/* * New driver for Marvell Yukon 2 chipset. * Based on earlier sk98lin, and skge driver. * * This driver intentionally does not support all the features * of the original driver such as link fail-over and link management because * those should be done at higher levels. * * Copyright (C) 2005 Stephen Hemminger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) #define SKY2_VLAN_TAG_USED 1 #endif #include "sky2.h" #define DRV_NAME "sky2" #define DRV_VERSION "1.26" #define PFX DRV_NAME " " /* * The Yukon II chipset takes 64 bit command blocks (called list elements) * that are organized into three (receive, transmit, status) different rings * similar to Tigon3. */ #define RX_LE_SIZE 1024 #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le)) #define RX_MAX_PENDING (RX_LE_SIZE/6 - 2) #define RX_DEF_PENDING RX_MAX_PENDING /* This is the worst case number of transmit list elements for a single skb: VLAN:GSO + CKSUM + Data + skb_frags * DMA */ #define MAX_SKB_TX_LE (2 + (sizeof(dma_addr_t)/sizeof(u32))*(MAX_SKB_FRAGS+1)) #define TX_MIN_PENDING (MAX_SKB_TX_LE+1) #define TX_MAX_PENDING 4096 #define TX_DEF_PENDING 127 #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */ #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le)) #define TX_WATCHDOG (5 * HZ) #define NAPI_WEIGHT 64 #define PHY_RETRIES 1000 #define SKY2_EEPROM_MAGIC 0x9955aabb #define RING_NEXT(x,s) (((x)+1) & ((s)-1)) static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN; static int debug = -1; /* defaults above */ module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static int copybreak __read_mostly = 128; module_param(copybreak, int, 0); MODULE_PARM_DESC(copybreak, "Receive copy threshold"); static int disable_msi = 0; module_param(disable_msi, int, 0); MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)"); static DEFINE_PCI_DEVICE_TABLE(sky2_id_table) = { { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, /* SK-9Sxx */ { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */ { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E01) }, /* SK-9E21M */ { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */ { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */ { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */ { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B03) }, /* DGE-550T */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, /* 88E8021 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, /* 88E8022 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, /* 88E8061 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, /* 88E8062 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, /* 88E8021 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, /* 88E8022 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, /* 88E8061 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, /* 88E8062 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, /* 88E8035 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, /* 88E8036 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, /* 88E8038 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, /* 88E8039 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4354) }, /* 88E8040 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4355) }, /* 88E8040T */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) }, /* 88EC033 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4357) }, /* 88E8042 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x435A) }, /* 88E8048 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, /* 88E8052 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, /* 88E8050 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, /* 88E8053 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, /* 88E8055 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, /* 88E8056 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4365) }, /* 88E8070 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, /* 88EC036 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, /* 88EC032 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, /* 88EC034 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4369) }, /* 88EC042 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436A) }, /* 88E8058 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436B) }, /* 88E8071 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436C) }, /* 88E8072 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x436D) }, /* 88E8055 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4370) }, /* 88E8075 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4380) }, /* 88E8057 */ { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4381) }, /* 88E8059 */ { 0 } }; MODULE_DEVICE_TABLE(pci, sky2_id_table); /* Avoid conditionals by using array */ static const unsigned txqaddr[] = { Q_XA1, Q_XA2 }; static const unsigned rxqaddr[] = { Q_R1, Q_R2 }; static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 }; static void sky2_set_multicast(struct net_device *dev); /* Access to PHY via serial interconnect */ static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val) { int i; gma_write16(hw, port, GM_SMI_DATA, val); gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg)); for (i = 0; i < PHY_RETRIES; i++) { u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL); if (ctrl == 0xffff) goto io_error; if (!(ctrl & GM_SMI_CT_BUSY)) return 0; udelay(10); } dev_warn(&hw->pdev->dev,"%s: phy write timeout\n", hw->dev[port]->name); return -ETIMEDOUT; io_error: dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name); return -EIO; } static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val) { int i; gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD); for (i = 0; i < PHY_RETRIES; i++) { u16 ctrl = gma_read16(hw, port, GM_SMI_CTRL); if (ctrl == 0xffff) goto io_error; if (ctrl & GM_SMI_CT_RD_VAL) { *val = gma_read16(hw, port, GM_SMI_DATA); return 0; } udelay(10); } dev_warn(&hw->pdev->dev, "%s: phy read timeout\n", hw->dev[port]->name); return -ETIMEDOUT; io_error: dev_err(&hw->pdev->dev, "%s: phy I/O error\n", hw->dev[port]->name); return -EIO; } static inline u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg) { u16 v; __gm_phy_read(hw, port, reg, &v); return v; } static void sky2_power_on(struct sky2_hw *hw) { /* switch power to VCC (WA for VAUX problem) */ sky2_write8(hw, B0_POWER_CTRL, PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON); /* disable Core Clock Division, */ sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) /* enable bits are inverted */ sky2_write8(hw, B2_Y2_CLK_GATE, Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); else sky2_write8(hw, B2_Y2_CLK_GATE, 0); if (hw->flags & SKY2_HW_ADV_POWER_CTL) { u32 reg; sky2_pci_write32(hw, PCI_DEV_REG3, 0); reg = sky2_pci_read32(hw, PCI_DEV_REG4); /* set all bits to 0 except bits 15..12 and 8 */ reg &= P_ASPM_CONTROL_MSK; sky2_pci_write32(hw, PCI_DEV_REG4, reg); reg = sky2_pci_read32(hw, PCI_DEV_REG5); /* set all bits to 0 except bits 28 & 27 */ reg &= P_CTL_TIM_VMAIN_AV_MSK; sky2_pci_write32(hw, PCI_DEV_REG5, reg); sky2_pci_write32(hw, PCI_CFG_REG_1, 0); /* Enable workaround for dev 4.107 on Yukon-Ultra & Extreme */ reg = sky2_read32(hw, B2_GP_IO); reg |= GLB_GPIO_STAT_RACE_DIS; sky2_write32(hw, B2_GP_IO, reg); sky2_read32(hw, B2_GP_IO); } /* Turn on "driver loaded" LED */ sky2_write16(hw, B0_CTST, Y2_LED_STAT_ON); } static void sky2_power_aux(struct sky2_hw *hw) { if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) sky2_write8(hw, B2_Y2_CLK_GATE, 0); else /* enable bits are inverted */ sky2_write8(hw, B2_Y2_CLK_GATE, Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS | Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS | Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS); /* switch power to VAUX if supported and PME from D3cold */ if ( (sky2_read32(hw, B0_CTST) & Y2_VAUX_AVAIL) && pci_pme_capable(hw->pdev, PCI_D3cold)) sky2_write8(hw, B0_POWER_CTRL, (PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF)); /* turn off "driver loaded LED" */ sky2_write16(hw, B0_CTST, Y2_LED_STAT_OFF); } static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port) { u16 reg; /* disable all GMAC IRQ's */ sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0); gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */ gma_write16(hw, port, GM_MC_ADDR_H2, 0); gma_write16(hw, port, GM_MC_ADDR_H3, 0); gma_write16(hw, port, GM_MC_ADDR_H4, 0); reg = gma_read16(hw, port, GM_RX_CTRL); reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA; gma_write16(hw, port, GM_RX_CTRL, reg); } /* flow control to advertise bits */ static const u16 copper_fc_adv[] = { [FC_NONE] = 0, [FC_TX] = PHY_M_AN_ASP, [FC_RX] = PHY_M_AN_PC, [FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP, }; /* flow control to advertise bits when using 1000BaseX */ static const u16 fiber_fc_adv[] = { [FC_NONE] = PHY_M_P_NO_PAUSE_X, [FC_TX] = PHY_M_P_ASYM_MD_X, [FC_RX] = PHY_M_P_SYM_MD_X, [FC_BOTH] = PHY_M_P_BOTH_MD_X, }; /* flow control to GMA disable bits */ static const u16 gm_fc_disable[] = { [FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS, [FC_TX] = GM_GPCR_FC_RX_DIS, [FC_RX] = GM_GPCR_FC_TX_DIS, [FC_BOTH] = 0, }; static void sky2_phy_init(struct sky2_hw *hw, unsigned port) { struct sky2_port *sky2 = netdev_priv(hw->dev[port]); u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg; if ( (sky2->flags & SKY2_FLAG_AUTO_SPEED) && !(hw->flags & SKY2_HW_NEWER_PHY)) { u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL); ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK | PHY_M_EC_MAC_S_MSK); ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ); /* on PHY 88E1040 Rev.D0 (and newer) downshift control changed */ if (hw->chip_id == CHIP_ID_YUKON_EC) /* set downshift counter to 3x and enable downshift */ ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA; else /* set master & slave downshift counter to 1x */ ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1); gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl); } ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); if (sky2_is_copper(hw)) { if (!(hw->flags & SKY2_HW_GIGABIT)) { /* enable automatic crossover */ ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1; if (hw->chip_id == CHIP_ID_YUKON_FE_P && hw->chip_rev == CHIP_REV_YU_FE2_A0) { u16 spec; /* Enable Class A driver for FE+ A0 */ spec = gm_phy_read(hw, port, PHY_MARV_FE_SPEC_2); spec |= PHY_M_FESC_SEL_CL_A; gm_phy_write(hw, port, PHY_MARV_FE_SPEC_2, spec); } } else { /* disable energy detect */ ctrl &= ~PHY_M_PC_EN_DET_MSK; /* enable automatic crossover */ ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO); /* downshift on PHY 88E1112 and 88E1149 is changed */ if ( (sky2->flags & SKY2_FLAG_AUTO_SPEED) && (hw->flags & SKY2_HW_NEWER_PHY)) { /* set downshift counter to 3x and enable downshift */ ctrl &= ~PHY_M_PC_DSC_MSK; ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA; } } } else { /* workaround for deviation #4.88 (CRC errors) */ /* disable Automatic Crossover */ ctrl &= ~PHY_M_PC_MDIX_MSK; } gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); /* special setup for PHY 88E1112 Fiber */ if (hw->chip_id == CHIP_ID_YUKON_XL && (hw->flags & SKY2_HW_FIBRE_PHY)) { pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2); ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); ctrl &= ~PHY_M_MAC_MD_MSK; ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); if (hw->pmd_type == 'P') { /* select page 1 to access Fiber registers */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1); /* for SFP-module set SIGDET polarity to low */ ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); ctrl |= PHY_M_FIB_SIGD_POL; gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); } gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); } ctrl = PHY_CT_RESET; ct1000 = 0; adv = PHY_AN_CSMA; reg = 0; if (sky2->flags & SKY2_FLAG_AUTO_SPEED) { if (sky2_is_copper(hw)) { if (sky2->advertising & ADVERTISED_1000baseT_Full) ct1000 |= PHY_M_1000C_AFD; if (sky2->advertising & ADVERTISED_1000baseT_Half) ct1000 |= PHY_M_1000C_AHD; if (sky2->advertising & ADVERTISED_100baseT_Full) adv |= PHY_M_AN_100_FD; if (sky2->advertising & ADVERTISED_100baseT_Half) adv |= PHY_M_AN_100_HD; if (sky2->advertising & ADVERTISED_10baseT_Full) adv |= PHY_M_AN_10_FD; if (sky2->advertising & ADVERTISED_10baseT_Half) adv |= PHY_M_AN_10_HD; } else { /* special defines for FIBER (88E1040S only) */ if (sky2->advertising & ADVERTISED_1000baseT_Full) adv |= PHY_M_AN_1000X_AFD; if (sky2->advertising & ADVERTISED_1000baseT_Half) adv |= PHY_M_AN_1000X_AHD; } /* Restart Auto-negotiation */ ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG; } else { /* forced speed/duplex settings */ ct1000 = PHY_M_1000C_MSE; /* Disable auto update for duplex flow control and duplex */ reg |= GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_SPD_DIS; switch (sky2->speed) { case SPEED_1000: ctrl |= PHY_CT_SP1000; reg |= GM_GPCR_SPEED_1000; break; case SPEED_100: ctrl |= PHY_CT_SP100; reg |= GM_GPCR_SPEED_100; break; } if (sky2->duplex == DUPLEX_FULL) { reg |= GM_GPCR_DUP_FULL; ctrl |= PHY_CT_DUP_MD; } else if (sky2->speed < SPEED_1000) sky2->flow_mode = FC_NONE; } if (sky2->flags & SKY2_FLAG_AUTO_PAUSE) { if (sky2_is_copper(hw)) adv |= copper_fc_adv[sky2->flow_mode]; else adv |= fiber_fc_adv[sky2->flow_mode]; } else { reg |= GM_GPCR_AU_FCT_DIS; reg |= gm_fc_disable[sky2->flow_mode]; /* Forward pause packets to GMAC? */ if (sky2->flow_mode & FC_RX) sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); else sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); } gma_write16(hw, port, GM_GP_CTRL, reg); if (hw->flags & SKY2_HW_GIGABIT) gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000); gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv); gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl); /* Setup Phy LED's */ ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS); ledover = 0; switch (hw->chip_id) { case CHIP_ID_YUKON_FE: /* on 88E3082 these bits are at 11..9 (shifted left) */ ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1; ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR); /* delete ACT LED control bits */ ctrl &= ~PHY_M_FELP_LED1_MSK; /* change ACT LED control to blink mode */ ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL); gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl); break; case CHIP_ID_YUKON_FE_P: /* Enable Link Partner Next Page */ ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); ctrl |= PHY_M_PC_ENA_LIP_NP; /* disable Energy Detect and enable scrambler */ ctrl &= ~(PHY_M_PC_ENA_ENE_DT | PHY_M_PC_DIS_SCRAMB); gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); /* set LED2 -> ACT, LED1 -> LINK, LED0 -> SPEED */ ctrl = PHY_M_FELP_LED2_CTRL(LED_PAR_CTRL_ACT_BL) | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_LINK) | PHY_M_FELP_LED0_CTRL(LED_PAR_CTRL_SPEED); gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl); break; case CHIP_ID_YUKON_XL: pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); /* select page 3 to access LED control register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); /* set LED Function Control register */ gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */ PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */ PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */ /* set Polarity Control register */ gm_phy_write(hw, port, PHY_MARV_PHY_STAT, (PHY_M_POLC_LS1_P_MIX(4) | PHY_M_POLC_IS0_P_MIX(4) | PHY_M_POLC_LOS_CTRL(2) | PHY_M_POLC_INIT_CTRL(2) | PHY_M_POLC_STA1_CTRL(2) | PHY_M_POLC_STA0_CTRL(2))); /* restore page register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); break; case CHIP_ID_YUKON_EC_U: case CHIP_ID_YUKON_EX: case CHIP_ID_YUKON_SUPR: pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); /* select page 3 to access LED control register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); /* set LED Function Control register */ gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */ PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */ PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */ PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */ /* set Blink Rate in LED Timer Control Register */ gm_phy_write(hw, port, PHY_MARV_INT_MASK, ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS)); /* restore page register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); break; default: /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */ ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL; /* turn off the Rx LED (LED_RX) */ ledover |= PHY_M_LED_MO_RX(MO_LED_OFF); } if (hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_UL_2) { /* apply fixes in PHY AFE */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255); /* increase differential signal amplitude in 10BASE-T */ gm_phy_write(hw, port, 0x18, 0xaa99); gm_phy_write(hw, port, 0x17, 0x2011); if (hw->chip_id == CHIP_ID_YUKON_EC_U) { /* fix for IEEE A/B Symmetry failure in 1000BASE-T */ gm_phy_write(hw, port, 0x18, 0xa204); gm_phy_write(hw, port, 0x17, 0x2002); } /* set page register to 0 */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0); } else if (hw->chip_id == CHIP_ID_YUKON_FE_P && hw->chip_rev == CHIP_REV_YU_FE2_A0) { /* apply workaround for integrated resistors calibration */ gm_phy_write(hw, port, PHY_MARV_PAGE_ADDR, 17); gm_phy_write(hw, port, PHY_MARV_PAGE_DATA, 0x3f60); } else if (hw->chip_id == CHIP_ID_YUKON_OPT && hw->chip_rev == 0) { /* apply fixes in PHY AFE */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0x00ff); /* apply RDAC termination workaround */ gm_phy_write(hw, port, 24, 0x2800); gm_phy_write(hw, port, 23, 0x2001); /* set page register back to 0 */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0); } else if (hw->chip_id != CHIP_ID_YUKON_EX && hw->chip_id < CHIP_ID_YUKON_SUPR) { /* no effect on Yukon-XL */ gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl); if ( !(sky2->flags & SKY2_FLAG_AUTO_SPEED) || sky2->speed == SPEED_100) { /* turn on 100 Mbps LED (LED_LINK100) */ ledover |= PHY_M_LED_MO_100(MO_LED_ON); } if (ledover) gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover); } /* Enable phy interrupt on auto-negotiation complete (or link up) */ if (sky2->flags & SKY2_FLAG_AUTO_SPEED) gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL); else gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); } static const u32 phy_power[] = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD }; static const u32 coma_mode[] = { PCI_Y2_PHY1_COMA, PCI_Y2_PHY2_COMA }; static void sky2_phy_power_up(struct sky2_hw *hw, unsigned port) { u32 reg1; sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); reg1 = sky2_pci_read32(hw, PCI_DEV_REG1); reg1 &= ~phy_power[port]; if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1) reg1 |= coma_mode[port]; sky2_pci_write32(hw, PCI_DEV_REG1, reg1); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); sky2_pci_read32(hw, PCI_DEV_REG1); if (hw->chip_id == CHIP_ID_YUKON_FE) gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_ANE); else if (hw->flags & SKY2_HW_ADV_POWER_CTL) sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR); } static void sky2_phy_power_down(struct sky2_hw *hw, unsigned port) { u32 reg1; u16 ctrl; /* release GPHY Control reset */ sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR); /* release GMAC reset */ sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); if (hw->flags & SKY2_HW_NEWER_PHY) { /* select page 2 to access MAC control register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2); ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); /* allow GMII Power Down */ ctrl &= ~PHY_M_MAC_GMIF_PUP; gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); /* set page register back to 0 */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0); } /* setup General Purpose Control Register */ gma_write16(hw, port, GM_GP_CTRL, GM_GPCR_FL_PASS | GM_GPCR_SPEED_100 | GM_GPCR_AU_DUP_DIS | GM_GPCR_AU_FCT_DIS | GM_GPCR_AU_SPD_DIS); if (hw->chip_id != CHIP_ID_YUKON_EC) { if (hw->chip_id == CHIP_ID_YUKON_EC_U) { /* select page 2 to access MAC control register */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2); ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL); /* enable Power Down */ ctrl |= PHY_M_PC_POW_D_ENA; gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl); /* set page register back to 0 */ gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 0); } /* set IEEE compatible Power Down Mode (dev. #4.99) */ gm_phy_write(hw, port, PHY_MARV_CTRL, PHY_CT_PDOWN); } sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); reg1 = sky2_pci_read32(hw, PCI_DEV_REG1); reg1 |= phy_power[port]; /* set PHY to PowerDown/COMA Mode */ sky2_pci_write32(hw, PCI_DEV_REG1, reg1); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } /* Force a renegotiation */ static void sky2_phy_reinit(struct sky2_port *sky2) { spin_lock_bh(&sky2->phy_lock); sky2_phy_init(sky2->hw, sky2->port); spin_unlock_bh(&sky2->phy_lock); } /* Put device in state to listen for Wake On Lan */ static void sky2_wol_init(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; enum flow_control save_mode; u16 ctrl; u32 reg1; /* Bring hardware out of reset */ sky2_write16(hw, B0_CTST, CS_RST_CLR); sky2_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR); sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR); sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); /* Force to 10/100 * sky2_reset will re-enable on resume */ save_mode = sky2->flow_mode; ctrl = sky2->advertising; sky2->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full); sky2->flow_mode = FC_NONE; spin_lock_bh(&sky2->phy_lock); sky2_phy_power_up(hw, port); sky2_phy_init(hw, port); spin_unlock_bh(&sky2->phy_lock); sky2->flow_mode = save_mode; sky2->advertising = ctrl; /* Set GMAC to no flow control and auto update for speed/duplex */ gma_write16(hw, port, GM_GP_CTRL, GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA| GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS); /* Set WOL address */ memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR), sky2->netdev->dev_addr, ETH_ALEN); /* Turn on appropriate WOL control bits */ sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT); ctrl = 0; if (sky2->wol & WAKE_PHY) ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT; else ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT; if (sky2->wol & WAKE_MAGIC) ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT; else ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT; ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT; sky2_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl); /* Turn on legacy PCI-Express PME mode */ reg1 = sky2_pci_read32(hw, PCI_DEV_REG1); reg1 |= PCI_Y2_PME_LEGACY; sky2_pci_write32(hw, PCI_DEV_REG1, reg1); /* block receiver */ sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); } static void sky2_set_tx_stfwd(struct sky2_hw *hw, unsigned port) { struct net_device *dev = hw->dev[port]; if ( (hw->chip_id == CHIP_ID_YUKON_EX && hw->chip_rev != CHIP_REV_YU_EX_A0) || hw->chip_id >= CHIP_ID_YUKON_FE_P) { /* Yukon-Extreme B0 and further Extreme devices */ /* enable Store & Forward mode for TX */ if (dev->mtu <= ETH_DATA_LEN) sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_JUMBO_DIS | TX_STFW_ENA); else sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_JUMBO_ENA| TX_STFW_ENA); } else { if (dev->mtu <= ETH_DATA_LEN) sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_ENA); else { /* set Tx GMAC FIFO Almost Empty Threshold */ sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), (ECU_JUMBO_WM << 16) | ECU_AE_THR); sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS); /* Can't do offload because of lack of store/forward */ dev->features &= ~(NETIF_F_TSO | NETIF_F_SG | NETIF_F_ALL_CSUM); } } } static void sky2_mac_init(struct sky2_hw *hw, unsigned port) { struct sky2_port *sky2 = netdev_priv(hw->dev[port]); u16 reg; u32 rx_reg; int i; const u8 *addr = hw->dev[port]->dev_addr; sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR); sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR); if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) { /* WA DEV_472 -- looks like crossed wires on port 2 */ /* clear GMAC 1 Control reset */ sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR); do { sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET); sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR); } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL || gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 || gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0); } sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC)); /* Enable Transmit FIFO Underrun */ sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK); spin_lock_bh(&sky2->phy_lock); sky2_phy_power_up(hw, port); sky2_phy_init(hw, port); spin_unlock_bh(&sky2->phy_lock); /* MIB clear */ reg = gma_read16(hw, port, GM_PHY_ADDR); gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR); for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4) gma_read16(hw, port, i); gma_write16(hw, port, GM_PHY_ADDR, reg); /* transmit control */ gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF)); /* receive control reg: unicast + multicast + no FCS */ gma_write16(hw, port, GM_RX_CTRL, GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA); /* transmit flow control */ gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff); /* transmit parameter */ gma_write16(hw, port, GM_TX_PARAM, TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) | TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF)); /* serial mode register */ reg = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (hw->dev[port]->mtu > ETH_DATA_LEN) reg |= GM_SMOD_JUMBO_ENA; gma_write16(hw, port, GM_SERIAL_MODE, reg); /* virtual address for data */ gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr); /* physical address: used for pause frames */ gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr); /* ignore counter overflows */ gma_write16(hw, port, GM_TX_IRQ_MSK, 0); gma_write16(hw, port, GM_RX_IRQ_MSK, 0); gma_write16(hw, port, GM_TR_IRQ_MSK, 0); /* Configure Rx MAC FIFO */ sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR); rx_reg = GMF_OPER_ON | GMF_RX_F_FL_ON; if (hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_FE_P) rx_reg |= GMF_RX_OVER_ON; sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), rx_reg); if (hw->chip_id == CHIP_ID_YUKON_XL) { /* Hardware errata - clear flush mask */ sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), 0); } else { /* Flush Rx MAC FIFO on any flow control or error */ sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR); } /* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */ reg = RX_GMF_FL_THR_DEF + 1; /* Another magic mystery workaround from sk98lin */ if (hw->chip_id == CHIP_ID_YUKON_FE_P && hw->chip_rev == CHIP_REV_YU_FE2_A0) reg = 0x178; sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), reg); /* Configure Tx MAC FIFO */ sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR); sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON); /* On chips without ram buffer, pause is controled by MAC level */ if (!(hw->flags & SKY2_HW_RAM_BUFFER)) { /* Pause threshold is scaled by 8 in bytes */ if (hw->chip_id == CHIP_ID_YUKON_FE_P && hw->chip_rev == CHIP_REV_YU_FE2_A0) reg = 1568 / 8; else reg = 1024 / 8; sky2_write16(hw, SK_REG(port, RX_GMF_UP_THR), reg); sky2_write16(hw, SK_REG(port, RX_GMF_LP_THR), 768 / 8); sky2_set_tx_stfwd(hw, port); } if (hw->chip_id == CHIP_ID_YUKON_FE_P && hw->chip_rev == CHIP_REV_YU_FE2_A0) { /* disable dynamic watermark */ reg = sky2_read16(hw, SK_REG(port, TX_GMF_EA)); reg &= ~TX_DYN_WM_ENA; sky2_write16(hw, SK_REG(port, TX_GMF_EA), reg); } } /* Assign Ram Buffer allocation to queue */ static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 space) { u32 end; /* convert from K bytes to qwords used for hw register */ start *= 1024/8; space *= 1024/8; end = start + space - 1; sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR); sky2_write32(hw, RB_ADDR(q, RB_START), start); sky2_write32(hw, RB_ADDR(q, RB_END), end); sky2_write32(hw, RB_ADDR(q, RB_WP), start); sky2_write32(hw, RB_ADDR(q, RB_RP), start); if (q == Q_R1 || q == Q_R2) { u32 tp = space - space/4; /* On receive queue's set the thresholds * give receiver priority when > 3/4 full * send pause when down to 2K */ sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp); sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2); tp = space - 2048/8; sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp); sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4); } else { /* Enable store & forward on Tx queue's because * Tx FIFO is only 1K on Yukon */ sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD); } sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD); sky2_read8(hw, RB_ADDR(q, RB_CTRL)); } /* Setup Bus Memory Interface */ static void sky2_qset(struct sky2_hw *hw, u16 q) { sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET); sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT); sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON); sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT); } /* Setup prefetch unit registers. This is the interface between * hardware and driver list elements */ static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr, dma_addr_t addr, u32 last) { sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), upper_32_bits(addr)); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), lower_32_bits(addr)); sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last); sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON); sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL)); } static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2, u16 *slot) { struct sky2_tx_le *le = sky2->tx_le + *slot; struct tx_ring_info *re = sky2->tx_ring + *slot; *slot = RING_NEXT(*slot, sky2->tx_ring_size); re->flags = 0; re->skb = NULL; le->ctrl = 0; return le; } static void tx_init(struct sky2_port *sky2) { struct sky2_tx_le *le; sky2->tx_prod = sky2->tx_cons = 0; sky2->tx_tcpsum = 0; sky2->tx_last_mss = 0; le = get_tx_le(sky2, &sky2->tx_prod); le->addr = 0; le->opcode = OP_ADDR64 | HW_OWNER; sky2->tx_last_upper = 0; } /* Update chip's next pointer */ static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx) { /* Make sure write' to descriptors are complete before we tell hardware */ wmb(); sky2_write16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX), idx); /* Synchronize I/O on since next processor may write to tail */ mmiowb(); } static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2) { struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put; sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE); le->ctrl = 0; return le; } /* Build description to hardware for one receive segment */ static void sky2_rx_add(struct sky2_port *sky2, u8 op, dma_addr_t map, unsigned len) { struct sky2_rx_le *le; if (sizeof(dma_addr_t) > sizeof(u32)) { le = sky2_next_rx(sky2); le->addr = cpu_to_le32(upper_32_bits(map)); le->opcode = OP_ADDR64 | HW_OWNER; } le = sky2_next_rx(sky2); le->addr = cpu_to_le32(lower_32_bits(map)); le->length = cpu_to_le16(len); le->opcode = op | HW_OWNER; } /* Build description to hardware for one possibly fragmented skb */ static void sky2_rx_submit(struct sky2_port *sky2, const struct rx_ring_info *re) { int i; sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size); for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++) sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE); } static int sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re, unsigned size) { struct sk_buff *skb = re->skb; int i; re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE); if (unlikely(pci_dma_mapping_error(pdev, re->data_addr))) return -EIO; pci_unmap_len_set(re, data_size, size); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) re->frag_addr[i] = pci_map_page(pdev, skb_shinfo(skb)->frags[i].page, skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size, PCI_DMA_FROMDEVICE); return 0; } static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re) { struct sk_buff *skb = re->skb; int i; pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size), PCI_DMA_FROMDEVICE); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) pci_unmap_page(pdev, re->frag_addr[i], skb_shinfo(skb)->frags[i].size, PCI_DMA_FROMDEVICE); } /* Tell chip where to start receive checksum. * Actually has two checksums, but set both same to avoid possible byte * order problems. */ static void rx_set_checksum(struct sky2_port *sky2) { struct sky2_rx_le *le = sky2_next_rx(sky2); le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN); le->ctrl = 0; le->opcode = OP_TCPSTART | HW_OWNER; sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR), (sky2->flags & SKY2_FLAG_RX_CHECKSUM) ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); } /* * The RX Stop command will not work for Yukon-2 if the BMU does not * reach the end of packet and since we can't make sure that we have * incoming data, we must reset the BMU while it is not doing a DMA * transfer. Since it is possible that the RX path is still active, * the RX RAM buffer will be stopped first, so any possible incoming * data will not trigger a DMA. After the RAM buffer is stopped, the * BMU is polled until any DMA in progress is ended and only then it * will be reset. */ static void sky2_rx_stop(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned rxq = rxqaddr[sky2->port]; int i; /* disable the RAM Buffer receive queue */ sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD); for (i = 0; i < 0xffff; i++) if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL)) == sky2_read8(hw, RB_ADDR(rxq, Q_RL))) goto stopped; printk(KERN_WARNING PFX "%s: receiver stop failed\n", sky2->netdev->name); stopped: sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* reset the Rx prefetch unit */ sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET); mmiowb(); } /* Clean out receive buffer area, assumes receiver hardware stopped */ static void sky2_rx_clean(struct sky2_port *sky2) { unsigned i; memset(sky2->rx_le, 0, RX_LE_BYTES); for (i = 0; i < sky2->rx_pending; i++) { struct rx_ring_info *re = sky2->rx_ring + i; if (re->skb) { sky2_rx_unmap_skb(sky2->hw->pdev, re); kfree_skb(re->skb); re->skb = NULL; } } } /* Basic MII support */ static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; int err = -EOPNOTSUPP; if (!netif_running(dev)) return -ENODEV; /* Phy still in reset */ switch (cmd) { case SIOCGMIIPHY: data->phy_id = PHY_ADDR_MARV; /* fallthru */ case SIOCGMIIREG: { u16 val = 0; spin_lock_bh(&sky2->phy_lock); err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val); spin_unlock_bh(&sky2->phy_lock); data->val_out = val; break; } case SIOCSMIIREG: spin_lock_bh(&sky2->phy_lock); err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f, data->val_in); spin_unlock_bh(&sky2->phy_lock); break; } return err; } #ifdef SKY2_VLAN_TAG_USED static void sky2_set_vlan_mode(struct sky2_hw *hw, u16 port, bool onoff) { if (onoff) { sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON); sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON); } else { sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF); sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF); } } static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; u16 port = sky2->port; netif_tx_lock_bh(dev); napi_disable(&hw->napi); sky2->vlgrp = grp; sky2_set_vlan_mode(hw, port, grp != NULL); sky2_read32(hw, B0_Y2_SP_LISR); napi_enable(&hw->napi); netif_tx_unlock_bh(dev); } #endif /* Amount of required worst case padding in rx buffer */ static inline unsigned sky2_rx_pad(const struct sky2_hw *hw) { return (hw->flags & SKY2_HW_RAM_BUFFER) ? 8 : 2; } /* * Allocate an skb for receiving. If the MTU is large enough * make the skb non-linear with a fragment list of pages. */ static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2) { struct sk_buff *skb; int i; skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + sky2_rx_pad(sky2->hw)); if (!skb) goto nomem; if (sky2->hw->flags & SKY2_HW_RAM_BUFFER) { unsigned char *start; /* * Workaround for a bug in FIFO that cause hang * if the FIFO if the receive buffer is not 64 byte aligned. * The buffer returned from netdev_alloc_skb is * aligned except if slab debugging is enabled. */ start = PTR_ALIGN(skb->data, 8); skb_reserve(skb, start - skb->data); } else skb_reserve(skb, NET_IP_ALIGN); for (i = 0; i < sky2->rx_nfrags; i++) { struct page *page = alloc_page(GFP_ATOMIC); if (!page) goto free_partial; skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE); } return skb; free_partial: kfree_skb(skb); nomem: return NULL; } static inline void sky2_rx_update(struct sky2_port *sky2, unsigned rxq) { sky2_put_idx(sky2->hw, rxq, sky2->rx_put); } /* * Allocate and setup receiver buffer pool. * Normal case this ends up creating one list element for skb * in the receive ring. Worst case if using large MTU and each * allocation falls on a different 64 bit region, that results * in 6 list elements per ring entry. * One element is used for checksum enable/disable, and one * extra to avoid wrap. */ static int sky2_rx_start(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; struct rx_ring_info *re; unsigned rxq = rxqaddr[sky2->port]; unsigned i, size, thresh; sky2->rx_put = sky2->rx_next = 0; sky2_qset(hw, rxq); /* On PCI express lowering the watermark gives better performance */ if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP)) sky2_write32(hw, Q_ADDR(rxq, Q_WM), BMU_WM_PEX); /* These chips have no ram buffer? * MAC Rx RAM Read is controlled by hardware */ if (hw->chip_id == CHIP_ID_YUKON_EC_U && (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0)) sky2_write32(hw, Q_ADDR(rxq, Q_TEST), F_M_RX_RAM_DIS); sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1); if (!(hw->flags & SKY2_HW_NEW_LE)) rx_set_checksum(sky2); /* Space needed for frame data + headers rounded up */ size = roundup(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8); /* Stopping point for hardware truncation */ thresh = (size - 8) / sizeof(u32); sky2->rx_nfrags = size >> PAGE_SHIFT; BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr)); /* Compute residue after pages */ size -= sky2->rx_nfrags << PAGE_SHIFT; /* Optimize to handle small packets and headers */ if (size < copybreak) size = copybreak; if (size < ETH_HLEN) size = ETH_HLEN; sky2->rx_data_size = size; /* Fill Rx ring */ for (i = 0; i < sky2->rx_pending; i++) { re = sky2->rx_ring + i; re->skb = sky2_rx_alloc(sky2); if (!re->skb) goto nomem; if (sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size)) { dev_kfree_skb(re->skb); re->skb = NULL; goto nomem; } sky2_rx_submit(sky2, re); } /* * The receiver hangs if it receives frames larger than the * packet buffer. As a workaround, truncate oversize frames, but * the register is limited to 9 bits, so if you do frames > 2052 * you better get the MTU right! */ if (thresh > 0x1ff) sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF); else { sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh); sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON); } /* Tell chip about available buffers */ sky2_rx_update(sky2, rxq); if (hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_SUPR) { /* * Disable flushing of non ASF packets; * must be done after initializing the BMUs; * drivers without ASF support should do this too, otherwise * it may happen that they cannot run on ASF devices; * remember that the MAC FIFO isn't reset during initialization. */ sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_MACSEC_FLUSH_OFF); } if (hw->chip_id >= CHIP_ID_YUKON_SUPR) { /* Enable RX Home Address & Routing Header checksum fix */ sky2_write16(hw, SK_REG(sky2->port, RX_GMF_FL_CTRL), RX_IPV6_SA_MOB_ENA | RX_IPV6_DA_MOB_ENA); /* Enable TX Home Address & Routing Header checksum fix */ sky2_write32(hw, Q_ADDR(txqaddr[sky2->port], Q_TEST), TBMU_TEST_HOME_ADD_FIX_EN | TBMU_TEST_ROUTING_ADD_FIX_EN); } return 0; nomem: sky2_rx_clean(sky2); return -ENOMEM; } static int sky2_alloc_buffers(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; /* must be power of 2 */ sky2->tx_le = pci_alloc_consistent(hw->pdev, sky2->tx_ring_size * sizeof(struct sky2_tx_le), &sky2->tx_le_map); if (!sky2->tx_le) goto nomem; sky2->tx_ring = kcalloc(sky2->tx_ring_size, sizeof(struct tx_ring_info), GFP_KERNEL); if (!sky2->tx_ring) goto nomem; sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES, &sky2->rx_le_map); if (!sky2->rx_le) goto nomem; memset(sky2->rx_le, 0, RX_LE_BYTES); sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info), GFP_KERNEL); if (!sky2->rx_ring) goto nomem; return 0; nomem: return -ENOMEM; } static void sky2_free_buffers(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; if (sky2->rx_le) { pci_free_consistent(hw->pdev, RX_LE_BYTES, sky2->rx_le, sky2->rx_le_map); sky2->rx_le = NULL; } if (sky2->tx_le) { pci_free_consistent(hw->pdev, sky2->tx_ring_size * sizeof(struct sky2_tx_le), sky2->tx_le, sky2->tx_le_map); sky2->tx_le = NULL; } kfree(sky2->tx_ring); kfree(sky2->rx_ring); sky2->tx_ring = NULL; sky2->rx_ring = NULL; } /* Bring up network interface. */ static int sky2_up(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u32 imask, ramsize; int cap, err; struct net_device *otherdev = hw->dev[sky2->port^1]; /* * On dual port PCI-X card, there is an problem where status * can be received out of order due to split transactions */ if (otherdev && netif_running(otherdev) && (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) { u16 cmd; cmd = sky2_pci_read16(hw, cap + PCI_X_CMD); cmd &= ~PCI_X_CMD_MAX_SPLIT; sky2_pci_write16(hw, cap + PCI_X_CMD, cmd); } netif_carrier_off(dev); err = sky2_alloc_buffers(sky2); if (err) goto err_out; tx_init(sky2); sky2_mac_init(hw, port); /* Register is number of 4K blocks on internal RAM buffer. */ ramsize = sky2_read8(hw, B2_E_0) * 4; if (ramsize > 0) { u32 rxspace; pr_debug(PFX "%s: ram buffer %dK\n", dev->name, ramsize); if (ramsize < 16) rxspace = ramsize / 2; else rxspace = 8 + (2*(ramsize - 16))/3; sky2_ramset(hw, rxqaddr[port], 0, rxspace); sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace); /* Make sure SyncQ is disabled */ sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL), RB_RST_SET); } sky2_qset(hw, txqaddr[port]); /* This is copied from sk98lin 10.0.5.3; no one tells me about erratta's */ if (hw->chip_id == CHIP_ID_YUKON_EX && hw->chip_rev == CHIP_REV_YU_EX_B0) sky2_write32(hw, Q_ADDR(txqaddr[port], Q_TEST), F_TX_CHK_AUTO_OFF); /* Set almost empty threshold */ if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_U_A0) sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), ECU_TXFF_LEV); sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map, sky2->tx_ring_size - 1); #ifdef SKY2_VLAN_TAG_USED sky2_set_vlan_mode(hw, port, sky2->vlgrp != NULL); #endif err = sky2_rx_start(sky2); if (err) goto err_out; /* Enable interrupts from phy/mac for port */ imask = sky2_read32(hw, B0_IMSK); imask |= portirq_msk[port]; sky2_write32(hw, B0_IMSK, imask); sky2_read32(hw, B0_IMSK); if (netif_msg_ifup(sky2)) printk(KERN_INFO PFX "%s: enabling interface\n", dev->name); return 0; err_out: sky2_free_buffers(sky2); return err; } /* Modular subtraction in ring */ static inline int tx_inuse(const struct sky2_port *sky2) { return (sky2->tx_prod - sky2->tx_cons) & (sky2->tx_ring_size - 1); } /* Number of list elements available for next tx */ static inline int tx_avail(const struct sky2_port *sky2) { return sky2->tx_pending - tx_inuse(sky2); } /* Estimate of number of transmit list elements required */ static unsigned tx_le_req(const struct sk_buff *skb) { unsigned count; count = (skb_shinfo(skb)->nr_frags + 1) * (sizeof(dma_addr_t) / sizeof(u32)); if (skb_is_gso(skb)) ++count; else if (sizeof(dma_addr_t) == sizeof(u32)) ++count; /* possible vlan */ if (skb->ip_summed == CHECKSUM_PARTIAL) ++count; return count; } static void sky2_tx_unmap(struct pci_dev *pdev, const struct tx_ring_info *re) { if (re->flags & TX_MAP_SINGLE) pci_unmap_single(pdev, pci_unmap_addr(re, mapaddr), pci_unmap_len(re, maplen), PCI_DMA_TODEVICE); else if (re->flags & TX_MAP_PAGE) pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr), pci_unmap_len(re, maplen), PCI_DMA_TODEVICE); } /* * Put one packet in ring for transmit. * A single packet can generate multiple list elements, and * the number of ring elements will probably be less than the number * of list elements used. */ static netdev_tx_t sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; struct sky2_tx_le *le = NULL; struct tx_ring_info *re; unsigned i, len; dma_addr_t mapping; u32 upper; u16 slot; u16 mss; u8 ctrl; if (unlikely(tx_avail(sky2) < tx_le_req(skb))) return NETDEV_TX_BUSY; len = skb_headlen(skb); mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(hw->pdev, mapping)) goto mapping_error; slot = sky2->tx_prod; if (unlikely(netif_msg_tx_queued(sky2))) printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n", dev->name, slot, skb->len); /* Send high bits if needed */ upper = upper_32_bits(mapping); if (upper != sky2->tx_last_upper) { le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(upper); sky2->tx_last_upper = upper; le->opcode = OP_ADDR64 | HW_OWNER; } /* Check for TCP Segmentation Offload */ mss = skb_shinfo(skb)->gso_size; if (mss != 0) { if (!