mask = SMC_GET_TX_CFG(); SMC_SET_TX_CFG(mask | TX_CFG_TXS_DUMP_ | TX_CFG_TXD_DUMP_); /* * Reconfiguring the PHY doesn't seem like a bad idea here, but * smc911x_phy_configure() calls msleep() which calls schedule_timeout() * which calls schedule(). Hence we use a work queue. */ if (lp->phy_type != 0) { if (schedule_work(&lp->phy_configure)) { lp->work_pending = 1; } } /* We can accept TX packets again */ dev->trans_start = jiffies; netif_wake_queue(dev); } /* * This routine will, depending on the values passed to it, * either make it accept multicast packets, go into * promiscuous mode (for TCPDUMP and cousins) or accept * a select set of multicast packets */ static void smc911x_set_multicast_list(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; unsigned int multicast_table[2]; unsigned int mcr, update_multicast = 0; unsigned long flags; /* table for flipping the order of 5 bits */ static const unsigned char invert5[] = {0x00, 0x10, 0x08, 0x18, 0x04, 0x14, 0x0C, 0x1C, 0x02, 0x12, 0x0A, 0x1A, 0x06, 0x16, 0x0E, 0x1E, 0x01, 0x11, 0x09, 0x19, 0x05, 0x15, 0x0D, 0x1D, 0x03, 0x13, 0x0B, 0x1B, 0x07, 0x17, 0x0F, 0x1F}; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); spin_lock_irqsave(&lp->lock, flags); SMC_GET_MAC_CR(mcr); spin_unlock_irqrestore(&lp->lock, flags); if (dev->flags & IFF_PROMISC) { DBG(SMC_DEBUG_MISC, "%s: RCR_PRMS\n", dev->name); mcr |= MAC_CR_PRMS_; } /* * Here, I am setting this to accept all multicast packets. * I don't need to zero the multicast table, because the flag is * checked before the table is */ else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) { DBG(SMC_DEBUG_MISC, "%s: RCR_ALMUL\n", dev->name); mcr |= MAC_CR_MCPAS_; } /* * This sets the internal hardware table to filter out unwanted * multicast packets before they take up memory. * * The SMC chip uses a hash table where the high 6 bits of the CRC of * address are the offset into the table. If that bit is 1, then the * multicast packet is accepted. Otherwise, it's dropped silently. * * To use the 6 bits as an offset into the table, the high 1 bit is * the number of the 32 bit register, while the low 5 bits are the bit * within that register. */ else if (dev->mc_count) { int i; struct dev_mc_list *cur_addr; /* Set the Hash perfec mode */ mcr |= MAC_CR_HPFILT_; /* start with a table of all zeros: reject all */ memset(multicast_table, 0, sizeof(multicast_table)); cur_addr = dev->mc_list; for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) { int position; /* do we have a pointer here? */ if (!cur_addr) break; /* make sure this is a multicast address - shouldn't this be a given if we have it here ? */ if (!(*cur_addr->dmi_addr & 1)) continue; /* only use the low order bits */ position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f; /* do some messy swapping to put the bit in the right spot */ multicast_table[invert5[position&0x1F]&0x1] |= (1<<invert5[(position>>1)&0x1F]); } /* be sure I get rid of flags I might have set */ mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_); /* now, the table can be loaded into the chipset */ update_multicast = 1; } else { DBG(SMC_DEBUG_MISC, "%s: ~(MAC_CR_PRMS_|MAC_CR_MCPAS_)\n", dev->name); mcr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_); /* * since I'm disabling all multicast entirely, I need to * clear the multicast list */ memset(multicast_table, 0, sizeof(multicast_table)); update_multicast = 1; } spin_lock_irqsave(&lp->lock, flags); SMC_SET_MAC_CR(mcr); if (update_multicast) { DBG(SMC_DEBUG_MISC, "%s: update mcast hash table 0x%08x 0x%08x\n", dev->name, multicast_table[0], multicast_table[1]); SMC_SET_HASHL(multicast_table[0]); SMC_SET_HASHH(multicast_table[1]); } spin_unlock_irqrestore(&lp->lock, flags); } /* * Open and