/* * SuperH Ethernet device driver * * Copyright (C) 2006-2008 Nobuhiro Iwamatsu * Copyright (C) 2008-2009 Renesas Solutions Corp. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". */ #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/mdio-bitbang.h> #include <linux/netdevice.h> #include <linux/phy.h> #include <linux/cache.h> #include <linux/io.h> #include "sh_eth.h" /* There is CPU dependent code */ #if defined(CONFIG_CPU_SUBTYPE_SH7724) #define SH_ETH_RESET_DEFAULT 1 static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; if (mdp->duplex) /* Full */ ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR); else /* Half */ ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR); } static void sh_eth_set_rate(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; switch (mdp->speed) { case 10: /* 10BASE */ ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR); break; case 100:/* 100BASE */ ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR); break; default: break; } } /* SH7724 */ static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate, .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD, .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f, .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO, .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI, .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, }; #elif defined(CONFIG_CPU_SUBTYPE_SH7763) #define SH_ETH_HAS_TSU 1 static void sh_eth_chip_reset(struct net_device *ndev) { /* reset device */ ctrl_outl(ARSTR_ARSTR, ARSTR); mdelay(1); } static void sh_eth_reset(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; int cnt = 100; ctrl_outl(EDSR_ENALL, ioaddr + EDSR); ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR); while (cnt > 0) { if (!(ctrl_inl(ioaddr + EDMR) & 0x3)) break; mdelay(1); cnt--; } if (cnt < 0) printk(KERN_ERR "Device reset fail\n"); /* Table Init */ ctrl_outl(0x0, ioaddr + TDLAR); ctrl_outl(0x0, ioaddr + TDFAR); ctrl_outl(0x0, ioaddr + TDFXR); ctrl_outl(0x0, ioaddr + TDFFR); ctrl_outl(0x0, ioaddr + RDLAR); ctrl_outl(0x0, ioaddr + RDFAR); ctrl_outl(0x0, ioaddr + RDFXR); ctrl_outl(0x0, ioaddr + RDFFR); } static void sh_eth_set_duplex(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; if (mdp->duplex) /* Full */ ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR); else /* Half */ ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR); } static void sh_eth_set_rate(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; switch (mdp->speed) { case 10: /* 10BASE */ ctrl_outl(GECMR_10, ioaddr + GECMR); break; case 100:/* 100BASE */ ctrl_outl(GECMR_100, ioaddr + GECMR); break; case 1000: /* 1000BASE */ ctrl_outl(GECMR_1000, ioaddr + GECMR); break; default: break; } } /* sh7763 */ static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .chip_reset = sh_eth_chip_reset, .set_duplex = sh_eth_set_duplex, .set_rate = sh_eth_set_rate, .ecsr_value = ECSR_ICD | ECSR_MPD, .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP, .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .tx_check = EESR_TC1 | EESR_FTC, .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \ EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \ EESR_ECI, .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \ EESR_TFE, .apr = 1, .mpr = 1, .tpauser = 1, .bculr = 1, .hw_swap = 1, .rpadir = 1, .no_trimd = 1, .no_ade = 1, }; #elif defined(CONFIG_CPU_SUBTYPE_SH7619) #define SH_ETH_RESET_DEFAULT 1 static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, .apr = 1, .mpr = 1, .tpauser = 1, .hw_swap = 1, }; #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712) #define SH_ETH_RESET_DEFAULT 1 #define SH_ETH_HAS_TSU 1 static struct sh_eth_cpu_data sh_eth_my_cpu_data = { .