(hw->flags & SKY2_HW_NEW_LE)) mss += ETH_HLEN + ip_hdrlen(skb) + tcp_hdrlen(skb); if (mss != sky2->tx_last_mss) { le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(mss); if (hw->flags & SKY2_HW_NEW_LE) le->opcode = OP_MSS | HW_OWNER; else le->opcode = OP_LRGLEN | HW_OWNER; sky2->tx_last_mss = mss; } } ctrl = 0; #ifdef SKY2_VLAN_TAG_USED /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */ if (sky2->vlgrp && vlan_tx_tag_present(skb)) { if (!le) { le = get_tx_le(sky2, &slot); le->addr = 0; le->opcode = OP_VLAN|HW_OWNER; } else le->opcode |= OP_VLAN; le->length = cpu_to_be16(vlan_tx_tag_get(skb)); ctrl |= INS_VLAN; } #endif /* Handle TCP checksum offload */ if (skb->ip_summed == CHECKSUM_PARTIAL) { /* On Yukon EX (some versions) encoding change. */ if (hw->flags & SKY2_HW_AUTO_TX_SUM) ctrl |= CALSUM; /* auto checksum */ else { const unsigned offset = skb_transport_offset(skb); u32 tcpsum; tcpsum = offset << 16; /* sum start */ tcpsum |= offset + skb->csum_offset; /* sum write */ ctrl |= CALSUM | WR_SUM | INIT_SUM | LOCK_SUM; if (ip_hdr(skb)->protocol == IPPROTO_UDP) ctrl |= UDPTCP; if (tcpsum != sky2->tx_tcpsum) { sky2->tx_tcpsum = tcpsum; le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(tcpsum); le->length = 0; /* initial checksum value */ le->ctrl = 1; /* one packet */ le->opcode = OP_TCPLISW | HW_OWNER; } } } re = sky2->tx_ring + slot; re->flags = TX_MAP_SINGLE; pci_unmap_addr_set(re, mapaddr, mapping); pci_unmap_len_set(re, maplen, len); le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(lower_32_bits(mapping)); le->length = cpu_to_le16(len); le->ctrl = ctrl; le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE); if (pci_dma_mapping_error(hw->pdev, mapping)) goto mapping_unwind; upper = upper_32_bits(mapping); if (upper != sky2->tx_last_upper) { le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(upper); sky2->tx_last_upper = upper; le->opcode = OP_ADDR64 | HW_OWNER; } re = sky2->tx_ring + slot; re->flags = TX_MAP_PAGE; pci_unmap_addr_set(re, mapaddr, mapping); pci_unmap_len_set(re, maplen, frag->size); le = get_tx_le(sky2, &slot); le->addr = cpu_to_le32(lower_32_bits(mapping)); le->length = cpu_to_le16(frag->size); le->ctrl = ctrl; le->opcode = OP_BUFFER | HW_OWNER; } re->skb = skb; le->ctrl |= EOP; sky2->tx_prod = slot; if (tx_avail(sky2) <= MAX_SKB_TX_LE) netif_stop_queue(dev); sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod); return NETDEV_TX_OK; mapping_unwind: for (i = sky2->tx_prod; i != slot; i = RING_NEXT(i, sky2->tx_ring_size)) { re = sky2->tx_ring + i; sky2_tx_unmap(hw->pdev, re); } mapping_error: if (net_ratelimit()) dev_warn(&hw->pdev->dev, "%s: tx mapping error\n", dev->name); dev_kfree_skb(skb); return NETDEV_TX_OK; } /* * Free ring elements from starting at tx_cons until "done" * * NB: * 1. The hardware will tell us about partial completion of multi-part * buffers so make sure not to free skb to early. * 2. This may run in parallel start_xmit because the it only * looks at the tail of the queue of FIFO (tx_cons), not * the head (tx_prod) */ static void sky2_tx_complete(struct sky2_port *sky2, u16 done) { struct net_device *dev = sky2->netdev; unsigned idx; BUG_ON(done >= sky2->tx_ring_size); for (idx = sky2->tx_cons; idx != done; idx = RING_NEXT(idx, sky2->tx_ring_size)) { struct tx_ring_info *re = sky2->tx_ring + idx; struct sk_buff *skb = re->skb; sky2_tx_unmap(sky2->hw->pdev, re); if (skb) { if (unlikely(netif_msg_tx_done(sky2))) printk(KERN_DEBUG "%s: tx done %u\n", dev->name, idx); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; dev_kfree_skb_any(skb); sky2->tx_next = RING_NEXT(idx, sky2->tx_ring_size); } } sky2->tx_cons = idx; smp_mb(); if (tx_avail(sky2) > MAX_SKB_TX_LE + 4) netif_wake_queue(dev); } static void sky2_tx_reset(struct sky2_hw *hw, unsigned port) { /* Disable Force Sync bit and Enable Alloc bit */ sky2_write8(hw, SK_REG(port, TXA_CTRL), TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); /* Stop Interval Timer and Limit Counter of Tx Arbiter */ sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L); sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L); /* Reset the PCI FIFO of the async Tx queue */ sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_RST_SET | BMU_FIFO_RST); /* Reset the Tx prefetch units */ sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL), PREF_UNIT_RST_SET); sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET); sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET); } /* Network shutdown */ static int sky2_down(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 ctrl; u32 imask; /* Never really got started! */ if (!sky2->tx_le) return 0; if (netif_msg_ifdown(sky2)) printk(KERN_INFO PFX "%s: disabling interface\n", dev->name); /* Force flow control off */ sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); /* Stop transmitter */ sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP); sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR)); sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET | RB_DIS_OP_MD); ctrl = gma_read16(hw, port, GM_GP_CTRL); ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA); gma_write16(hw, port, GM_GP_CTRL, ctrl); sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET); /* Workaround shared GMAC reset */ if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 0 && hw->dev[1] && netif_running(hw->dev[1]))) sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET); sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET); /* Force any delayed status interrrupt and NAPI */ sky2_write32(hw, STAT_LEV_TIMER_CNT, 0); sky2_write32(hw, STAT_TX_TIMER_CNT, 0); sky2_write32(hw, STAT_ISR_TIMER_CNT, 0); sky2_read8(hw, STAT_ISR_TIMER_CTRL); sky2_rx_stop(sky2); /* Disable port IRQ */ imask = sky2_read32(hw, B0_IMSK); imask &= ~portirq_msk[port]; sky2_write32(hw, B0_IMSK, imask); sky2_read32(hw, B0_IMSK); synchronize_irq(hw->pdev->irq); napi_synchronize(&hw->napi); spin_lock_bh(&sky2->phy_lock); sky2_phy_power_down(hw, port); spin_unlock_bh(&sky2->phy_lock); sky2_tx_reset(hw, port); /* Free any pending frames stuck in HW queue */ sky2_tx_complete(sky2, sky2->tx_prod); sky2_rx_clean(sky2); sky2_free_buffers(sky2); return 0; } static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux) { if (hw->flags & SKY2_HW_FIBRE_PHY) return SPEED_1000; if (!(hw->flags & SKY2_HW_GIGABIT)) { if (aux & PHY_M_PS_SPEED_100) return SPEED_100; else return SPEED_10; } switch (aux & PHY_M_PS_SPEED_MSK) { case PHY_M_PS_SPEED_1000: return SPEED_1000; case PHY_M_PS_SPEED_100: return SPEED_100; default: return SPEED_10; } } static void sky2_link_up(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 reg; static const char *fc_name[] = { [FC_NONE] = "none", [FC_TX] = "tx", [FC_RX] = "rx", [FC_BOTH] = "both", }; /* enable Rx/Tx */ reg = gma_read16(hw, port, GM_GP_CTRL); reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA; gma_write16(hw, port, GM_GP_CTRL, reg); gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK); netif_carrier_on(sky2->netdev); mod_timer(&hw->watchdog_timer, jiffies + 1); /* Turn on link LED */ sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF); if (netif_msg_link(sky2)) printk(KERN_INFO PFX "%s: Link is up at %d Mbps, %s duplex, flow control %s\n", sky2->netdev->name, sky2->speed, sky2->duplex == DUPLEX_FULL ? "full" : "half", fc_name[sky2->flow_status]); } static void sky2_link_down(struct sky2_port *sky2) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 reg; gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0); reg = gma_read16(hw, port, GM_GP_CTRL); reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA); gma_write16(hw, port, GM_GP_CTRL, reg); netif_carrier_off(sky2->netdev); /* Turn on link LED */ sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF); if (netif_msg_link(sky2)) printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name); sky2_phy_init(hw, port); } static enum flow_control sky2_flow(int rx, int tx) { if (rx) return tx ? FC_BOTH : FC_RX; else return tx ? FC_TX : FC_NONE; } static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; u16 advert, lpa; advert = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV); lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP); if (lpa & PHY_M_AN_RF) { printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name); return -1; } if (!(aux & PHY_M_PS_SPDUP_RES)) { printk(KERN_ERR PFX "%s: speed/duplex mismatch", sky2->netdev->name); return -1; } sky2->speed = sky2_phy_speed(hw, aux); sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; /* Since the pause result bits seem to in different positions on * different chips. look at registers. */ if (hw->flags & SKY2_HW_FIBRE_PHY) { /* Shift for bits in fiber PHY */ advert &= ~(ADVERTISE_PAUSE_CAP|ADVERTISE_PAUSE_ASYM); lpa &= ~(LPA_PAUSE_CAP|LPA_PAUSE_ASYM); if (advert & ADVERTISE_1000XPAUSE) advert |= ADVERTISE_PAUSE_CAP; if (advert & ADVERTISE_1000XPSE_ASYM) advert |= ADVERTISE_PAUSE_ASYM; if (lpa & LPA_1000XPAUSE) lpa |= LPA_PAUSE_CAP; if (lpa & LPA_1000XPAUSE_ASYM) lpa |= LPA_PAUSE_ASYM; } sky2->flow_status = FC_NONE; if (advert & ADVERTISE_PAUSE_CAP) { if (lpa & LPA_PAUSE_CAP) sky2->flow_status = FC_BOTH; else if (advert & ADVERTISE_PAUSE_ASYM) sky2->flow_status = FC_RX; } else if (advert & ADVERTISE_PAUSE_ASYM) { if ((lpa & LPA_PAUSE_CAP) && (lpa & LPA_PAUSE_ASYM)) sky2->flow_status = FC_TX; } if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000 && !(hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_EX)) sky2->flow_status = FC_NONE; if (sky2->flow_status & FC_TX) sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON); else sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF); return 0; } /* Interrupt from PHY */ static void sky2_phy_intr(struct sky2_hw *hw, unsigned port) { struct net_device *dev = hw->dev[port]; struct sky2_port *sky2 = netdev_priv(dev); u16 istatus, phystat; if (!netif_running(dev)) return; spin_lock(&sky2->phy_lock); istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT); phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT); if (netif_msg_intr(sky2)) printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n", sky2->netdev->name, istatus, phystat); if (istatus & PHY_M_IS_AN_COMPL) { if (sky2_autoneg_done(sky2, phystat) == 0) sky2_link_up(sky2); goto out; } if (istatus & PHY_M_IS_LSP_CHANGE) sky2->speed = sky2_phy_speed(hw, phystat); if (istatus & PHY_M_IS_DUP_CHANGE) sky2->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF; if (istatus & PHY_M_IS_LST_CHANGE) { if (phystat & PHY_M_PS_LINK_UP) sky2_link_up(sky2); else sky2_link_down(sky2); } out: spin_unlock(&sky2->phy_lock); } /* Special quick link interrupt (Yukon-2 Optima only) */ static void sky2_qlink_intr(struct sky2_hw *hw) { struct sky2_port *sky2 = netdev_priv(hw->dev[0]); u32 imask; u16 phy; /* disable irq */ imask = sky2_read32(hw, B0_IMSK); imask &= ~Y2_IS_PHY_QLNK; sky2_write32(hw, B0_IMSK, imask); /* reset PHY Link Detect */ phy = sky2_pci_read16(hw, PSM_CONFIG_REG4); sky2_pci_write16(hw, PSM_CONFIG_REG4, phy | 1); sky2_link_up(sky2); } /* Transmit timeout is only called if we are running, carrier is up * and tx queue is full (stopped). */ static void sky2_tx_timeout(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; if (netif_msg_timer(sky2)) printk(KERN_ERR PFX "%s: tx timeout\n", dev->name); printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n", dev->name, sky2->tx_cons, sky2->tx_prod, sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX), sky2_read16(hw, Q_ADDR(txqaddr[sky2->port], Q_DONE))); /* can't restart safely under softirq */ schedule_work(&hw->restart_work); } static int sky2_change_mtu(struct net_device *dev, int new_mtu) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; int err; u16 ctl, mode; u32 imask; if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU) return -EINVAL; if (new_mtu > ETH_DATA_LEN && (hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_FE_P)) return -EINVAL; if (!netif_running(dev)) { dev->mtu = new_mtu; return 0; } imask = sky2_read32(hw, B0_IMSK); sky2_write32(hw, B0_IMSK, 0); dev->trans_start = jiffies; /* prevent tx timeout */ netif_stop_queue(dev); napi_disable(&hw->napi); synchronize_irq(hw->pdev->irq); if (!