Initialize the board * * Set up everything, reset the card, etc.. */ static int smc911x_open(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); /* * Check that the address is valid. If its not, refuse * to bring the device up. The user must specify an * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */ if (!is_valid_ether_addr(dev->dev_addr)) { PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__); return -EINVAL; } /* reset the hardware */ smc911x_reset(dev); /* Configure the PHY, initialize the link state */ smc911x_phy_configure(&lp->phy_configure); /* Turn on Tx + Rx */ smc911x_enable(dev); netif_start_queue(dev); return 0; } /* * smc911x_close * * this makes the board clean up everything that it can * and not talk to the outside world. Caused by * an 'ifconfig ethX down' */ static int smc911x_close(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); netif_stop_queue(dev); netif_carrier_off(dev); /* clear everything */ smc911x_shutdown(dev); if (lp->phy_type != 0) { /* We need to ensure that no calls to * smc911x_phy_configure are pending. * flush_scheduled_work() cannot be called because we * are running with the netlink semaphore held (from * devinet_ioctl()) and the pending work queue * contains linkwatch_event() (scheduled by * netif_carrier_off() above). linkwatch_event() also * wants the netlink semaphore. */ while (lp->work_pending) schedule(); smc911x_phy_powerdown(dev, lp->mii.phy_id); } if (lp->pending_tx_skb) { dev_kfree_skb(lp->pending_tx_skb); lp->pending_tx_skb = NULL; } return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *smc911x_query_statistics(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); return &lp->stats; } /* * Ethtool support */ static int smc911x_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct smc911x_local *lp = netdev_priv(dev); unsigned long ioaddr = dev->base_addr; int ret, status; unsigned long flags; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); cmd->maxtxpkt = 1; cmd->maxrxpkt = 1; if (lp->phy_type != 0) { spin_lock_irqsave(&lp->lock, flags); ret = mii_ethtool_gset(&lp->mii, cmd); spin_unlock_irqrestore(&lp->lock, flags); } else { cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_TP | SUPPORTED_AUI; if (lp->ctl_rspeed == 10) cmd->speed = SPEED_10; else if (lp->ctl_rspeed == 100) cmd->speed = SPEED_100; cmd->autoneg = AUTONEG_DISABLE; if (lp->mii.phy_id==1) cmd->transceiver = XCVR_INTERNAL; else cmd->transceiver = XCVR_EXTERNAL; cmd->port = 0; SMC_GET_PHY_SPECIAL(lp->mii.phy_id, status); cmd->duplex = (status & (PHY_SPECIAL_SPD_10FULL_ | PHY_SPECIAL_SPD_100FULL_)) ? DUPLEX_FULL : DUPLEX_HALF; ret = 0; } return ret; } static int smc911x_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd) { struct smc911x_local *lp = netdev_priv(dev); int ret; unsigned long flags; if (lp->phy_type != 0) { spin_lock_irqsave(&lp->lock, flags); ret = mii_ethtool_sset(&lp->mii, cmd); spin_unlock_irqrestore(&lp->lock, flags); } else { if (cmd->autoneg != AUTONEG_DISABLE || cmd->speed != SPEED_10 || (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) || (cmd->port != PORT_TP && cmd->port != PORT_AUI)) return -EINVAL; lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL; ret = 0; } return ret; } static void smc911x_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strncpy(info->driver, CARDNAME, sizeof(info->driver)); strncpy(info->version, version, sizeof(info->version)); strncpy(info->bus_info, dev->dev.parent->bus_id, sizeof(info->bus_info)); } static int smc911x_ethtool_nwayreset(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); int ret = -EINVAL; unsigned long flags; if (lp->phy_type != 0) { spin_lock_irqsave(&lp->lock, flags); ret = mii_nway_restart(&lp->mii); spin_unlock_irqrestore(&lp->lock, flags); } return