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff, }; #endif static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd) { if (!cd->ecsr_value) cd->ecsr_value = DEFAULT_ECSR_INIT; if (!cd->ecsipr_value) cd->ecsipr_value = DEFAULT_ECSIPR_INIT; if (!cd->fcftr_value) cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \ DEFAULT_FIFO_F_D_RFD; if (!cd->fdr_value) cd->fdr_value = DEFAULT_FDR_INIT; if (!cd->rmcr_value) cd->rmcr_value = DEFAULT_RMCR_VALUE; if (!cd->tx_check) cd->tx_check = DEFAULT_TX_CHECK; if (!cd->eesr_err_check) cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK; if (!cd->tx_error_check) cd->tx_error_check = DEFAULT_TX_ERROR_CHECK; } #if defined(SH_ETH_RESET_DEFAULT) /* Chip Reset */ static void sh_eth_reset(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR); mdelay(3); ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR); } #endif #if defined(CONFIG_CPU_SH4) static void sh_eth_set_receive_align(struct sk_buff *skb) { int reserve; reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1)); if (reserve) skb_reserve(skb, reserve); } #else static void sh_eth_set_receive_align(struct sk_buff *skb) { skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN); } #endif /* CPU <-> EDMAC endian convert */ static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x) { switch (mdp->edmac_endian) { case EDMAC_LITTLE_ENDIAN: return cpu_to_le32(x); case EDMAC_BIG_ENDIAN: return cpu_to_be32(x); } return x; } static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x) { switch (mdp->edmac_endian) { case EDMAC_LITTLE_ENDIAN: return le32_to_cpu(x); case EDMAC_BIG_ENDIAN: return be32_to_cpu(x); } return x; } /* * Program the hardware MAC address from dev->dev_addr. */ static void update_mac_address(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) | (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), ioaddr + MAHR); ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), ioaddr + MALR); } /* * Get MAC address from SuperH MAC address register * * SuperH's Ethernet device doesn't have 'ROM' to MAC address. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g). * When you want use this device, you must set MAC address in bootloader. * */ static void read_mac_address(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24); ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF; ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF; ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF); ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF; ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF); } struct bb_info { struct mdiobb_ctrl ctrl; u32 addr; u32 mmd_msk;/* MMD */ u32 mdo_msk; u32 mdi_msk; u32 mdc_msk; }; /* PHY bit set */ static void bb_set(u32 addr, u32 msk) { ctrl_outl(ctrl_inl(addr) | msk, addr); } /* PHY bit clear */ static void bb_clr(u32 addr, u32 msk) { ctrl_outl((ctrl_inl(addr) & ~msk), addr); } /* PHY bit read */ static int bb_read(u32 addr, u32 msk) { return (ctrl_inl(addr) & msk) != 0; } /* Data I/O pin control */ static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bit) bb_set(bitbang->addr, bitbang->mmd_msk); else bb_clr(bitbang->addr, bitbang->mmd_msk); } /* Set bit data*/ static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bit) bb_set(bitbang->addr, bitbang->mdo_msk); else bb_clr(bitbang->addr, bitbang->mdo_msk); } /* Get bit data*/ static int sh_get_mdio(struct mdiobb_ctrl *ctrl) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); return bb_read(bitbang->addr, bitbang->mdi_msk); } /* MDC pin control */ static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit) { struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl); if (bit) bb_set(bitbang->addr, bitbang->mdc_msk); else bb_clr(bitbang->addr, bitbang->mdc_msk); } /* mdio bus control struct */ static struct mdiobb_ops bb_ops = { .owner = THIS_MODULE, .set_mdc = sh_mdc_ctrl, .set_mdio_dir = sh_mmd_ctrl, .set_mdio_data = sh_set_mdio, .get_mdio_data = sh_get_mdio, }; /* free skb and descriptor buffer */ static void sh_eth_ring_free(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int i; /* Free Rx skb ringbuffer */ if (mdp->rx_skbuff) { for (i = 0; i < RX_RING_SIZE; i++) { if (mdp->rx_skbuff[i]) dev_kfree_skb(mdp->rx_skbuff[i]); } } kfree(mdp->rx_skbuff); /* Free Tx skb ringbuffer */ if (mdp->tx_skbuff) { for (i = 0; i < TX_RING_SIZE; i++) { if (mdp->tx_skbuff[i]) dev_kfree_skb(mdp->tx_skbuff[i]); } } kfree(mdp->tx_skbuff); } /* format skb and descriptor buffer */ static void sh_eth_ring_format(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; struct sh_eth_private *mdp = netdev_priv(ndev); int i; struct sk_buff *skb; struct sh_eth_rxdesc *rxdesc = NULL; struct sh_eth_txdesc *txdesc = NULL; int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE; int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE; mdp->cur_rx = mdp->cur_tx = 0; mdp->dirty_rx = mdp->dirty_tx = 0; memset(mdp->rx_ring, 0, rx_ringsize); /* build Rx ring buffer */ for (i = 0; i < RX_RING_SIZE; i++) { /* skb */ mdp->rx_skbuff[i] = NULL; skb = dev_alloc_skb(mdp->rx_buf_sz); mdp->rx_skbuff[i] = skb; if (skb == NULL) break; dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz, DMA_FROM_DEVICE); skb->dev = ndev; /* Mark as being used by this device. */ sh_eth_set_receive_align(skb); /* RX descriptor */ rxdesc = &mdp->rx_ring[i]; rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP); /* The size of the buffer is 16 byte boundary. */ rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); /* Rx descriptor address set */ if (i == 0) { ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR); #if defined(CONFIG_CPU_SUBTYPE_SH7763) ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR); #endif } } mdp->dirty_rx = (u32) (i - RX_RING_SIZE); /* Mark the last entry as wrapping the ring. */ rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL); memset(mdp->tx_ring, 0, tx_ringsize); /* build Tx ring buffer */ for (i = 0; i < TX_RING_SIZE; i++) { mdp->tx_skbuff[i] = NULL; txdesc = &mdp->tx_ring[i]; txdesc->status = cpu_to_edmac(mdp, TD_TFP); txdesc->buffer_length = 0; if (i == 0) { /* Tx descriptor address set */ ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR); #if defined(CONFIG_CPU_SUBTYPE_SH7763) ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR); #endif } } txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); } /* Get skb and descriptor buffer */ static int sh_eth_ring_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int rx_ringsize, tx_ringsize, ret = 0; /* * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the * card needs room to do 8 byte alignment, +2 so we can reserve * the first 2 bytes, and +16 gets room for the status word from the * card. */ mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : (((ndev->mtu + 26 + 7) & ~7) + 2 + 16)); /* Allocate RX and TX skb rings */ mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE, GFP_KERNEL); if (!mdp->rx_skbuff) { dev_err(&ndev->dev, "Cannot allocate Rx skb\n"); ret = -ENOMEM; return ret; } mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE, GFP_KERNEL); if (!mdp->tx_skbuff) { dev_err(&ndev->dev, "Cannot allocate Tx skb\n"); ret = -ENOMEM; goto skb_ring_free; } /* Allocate all Rx descriptors. */ rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE; mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma, GFP_KERNEL); if (!mdp->rx_ring) { dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n", rx_ringsize); ret = -ENOMEM; goto desc_ring_free; } mdp->dirty_rx = 0; /* Allocate all Tx descriptors. */ tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE; mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma, GFP_KERNEL); if (!mdp->tx_ring) { dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n", tx_ringsize); ret = -ENOMEM; goto desc_ring_free; } return ret; desc_ring_free: /* free DMA buffer */ dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma); skb_ring_free: /* Free Rx and Tx skb ring buffer */ sh_eth_ring_free(ndev); return ret; } static int sh_eth_dev_init(struct net_device *ndev) { int ret = 0; struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; u_int32_t rx_int_var, tx_int_var; u32 val; /* Soft Reset */ sh_eth_reset(ndev); /* Descriptor format */ sh_eth_ring_format(ndev); if (mdp->cd->rpadir) ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR); /* all sh_eth int mask */ ctrl_outl(0, ioaddr + EESIPR); #if defined(__LITTLE_ENDIAN__) if (mdp->cd->hw_swap) ctrl_outl(EDMR_EL, ioaddr + EDMR); else #endif ctrl_outl(0, ioaddr + EDMR); /* FIFO size set */ ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR); ctrl_outl(0, ioaddr + TFTR); /* Frame recv control */ ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR); rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5; tx_int_var = mdp->tx_int_var = DESC_I_TINT2; ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER); if (mdp->cd->bculr) ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */ ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR); if (!mdp->cd->no_trimd) ctrl_outl(0, ioaddr + TRIMD); /* Recv frame limit set register */ ctrl_outl(RFLR_VALUE, ioaddr + RFLR); ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR); ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR); /* PAUSE Prohibition */ val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) | ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE; ctrl_outl(val, ioaddr + ECMR); if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); /* E-MAC Status Register clear */ ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR); /* E-MAC Interrupt Enable register */ ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR); /* Set MAC address */ update_mac_address(ndev); /* mask reset */ if (mdp->cd->apr) ctrl_outl(APR_AP, ioaddr + APR); if (mdp->cd->mpr) ctrl_outl(MPR_MP, ioaddr + MPR); if (mdp->cd->tpauser) ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER); /* Setting the Rx mode will start the Rx process. */ ctrl_outl(EDRRR_R, ioaddr + EDRRR); netif_start_queue(ndev); return ret; } /* free Tx skb function */ static int sh_eth_txfree(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; int freeNum = 0; int entry = 0; for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) { entry = mdp->dirty_tx % TX_RING_SIZE; txdesc = &mdp->tx_ring[entry]; if (txdesc->status & cpu_to_edmac(mdp, TD_TACT)) break; /* Free the original skb. */ if (mdp->tx_skbuff[entry]) { dev_kfree_skb_irq(mdp->tx_skbuff[entry]); mdp->tx_skbuff[entry] = NULL; freeNum++; } txdesc->status = cpu_to_edmac(mdp, TD_TFP); if (entry >= TX_RING_SIZE - 1) txdesc->status |= cpu_to_edmac(mdp, TD_TDLE); mdp->stats.tx_packets++; mdp->stats.tx_bytes += txdesc->buffer_length; } return freeNum; } /* Packet receive function */ static int sh_eth_rx(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_rxdesc *rxdesc; int entry = mdp->cur_rx % RX_RING_SIZE; int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx; struct sk_buff *skb; u16 pkt_len = 0; u32 desc_status; rxdesc = &mdp->rx_ring[entry]; while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) { desc_status = edmac_to_cpu(mdp, rxdesc->status); pkt_len = rxdesc->frame_length; if (--boguscnt < 0) break; if (!(desc_status & RDFEND)) mdp->stats.rx_length_errors++; if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 | RD_RFS5 | RD_RFS6 | RD_RFS10)) { mdp->stats.rx_errors++; if (desc_status & RD_RFS1) mdp->stats.rx_crc_errors++; if (desc_status & RD_RFS2) mdp->stats.rx_frame_errors++; if (desc_status & RD_RFS3) mdp->stats.rx_length_errors++; if (desc_status & RD_RFS4) mdp->stats.rx_length_errors++; if (desc_status & RD_RFS6) mdp->stats.rx_missed_errors++; if (desc_status & RD_RFS10) mdp->stats.rx_over_errors++; } else { if (!mdp->cd->hw_swap) sh_eth_soft_swap( phys_to_virt(ALIGN(rxdesc->addr, 4)), pkt_len + 2); skb = mdp->rx_skbuff[entry]; mdp->rx_skbuff[entry] = NULL; skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); netif_rx(skb); mdp->stats.rx_packets++; mdp->stats.rx_bytes += pkt_len; } rxdesc->status |= cpu_to_edmac(mdp, RD_RACT); entry = (++mdp->cur_rx) % RX_RING_SIZE; rxdesc = &mdp->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) { entry = mdp->dirty_rx % RX_RING_SIZE; rxdesc = &mdp->rx_ring[entry]; /* The size of the buffer is 16 byte boundary. */ rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16); if (mdp->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(mdp->rx_buf_sz); mdp->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz, DMA_FROM_DEVICE); skb->dev = ndev; sh_eth_set_receive_align(skb); skb->ip_summed = CHECKSUM_NONE; rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4)); } if (entry >= RX_RING_SIZE - 1) rxdesc->status |= cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL); else rxdesc->status |= cpu_to_edmac(mdp, RD_RACT | RD_RFP); } /* Restart Rx engine if stopped. */ /* If we don't need to check status, don't. -KDU */ if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R)) ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR); return 0; } /* error control function */ static void sh_eth_error(struct net_device *ndev, int intr_status) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; u32 felic_stat; u32 link_stat; u32 mask; if (intr_status & EESR_ECI) { felic_stat = ctrl_inl(ioaddr + ECSR); ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */ if (felic_stat & ECSR_ICD) mdp->stats.tx_carrier_errors++; if (felic_stat & ECSR_LCHNG) { /* Link Changed */ if (mdp->cd->no_psr) { if (mdp->link == PHY_DOWN) link_stat = 0; else link_stat = PHY_ST_LINK; } else { link_stat = (ctrl_inl(ioaddr + PSR)); } if (!