(hw->flags & SKY2_HW_RAM_BUFFER)) sky2_set_tx_stfwd(hw, port); ctl = gma_read16(hw, port, GM_GP_CTRL); gma_write16(hw, port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA); sky2_rx_stop(sky2); sky2_rx_clean(sky2); dev->mtu = new_mtu; mode = DATA_BLIND_VAL(DATA_BLIND_DEF) | GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF); if (dev->mtu > ETH_DATA_LEN) mode |= GM_SMOD_JUMBO_ENA; gma_write16(hw, port, GM_SERIAL_MODE, mode); sky2_write8(hw, RB_ADDR(rxqaddr[port], RB_CTRL), RB_ENA_OP_MD); err = sky2_rx_start(sky2); sky2_write32(hw, B0_IMSK, imask); sky2_read32(hw, B0_Y2_SP_LISR); napi_enable(&hw->napi); if (err) dev_close(dev); else { gma_write16(hw, port, GM_GP_CTRL, ctl); netif_wake_queue(dev); } return err; } /* For small just reuse existing skb for next receive */ static struct sk_buff *receive_copy(struct sky2_port *sky2, const struct rx_ring_info *re, unsigned length) { struct sk_buff *skb; skb = netdev_alloc_skb_ip_align(sky2->netdev, length); if (likely(skb)) { pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr, length, PCI_DMA_FROMDEVICE); skb_copy_from_linear_data(re->skb, skb->data, length); skb->ip_summed = re->skb->ip_summed; skb->csum = re->skb->csum; pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr, length, PCI_DMA_FROMDEVICE); re->skb->ip_summed = CHECKSUM_NONE; skb_put(skb, length); } return skb; } /* Adjust length of skb with fragments to match received data */ static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space, unsigned int length) { int i, num_frags; unsigned int size; /* put header into skb */ size = min(length, hdr_space); skb->tail += size; skb->len += size; length -= size; num_frags = skb_shinfo(skb)->nr_frags; for (i = 0; i < num_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; if (length == 0) { /* don't need this page */ __free_page(frag->page); --skb_shinfo(skb)->nr_frags; } else { size = min(length, (unsigned) PAGE_SIZE); frag->size = size; skb->data_len += size; skb->truesize += size; skb->len += size; length -= size; } } } /* Normal packet - take skb from ring element and put in a new one */ static struct sk_buff *receive_new(struct sky2_port *sky2, struct rx_ring_info *re, unsigned int length) { struct sk_buff *skb, *nskb; unsigned hdr_space = sky2->rx_data_size; /* Don't be tricky about reusing pages (yet) */ nskb = sky2_rx_alloc(sky2); if (unlikely(!nskb)) return NULL; skb = re->skb; sky2_rx_unmap_skb(sky2->hw->pdev, re); prefetch(skb->data); re->skb = nskb; if (sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space)) { dev_kfree_skb(nskb); re->skb = skb; return NULL; } if (skb_shinfo(skb)->nr_frags) skb_put_frags(skb, hdr_space, length); else skb_put(skb, length); return skb; } /* * Receive one packet. * For larger packets, get new buffer. */ static struct sk_buff *sky2_receive(struct net_device *dev, u16 length, u32 status) { struct sky2_port *sky2 = netdev_priv(dev); struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next; struct sk_buff *skb = NULL; u16 count = (status & GMR_FS_LEN) >> 16; #ifdef SKY2_VLAN_TAG_USED /* Account for vlan tag */ if (sky2->vlgrp && (status & GMR_FS_VLAN)) count -= VLAN_HLEN; #endif if (unlikely(netif_msg_rx_status(sky2))) printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n", dev->name, sky2->rx_next, status, length); sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending; prefetch(sky2->rx_ring + sky2->rx_next); /* This chip has hardware problems that generates bogus status. * So do only marginal checking and expect higher level protocols * to handle crap frames. */ if (sky2->hw->chip_id == CHIP_ID_YUKON_FE_P && sky2->hw->chip_rev == CHIP_REV_YU_FE2_A0 && length != count) goto okay; if (status & GMR_FS_ANY_ERR) goto error; if (!(status & GMR_FS_RX_OK)) goto resubmit; /* if length reported by DMA does not match PHY, packet was truncated */ if (length != count) goto len_error; okay: if (length < copybreak) skb = receive_copy(sky2, re, length); else skb = receive_new(sky2, re, length); resubmit: sky2_rx_submit(sky2, re); return skb; len_error: /* Truncation of overlength packets causes PHY length to not match MAC length */ ++dev->stats.rx_length_errors; if (netif_msg_rx_err(sky2) && net_ratelimit()) pr_info(PFX "%s: rx length error: status %#x length %d\n", dev->name, status, length); goto resubmit; error: ++dev->stats.rx_errors; if (status & GMR_FS_RX_FF_OV) { dev->stats.rx_over_errors++; goto resubmit; } if (netif_msg_rx_err(sky2) && net_ratelimit()) printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n", dev->name, status, length); if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE)) dev->stats.rx_length_errors++; if (status & GMR_FS_FRAGMENT) dev->stats.rx_frame_errors++; if (status & GMR_FS_CRC_ERR) dev->stats.rx_crc_errors++; goto resubmit; } /* Transmit complete */ static inline void sky2_tx_done(struct net_device *dev, u16 last) { struct sky2_port *sky2 = netdev_priv(dev); if (netif_running(dev)) sky2_tx_complete(sky2, last); } static inline void sky2_skb_rx(const struct sky2_port *sky2, u32 status, struct sk_buff *skb) { #ifdef SKY2_VLAN_TAG_USED u16 vlan_tag = be16_to_cpu(sky2->rx_tag); if (sky2->vlgrp && (status & GMR_FS_VLAN)) { if (skb->ip_summed == CHECKSUM_NONE) vlan_hwaccel_receive_skb(skb, sky2->vlgrp, vlan_tag); else vlan_gro_receive(&sky2->hw->napi, sky2->vlgrp, vlan_tag, skb); return; } #endif if (skb->ip_summed == CHECKSUM_NONE) netif_receive_skb(skb); else napi_gro_receive(&sky2->hw->napi, skb); } static inline void sky2_rx_done(struct sky2_hw *hw, unsigned port, unsigned packets, unsigned bytes) { if (packets) { struct net_device *dev = hw->dev[port]; dev->stats.rx_packets += packets; dev->stats.rx_bytes += bytes; dev->last_rx = jiffies; sky2_rx_update(netdev_priv(dev), rxqaddr[port]); } } /* Process status response ring */ static int sky2_status_intr(struct sky2_hw *hw, int to_do, u16 idx) { int work_done = 0; unsigned int total_bytes[2] = { 0 }; unsigned int total_packets[2] = { 0 }; rmb(); do { struct sky2_port *sky2; struct sky2_status_le *le = hw->st_le + hw->st_idx; unsigned port; struct net_device *dev; struct sk_buff *skb; u32 status; u16 length; u8 opcode = le->opcode; if (!(opcode & HW_OWNER)) break; hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE); port = le->css & CSS_LINK_BIT; dev = hw->dev[port]; sky2 = netdev_priv(dev); length = le16_to_cpu(le->length); status = le32_to_cpu(le->status); le->opcode = 0; switch (opcode & ~HW_OWNER) { case OP_RXSTAT: total_packets[port]++; total_bytes[port] += length; skb = sky2_receive(dev, length, status); if (unlikely(!skb)) { dev->stats.rx_dropped++; break; } /* This chip reports checksum status differently */ if (hw->flags & SKY2_HW_NEW_LE) { if ((sky2->flags & SKY2_FLAG_RX_CHECKSUM) && (le->css & (CSS_ISIPV4 | CSS_ISIPV6)) && (le->css & CSS_TCPUDPCSOK)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; } skb->protocol = eth_type_trans(skb, dev); sky2_skb_rx(sky2, status, skb); /* Stop after net poll weight */ if (++work_done >= to_do) goto exit_loop; break; #ifdef SKY2_VLAN_TAG_USED case OP_RXVLAN: sky2->rx_tag = length; break; case OP_RXCHKSVLAN: sky2->rx_tag = length; /* fall through */ #endif case OP_RXCHKS: if (!(sky2->flags & SKY2_FLAG_RX_CHECKSUM)) break; /* If this happens then driver assuming wrong format */ if (unlikely(hw->flags & SKY2_HW_NEW_LE)) { if (net_ratelimit()) printk(KERN_NOTICE "%s: unexpected" " checksum status\n", dev->name); break; } /* Both checksum counters are programmed to start at * the same offset, so unless there is a problem they * should match. This failure is an early indication that * hardware receive checksumming won't work. */ if (likely(status >> 16 == (status & 0xffff))) { skb = sky2->rx_ring[sky2->rx_next].skb; skb->ip_summed = CHECKSUM_COMPLETE; skb->csum = le16_to_cpu(status); } else { printk(KERN_NOTICE PFX "%s: hardware receive " "checksum problem (status = %#x)\n", dev->name, status); sky2->flags &= ~SKY2_FLAG_RX_CHECKSUM; sky2_write32(sky2->hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_DIS_RX_CHKSUM); } break; case OP_TXINDEXLE: /* TX index reports status for both ports */ sky2_tx_done(hw->dev[0], status & 0xfff); if (hw->dev[1]) sky2_tx_done(hw->dev[1], ((status >> 24) & 0xff) | (u16)(length & 0xf) << 8); break; default: if (net_ratelimit()) printk(KERN_WARNING PFX "unknown status opcode 0x%x\n", opcode); } } while (hw->st_idx != idx); /* Fully processed status ring so clear irq */ sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ); exit_loop: sky2_rx_done(hw, 0, total_packets[0], total_bytes[0]); sky2_rx_done(hw, 1, total_packets[1], total_bytes[1]); return work_done; } static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status) { struct net_device *dev = hw->dev[port]; if (net_ratelimit()) printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n", dev->name, status); if (status & Y2_IS_PAR_RD1) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: ram data read parity error\n", dev->name); /* Clear IRQ */ sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR); } if (status & Y2_IS_PAR_WR1) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: ram data write parity error\n", dev->name); sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR); } if (status & Y2_IS_PAR_MAC1) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name); sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE); } if (status & Y2_IS_PAR_RX1) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: RX parity error\n", dev->name); sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR); } if (status & Y2_IS_TCP_TXA1) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: TCP segmentation error\n", dev->name); sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP); } } static void sky2_hw_intr(struct sky2_hw *hw) { struct pci_dev *pdev = hw->pdev; u32 status = sky2_read32(hw, B0_HWE_ISRC); u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK); status &= hwmsk; if (status & Y2_IS_TIST_OV) sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) { u16 pci_err; sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); pci_err = sky2_pci_read16(hw, PCI_STATUS); if (net_ratelimit()) dev_err(&pdev->dev, "PCI hardware error (0x%x)\n", pci_err); sky2_pci_write16(hw, PCI_STATUS, pci_err | PCI_STATUS_ERROR_BITS); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } if (status & Y2_IS_PCI_EXP) { /* PCI-Express uncorrectable Error occurred */ u32 err; sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); err = sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS); sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS, 0xfffffffful); if (net_ratelimit()) dev_err(&pdev->dev, "PCI Express error (0x%x)\n", err); sky2_read32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); } if (status & Y2_HWE_L1_MASK) sky2_hw_error(hw, 0, status); status >>= 8; if (status & Y2_HWE_L1_MASK) sky2_hw_error(hw, 1, status); } static void sky2_mac_intr(struct sky2_hw *hw, unsigned port) { struct net_device *dev = hw->dev[port]; struct sky2_port *sky2 = netdev_priv(dev); u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC)); if (netif_msg_intr(sky2)) printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n", dev->name, status); if (status & GM_IS_RX_CO_OV) gma_read16(hw, port, GM_RX_IRQ_SRC); if (status & GM_IS_TX_CO_OV) gma_read16(hw, port, GM_TX_IRQ_SRC); if (status & GM_IS_RX_FF_OR) { ++dev->stats.rx_fifo_errors; sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO); } if (status & GM_IS_TX_FF_UR) { ++dev->stats.tx_fifo_errors; sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU); } } /* This should never happen it is a bug. */ static void sky2_le_error(struct sky2_hw *hw, unsigned port, u16 q) { struct net_device *dev = hw->dev[port]; u16 idx = sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_GET_IDX)); dev_err(&hw->pdev->dev, PFX "%s: descriptor error q=%#x get=%u put=%u\n", dev->name, (unsigned) q, (unsigned) idx, (unsigned) sky2_read16(hw, Y2_QADDR(q, PREF_UNIT_PUT_IDX))); sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_IRQ_CHK); } static int sky2_rx_hung(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; unsigned rxq = rxqaddr[port]; u32 mac_rp = sky2_read32(hw, SK_REG(port, RX_GMF_RP)); u8 mac_lev = sky2_read8(hw, SK_REG(port, RX_GMF_RLEV)); u8 fifo_rp = sky2_read8(hw, Q_ADDR(rxq, Q_RP)); u8 fifo_lev = sky2_read8(hw, Q_ADDR(rxq, Q_RL)); /* If idle and MAC or PCI is stuck */ if (sky2->check.last == dev->last_rx && ((mac_rp == sky2->check.mac_rp && mac_lev != 0 && mac_lev >= sky2->check.mac_lev) || /* Check if the PCI RX hang */ (fifo_rp == sky2->check.fifo_rp && fifo_lev != 0 && fifo_lev >= sky2->check.fifo_lev))) { printk(KERN_DEBUG PFX "%s: hung mac %d:%d fifo %d (%d:%d)\n", dev->name, mac_lev, mac_rp, fifo_lev, fifo_rp, sky2_read8(hw, Q_ADDR(rxq, Q_WP))); return 1; } else { sky2->check.last = dev->last_rx; sky2->check.mac_rp = mac_rp; sky2->check.mac_lev = mac_lev; sky2->check.fifo_rp = fifo_rp; sky2->check.fifo_lev = fifo_lev; return 0; } } static void sky2_watchdog(unsigned long arg) { struct sky2_hw *hw = (struct sky2_hw *) arg; /* Check for lost IRQ once a second */ if (sky2_read32(hw, B0_ISRC)) { napi_schedule(&hw->napi); } else { int i, active = 0; for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; if (!netif_running(dev)) continue; ++active; /* For chips with Rx FIFO, check if stuck */ if ((hw->flags & SKY2_HW_RAM_BUFFER) && sky2_rx_hung(dev)) { pr_info(PFX "%s: receiver hang detected\n", dev->name); schedule_work(&hw->restart_work); return; } } if (active == 0) return; } mod_timer(&hw->watchdog_timer, round_jiffies(jiffies + HZ)); } /* Hardware/software error handling */ static void sky2_err_intr(struct sky2_hw *hw, u32 status) { if (net_ratelimit()) dev_warn(&hw->pdev->dev, "error interrupt status=%#x\n", status); if (status & Y2_IS_HW_ERR) sky2_hw_intr(hw); if (status & Y2_IS_IRQ_MAC1) sky2_mac_intr(hw, 0); if (status & Y2_IS_IRQ_MAC2) sky2_mac_intr(hw, 1); if (status & Y2_IS_CHK_RX1) sky2_le_error(hw, 0, Q_R1); if (status & Y2_IS_CHK_RX2) sky2_le_error(hw, 1, Q_R2); if (status & Y2_IS_CHK_TXA1) sky2_le_error(hw, 0, Q_XA1); if (status & Y2_IS_CHK_TXA2) sky2_le_error(hw, 1, Q_XA2); } static int sky2_poll(struct napi_struct *napi, int work_limit) { struct sky2_hw *hw = container_of(napi, struct sky2_hw, napi); u32 status = sky2_read32(hw, B0_Y2_SP_EISR); int work_done = 0; u16 idx; if (unlikely(status & Y2_IS_ERROR)) sky2_err_intr(hw, status); if (status & Y2_IS_IRQ_PHY1) sky2_phy_intr(hw, 0); if (status & Y2_IS_IRQ_PHY2) sky2_phy_intr(hw, 1); if (status & Y2_IS_PHY_QLNK) sky2_qlink_intr(hw); while ((idx = sky2_read16(hw, STAT_PUT_IDX)) != hw->st_idx) { work_done += sky2_status_intr(hw, work_limit - work_done, idx); if (work_done >= work_limit) goto done; } napi_complete(napi); sky2_read32(hw, B0_Y2_SP_LISR); done: return work_done; } static irqreturn_t sky2_intr(int irq, void *dev_id) { struct sky2_hw *hw = dev_id; u32 status; /* Reading this mask interrupts as side effect */ status = sky2_read32(hw, B0_Y2_SP_ISRC2); if (status == 0 || status == ~0) return IRQ_NONE; prefetch(&hw->st_le[hw->st_idx]); napi_schedule(&hw->napi); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void sky2_netpoll(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); napi_schedule(&sky2->hw->napi); } #endif /* Chip internal frequency for clock calculations */ static u32 sky2_mhz(const struct sky2_hw *hw) { switch (hw->chip_id) { case CHIP_ID_YUKON_EC: case CHIP_ID_YUKON_EC_U: case CHIP_ID_YUKON_EX: case CHIP_ID_YUKON_SUPR: case CHIP_ID_YUKON_UL_2: case CHIP_ID_YUKON_OPT: return 125; case CHIP_ID_YUKON_FE: return 100; case CHIP_ID_YUKON_FE_P: return 50; case CHIP_ID_YUKON_XL: return 156; default: BUG(); } } static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us) { return sky2_mhz(hw) * us; } static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk) { return clk / sky2_mhz(hw); } static int __devinit sky2_init(struct sky2_hw *hw) { u8 t8; /* Enable all clocks and check for bad PCI access */ sky2_pci_write32(hw, PCI_DEV_REG3, 0); sky2_write8(hw, B0_CTST, CS_RST_CLR); hw->chip_id = sky2_read8(hw, B2_CHIP_ID); hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4; switch(hw->chip_id) { case