ret; } static u32 smc911x_ethtool_getmsglevel(struct net_device *dev) { struct smc911x_local *lp = netdev_priv(dev); return lp->msg_enable; } static void smc911x_ethtool_setmsglevel(struct net_device *dev, u32 level) { struct smc911x_local *lp = netdev_priv(dev); lp->msg_enable = level; } static int smc911x_ethtool_getregslen(struct net_device *dev) { /* System regs + MAC regs + PHY regs */ return (((E2P_CMD - ID_REV)/4 + 1) + (WUCSR - MAC_CR)+1 + 32) * sizeof(u32); } static void smc911x_ethtool_getregs(struct net_device *dev, struct ethtool_regs* regs, void *buf) { unsigned long ioaddr = dev->base_addr; struct smc911x_local *lp = netdev_priv(dev); unsigned long flags; u32 reg,i,j=0; u32 *data = (u32*)buf; regs->version = lp->version; for(i=ID_REV;i<=E2P_CMD;i+=4) { data[j++] = SMC_inl(ioaddr,i); } for(i=MAC_CR;i<=WUCSR;i++) { spin_lock_irqsave(&lp->lock, flags); SMC_GET_MAC_CSR(i, reg); spin_unlock_irqrestore(&lp->lock, flags); data[j++] = reg; } for(i=0;i<=31;i++) { spin_lock_irqsave(&lp->lock, flags); SMC_GET_MII(i, lp->mii.phy_id, reg); spin_unlock_irqrestore(&lp->lock, flags); data[j++] = reg & 0xFFFF; } } static int smc911x_ethtool_wait_eeprom_ready(struct net_device *dev) { unsigned long ioaddr = dev->base_addr; unsigned int timeout; int e2p_cmd; e2p_cmd = SMC_GET_E2P_CMD(); for(timeout=10;(e2p_cmd & E2P_CMD_EPC_BUSY_) && timeout; timeout--) { if (e2p_cmd & E2P_CMD_EPC_TIMEOUT_) { PRINTK("%s: %s timeout waiting for EEPROM to respond\n", dev->name, __FUNCTION__); return -EFAULT; } mdelay(1); e2p_cmd = SMC_GET_E2P_CMD(); } if (timeout == 0) { PRINTK("%s: %s timeout waiting for EEPROM CMD not busy\n", dev->name, __FUNCTION__); return -ETIMEDOUT; } return 0; } static inline int smc911x_ethtool_write_eeprom_cmd(struct net_device *dev, int cmd, int addr) { unsigned long ioaddr = dev->base_addr; int ret; if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0) return ret; SMC_SET_E2P_CMD(E2P_CMD_EPC_BUSY_ | ((cmd) & (0x7<<28)) | ((addr) & 0xFF)); return 0; } static inline int smc911x_ethtool_read_eeprom_byte(struct net_device *dev, u8 *data) { unsigned long ioaddr = dev->base_addr; int ret; if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0) return ret; *data = SMC_GET_E2P_DATA(); return 0; } static inline int smc911x_ethtool_write_eeprom_byte(struct net_device *dev, u8 data) { unsigned long ioaddr = dev->base_addr; int ret; if ((ret = smc911x_ethtool_wait_eeprom_ready(dev))!=0) return ret; SMC_SET_E2P_DATA(data); return 0; } static int smc911x_ethtool_geteeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { u8 eebuf[SMC911X_EEPROM_LEN]; int i, ret; for(i=0;i<SMC911X_EEPROM_LEN;i++) { if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_READ_, i ))!=0) return ret; if ((ret=smc911x_ethtool_read_eeprom_byte(dev, &eebuf[i]))!=0) return ret; } memcpy(data, eebuf+eeprom->offset, eeprom->len); return 0; } static int smc911x_ethtool_seteeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { int i, ret; /* Enable erase */ if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_EWEN_, 0 ))!=0) return ret; for(i=eeprom->offset;i<(eeprom->offset+eeprom->len);i++) { /* erase byte */ if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_ERASE_, i ))!=0) return ret; /* write byte */ if ((ret=smc911x_ethtool_write_eeprom_byte(dev, *data))!=0) return ret; if ((ret=smc911x_ethtool_write_eeprom_cmd(dev, E2P_CMD_EPC_CMD_WRITE_, i ))!