(link_stat & PHY_ST_LINK)) { /* Link Down : disable tx and rx */ ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~(ECMR_RE | ECMR_TE), ioaddr + ECMR); } else { /* Link Up */ ctrl_outl(ctrl_inl(ioaddr + EESIPR) & ~DMAC_M_ECI, ioaddr + EESIPR); /*clear int */ ctrl_outl(ctrl_inl(ioaddr + ECSR), ioaddr + ECSR); ctrl_outl(ctrl_inl(ioaddr + EESIPR) | DMAC_M_ECI, ioaddr + EESIPR); /* enable tx and rx */ ctrl_outl(ctrl_inl(ioaddr + ECMR) | (ECMR_RE | ECMR_TE), ioaddr + ECMR); } } } if (intr_status & EESR_TWB) { /* Write buck end. unused write back interrupt */ if (intr_status & EESR_TABT) /* Transmit Abort int */ mdp->stats.tx_aborted_errors++; } if (intr_status & EESR_RABT) { /* Receive Abort int */ if (intr_status & EESR_RFRMER) { /* Receive Frame Overflow int */ mdp->stats.rx_frame_errors++; dev_err(&ndev->dev, "Receive Frame Overflow\n"); } } if (!mdp->cd->no_ade) { if (intr_status & EESR_ADE && intr_status & EESR_TDE && intr_status & EESR_TFE) mdp->stats.tx_fifo_errors++; } if (intr_status & EESR_RDE) { /* Receive Descriptor Empty int */ mdp->stats.rx_over_errors++; if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R) ctrl_outl(EDRRR_R, ioaddr + EDRRR); dev_err(&ndev->dev, "Receive Descriptor Empty\n"); } if (intr_status & EESR_RFE) { /* Receive FIFO Overflow int */ mdp->stats.rx_fifo_errors++; dev_err(&ndev->dev, "Receive FIFO Overflow\n"); } mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE; if (mdp->cd->no_ade) mask &= ~EESR_ADE; if (intr_status & mask) { /* Tx error */ u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR); /* dmesg */ dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ", intr_status, mdp->cur_tx); dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n", mdp->dirty_tx, (u32) ndev->state, edtrr); /* dirty buffer free */ sh_eth_txfree(ndev); /* SH7712 BUG */ if (edtrr ^ EDTRR_TRNS) { /* tx dma start */ ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR); } /* wakeup */ netif_wake_queue(ndev); } } static irqreturn_t sh_eth_interrupt(int irq, void *netdev) { struct net_device *ndev = netdev; struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_cpu_data *cd = mdp->cd; irqreturn_t ret = IRQ_NONE; u32 ioaddr, boguscnt = RX_RING_SIZE; u32 intr_status = 0; ioaddr = ndev->base_addr; spin_lock(&mdp->lock); /* Get interrpt stat */ intr_status = ctrl_inl(ioaddr + EESR); /* Clear interrupt */ if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF | EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF | cd->tx_check | cd->eesr_err_check)) { ctrl_outl(intr_status, ioaddr + EESR); ret = IRQ_HANDLED; } else goto other_irq; if (intr_status & (EESR_FRC | /* Frame recv*/ EESR_RMAF | /* Multi cast address recv*/ EESR_RRF | /* Bit frame recv */ EESR_RTLF | /* Long frame recv*/ EESR_RTSF | /* short frame recv */ EESR_PRE | /* PHY-LSI recv error */ EESR_CERF)){ /* recv frame CRC error */ sh_eth_rx(ndev); } /* Tx Check */ if (intr_status & cd->tx_check) { sh_eth_txfree(ndev); netif_wake_queue(ndev); } if (intr_status & cd->eesr_err_check) sh_eth_error(ndev, intr_status); if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, status=0x%4.4x.\n", ndev->name, intr_status); } other_irq: spin_unlock(&mdp->lock); return ret; } static void sh_eth_timer(unsigned long data) { struct net_device *ndev = (struct net_device *)data; struct sh_eth_private *mdp = netdev_priv(ndev); mod_timer(&mdp->timer, jiffies + (10 * HZ)); } /* PHY state control function */ static void sh_eth_adjust_link(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev = mdp->phydev; u32 ioaddr = ndev->base_addr; int new_state = 0; if (phydev->link != PHY_DOWN) { if (phydev->duplex != mdp->duplex) { new_state = 1; mdp->duplex = phydev->duplex; if (mdp->cd->set_duplex) mdp->cd->set_duplex(ndev); } if (phydev->speed != mdp->speed) { new_state = 1; mdp->speed = phydev->speed; if (mdp->cd->set_rate) mdp->cd->set_rate(ndev); } if (mdp->link == PHY_DOWN) { ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF) | ECMR_DM, ioaddr + ECMR); new_state = 1; mdp->link = phydev->link; } } else if (mdp->link) { new_state = 1; mdp->link = PHY_DOWN; mdp->speed = 0; mdp->duplex = -1; } if (new_state) phy_print_status(phydev); } /* PHY init function */ static int sh_eth_phy_init(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); char phy_id[MII_BUS_ID_SIZE + 3]; struct phy_device *phydev = NULL; snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, mdp->mii_bus->id , mdp->phy_id); mdp->link = PHY_DOWN; mdp->speed = 0; mdp->duplex = -1; /* Try connect to PHY */ phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link, 0, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { dev_err(&ndev->dev, "phy_connect failed\n"); return PTR_ERR(phydev); } dev_info(&ndev->dev, "attached phy %i to driver %s\n", phydev->addr, phydev->drv->name); mdp->phydev = phydev; return 0; } /* PHY control start function */ static int sh_eth_phy_start(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); int ret; ret = sh_eth_phy_init(ndev); if (ret) return ret; /* reset phy - this also wakes it from PDOWN */ phy_write(mdp->phydev, MII_BMCR, BMCR_RESET); phy_start(mdp->phydev); return 0; } /* network device open function */ static int sh_eth_open(struct net_device *ndev) { int ret = 0; struct sh_eth_private *mdp = netdev_priv(ndev); ret = request_irq(ndev->irq, &sh_eth_interrupt, #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764) IRQF_SHARED, #else 0, #endif ndev->name, ndev); if (ret) { dev_err(&ndev->dev, "Can not assign IRQ number\n"); return ret; } /* Descriptor set */ ret = sh_eth_ring_init(ndev); if (ret) goto out_free_irq; /* device init */ ret = sh_eth_dev_init(ndev); if (ret) goto out_free_irq; /* PHY control start*/ ret = sh_eth_phy_start(ndev); if (ret) goto out_free_irq; /* Set the timer to check for link beat. */ init_timer(&mdp->timer); mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */ setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev); return ret; out_free_irq: free_irq(ndev->irq, ndev); return ret; } /* Timeout function */ static void sh_eth_tx_timeout(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; struct sh_eth_rxdesc *rxdesc; int i; netif_stop_queue(ndev); /* worning message out. */ printk(KERN_WARNING "%s: transmit timed out, status %8.8x," " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR)); /* tx_errors count up */ mdp->stats.tx_errors++; /* timer off */ del_timer_sync(&mdp->timer); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { rxdesc = &mdp->rx_ring[i]; rxdesc->status = 0; rxdesc->addr = 0xBADF00D0; if (mdp->rx_skbuff[i]) dev_kfree_skb(mdp->rx_skbuff[i]); mdp->rx_skbuff[i] = NULL; } for (i = 0; i < TX_RING_SIZE; i++) { if (mdp->tx_skbuff[i]) dev_kfree_skb(mdp->tx_skbuff[i]); mdp->tx_skbuff[i] = NULL; } /* device init */ sh_eth_dev_init(ndev); /* timer on */ mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */ add_timer(&mdp->timer); } /* Packet transmit function */ static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); struct sh_eth_txdesc *txdesc; u32 entry; unsigned long flags; spin_lock_irqsave(&mdp->lock, flags); if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) { if (!sh_eth_txfree(ndev)) { netif_stop_queue(ndev); spin_unlock_irqrestore(&mdp->lock, flags); return NETDEV_TX_BUSY; } } spin_unlock_irqrestore(&mdp->lock, flags); entry = mdp->cur_tx % TX_RING_SIZE; mdp->tx_skbuff[entry] = skb; txdesc = &mdp->tx_ring[entry]; txdesc->addr = virt_to_phys(skb->data); /* soft swap. */ if (!mdp->cd->hw_swap) sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)), skb->len + 2); /* write back */ __flush_purge_region(skb->data, skb->len); if (skb->len < ETHERSMALL) txdesc->buffer_length = ETHERSMALL; else txdesc->buffer_length = skb->len; if (entry >= TX_RING_SIZE - 1) txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE); else txdesc->status |= cpu_to_edmac(mdp, TD_TACT); mdp->cur_tx++; if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS)) ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR); ndev->trans_start = jiffies; return 0; } /* device close function */ static int