CHIP_ID_YUKON_XL: hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY; break; case CHIP_ID_YUKON_EC_U: hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY | SKY2_HW_ADV_POWER_CTL; break; case CHIP_ID_YUKON_EX: hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY | SKY2_HW_NEW_LE | SKY2_HW_ADV_POWER_CTL; /* New transmit checksum */ if (hw->chip_rev != CHIP_REV_YU_EX_B0) hw->flags |= SKY2_HW_AUTO_TX_SUM; break; case CHIP_ID_YUKON_EC: /* This rev is really old, and requires untested workarounds */ if (hw->chip_rev == CHIP_REV_YU_EC_A1) { dev_err(&hw->pdev->dev, "unsupported revision Yukon-EC rev A1\n"); return -EOPNOTSUPP; } hw->flags = SKY2_HW_GIGABIT; break; case CHIP_ID_YUKON_FE: break; case CHIP_ID_YUKON_FE_P: hw->flags = SKY2_HW_NEWER_PHY | SKY2_HW_NEW_LE | SKY2_HW_AUTO_TX_SUM | SKY2_HW_ADV_POWER_CTL; break; case CHIP_ID_YUKON_SUPR: hw->flags = SKY2_HW_GIGABIT | SKY2_HW_NEWER_PHY | SKY2_HW_NEW_LE | SKY2_HW_AUTO_TX_SUM | SKY2_HW_ADV_POWER_CTL; break; case CHIP_ID_YUKON_UL_2: case CHIP_ID_YUKON_OPT: hw->flags = SKY2_HW_GIGABIT | SKY2_HW_ADV_POWER_CTL; break; default: dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n", hw->chip_id); return -EOPNOTSUPP; } hw->pmd_type = sky2_read8(hw, B2_PMD_TYP); if (hw->pmd_type == 'L' || hw->pmd_type == 'S' || hw->pmd_type == 'P') hw->flags |= SKY2_HW_FIBRE_PHY; hw->ports = 1; t8 = sky2_read8(hw, B2_Y2_HW_RES); if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) { if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC)) ++hw->ports; } if (sky2_read8(hw, B2_E_0)) hw->flags |= SKY2_HW_RAM_BUFFER; return 0; } static void sky2_reset(struct sky2_hw *hw) { struct pci_dev *pdev = hw->pdev; u16 status; int i, cap; u32 hwe_mask = Y2_HWE_ALL_MASK; /* disable ASF */ if (hw->chip_id == CHIP_ID_YUKON_EX) { status = sky2_read16(hw, HCU_CCSR); status &= ~(HCU_CCSR_AHB_RST | HCU_CCSR_CPU_RST_MODE | HCU_CCSR_UC_STATE_MSK); sky2_write16(hw, HCU_CCSR, status); } else sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET); sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE); /* do a SW reset */ sky2_write8(hw, B0_CTST, CS_RST_SET); sky2_write8(hw, B0_CTST, CS_RST_CLR); /* allow writes to PCI config */ sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON); /* clear PCI errors, if any */ status = sky2_pci_read16(hw, PCI_STATUS); status |= PCI_STATUS_ERROR_BITS; sky2_pci_write16(hw, PCI_STATUS, status); sky2_write8(hw, B0_CTST, CS_MRST_CLR); cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); if (cap) { sky2_write32(hw, Y2_CFG_AER + PCI_ERR_UNCOR_STATUS, 0xfffffffful); /* If error bit is stuck on ignore it */ if (sky2_read32(hw, B0_HWE_ISRC) & Y2_IS_PCI_EXP) dev_info(&pdev->dev, "ignoring stuck error report bit\n"); else hwe_mask |= Y2_IS_PCI_EXP; } sky2_power_on(hw); sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF); for (i = 0; i < hw->ports; i++) { sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET); sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR); if (hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_SUPR) sky2_write16(hw, SK_REG(i, GMAC_CTRL), GMC_BYP_MACSECRX_ON | GMC_BYP_MACSECTX_ON | GMC_BYP_RETR_ON); } if (hw->chip_id == CHIP_ID_YUKON_SUPR && hw->chip_rev > CHIP_REV_YU_SU_B0) { /* enable MACSec clock gating */ sky2_pci_write32(hw, PCI_DEV_REG3, P_CLK_MACSEC_DIS); } if (hw->chip_id == CHIP_ID_YUKON_OPT) { u16 reg; u32 msk; if (hw->chip_rev == 0) { /* disable PCI-E PHY power down (set PHY reg 0x80, bit 7 */ sky2_write32(hw, Y2_PEX_PHY_DATA, (0x80UL << 16) | (1 << 7)); /* set PHY Link Detect Timer to 1.1 second (11x 100ms) */ reg = 10; } else { /* set PHY Link Detect Timer to 0.4 second (4x 100ms) */ reg = 3; } reg <<= PSM_CONFIG_REG4_TIMER_PHY_LINK_DETECT_BASE; /* reset PHY Link Detect */ sky2_pci_write16(hw, PSM_CONFIG_REG4, reg | PSM_CONFIG_REG4_RST_PHY_LINK_DETECT); sky2_pci_write16(hw, PSM_CONFIG_REG4, reg); /* enable PHY Quick Link */ msk = sky2_read32(hw, B0_IMSK); msk |= Y2_IS_PHY_QLNK; sky2_write32(hw, B0_IMSK, msk); /* check if PSMv2 was running before */ reg = sky2_pci_read16(hw, PSM_CONFIG_REG3); if (reg & PCI_EXP_LNKCTL_ASPMC) { int cap = pci_find_capability(pdev, PCI_CAP_ID_EXP); /* restore the PCIe Link Control register */ sky2_pci_write16(hw, cap + PCI_EXP_LNKCTL, reg); } /* re-enable PEX PM in PEX PHY debug reg. 8 (clear bit 12) */ sky2_write32(hw, Y2_PEX_PHY_DATA, PEX_DB_ACCESS | (0x08UL << 16)); } /* Clear I2C IRQ noise */ sky2_write32(hw, B2_I2C_IRQ, 1); /* turn off hardware timer (unused) */ sky2_write8(hw, B2_TI_CTRL, TIM_STOP); sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ); /* Turn off descriptor polling */ sky2_write32(hw, B28_DPT_CTRL, DPT_STOP); /* Turn off receive timestamp */ sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP); sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ); /* enable the Tx Arbiters */ for (i = 0; i < hw->ports; i++) sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB); /* Initialize ram interface */ for (i = 0; i < hw->ports; i++) { sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53); sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53); } sky2_write32(hw, B0_HWE_IMSK, hwe_mask); for (i = 0; i < hw->ports; i++) sky2_gmac_reset(hw, i); memset(hw->st_le, 0, STATUS_LE_BYTES); hw->st_idx = 0; sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET); sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR); sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma); sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32); /* Set the list last index */ sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1); sky2_write16(hw, STAT_TX_IDX_TH, 10); sky2_write8(hw, STAT_FIFO_WM, 16); /* set Status-FIFO ISR watermark */ if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0) sky2_write8(hw, STAT_FIFO_ISR_WM, 4); else sky2_write8(hw, STAT_FIFO_ISR_WM, 16); sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000)); sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20)); sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100)); /* enable status unit */ sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON); sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START); sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START); } /* Take device down (offline). * Equivalent to doing dev_stop() but this does not * inform upper layers of the transistion. */ static void sky2_detach(struct net_device *dev) { if (netif_running(dev)) { netif_device_detach(dev); /* stop txq */ sky2_down(dev); } } /* Bring device back after doing sky2_detach */ static int sky2_reattach(struct net_device *dev) { int err = 0; if (netif_running(dev)) { err = sky2_up(dev); if (err) { printk(KERN_INFO PFX "%s: could not restart %d\n", dev->name, err); dev_close(dev); } else { netif_device_attach(dev); sky2_set_multicast(dev); } } return err; } static void sky2_restart(struct work_struct *work) { struct sky2_hw *hw = container_of(work, struct sky2_hw, restart_work); int i; rtnl_lock(); for (i = 0; i < hw->ports; i++) sky2_detach(hw->dev[i]); napi_disable(&hw->napi); sky2_write32(hw, B0_IMSK, 0); sky2_reset(hw); sky2_write32(hw, B0_IMSK, Y2_IS_BASE); napi_enable(&hw->napi); for (i = 0; i < hw->ports; i++) sky2_reattach(hw->dev[i]); rtnl_unlock(); } static inline u8 sky2_wol_supported(const struct sky2_hw *hw) { return sky2_is_copper(hw) ? (WAKE_PHY | WAKE_MAGIC) : 0; } static void sky2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { const struct sky2_port *sky2 = netdev_priv(dev); wol->supported = sky2_wol_supported(sky2->hw); wol->wolopts = sky2->wol; } static int sky2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; if ((wol->wolopts & ~sky2_wol_supported(sky2->hw)) || !device_can_wakeup(&hw->pdev->dev)) return -EOPNOTSUPP; sky2->wol = wol->wolopts; if (hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_FE_P) sky2_write32(hw, B0_CTST, sky2->wol ? Y2_HW_WOL_ON : Y2_HW_WOL_OFF); device_set_wakeup_enable(&hw->pdev->dev, sky2->wol); if (!netif_running(dev)) sky2_wol_init(sky2); return 0; } static u32 sky2_supported_modes(const struct sky2_hw *hw) { if (sky2_is_copper(hw)) { u32 modes = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP; if (hw->flags & SKY2_HW_GIGABIT) modes |= SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full; return modes; } else return SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE; } static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; ecmd->transceiver = XCVR_INTERNAL; ecmd->supported = sky2_supported_modes(hw); ecmd->phy_address = PHY_ADDR_MARV; if (sky2_is_copper(hw)) { ecmd->port = PORT_TP; ecmd->speed = sky2->speed; } else { ecmd->speed = SPEED_1000; ecmd->port = PORT_FIBRE; } ecmd->advertising = sky2->advertising; ecmd->autoneg = (sky2->flags & SKY2_FLAG_AUTO_SPEED) ? AUTONEG_ENABLE : AUTONEG_DISABLE; ecmd->duplex = sky2->duplex; return 0; } static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); const struct sky2_hw *hw = sky2->hw; u32 supported = sky2_supported_modes(hw); if (ecmd->autoneg == AUTONEG_ENABLE) { sky2->flags |= SKY2_FLAG_AUTO_SPEED; ecmd->advertising = supported; sky2->duplex = -1; sky2->speed = -1; } else { u32 setting; switch (ecmd->speed) { case SPEED_1000: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_1000baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_1000baseT_Half; else return -EINVAL; break; case SPEED_100: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_100baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_100baseT_Half; else return -EINVAL; break; case SPEED_10: if (ecmd->duplex == DUPLEX_FULL) setting = SUPPORTED_10baseT_Full; else if (ecmd->duplex == DUPLEX_HALF) setting = SUPPORTED_10baseT_Half; else return -EINVAL; break; default: return -EINVAL; } if ((setting & supported) == 0) return -EINVAL; sky2->speed = ecmd->speed; sky2->duplex = ecmd->duplex; sky2->flags &= ~SKY2_FLAG_AUTO_SPEED; } sky2->advertising = ecmd->advertising; if (netif_running(dev)) { sky2_phy_reinit(sky2); sky2_set_multicast(dev); } return 0; } static void sky2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct sky2_port *sky2 = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, DRV_VERSION); strcpy(info->fw_version, "N/A"); strcpy(info->bus_info, pci_name(sky2->hw->pdev)); } static const struct sky2_stat { char name[ETH_GSTRING_LEN]; u16 offset; } sky2_stats[] = { { "tx_bytes", GM_TXO_OK_HI }, { "rx_bytes", GM_RXO_OK_HI }, { "tx_broadcast", GM_TXF_BC_OK }, { "rx_broadcast", GM_RXF_BC_OK }, { "tx_multicast", GM_TXF_MC_OK }, { "rx_multicast", GM_RXF_MC_OK }, { "tx_unicast", GM_TXF_UC_OK }, { "rx_unicast", GM_RXF_UC_OK }, { "tx_mac_pause", GM_TXF_MPAUSE }, { "rx_mac_pause", GM_RXF_MPAUSE }, { "collisions", GM_TXF_COL }, { "late_collision",GM_TXF_LAT_COL }, { "aborted", GM_TXF_ABO_COL }, { "single_collisions", GM_TXF_SNG_COL }, { "multi_collisions", GM_TXF_MUL_COL }, { "rx_short", GM_RXF_SHT }, { "rx_runt", GM_RXE_FRAG }, { "rx_64_byte_packets", GM_RXF_64B }, { "rx_65_to_127_byte_packets", GM_RXF_127B }, { "rx_128_to_255_byte_packets", GM_RXF_255B }, { "rx_256_to_511_byte_packets", GM_RXF_511B }, { "rx_512_to_1023_byte_packets", GM_RXF_1023B }, { "rx_1024_to_1518_byte_packets", GM_RXF_1518B }, { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ }, { "rx_too_long", GM_RXF_LNG_ERR }, { "rx_fifo_overflow", GM_RXE_FIFO_OV }, { "rx_jabber", GM_RXF_JAB_PKT }, { "rx_fcs_error", GM_RXF_FCS_ERR }, { "tx_64_byte_packets", GM_TXF_64B }, { "tx_65_to_127_byte_packets", GM_TXF_127B }, { "tx_128_to_255_byte_packets", GM_TXF_255B }, { "tx_256_to_511_byte_packets", GM_TXF_511B }, { "tx_512_to_1023_byte_packets", GM_TXF_1023B }, { "tx_1024_to_1518_byte_packets", GM_TXF_1518B }, { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ }, { "tx_fifo_underrun", GM_TXE_FIFO_UR }, }; static u32 sky2_get_rx_csum(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); return !!(sky2->flags & SKY2_FLAG_RX_CHECKSUM); } static int sky2_set_rx_csum(struct net_device *dev, u32 data) { struct sky2_port *sky2 = netdev_priv(dev); if (data) sky2->flags |= SKY2_FLAG_RX_CHECKSUM; else sky2->flags &= ~SKY2_FLAG_RX_CHECKSUM; sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR), data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM); return 0; } static u32 sky2_get_msglevel(struct net_device *netdev) { struct sky2_port *sky2 = netdev_priv(netdev); return sky2->msg_enable; } static int sky2_nway_reset(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); if (!netif_running(dev) || !(sky2->flags & SKY2_FLAG_AUTO_SPEED)) return -EINVAL; sky2_phy_reinit(sky2); sky2_set_multicast(dev); return 0; } static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; int i; data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32 | (u64) gma_read32(hw, port, GM_TXO_OK_LO); data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32 | (u64) gma_read32(hw, port, GM_RXO_OK_LO); for (i = 2; i < count; i++) data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset); } static void sky2_set_msglevel(struct net_device *netdev, u32 value) { struct sky2_port *sky2 = netdev_priv(netdev); sky2->msg_enable = value; } static int sky2_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(sky2_stats); default: return -EOPNOTSUPP; } } static void sky2_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 * data) { struct sky2_port *sky2 = netdev_priv(dev); sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats)); } static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(sky2_stats); i++) memcpy(data + i * ETH_GSTRING_LEN, sky2_stats[i].name, ETH_GSTRING_LEN); break; } } static int sky2_set_mac_address(struct net_device *dev, void *p) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; const struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); memcpy_toio(hw->regs + B2_MAC_1 + port * 8, dev->dev_addr, ETH_ALEN); memcpy_toio(hw->regs + B2_MAC_2 + port * 8, dev->dev_addr, ETH_ALEN); /* virtual address for data */ gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr); /* physical address: used for pause frames */ gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr); return 0; } static void inline sky2_add_filter(u8 filter[8], const u8 *addr) { u32 bit; bit = ether_crc(ETH_ALEN, addr) & 63; filter[bit >> 3] |= 1 << (bit & 7); } static void sky2_set_multicast(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; struct dev_mc_list *list = dev->mc_list; u16 reg; u8 filter[8]; int rx_pause; static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 }; rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH); memset(filter, 0, sizeof(filter)); reg = gma_read16(hw, port, GM_RX_CTRL); reg |= GM_RXCR_UCF_ENA; if (dev->flags & IFF_PROMISC) /* promiscuous */ reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA); else if (dev->flags & IFF_ALLMULTI) memset(filter, 