=0) return ret; } return 0; } static int smc911x_ethtool_geteeprom_len(struct net_device *dev) { return SMC911X_EEPROM_LEN; } static const struct ethtool_ops smc911x_ethtool_ops = { .get_settings = smc911x_ethtool_getsettings, .set_settings = smc911x_ethtool_setsettings, .get_drvinfo = smc911x_ethtool_getdrvinfo, .get_msglevel = smc911x_ethtool_getmsglevel, .set_msglevel = smc911x_ethtool_setmsglevel, .nway_reset = smc911x_ethtool_nwayreset, .get_link = ethtool_op_get_link, .get_regs_len = smc911x_ethtool_getregslen, .get_regs = smc911x_ethtool_getregs, .get_eeprom_len = smc911x_ethtool_geteeprom_len, .get_eeprom = smc911x_ethtool_geteeprom, .set_eeprom = smc911x_ethtool_seteeprom, }; /* * smc911x_findirq * * This routine has a simple purpose -- make the SMC chip generate an * interrupt, so an auto-detect routine can detect it, and find the IRQ, */ static int __init smc911x_findirq(unsigned long ioaddr) { int timeout = 20; unsigned long cookie; DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__); cookie = probe_irq_on(); /* * Force a SW interrupt */ SMC_SET_INT_EN(INT_EN_SW_INT_EN_); /* * Wait until positive that the interrupt has been generated */ do { int int_status; udelay(10); int_status = SMC_GET_INT_EN(); if (int_status & INT_EN_SW_INT_EN_) break; /* got the interrupt */ } while (--timeout); /* * there is really nothing that I can do here if timeout fails, * as autoirq_report will return a 0 anyway, which is what I * want in this case. Plus, the clean up is needed in both * cases. */ /* and disable all interrupts again */ SMC_SET_INT_EN(0); /* and return what I found */ return probe_irq_off(cookie); } /* * Function: smc911x_probe(unsigned long ioaddr) * * Purpose: * Tests to see if a given ioaddr points to an SMC911x chip. * Returns a 0 on success * * Algorithm: * (1) see if the endian word is OK * (1) see if I recognize the chip ID in the appropriate register * * Here I do typical initialization tasks. * * o Initialize the structure if needed * o print out my vanity message if not done so already * o print out what type of hardware is detected * o print out the ethernet address * o find the IRQ * o set up my private data * o configure the dev structure with my subroutines * o actually GRAB the irq. * o GRAB the region */ static int __init smc911x_probe(struct net_device *dev, unsigned long ioaddr) { struct smc911x_local *lp = netdev_priv(dev); int i, retval; unsigned int val, chip_id, revision; const char *version_string; DBG(SMC_DEBUG_FUNC, "%s: --> %s\n", dev->name, __FUNCTION__); /* First, see if the endian word is recognized */ val = SMC_GET_BYTE_TEST(); DBG(SMC_DEBUG_MISC, "%s: endian probe returned 0x%04x\n", CARDNAME, val); if (val != 0x87654321) { printk(KERN_ERR "Invalid chip endian 0x08%x\n",val); retval = -ENODEV; goto err_out; } /* * check if the revision register is something that I * recognize. These might need to be added to later, * as future revisions could be added. */ chip_id = SMC_GET_PN(); DBG(SMC_DEBUG_MISC, "%s: id probe returned 0x%04x\n", CARDNAME, chip_id); for(i=0;chip_ids[i].id != 0; i++) { if (chip_ids[i].id == chip_id) break; } if (!chip_ids[i].id) { printk(KERN_ERR "Unknown chip ID %04x\n", chip_id); retval = -ENODEV; goto err_out; } version_string = chip_ids[i].name; revision = SMC_GET_REV(); DBG(SMC_DEBUG_MISC, "%s: revision = 0x%04x\n", CARDNAME, revision); /* At this point I'll assume that the chip is an SMC911x. */ DBG(SMC_DEBUG_MISC, "%s: Found a %s\n", CARDNAME, chip_ids[i].name); /* Validate the TX FIFO size requested */ if ((tx_fifo_kb < 2) || (tx_fifo_kb > 14)) { printk(KERN_ERR "Invalid TX FIFO size requested %d\n", tx_fifo_kb); retval = -EINVAL; goto err_out; } /* fill in some of the fields */ dev->base_addr = ioaddr; lp->version = chip_ids[i].id; lp->revision = revision; lp->tx_fifo_kb = tx_fifo_kb; /* Reverse calculate the RX FIFO size from the TX */ lp->tx_fifo_size=(lp->tx_fifo_kb<<10) - 512; lp->rx_fifo_size= ((0x4000 - 512 - lp->tx_fifo_size) / 16) * 15; /* Set the automatic flow control values */ switch(lp->tx_fifo_kb) { /* * AFC_HI is about ((Rx Data Fifo Size)*2/3)/64 * AFC_LO is AFC_HI/2 * BACK_DUR is about 5uS*(AFC_LO) rounded down */ case 2:/* 13440 Rx Data Fifo Size */ lp->afc_cfg=0x008C46AF;break; case 3:/* 12480 Rx Data Fifo Size */ lp->afc_cfg=0x0082419F;break; case 4:/* 11520 Rx Data Fifo Size */ lp->afc_cfg=0x00783C9F;break; case 5:/* 10560 Rx Data Fifo Size */ lp->afc_cfg=0x006E374F;break; case 6:/* 9600 Rx Data Fifo Size */ lp->afc_cfg=0x0064328F;break; case 7:/* 8640 Rx Data Fifo Size */ lp->afc_cfg=0x005A2D7F;break; case 8:/* 7680 Rx Data Fifo Size */ lp->afc_cfg=0x0050287F;break; case 9:/* 6720 Rx Data Fifo Size */ lp->afc_cfg=0x0046236F;break; case 10:/* 5760 Rx Data Fifo Size */ lp->afc_cfg=0x003C1E6F;break; case 11:/* 4800 Rx Data Fifo Size */ lp->afc_cfg=0x0032195F;break; /* * AFC_HI is ~1520 bytes less than RX Data Fifo Size * AFC_LO is AFC_HI/2 * BACK_DUR is about 5uS*(AFC_LO) rounded down */ case 12:/* 3840 Rx Data Fifo Size */ lp->afc_cfg=0x0024124F;break; case 13:/* 2880 Rx Data Fifo Size */ lp->afc_cfg=0x0015073F;break; case 14:/* 1920 Rx Data Fifo Size */ lp->afc_cfg=0x0006032F;break; default: PRINTK("%s: ERROR -- no AFC_CFG setting found", dev->name); break; } DBG(SMC_DEBUG_MISC | SMC_DEBUG_TX | SMC_DEBUG_RX, "%s: tx_fifo %d rx_fifo %d afc_cfg 0x%08x\n", CARDNAME, lp->tx_fifo_size, lp->rx_fifo_size, lp->afc_cfg); spin_lock_init(&lp->lock); /* Get the MAC address */ SMC_GET_MAC_ADDR(dev->dev_addr); /* now, reset the chip, and put it into a known state */ smc911x_reset(dev); /* * If dev->irq is 0, then the device has to be banged on to see * what the IRQ is. * * Specifying an IRQ is done with the assumption that the user knows * what (s)he is doing. No checking is done!!!! */ if (dev->irq < 1) { int trials; trials = 3; while (trials--) { dev->irq = smc911x_findirq(ioaddr); if (dev->irq) break; /* kick the card and try again */ smc911x_reset(dev); } } if (dev->irq == 0) { printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n", dev->name); retval = -ENODEV; goto err_out; } dev->irq = irq_canonicalize(dev->irq); /* Fill in the fields of the device structure with ethernet values. */ ether_setup(dev); dev->open = smc911x_open; dev->stop = smc911x_close; dev->hard_start_xmit = smc911x_hard_start_xmit; dev->tx_timeout = smc911x_timeout; dev->watchdog_timeo = msecs_to_jiffies(watchdog); dev->get_stats = smc911x_query_statistics; dev->set_multicast_list = smc911x_set_multicast_list; dev->ethtool_ops = &smc911x_ethtool_ops; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = smc911x_poll_controller; #endif INIT_WORK(&lp->phy_configure, smc911x_phy_configure); lp->mii.phy_id_mask = 0x1f; lp->mii.reg_num_mask = 0x1f; lp->mii.force_media = 0; lp->mii.full_duplex = 0; lp->mii.dev = dev; lp->mii.mdio_read = smc911x_phy_read; lp->mii.mdio_write = smc911x_phy_write; /* * Locate the phy, if any. */ smc911x_phy_detect(dev); /* Set default parameters */ lp->msg_enable = NETIF_MSG_LINK; lp->ctl_rfduplx = 1; lp->ctl_rspeed = 100; /* Grab the IRQ */ retval = request_irq(dev->irq, &smc911x_interrupt, IRQF_SHARED, dev->name, dev); if (retval) goto err_out; set_irq_type(dev->irq, IRQT_FALLING); #ifdef SMC_USE_DMA lp->rxdma = SMC_DMA_REQUEST(dev, smc911x_rx_dma_irq); lp->txdma = SMC_DMA_REQUEST(dev, smc911x_tx_dma_irq); lp->rxdma_active = 0; lp->txdma_active = 0; dev->dma = lp->rxdma; #endif retval = register_netdev(dev); if (retval == 0) { /* now, print out the card info, in a short format.. */ printk("%s: %s (rev %d) at %#lx IRQ %d", dev->name, version_string, lp->revision, dev->base_addr, dev->irq); #ifdef SMC_USE_DMA if (lp->rxdma != -1) printk(" RXDMA %d ", lp->rxdma); if (lp->txdma != -1) printk("TXDMA %d", lp->txdma); #endif printk("\n"); if (!is_valid_ether_addr(dev->dev_addr)) { printk("%s: Invalid ethernet MAC address. Please " "set using ifconfig\n", dev->name); } else { /* Print the Ethernet address */ printk("%s: Ethernet addr: ", dev->name); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x\n", dev->dev_addr[5]); } if (lp->phy_type == 0) { PRINTK("%s: No PHY found\n", dev->name); } else if ((lp->phy_type & ~0xff) == LAN911X_INTERNAL_PHY_ID) { PRINTK("%s: LAN911x Internal PHY\n", dev->name); } else { PRINTK("%s: External PHY 0x%08x\n", dev->name, lp->phy_type); } } err_out: #ifdef SMC_USE_DMA if (retval) { if (lp->rxdma != -1) { SMC_DMA_FREE(dev, lp->rxdma); } if (lp->txdma != -1) { SMC_DMA_FREE(dev, lp->txdma); } } #endif return retval; } /* * smc911x_init(void) * * Output: * 0 --> there is a device * anything else, error */ static int smc911x_drv_probe(struct platform_device *pdev) { struct net_device *ndev; struct resource *res; struct smc911x_local *lp; unsigned int *addr; int ret; DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { ret = -ENODEV; goto out; } /* * Request the regions. */ if (!request_mem_region(res->start, SMC911X_IO_EXTENT, CARDNAME)) { ret = -EBUSY; goto out; } ndev = alloc_etherdev(sizeof(struct smc911x_local)); if (!ndev) { printk("%s: could not allocate device.\n", CARDNAME); ret = -ENOMEM; goto release_1; } SET_MODULE_OWNER(ndev); SET_NETDEV_DEV(ndev, &pdev->dev); ndev->dma = (unsigned char)-1; ndev->irq = platform_get_irq(pdev, 0); lp = netdev_priv(ndev); lp->netdev = ndev; addr = ioremap(res->start, SMC911X_IO_EXTENT); if (!addr) { ret = -ENOMEM; goto release_both; } platform_set_drvdata(pdev, ndev); ret = smc911x_probe(ndev, (unsigned long)addr); if (ret != 0) { platform_set_drvdata(pdev, NULL); iounmap(addr); release_both: free_netdev(ndev); release_1: release_mem_region(res->start, SMC911X_IO_EXTENT); out: printk("%s: not found (%d).\n", CARDNAME, ret); } #ifdef SMC_USE_DMA else { lp->physaddr = res->start; lp->dev = &pdev->dev; } #endif return ret; } static int smc911x_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct resource *res; DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__); platform_set_drvdata(pdev, NULL); unregister_netdev(ndev); free_irq(ndev->irq, ndev); #ifdef SMC_USE_DMA { struct smc911x_local *lp = netdev_priv(ndev); if (lp->rxdma != -1) { SMC_DMA_FREE(dev, lp->rxdma); } if (lp->txdma != -1) { SMC_DMA_FREE(dev, lp->txdma); } } #endif iounmap((void *)ndev->base_addr); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, SMC911X_IO_EXTENT); free_netdev(ndev); return 0; } static int smc911x_drv_suspend(struct platform_device *dev, pm_message_t state) { struct net_device *ndev = platform_get_drvdata(dev); unsigned long ioaddr = ndev->base_addr; DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__); if (ndev) { if (netif_running(ndev)) { netif_device_detach(ndev); smc911x_shutdown(ndev); #if POWER_DOWN /* Set D2 - Energy detect only setting */ SMC_SET_PMT_CTRL(2<<12); #endif } } return 0; } static int smc911x_drv_resume(struct platform_device *dev) { struct net_device *ndev = platform_get_drvdata(dev); DBG(SMC_DEBUG_FUNC, "--> %s\n", __FUNCTION__); if (ndev) { struct smc911x_local *lp = netdev_priv(ndev); if (netif_running(ndev)) { smc911x_reset(ndev); smc911x_enable(ndev); if (lp->phy_type != 0) smc911x_phy_configure(&lp->phy_configure); netif_device_attach(ndev); } } return 0; } static struct platform_driver smc911x_driver = { .probe = smc911x_drv_probe, .remove = smc911x_drv_remove, .suspend = smc911x_drv_suspend, .resume = smc911x_drv_resume, .driver = { .name = CARDNAME, }, }; static int __init smc911x_init(void) { return platform_driver_register(&smc911x_driver); } static void __exit smc911x_cleanup(void) { platform_driver_unregister(&smc911x_driver); } module_init(smc911x_init); module_exit(smc911x_cleanup);