sh_eth_close(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; int ringsize; netif_stop_queue(ndev); /* Disable interrupts by clearing the interrupt mask. */ ctrl_outl(0x0000, ioaddr + EESIPR); /* Stop the chip's Tx and Rx processes. */ ctrl_outl(0, ioaddr + EDTRR); ctrl_outl(0, ioaddr + EDRRR); /* PHY Disconnect */ if (mdp->phydev) { phy_stop(mdp->phydev); phy_disconnect(mdp->phydev); } free_irq(ndev->irq, ndev); del_timer_sync(&mdp->timer); /* Free all the skbuffs in the Rx queue. */ sh_eth_ring_free(ndev); /* free DMA buffer */ ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE; dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma); /* free DMA buffer */ ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE; dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma); return 0; } static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev) { struct sh_eth_private *mdp = netdev_priv(ndev); u32 ioaddr = ndev->base_addr; mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR); ctrl_outl(0, ioaddr + TROCR); /* (write clear) */ mdp->stats.collisions += ctrl_inl(ioaddr + CDCR); ctrl_outl(0, ioaddr + CDCR); /* (write clear) */ mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR); ctrl_outl(0, ioaddr + LCCR); /* (write clear) */ #if defined(CONFIG_CPU_SUBTYPE_SH7763) mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */ ctrl_outl(0, ioaddr + CERCR); /* (write clear) */ mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */ ctrl_outl(0, ioaddr + CEECR); /* (write clear) */ #else mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR); ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */ #endif return &mdp->stats; } /* ioctl to device funciotn*/ static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) { struct sh_eth_private *mdp = netdev_priv(ndev); struct phy_device *phydev = mdp->phydev; if (!netif_running(ndev)) return -EINVAL; if (!phydev) return -ENODEV; return phy_mii_ioctl(phydev, if_mii(rq), cmd); } #if defined(SH_ETH_HAS_TSU) /* Multicast reception directions set */ static void sh_eth_set_multicast_list(struct net_device *ndev) { u32 ioaddr = ndev->base_addr; if (ndev->flags & IFF_PROMISC) { /* Set promiscuous. */ ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM, ioaddr + ECMR); } else { /* Normal, unicast/broadcast-only mode. */ ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT, ioaddr + ECMR); } } /* SuperH's TSU register init function */ static void sh_eth_tsu_init(u32 ioaddr) { ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */ ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */ ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */ ctrl_outl(0xc, ioaddr + TSU_BSYSL0); ctrl_outl(0xc, ioaddr + TSU_BSYSL1); ctrl_outl(0, ioaddr + TSU_PRISL0); ctrl_outl(0, ioaddr + TSU_PRISL1); ctrl_outl(0, ioaddr + TSU_FWSL0); ctrl_outl(0, ioaddr + TSU_FWSL1); ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC); #if defined(CONFIG_CPU_SUBTYPE_SH7763) ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */ ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */ #else ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */ ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */ #endif ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */ ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */ ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */ ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */ ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */ ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */ ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */ } #endif /* SH_ETH_HAS_TSU */ /* MDIO bus release function */ static int sh_mdio_release(struct net_device *ndev) { struct mii_bus *bus = dev_get_drvdata(&ndev->dev); /* unregister mdio bus */ mdiobus_unregister(bus); /* remove mdio bus info from net_device */ dev_set_drvdata(&ndev->dev, NULL); /* free bitbang info */ free_mdio_bitbang(bus); return 0; } /* MDIO bus init function */ static int sh_mdio_init(struct net_device *ndev, int id) { int ret, i; struct bb_info *bitbang; struct sh_eth_private *mdp = netdev_priv(ndev); /* create bit control struct for PHY */ bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL); if (!bitbang) { ret = -ENOMEM; goto out; } /* bitbang init */ bitbang->addr = ndev->base_addr + PIR; bitbang->mdi_msk = 0x08; bitbang->mdo_msk = 0x04; bitbang->mmd_msk = 0x02;/* MMD */ bitbang->mdc_msk = 0x01; bitbang->ctrl.ops = &bb_ops; /* MII contorller setting */ mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl); if (!mdp->mii_bus) { ret = -ENOMEM; goto out_free_bitbang; } /* Hook up MII support for ethtool */ mdp->mii_bus->name = "sh_mii"; mdp->mii_bus->parent = &ndev->dev; snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id); /* PHY IRQ */ mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL); if (!mdp->mii_bus->irq) { ret = -ENOMEM; goto out_free_bus; } for (i = 0; i < PHY_MAX_ADDR; i++) mdp->mii_bus->irq[i] = PHY_POLL; /* regist mdio bus */ ret = mdiobus_register(mdp->mii_bus); if (ret) goto out_free_irq; dev_set_drvdata(&ndev->dev, mdp->mii_bus); return 0; out_free_irq: kfree(mdp->mii_bus->irq); out_free_bus: free_mdio_bitbang(mdp->mii_bus); out_free_bitbang: kfree(bitbang); out: return ret; } static const struct net_device_ops sh_eth_netdev_ops = { .ndo_open = sh_eth_open, .ndo_stop = sh_eth_close, .ndo_start_xmit = sh_eth_start_xmit, .ndo_get_stats = sh_eth_get_stats, #if defined(SH_ETH_HAS_TSU) .ndo_set_multicast_list = sh_eth_set_multicast_list, #endif .ndo_tx_timeout = sh_eth_tx_timeout, .ndo_do_ioctl = sh_eth_do_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_change_mtu = eth_change_mtu, }; static int sh_eth_drv_probe(struct platform_device *pdev) { int ret, i, devno = 0; struct resource *res; struct net_device *ndev = NULL; struct sh_eth_private *mdp; struct sh_eth_plat_data *pd; /* get base addr */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (unlikely(res == NULL)) { dev_err(&pdev->dev, "invalid resource\n"); ret = -EINVAL; goto out; } ndev = alloc_etherdev(sizeof(struct sh_eth_private)); if (!ndev) { dev_err(&pdev->dev, "Could not allocate device.\n"); ret = -ENOMEM; goto out; } /* The sh Ether-specific entries in the device structure. */ ndev->base_addr = res->start; devno = pdev->id; if (devno < 0) devno = 0; ndev->dma = -1; ret = platform_get_irq(pdev, 0); if (ret < 0) { ret = -ENODEV; goto out_release; } ndev->irq = ret; SET_NETDEV_DEV(ndev, &pdev->dev); /* Fill in the fields of the device structure with ethernet values. */ ether_setup(ndev); mdp = netdev_priv(ndev); spin_lock_init(&mdp->lock); pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data); /* get PHY ID */ mdp->phy_id = pd->phy; /* EDMAC endian */ mdp->edmac_endian = pd->edmac_endian; /* set cpu data */ mdp->cd = &sh_eth_my_cpu_data; sh_eth_set_default_cpu_data(mdp->cd); /* set function */ ndev->netdev_ops = &sh_eth_netdev_ops; ndev->watchdog_timeo = TX_TIMEOUT; mdp->post_rx = POST_RX >> (devno << 1); mdp->post_fw = POST_FW >> (devno << 1); /* read and set MAC address */ read_mac_address(ndev); /* First device only init */ if (!devno) { if (mdp->cd->chip_reset) mdp->cd->chip_reset(ndev); #if defined(SH_ETH_HAS_TSU) /* TSU init (Init only)*/ sh_eth_tsu_init(SH_TSU_ADDR); #endif } /* network device register */ ret = register_netdev(ndev); if (ret) goto out_release; /* mdio bus init */ ret = sh_mdio_init(ndev, pdev->id); if (ret) goto out_unregister; /* pritnt device infomation */ pr_info("Base address at 0x%x, ", (u32)ndev->base_addr); for (i = 0; i < 5; i++) printk("%02X:", ndev->dev_addr[i]); printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq); platform_set_drvdata(pdev, ndev); return ret; out_unregister: unregister_netdev(ndev); out_release: /* net_dev free */ if (ndev) free_netdev(ndev); out: return ret; } static int sh_eth_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); sh_mdio_release(ndev); unregister_netdev(ndev); flush_scheduled_work(); free_netdev(ndev); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver sh_eth_driver = { .probe = sh_eth_drv_probe, .remove = sh_eth_drv_remove, .driver = { .name = CARDNAME, }, }; static int __init sh_eth_init(void) { return platform_driver_register(&sh_eth_driver); } static void __exit sh_eth_cleanup(void) { platform_driver_unregister(&sh_eth_driver); } module_init(sh_eth_init); module_exit(sh_eth_cleanup); MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda"); MODULE_DESCRIPTION("Renesas SuperH Ethernet driver"); MODULE_LICENSE("GPL v2");