0xff, sizeof(filter)); else if (dev->mc_count == 0 && !rx_pause) reg &= ~GM_RXCR_MCF_ENA; else { int i; reg |= GM_RXCR_MCF_ENA; if (rx_pause) sky2_add_filter(filter, pause_mc_addr); for (i = 0; list && i < dev->mc_count; i++, list = list->next) sky2_add_filter(filter, list->dmi_addr); } gma_write16(hw, port, GM_MC_ADDR_H1, (u16) filter[0] | ((u16) filter[1] << 8)); gma_write16(hw, port, GM_MC_ADDR_H2, (u16) filter[2] | ((u16) filter[3] << 8)); gma_write16(hw, port, GM_MC_ADDR_H3, (u16) filter[4] | ((u16) filter[5] << 8)); gma_write16(hw, port, GM_MC_ADDR_H4, (u16) filter[6] | ((u16) filter[7] << 8)); gma_write16(hw, port, GM_RX_CTRL, reg); } /* Can have one global because blinking is controlled by * ethtool and that is always under RTNL mutex */ static void sky2_led(struct sky2_port *sky2, enum led_mode mode) { struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; spin_lock_bh(&sky2->phy_lock); if (hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_SUPR) { u16 pg; pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR); gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3); switch (mode) { case MO_LED_OFF: gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(8) | PHY_M_LEDC_INIT_CTRL(8) | PHY_M_LEDC_STA1_CTRL(8) | PHY_M_LEDC_STA0_CTRL(8)); break; case MO_LED_ON: gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(9) | PHY_M_LEDC_INIT_CTRL(9) | PHY_M_LEDC_STA1_CTRL(9) | PHY_M_LEDC_STA0_CTRL(9)); break; case MO_LED_BLINK: gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(0xa) | PHY_M_LEDC_INIT_CTRL(0xa) | PHY_M_LEDC_STA1_CTRL(0xa) | PHY_M_LEDC_STA0_CTRL(0xa)); break; case MO_LED_NORM: gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, PHY_M_LEDC_LOS_CTRL(1) | PHY_M_LEDC_INIT_CTRL(8) | PHY_M_LEDC_STA1_CTRL(7) | PHY_M_LEDC_STA0_CTRL(7)); } gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg); } else gm_phy_write(hw, port, PHY_MARV_LED_OVER, PHY_M_LED_MO_DUP(mode) | PHY_M_LED_MO_10(mode) | PHY_M_LED_MO_100(mode) | PHY_M_LED_MO_1000(mode) | PHY_M_LED_MO_RX(mode) | PHY_M_LED_MO_TX(mode)); spin_unlock_bh(&sky2->phy_lock); } /* blink LED's for finding board */ static int sky2_phys_id(struct net_device *dev, u32 data) { struct sky2_port *sky2 = netdev_priv(dev); unsigned int i; if (data == 0) data = UINT_MAX; for (i = 0; i < data; i++) { sky2_led(sky2, MO_LED_ON); if (msleep_interruptible(500)) break; sky2_led(sky2, MO_LED_OFF); if (msleep_interruptible(500)) break; } sky2_led(sky2, MO_LED_NORM); return 0; } static void sky2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); switch (sky2->flow_mode) { case FC_NONE: ecmd->tx_pause = ecmd->rx_pause = 0; break; case FC_TX: ecmd->tx_pause = 1, ecmd->rx_pause = 0; break; case FC_RX: ecmd->tx_pause = 0, ecmd->rx_pause = 1; break; case FC_BOTH: ecmd->tx_pause = ecmd->rx_pause = 1; } ecmd->autoneg = (sky2->flags & SKY2_FLAG_AUTO_PAUSE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; } static int sky2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); if (ecmd->autoneg == AUTONEG_ENABLE) sky2->flags |= SKY2_FLAG_AUTO_PAUSE; else sky2->flags &= ~SKY2_FLAG_AUTO_PAUSE; sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause); if (netif_running(dev)) sky2_phy_reinit(sky2); return 0; } static int sky2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP) ecmd->tx_coalesce_usecs = 0; else { u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI); ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks); } ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH); if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP) ecmd->rx_coalesce_usecs = 0; else { u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI); ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks); } ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM); if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP) ecmd->rx_coalesce_usecs_irq = 0; else { u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI); ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks); } ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM); return 0; } /* Note: this affect both ports */ static int sky2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ecmd) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; const u32 tmax = sky2_clk2us(hw, 0x0ffffff); if (ecmd->tx_coalesce_usecs > tmax || ecmd->rx_coalesce_usecs > tmax || ecmd->rx_coalesce_usecs_irq > tmax) return -EINVAL; if (ecmd->tx_max_coalesced_frames >= sky2->tx_ring_size-1) return -EINVAL; if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING) return -EINVAL; if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING) return -EINVAL; if (ecmd->tx_coalesce_usecs == 0) sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP); else { sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, ecmd->tx_coalesce_usecs)); sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START); } sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames); if (ecmd->rx_coalesce_usecs == 0) sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP); else { sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, ecmd->rx_coalesce_usecs)); sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START); } sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames); if (ecmd->rx_coalesce_usecs_irq == 0) sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP); else { sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq)); sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START); } sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq); return 0; } static void sky2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct sky2_port *sky2 = netdev_priv(dev); ering->rx_max_pending = RX_MAX_PENDING; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->tx_max_pending = TX_MAX_PENDING; ering->rx_pending = sky2->rx_pending; ering->rx_mini_pending = 0; ering->rx_jumbo_pending = 0; ering->tx_pending = sky2->tx_pending; } static int sky2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct sky2_port *sky2 = netdev_priv(dev); if (ering->rx_pending > RX_MAX_PENDING || ering->rx_pending < 8 || ering->tx_pending < TX_MIN_PENDING || ering->tx_pending > TX_MAX_PENDING) return -EINVAL; sky2_detach(dev); sky2->rx_pending = ering->rx_pending; sky2->tx_pending = ering->tx_pending; sky2->tx_ring_size = roundup_pow_of_two(sky2->tx_pending+1); return sky2_reattach(dev); } static int sky2_get_regs_len(struct net_device *dev) { return 0x4000; } /* * Returns copy of control register region * Note: ethtool_get_regs always provides full size (16k) buffer */ static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { const struct sky2_port *sky2 = netdev_priv(dev); const void __iomem *io = sky2->hw->regs; unsigned int b; regs->version = 1; for (b = 0; b < 128; b++) { /* This complicated switch statement is to make sure and * only access regions that are unreserved. * Some blocks are only valid on dual port cards. * and block 3 has some special diagnostic registers that * are poison. */ switch (b) { case 3: /* skip diagnostic ram region */ memcpy_fromio(p + 0x10, io + 0x10, 128 - 0x10); break; /* dual port cards only */ case 5: /* Tx Arbiter 2 */ case 9: /* RX2 */ case 14 ... 15: /* TX2 */ case 17: case 19: /* Ram Buffer 2 */ case 22 ... 23: /* Tx Ram Buffer 2 */ case 25: /* Rx MAC Fifo 1 */ case 27: /* Tx MAC Fifo 2 */ case 31: /* GPHY 2 */ case 40 ... 47: /* Pattern Ram 2 */ case 52: case 54: /* TCP Segmentation 2 */ case 112 ... 116: /* GMAC 2 */ if (sky2->hw->ports == 1) goto reserved; /* fall through */ case 0: /* Control */ case 2: /* Mac address */ case 4: /* Tx Arbiter 1 */ case 7: /* PCI express reg */ case 8: /* RX1 */ case 12 ... 13: /* TX1 */ case 16: case 18:/* Rx Ram Buffer 1 */ case 20 ... 21: /* Tx Ram Buffer 1 */ case 24: /* Rx MAC Fifo 1 */ case 26: /* Tx MAC Fifo 1 */ case 28 ... 29: /* Descriptor and status unit */ case 30: /* GPHY 1*/ case 32 ... 39: /* Pattern Ram 1 */ case 48: case 50: /* TCP Segmentation 1 */ case 56 ... 60: /* PCI space */ case 80 ... 84: /* GMAC 1 */ memcpy_fromio(p, io, 128); break; default: reserved: memset(p, 0, 128); } p += 128; io += 128; } } /* In order to do Jumbo packets on these chips, need to turn off the * transmit store/forward. Therefore checksum offload won't work. */ static int no_tx_offload(struct net_device *dev) { const struct sky2_port *sky2 = netdev_priv(dev); const struct sky2_hw *hw = sky2->hw; return dev->mtu > ETH_DATA_LEN && hw->chip_id == CHIP_ID_YUKON_EC_U; } static int sky2_set_tx_csum(struct net_device *dev, u32 data) { if (data && no_tx_offload(dev)) return -EINVAL; return ethtool_op_set_tx_csum(dev, data); } static int sky2_set_tso(struct net_device *dev, u32 data) { if (data && no_tx_offload(dev)) return -EINVAL; return ethtool_op_set_tso(dev, data); } static int sky2_get_eeprom_len(struct net_device *dev) { struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; u16 reg2; reg2 = sky2_pci_read16(hw, PCI_DEV_REG2); return 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); } static int sky2_vpd_wait(const struct sky2_hw *hw, int cap, u16 busy) { unsigned long start = jiffies; while ( (sky2_pci_read16(hw, cap + PCI_VPD_ADDR) & PCI_VPD_ADDR_F) == busy) { /* Can take up to 10.6 ms for write */ if (time_after(jiffies, start + HZ/4)) { dev_err(&hw->pdev->dev, PFX "VPD cycle timed out"); return -ETIMEDOUT; } mdelay(1); } return 0; } static int sky2_vpd_read(struct sky2_hw *hw, int cap, void *data, u16 offset, size_t length) { int rc = 0; while (length > 0) { u32 val; sky2_pci_write16(hw, cap + PCI_VPD_ADDR, offset); rc = sky2_vpd_wait(hw, cap, 0); if (rc) break; val = sky2_pci_read32(hw, cap + PCI_VPD_DATA); memcpy(data, &val, min(sizeof(val), length)); offset += sizeof(u32); data += sizeof(u32); length -= sizeof(u32); } return rc; } static int sky2_vpd_write(struct sky2_hw *hw, int cap, const void *data, u16 offset, unsigned int length) { unsigned int i; int rc = 0; for (i = 0; i < length; i += sizeof(u32)) { u32 val = *(u32 *)(data + i); sky2_pci_write32(hw, cap + PCI_VPD_DATA, val); sky2_pci_write32(hw, cap + PCI_VPD_ADDR, offset | PCI_VPD_ADDR_F); rc = sky2_vpd_wait(hw, cap, PCI_VPD_ADDR_F); if (rc) break; } return rc; } static int sky2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct sky2_port *sky2 = netdev_priv(dev); int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD); if (!cap) return -EINVAL; eeprom->magic = SKY2_EEPROM_MAGIC; return sky2_vpd_read(sky2->hw, cap, data, eeprom->offset, eeprom->len); } static int sky2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct sky2_port *sky2 = netdev_priv(dev); int cap = pci_find_capability(sky2->hw->pdev, PCI_CAP_ID_VPD); if (!cap) return -EINVAL; if (eeprom->magic != SKY2_EEPROM_MAGIC) return -EINVAL; /* Partial writes not supported */ if ((eeprom->offset & 3) || (eeprom->len & 3)) return -EINVAL; return sky2_vpd_write(sky2->hw, cap, data, eeprom->offset, eeprom->len); } static const struct ethtool_ops sky2_ethtool_ops = { .get_settings = sky2_get_settings, .set_settings = sky2_set_settings, .get_drvinfo = sky2_get_drvinfo, .get_wol = sky2_get_wol, .set_wol = sky2_set_wol, .get_msglevel = sky2_get_msglevel, .set_msglevel = sky2_set_msglevel, .nway_reset = sky2_nway_reset, .get_regs_len = sky2_get_regs_len, .get_regs = sky2_get_regs, .get_link = ethtool_op_get_link, .get_eeprom_len = sky2_get_eeprom_len, .get_eeprom = sky2_get_eeprom, .set_eeprom = sky2_set_eeprom, .set_sg = ethtool_op_set_sg, .set_tx_csum = sky2_set_tx_csum, .set_tso = sky2_set_tso, .get_rx_csum = sky2_get_rx_csum, .set_rx_csum = sky2_set_rx_csum, .get_strings = sky2_get_strings, .get_coalesce = sky2_get_coalesce, .set_coalesce = sky2_set_coalesce, .get_ringparam = sky2_get_ringparam, .set_ringparam = sky2_set_ringparam, .get_pauseparam = sky2_get_pauseparam, .set_pauseparam = sky2_set_pauseparam, .phys_id = sky2_phys_id, .get_sset_count = sky2_get_sset_count, .get_ethtool_stats = sky2_get_ethtool_stats, }; #ifdef CONFIG_SKY2_DEBUG static struct dentry *sky2_debug; /* * Read and parse the first part of Vital Product Data */ #define VPD_SIZE 128 #define VPD_MAGIC 0x82 static const struct vpd_tag { char tag[2]; char *label; } vpd_tags[] = { { "PN", "Part Number" }, { "EC", "Engineering Level" }, { "MN", "Manufacturer" }, { "SN", "Serial Number" }, { "YA", "Asset Tag" }, { "VL", "First Error Log Message" }, { "VF", "Second Error Log Message" }, { "VB", "Boot Agent ROM Configuration" }, { "VE", "EFI UNDI Configuration" }, }; static void sky2_show_vpd(struct seq_file *seq, struct sky2_hw *hw) { size_t vpd_size; loff_t offs; u8 len; unsigned char *buf; u16 reg2; reg2 = sky2_pci_read16(hw, PCI_DEV_REG2); vpd_size = 1 << ( ((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8); seq_printf(seq, "%s Product Data\n", pci_name(hw->pdev)); buf = kmalloc(vpd_size, GFP_KERNEL); if (!buf) { seq_puts(seq, "no memory!\n"); return; } if (pci_read_vpd(hw->pdev, 0, vpd_size, buf) < 0) { seq_puts(seq, "VPD read failed\n"); goto out; } if (buf[0] != VPD_MAGIC) { seq_printf(seq, "VPD tag mismatch: %#x\n", buf[0]); goto out; } len = buf[1]; if (len == 0 || len > vpd_size - 4) { seq_printf(seq, "Invalid id length: %d\n", len); goto out; } seq_printf(seq, "%.*s\n", len, buf + 3); offs = len + 3; while (offs < vpd_size - 4) { int i; if (!memcmp("RW", buf + offs, 2)) /* end marker */ break; len = buf[offs + 2]; if (offs + len + 3 >= vpd_size) break; for (i = 0; i < ARRAY_SIZE(vpd_tags); i++) { if (!memcmp(vpd_tags[i].tag, buf + offs, 2)) { seq_printf(seq, " %s: %.*s\n", vpd_tags[i].label, len, buf + offs + 3); break; } } offs += len + 3; } out: kfree(buf); } static int sky2_debug_show(struct seq_file *seq, void *v) { struct net_device *dev = seq->private; const struct sky2_port *sky2 = netdev_priv(dev); struct sky2_hw *hw = sky2->hw; unsigned port = sky2->port; unsigned idx, last; int sop; sky2_show_vpd(seq, hw); seq_printf(seq, "\nIRQ src=%x mask=%x control=%x\n", sky2_read32(hw, B0_ISRC), sky2_read32(hw, B0_IMSK), sky2_read32(hw, B0_Y2_SP_ICR)); if (!netif_running(dev)) { seq_printf(seq, "network not running\n"); return 0; } napi_disable(&hw->napi); last = sky2_read16(hw, STAT_PUT_IDX); if (hw->st_idx == last) seq_puts(seq, "Status ring (empty)\n"); else { seq_puts(seq, "Status ring\n"); for (idx = hw->st_idx; idx != last && idx < STATUS_RING_SIZE; idx = RING_NEXT(idx, STATUS_RING_SIZE)) { const struct sky2_status_le *le = hw->st_le + idx; seq_printf(seq, "[%d] %#x %d %#x\n", idx, le->opcode, le->length, le->status); } seq_puts(seq, "\n"); } seq_printf(seq, "Tx ring pending=%u...%u report=%d done=%d\n", sky2->tx_cons, sky2->tx_prod, sky2_read16(hw, port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX), sky2_read16(hw, Q_ADDR(txqaddr[port], Q_DONE))); /* Dump contents of tx ring */ sop = 1; for (idx = sky2->tx_next; idx != sky2->tx_prod && idx < sky2->tx_ring_size; idx = RING_NEXT(idx, sky2->tx_ring_size)) { const struct sky2_tx_le *le = sky2->tx_le + idx; u32 a = le32_to_cpu(le->addr); if (sop) seq_printf(seq, "%u:", idx); sop = 0; switch(le->opcode & ~HW_OWNER) { case OP_ADDR64: seq_printf(seq, " %#x:", a); break; case OP_LRGLEN: seq_printf(seq, " mtu=%d", a); break; case OP_VLAN: seq_printf(seq, " vlan=%d", be16_to_cpu(le->length)); break; case OP_TCPLISW: seq_printf(seq, " csum=%#x", a); break; case OP_LARGESEND: seq_printf(seq, " tso=%#x(%d)", a, le16_to_cpu(le->length)); break; case OP_PACKET: seq_printf(seq, " %#x(%d)", a, le16_to_cpu(le->length)); break; case OP_BUFFER: seq_printf(seq, " frag=%#x(%d)", a, le16_to_cpu(le->length)); break; default: seq_printf(seq, " op=%#x,%#x(%d)", le->opcode, a, le16_to_cpu(le->length)); } if (le->ctrl & EOP) { seq_putc(seq, '\n'); sop = 1; } } seq_printf(seq, "\nRx ring hw get=%d put=%d last=%d\n", sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_GET_IDX)), sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_PUT_IDX)), sky2_read16(hw, Y2_QADDR(rxqaddr[port], PREF_UNIT_LAST_IDX))); sky2_read32(hw, B0_Y2_SP_LISR); napi_enable(&hw->napi); return 0; } static int sky2_debug_open(struct inode *inode, struct file *file) { return single_open(file, sky2_debug_show, inode->i_private); } static const struct file_operations sky2_debug_fops = { .owner = THIS_MODULE, .open = sky2_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; /* * Use network device events to create/remove/rename * debugfs file entries */ static int sky2_device_event(struct notifier_block *unused, unsigned long event, void *ptr) { struct net_device *dev = ptr; struct sky2_port *sky2 = netdev_priv(dev); if (dev->netdev_ops->ndo_open != sky2_up || !sky2_debug) return NOTIFY_DONE; switch(event) { case NETDEV_CHANGENAME: if (sky2->debugfs) { sky2->debugfs = debugfs_rename(sky2_debug, sky2->debugfs, sky2_debug, dev->name); } break; case NETDEV_GOING_DOWN: if (sky2->debugfs) { printk(KERN_DEBUG PFX "%s: remove debugfs\n", dev->name); debugfs_remove(sky2->debugfs); sky2->debugfs = NULL; } break; case NETDEV_UP: sky2->debugfs = debugfs_create_file(dev->name, S_IRUGO, sky2_debug, dev, &sky2_debug_fops); if (IS_ERR(sky2->debugfs)) sky2->debugfs = NULL; } return NOTIFY_DONE; } static struct notifier_block sky2_notifier = { .notifier_call = sky2_device_event, }; static __init void sky2_debug_init(void) { struct dentry *ent; ent = debugfs_create_dir("sky2", NULL); if (!ent || IS_ERR(ent)) return; sky2_debug = ent; register_netdevice_notifier(&sky2_notifier); } static __exit void sky2_debug_cleanup(void) { if (sky2_debug) { unregister_netdevice_notifier(&sky2_notifier); debugfs_remove(sky2_debug); sky2_debug = NULL; } } #else #define sky2_debug_init() #define sky2_debug_cleanup() #endif /* Two copies of network device operations to handle special case of not allowing netpoll on second port */ static const struct net_device_ops sky2_netdev_ops[2] = { { .ndo_open = sky2_up, .ndo_stop = sky2_down, .ndo_start_xmit = sky2_xmit_frame, .ndo_do_ioctl = sky2_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = sky2_set_mac_address, .ndo_set_multicast_list = sky2_set_multicast, .ndo_change_mtu = sky2_change_mtu, .ndo_tx_timeout = sky2_tx_timeout, #ifdef SKY2_VLAN_TAG_USED .ndo_vlan_rx_register = sky2_vlan_rx_register, #endif #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = sky2_netpoll, #endif }, { .ndo_open = sky2_up, .ndo_stop = sky2_down, .ndo_start_xmit = sky2_xmit_frame, .ndo_do_ioctl = sky2_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = sky2_set_mac_address, .ndo_set_multicast_list = sky2_set_multicast, .ndo_change_mtu = sky2_change_mtu, .ndo_tx_timeout = sky2_tx_timeout, #ifdef SKY2_VLAN_TAG_USED .ndo_vlan_rx_register = sky2_vlan_rx_register, #endif }, }; /* Initialize network device */ static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw, unsigned port, int highmem, int wol) { struct sky2_port *sky2; struct net_device *dev = alloc_etherdev(sizeof(*sky2)); if (!dev) { dev_err(&hw->pdev->dev, "etherdev alloc failed\n"); return NULL; } SET_NETDEV_DEV(dev, &hw->pdev->dev); dev->irq = hw->pdev->irq; SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops); dev->watchdog_timeo = TX_WATCHDOG; dev->netdev_ops = &sky2_netdev_ops[port]; sky2 = netdev_priv(dev); sky2->netdev = dev; sky2->hw = hw; sky2->msg_enable = netif_msg_init(debug, default_msg); /* Auto speed and flow control */ sky2->flags = SKY2_FLAG_AUTO_SPEED | SKY2_FLAG_AUTO_PAUSE; if (hw->chip_id != CHIP_ID_YUKON_XL) sky2->flags |= SKY2_FLAG_RX_CHECKSUM; sky2->flow_mode = FC_BOTH; sky2->duplex = -1; sky2->speed = -1; sky2->advertising = sky2_supported_modes(hw); sky2->wol = wol; spin_lock_init(&sky2->phy_lock); sky2->tx_pending = TX_DEF_PENDING; sky2->tx_ring_size = roundup_pow_of_two(TX_DEF_PENDING+1); sky2->rx_pending = RX_DEF_PENDING; hw->dev[port] = dev; sky2->port = port; dev->features |= NETIF_F_TSO | NETIF_F_IP_CSUM | NETIF_F_SG; if (highmem) dev->features |= NETIF_F_HIGHDMA; #ifdef SKY2_VLAN_TAG_USED /* The workaround for FE+ status conflicts with VLAN tag detection. */ if (!(sky2->hw->chip_id == CHIP_ID_YUKON_FE_P && sky2->hw->chip_rev == CHIP_REV_YU_FE2_A0)) { dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; } #endif /* read the mac address */ memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN); memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); return dev; } static void __devinit sky2_show_addr(struct net_device *dev) { const struct sky2_port *sky2 = netdev_priv(dev); if (netif_msg_probe(sky2)) printk(KERN_INFO PFX "%s: addr %pM\n", dev->name, dev->dev_addr); } /* Handle software interrupt used during MSI test */ static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id) { struct sky2_hw *hw = dev_id; u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2); if (status == 0) return IRQ_NONE; if (status & Y2_IS_IRQ_SW) { hw->flags |= SKY2_HW_USE_MSI; wake_up(&hw->msi_wait); sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ); } sky2_write32(hw, B0_Y2_SP_ICR, 2); return IRQ_HANDLED; } /* Test interrupt path by forcing a a software IRQ */ static int __devinit sky2_test_msi(struct sky2_hw *hw) { struct pci_dev *pdev = hw->pdev; int err; init_waitqueue_head (&hw->msi_wait); sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW); err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw); if (err) { dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq); return err; } sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ); sky2_read8(hw, B0_CTST); wait_event_timeout(hw->msi_wait, (hw->flags & SKY2_HW_USE_MSI), HZ/10); if (!(hw->flags & SKY2_HW_USE_MSI)) { /* MSI test failed, go back to INTx mode */ dev_info(&pdev->dev, "No interrupt generated using MSI, " "switching to INTx mode.\n"); err = -EOPNOTSUPP; sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ); } sky2_write32(hw, B0_IMSK, 0); sky2_read32(hw, B0_IMSK); free_irq(pdev->irq, hw); return err; } /* This driver supports yukon2 chipset only */ static const char *sky2_name(u8 chipid, char *buf, int sz) { const char *name[] = { "XL", /* 0xb3 */ "EC Ultra", /* 0xb4 */ "Extreme", /* 0xb5 */ "EC", /* 0xb6 */ "FE", /* 0xb7 */ "FE+", /* 0xb8 */ "Supreme", /* 0xb9 */ "UL 2", /* 0xba */ "Unknown", /* 0xbb */ "Optima", /* 0xbc */ }; if (chipid >= CHIP_ID_YUKON_XL && chipid < CHIP_ID_YUKON_OPT) strncpy(buf, name[chipid - CHIP_ID_YUKON_XL], sz); else snprintf(buf, sz, "(chip %#x)", chipid); return buf; } static int __devinit sky2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct sky2_hw *hw; int err, using_dac = 0, wol_default; u32 reg; char buf1[16]; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "cannot enable PCI device\n"); goto err_out; } /* Get configuration information * Note: only regular PCI config access once to test for HW issues * other PCI access through shared memory for speed and to * avoid MMCONFIG problems. */ err = pci_read_config_dword(pdev, PCI_DEV_REG2, ®); if (err) { dev_err(&pdev->dev, "PCI read config failed\n"); goto err_out; } if (~reg == 0) { dev_err(&pdev->dev, "PCI configuration read error\n"); goto err_out; } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(&pdev->dev, "cannot obtain PCI resources\n"); goto err_out_disable; } pci_set_master(pdev); if (sizeof(dma_addr_t) > sizeof(u32) && !(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))) { using_dac = 1; err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (err < 0) { dev_err(&pdev->dev, "unable to obtain 64 bit DMA " "for consistent allocations\n"); goto err_out_free_regions; } } else { err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "no usable DMA configuration\n"); goto err_out_free_regions; } } #ifdef __BIG_ENDIAN /* The sk98lin vendor driver uses hardware byte swapping but * this driver uses software swapping. */ reg &= ~PCI_REV_DESC; err = pci_write_config_dword(pdev,PCI_DEV_REG2, reg); if (err) { dev_err(&pdev->dev, "PCI write config failed\n"); goto err_out_free_regions; } #endif wol_default = device_may_wakeup(&pdev->dev) ? WAKE_MAGIC : 0; err = -ENOMEM; hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:") + strlen(pci_name(pdev)) + 1, GFP_KERNEL); if (!hw) { dev_err(&pdev->dev, "cannot allocate hardware struct\n"); goto err_out_free_regions; } hw->pdev = pdev; sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev)); hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000); if (!hw->regs) { dev_err(&pdev->dev, "cannot map device registers\n"); goto err_out_free_hw; } /* ring for status responses */ hw->st_le = pci_alloc_consistent(pdev, STATUS_LE_BYTES, &hw->st_dma); if (!hw->st_le) goto err_out_iounmap; err = sky2_init(hw); if (err) goto err_out_iounmap; dev_info(&pdev->dev, "Yukon-2 %s chip revision %d\n", sky2_name(hw->chip_id, buf1, sizeof(buf1)), hw->chip_rev); sky2_reset(hw); dev = sky2_init_netdev(hw, 0, using_dac, wol_default); if (!dev) { err = -ENOMEM; goto err_out_free_pci; } if (!disable_msi && pci_enable_msi(pdev) == 0) { err = sky2_test_msi(hw); if (err == -EOPNOTSUPP) pci_disable_msi(pdev); else if (err) goto err_out_free_netdev; } err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "cannot register net device\n"); goto err_out_free_netdev; } netif_napi_add(dev, &hw->napi, sky2_poll, NAPI_WEIGHT); err = request_irq(pdev->irq, sky2_intr, (hw->flags & SKY2_HW_USE_MSI) ? 0 : IRQF_SHARED, hw->irq_name, hw); if (err) { dev_err(&pdev->dev, "cannot assign irq %d\n", pdev->irq); goto err_out_unregister; } sky2_write32(hw, B0_IMSK, Y2_IS_BASE); napi_enable(&hw->napi); sky2_show_addr(dev); if (hw->ports > 1) { struct net_device *dev1; err = -ENOMEM; dev1 = sky2_init_netdev(hw, 1, using_dac, wol_default); if (dev1 && (err = register_netdev(dev1)) == 0) sky2_show_addr(dev1); else { dev_warn(&pdev->dev, "register of second port failed (%d)\n", err); hw->dev[1] = NULL; hw->ports = 1; if (dev1) free_netdev(dev1); } } setup_timer(&hw->watchdog_timer, sky2_watchdog, (unsigned long) hw); INIT_WORK(&hw->restart_work, sky2_restart); pci_set_drvdata(pdev, hw); return 0; err_out_unregister: if (hw->flags & SKY2_HW_USE_MSI) pci_disable_msi(pdev); unregister_netdev(dev); err_out_free_netdev: free_netdev(dev); err_out_free_pci: sky2_write8(hw, B0_CTST, CS_RST_SET); pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); err_out_iounmap: iounmap(hw->regs); err_out_free_hw: kfree(hw); err_out_free_regions: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out: pci_set_drvdata(pdev, NULL); return err; } static void __devexit sky2_remove(struct pci_dev *pdev) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i; if (!hw) return; del_timer_sync(&hw->watchdog_timer); cancel_work_sync(&hw->restart_work); for (i = hw->ports-1; i >= 0; --i) unregister_netdev(hw->dev[i]); sky2_write32(hw, B0_IMSK, 0); sky2_power_aux(hw); sky2_write8(hw, B0_CTST, CS_RST_SET); sky2_read8(hw, B0_CTST); free_irq(pdev->irq, hw); if (hw->flags & SKY2_HW_USE_MSI) pci_disable_msi(pdev); pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma); pci_release_regions(pdev); pci_disable_device(pdev); for (i = hw->ports-1; i >= 0; --i) free_netdev(hw->dev[i]); iounmap(hw->regs); kfree(hw); pci_set_drvdata(pdev, NULL); } #ifdef CONFIG_PM static int sky2_suspend(struct pci_dev *pdev, pm_message_t state) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i, wol = 0; if (!hw) return 0; del_timer_sync(&hw->watchdog_timer); cancel_work_sync(&hw->restart_work); rtnl_lock(); for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; struct sky2_port *sky2 = netdev_priv(dev); sky2_detach(dev); if (sky2->wol) sky2_wol_init(sky2); wol |= sky2->wol; } sky2_write32(hw, B0_IMSK, 0); napi_disable(&hw->napi); sky2_power_aux(hw); rtnl_unlock(); pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, state), wol); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int sky2_resume(struct pci_dev *pdev) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i, err; if (!hw) return 0; err = pci_set_power_state(pdev, PCI_D0); if (err) goto out; err = pci_restore_state(pdev); if (err) goto out; pci_enable_wake(pdev, PCI_D0, 0); /* Re-enable all clocks */ if (hw->chip_id == CHIP_ID_YUKON_EX || hw->chip_id == CHIP_ID_YUKON_EC_U || hw->chip_id == CHIP_ID_YUKON_FE_P) sky2_pci_write32(hw, PCI_DEV_REG3, 0); sky2_reset(hw); sky2_write32(hw, B0_IMSK, Y2_IS_BASE); napi_enable(&hw->napi); rtnl_lock(); for (i = 0; i < hw->ports; i++) { err = sky2_reattach(hw->dev[i]); if (err) goto out; } rtnl_unlock(); return 0; out: rtnl_unlock(); dev_err(&pdev->dev, "resume failed (%d)\n", err); pci_disable_device(pdev); return err; } #endif static void sky2_shutdown(struct pci_dev *pdev) { struct sky2_hw *hw = pci_get_drvdata(pdev); int i, wol = 0; if (!hw) return; rtnl_lock(); del_timer_sync(&hw->watchdog_timer); for (i = 0; i < hw->ports; i++) { struct net_device *dev = hw->dev[i]; struct sky2_port *sky2 = netdev_priv(dev); if (sky2->wol) { wol = 1; sky2_wol_init(sky2); } } if (wol) sky2_power_aux(hw); rtnl_unlock(); pci_enable_wake(pdev, PCI_D3hot, wol); pci_enable_wake(pdev, PCI_D3cold, wol); pci_disable_device(pdev); pci_set_power_state(pdev, PCI_D3hot); } static struct pci_driver sky2_driver = { .name = DRV_NAME, .id_table = sky2_id_table, .probe = sky2_probe, .remove = __devexit_p(sky2_remove), #ifdef CONFIG_PM .suspend = sky2_suspend, .resume = sky2_resume, #endif .shutdown = sky2_shutdown, }; static int __init sky2_init_module(void) { pr_info(PFX "driver version " DRV_VERSION "\n"); sky2_debug_init(); return pci_register_driver(&sky2_driver); } static void __exit sky2_cleanup_module(void) { pci_unregister_driver(&sky2_driver); sky2_debug_cleanup(); } module_init(sky2_init_module); module_exit(sky2_cleanup_module); MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver"); MODULE_AUTHOR("Stephen Hemminger "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION);