/**************************************************************************** * Driver for Solarflare Solarstorm network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2005-2009 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "net_driver.h" #include "efx.h" #include "mdio_10g.h" #include "nic.h" #include "mcdi.h" #include "workarounds.h" /************************************************************************** * * Type name strings * ************************************************************************** */ /* Loopback mode names (see LOOPBACK_MODE()) */ const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; const char *efx_loopback_mode_names[] = { [LOOPBACK_NONE] = "NONE", [LOOPBACK_DATA] = "DATAPATH", [LOOPBACK_GMAC] = "GMAC", [LOOPBACK_XGMII] = "XGMII", [LOOPBACK_XGXS] = "XGXS", [LOOPBACK_XAUI] = "XAUI", [LOOPBACK_GMII] = "GMII", [LOOPBACK_SGMII] = "SGMII", [LOOPBACK_XGBR] = "XGBR", [LOOPBACK_XFI] = "XFI", [LOOPBACK_XAUI_FAR] = "XAUI_FAR", [LOOPBACK_GMII_FAR] = "GMII_FAR", [LOOPBACK_SGMII_FAR] = "SGMII_FAR", [LOOPBACK_XFI_FAR] = "XFI_FAR", [LOOPBACK_GPHY] = "GPHY", [LOOPBACK_PHYXS] = "PHYXS", [LOOPBACK_PCS] = "PCS", [LOOPBACK_PMAPMD] = "PMA/PMD", [LOOPBACK_XPORT] = "XPORT", [LOOPBACK_XGMII_WS] = "XGMII_WS", [LOOPBACK_XAUI_WS] = "XAUI_WS", [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", [LOOPBACK_GMII_WS] = "GMII_WS", [LOOPBACK_XFI_WS] = "XFI_WS", [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", [LOOPBACK_PHYXS_WS] = "PHYXS_WS", }; /* Interrupt mode names (see INT_MODE())) */ const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX; const char *efx_interrupt_mode_names[] = { [EFX_INT_MODE_MSIX] = "MSI-X", [EFX_INT_MODE_MSI] = "MSI", [EFX_INT_MODE_LEGACY] = "legacy", }; const unsigned int efx_reset_type_max = RESET_TYPE_MAX; const char *efx_reset_type_names[] = { [RESET_TYPE_INVISIBLE] = "INVISIBLE", [RESET_TYPE_ALL] = "ALL", [RESET_TYPE_WORLD] = "WORLD", [RESET_TYPE_DISABLE] = "DISABLE", [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", [RESET_TYPE_INT_ERROR] = "INT_ERROR", [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", [RESET_TYPE_TX_SKIP] = "TX_SKIP", [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", }; #define EFX_MAX_MTU (9 * 1024) /* Reset workqueue. If any NIC has a hardware failure then a reset will be * queued onto this work queue. This is not a per-nic work queue, because * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. */ static struct workqueue_struct *reset_workqueue; /************************************************************************** * * Configurable values * *************************************************************************/ /* * Use separate channels for TX and RX events * * Set this to 1 to use separate channels for TX and RX. It allows us * to control interrupt affinity separately for TX and RX. * * This is only used in MSI-X interrupt mode */ static unsigned int separate_tx_channels; module_param(separate_tx_channels, uint, 0644); MODULE_PARM_DESC(separate_tx_channels, "Use separate channels for TX and RX"); /* This is the weight assigned to each of the (per-channel) virtual * NAPI devices. */ static int napi_weight = 64; /* This is the time (in jiffies) between invocations of the hardware * monitor, which checks for known hardware bugs and resets the * hardware and driver as necessary. */ unsigned int efx_monitor_interval = 1 * HZ; /* This controls whether or not the driver will initialise devices * with invalid MAC addresses stored in the EEPROM or flash. If true, * such devices will be initialised with a random locally-generated * MAC address. This allows for loading the sfc_mtd driver to * reprogram the flash, even if the flash contents (including the MAC * address) have previously been erased. */ static unsigned int allow_bad_hwaddr; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * The default for RX should strike a balance between increasing the * round-trip latency and reducing overhead. */ static unsigned int rx_irq_mod_usec = 60; /* Initial interrupt moderation settings. They can be modified after * module load with ethtool. * * This default is chosen to ensure that a 10G link does not go idle * while a TX queue is stopped after it has become full. A queue is * restarted when it drops below half full. The time this takes (assuming * worst case 3 descriptors per packet and 1024 descriptors) is * 512 / 3 * 1.2 = 205 usec. */ static unsigned int tx_irq_mod_usec = 150; /* This is the first interrupt mode to try out of: * 0 => MSI-X * 1 => MSI * 2 => legacy */ static unsigned int interrupt_mode; /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), * i.e. the number of CPUs among which we may distribute simultaneous * interrupt handling. * * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. * The default (0) means to assign an interrupt to each package (level II cache) */ static unsigned int rss_cpus; module_param(rss_cpus, uint, 0444); MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); static int phy_flash_cfg; module_param(phy_flash_cfg, int, 0644); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); static unsigned irq_adapt_low_thresh = 10000; module_param(irq_adapt_low_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_low_thresh, "Threshold score for reducing IRQ moderation"); static unsigned irq_adapt_high_thresh = 20000; module_param(irq_adapt_high_thresh, uint, 0644); MODULE_PARM_DESC(irq_adapt_high_thresh, "Threshold score for increasing IRQ moderation"); /************************************************************************** * * Utility functions and prototypes * *************************************************************************/ static void efx_remove_channel(struct efx_channel *channel); static void efx_remove_port(struct efx_nic *efx); static void efx_fini_napi(struct efx_nic *efx); static void efx_fini_channels(struct efx_nic *efx); #define EFX_ASSERT_RESET_SERIALISED(efx) \ do { \ if ((efx->state == STATE_RUNNING) || \ (efx->state == STATE_DISABLED)) \ ASSERT_RTNL(); \ } while (0) /************************************************************************** * * Event queue processing * *************************************************************************/ /* Process channel's event queue * * This function is responsible for processing the event queue of a * single channel. The caller must guarantee that this function will * never be concurrently called more than once on the same channel, * though different channels may be being processed concurrently. */ static int efx_process_channel(struct efx_channel *channel, int budget) { struct efx_nic *efx = channel->efx; int spent; if (unlikely(efx->reset_pending != RESET_TYPE_NONE || !channel->enabled)) return 0; spent = efx_nic_process_eventq(channel, budget); if (spent == 0) return 0; /* Deliver last RX packet. */ if (channel->rx_pkt) { __efx_rx_packet(channel, channel->rx_pkt, channel->rx_pkt_csummed); channel->rx_pkt = NULL; } efx_rx_strategy(channel); efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]); return spent; } /* Mark channel as finished processing * * Note that since we will not receive further interrupts for this * channel before we finish processing and call the eventq_read_ack() * method, there is no need to use the interrupt hold-off timers. */ static inline void efx_channel_processed(struct efx_channel *channel) { /* The interrupt handler for this channel may set work_pending * as soon as we acknowledge the events we've seen. Make sure * it's cleared before then. */ channel->work_pending = false; smp_wmb(); efx_nic_eventq_read_ack(channel); } /* NAPI poll handler * * NAPI guarantees serialisation of polls of the same device, which * provides the guarantee required by efx_process_channel(). */ static int efx_poll(struct napi_struct *napi, int budget) { struct efx_channel *channel = container_of(napi, struct efx_channel, napi_str); int spent; EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n", channel->channel, raw_smp_processor_id()); spent = efx_process_channel(channel, budget); if (spent < budget) { struct efx_nic *efx = channel->efx; if (channel->channel < efx->n_rx_channels && efx->irq_rx_adaptive && unlikely(++channel->irq_count == 1000)) { if (unlikely(channel->irq_mod_score < irq_adapt_low_thresh)) { if (channel->irq_moderation > 1) { channel->irq_moderation -= 1; efx->type->push_irq_moderation(channel); } } else if (unlikely(channel->irq_mod_score > irq_adapt_high_thresh)) { if (channel->irq_moderation < efx->irq_rx_moderation) { channel->irq_moderation += 1; efx->type->push_irq_moderation(channel); } } channel->irq_count = 0; channel->irq_mod_score = 0; } /* There is no race here; although napi_disable() will * only wait for napi_complete(), this isn't a problem * since efx_channel_processed() will have no effect if * interrupts have already been disabled. */ napi_complete(napi); efx_channel_processed(channel); } return spent; } /* Process the eventq of the specified channel immediately on this CPU * * Disable hardware generated interrupts, wait for any existing * processing to finish, then directly poll (and ack ) the eventq. * Finally reenable NAPI and interrupts. * * Since we are touching interrupts the caller should hold the suspend lock */ void efx_process_channel_now(struct efx_channel *channel) { struct efx_nic *efx = channel->efx; BUG_ON(!channel->enabled); /* Disable interrupts and wait for ISRs to complete */ efx_nic_disable_interrupts(efx); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); if (channel->irq) synchronize_irq(channel->irq); /* Wait for any NAPI processing to complete */ napi_disable(&channel->napi_str); /* Poll the channel */ efx_process_channel(channel, EFX_EVQ_SIZE); /* Ack the eventq. This may cause an interrupt to be generated * when they are reenabled */ efx_channel_processed(channel); napi_enable(&channel->napi_str); efx_nic_enable_interrupts(efx); } /* Create event queue * Event queue memory allocations are done only once. If the channel * is reset, the memory buffer will be reused; this guards against * errors during channel reset and also simplifies interrupt handling. */ static int efx_probe_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel); return efx_nic_probe_eventq(channel); } /* Prepare channel's event queue */ static void efx_init_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel); channel->eventq_read_ptr = 0; efx_nic_init_eventq(channel); } static void efx_fini_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel); efx_nic_fini_eventq(channel); } static void efx_remove_eventq(struct efx_channel *channel) { EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel); efx_nic_remove_eventq(channel); } /************************************************************************** * * Channel handling * *************************************************************************/ static int efx_probe_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; EFX_LOG(channel->efx, "creating channel %d\n", channel->channel); rc = efx_probe_eventq(channel); if (rc) goto fail1; efx_for_each_channel_tx_queue(tx_queue, channel) { rc = efx_probe_tx_queue(tx_queue); if (rc) goto fail2; } efx_for_each_channel_rx_queue(rx_queue, channel) { rc = efx_probe_rx_queue(rx_queue); if (rc) goto fail3; } channel->n_rx_frm_trunc = 0; return 0; fail3: efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); fail2: efx_for_each_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); fail1: return rc; } static void efx_set_channel_names(struct efx_nic *efx) { struct efx_channel *channel; const char *type = ""; int number; efx_for_each_channel(channel, efx) { number = channel->channel; if (efx->n_channels > efx->n_rx_channels) { if (channel->channel < efx->n_rx_channels) { type = "-rx"; } else { type = "-tx"; number -= efx->n_rx_channels; } } snprintf(channel->name, sizeof(channel->name), "%s%s-%d", efx->name, type, number); } } /* Channels are shutdown and reinitialised whilst the NIC is running * to propagate configuration changes (mtu, checksum offload), or * to clear hardware error conditions */ static void efx_init_channels(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; struct efx_channel *channel; /* Calculate the rx buffer allocation parameters required to * support the current MTU, including padding for header * alignment and overruns. */ efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + efx->type->rx_buffer_padding); efx->rx_buffer_order = get_order(efx->rx_buffer_len + sizeof(struct efx_rx_page_state)); /* Initialise the channels */ efx_for_each_channel(channel, efx) { EFX_LOG(channel->efx, "init chan %d\n", channel->channel); efx_init_eventq(channel); efx_for_each_channel_tx_queue(tx_queue, channel) efx_init_tx_queue(tx_queue); /* The rx buffer allocation strategy is MTU dependent */ efx_rx_strategy(channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_init_rx_queue(rx_queue); WARN_ON(channel->rx_pkt != NULL); efx_rx_strategy(channel); } } /* This enables event queue processing and packet transmission. * * Note that this function is not allowed to fail, since that would * introduce too much complexity into the suspend/resume path. */ static void efx_start_channel(struct efx_channel *channel) { struct efx_rx_queue *rx_queue; EFX_LOG(channel->efx, "starting chan %d\n", channel->channel); /* The interrupt handler for this channel may set work_pending * as soon as we enable it. Make sure it's cleared before * then. Similarly, make sure it sees the enabled flag set. */ channel->work_pending = false; channel->enabled = true; smp_wmb(); /* Fill the queues before enabling NAPI */ efx_for_each_channel_rx_queue(rx_queue, channel) efx_fast_push_rx_descriptors(rx_queue); napi_enable(&channel->napi_str); } /* This disables event queue processing and packet transmission. * This function does not guarantee that all queue processing * (e.g. RX refill) is complete. */ static void efx_stop_channel(struct efx_channel *channel) { if (!channel->enabled) return; EFX_LOG(channel->efx, "stop chan %d\n", channel->channel); channel->enabled = false; napi_disable(&channel->napi_str); } static void efx_fini_channels(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int rc; EFX_ASSERT_RESET_SERIALISED(efx); BUG_ON(efx->port_enabled); rc = efx_nic_flush_queues(efx); if (rc && EFX_WORKAROUND_7803(efx)) { /* Schedule a reset to recover from the flush failure. The * descriptor caches reference memory we're about to free, * but falcon_reconfigure_mac_wrapper() won't reconnect * the MACs because of the pending reset. */ EFX_ERR(efx, "Resetting to recover from flush failure\n"); efx_schedule_reset(efx, RESET_TYPE_ALL); } else if (rc) { EFX_ERR(efx, "failed to flush queues\n"); } else { EFX_LOG(efx, "successfully flushed all queues\n"); } efx_for_each_channel(channel, efx) { EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_fini_rx_queue(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_fini_tx_queue(tx_queue); efx_fini_eventq(channel); } } static void efx_remove_channel(struct efx_channel *channel) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel); efx_for_each_channel_rx_queue(rx_queue, channel) efx_remove_rx_queue(rx_queue); efx_for_each_channel_tx_queue(tx_queue, channel) efx_remove_tx_queue(tx_queue); efx_remove_eventq(channel); } void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) { mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); } /************************************************************************** * * Port handling * **************************************************************************/ /* This ensures that the kernel is kept informed (via * netif_carrier_on/off) of the link status, and also maintains the * link status's stop on the port's TX queue. */ void efx_link_status_changed(struct efx_nic *efx) { struct efx_link_state *link_state = &efx->link_state; /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure * that no events are triggered between unregister_netdev() and the * driver unloading. A more general condition is that NETDEV_CHANGE * can only be generated between NETDEV_UP and NETDEV_DOWN */ if (!netif_running(efx->net_dev)) return; if (efx->port_inhibited) { netif_carrier_off(efx->net_dev); return; } if (link_state->up != netif_carrier_ok(efx->net_dev)) { efx->n_link_state_changes++; if (link_state->up) netif_carrier_on(efx->net_dev); else netif_carrier_off(efx->net_dev); } /* Status message for kernel log */ if (link_state->up) { EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n", link_state->speed, link_state->fd ? "full" : "half", efx->net_dev->mtu, (efx->promiscuous ? " [PROMISC]" : "")); } else { EFX_INFO(efx, "link down\n"); } } void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) { efx->link_advertising = advertising; if (advertising) { if (advertising & ADVERTISED_Pause) efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); else efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); if (advertising & ADVERTISED_Asym_Pause) efx->wanted_fc ^= EFX_FC_TX; } } void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc) { efx->wanted_fc = wanted_fc; if (efx->link_advertising) { if (wanted_fc & EFX_FC_RX) efx->link_advertising |= (ADVERTISED_Pause | ADVERTISED_Asym_Pause); else efx->link_advertising &= ~(ADVERTISED_Pause | ADVERTISED_Asym_Pause); if (wanted_fc & EFX_FC_TX) efx->link_advertising ^= ADVERTISED_Asym_Pause; } } static void efx_fini_port(struct efx_nic *efx); /* Push loopback/power/transmit disable settings to the PHY, and reconfigure * the MAC appropriately. All other PHY configuration changes are pushed * through phy_op->set_settings(), and pushed asynchronously to the MAC * through efx_monitor(). * * Callers must hold the mac_lock */ int __efx_reconfigure_port(struct efx_nic *efx) { enum efx_phy_mode phy_mode; int rc; WARN_ON(!mutex_is_locked(&efx->mac_lock)); /* Serialise the promiscuous flag with efx_set_multicast_list. */ if (efx_dev_registered(efx)) { netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); } /* Disable PHY transmit in mac level loopbacks */ phy_mode = efx->phy_mode; if (LOOPBACK_INTERNAL(efx)) efx->phy_mode |= PHY_MODE_TX_DISABLED; else efx->phy_mode &= ~PHY_MODE_TX_DISABLED; rc = efx->type->reconfigure_port(efx); if (rc) efx->phy_mode = phy_mode; return rc; } /* Reinitialise the MAC to pick up new PHY settings, even if the port is * disabled. */ int efx_reconfigure_port(struct efx_nic *efx) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); mutex_lock(&efx->mac_lock); rc = __efx_reconfigure_port(efx); mutex_unlock(&efx->mac_lock); return rc; } /* Asynchronous work item for changing MAC promiscuity and multicast * hash. Avoid a drain/rx_ingress enable by reconfiguring the current * MAC directly. */ static void efx_mac_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); mutex_lock(&efx->mac_lock); if (efx->port_enabled) { efx->type->push_multicast_hash(efx); efx->mac_op->reconfigure(efx); } mutex_unlock(&efx->mac_lock); } static int efx_probe_port(struct efx_nic *efx) { int rc; EFX_LOG(efx, "create port\n"); if (phy_flash_cfg) efx->phy_mode = PHY_MODE_SPECIAL; /* Connect up MAC/PHY operations table */ rc = efx->type->probe_port(efx); if (rc) goto err; /* Sanity check MAC address */ if (is_valid_ether_addr(efx->mac_address)) { memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN); } else { EFX_ERR(efx, "invalid MAC address %pM\n", efx->mac_address); if (!allow_bad_hwaddr) { rc = -EINVAL; goto err; } random_ether_addr(efx->net_dev->dev_addr); EFX_INFO(efx, "using locally-generated MAC %pM\n", efx->net_dev->dev_addr); } return 0; err: efx_remove_port(efx); return rc; } static int efx_init_port(struct efx_nic *efx) { int rc; EFX_LOG(efx, "init port\n"); mutex_lock(&efx->mac_lock); rc = efx->phy_op->init(efx); if (rc) goto fail1; efx->port_initialized = true; /* Reconfigure the MAC before creating dma queues (required for * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ efx->mac_op->reconfigure(efx); /* Ensure the PHY advertises the correct flow control settings */ rc = efx->phy_op->reconfigure(efx); if (rc) goto fail2; mutex_unlock(&efx->mac_lock); return 0; fail2: efx->phy_op->fini(efx); fail1: mutex_unlock(&efx->mac_lock); return rc; } static void efx_start_port(struct efx_nic *efx) { EFX_LOG(efx, "start port\n"); BUG_ON(efx->port_enabled); mutex_lock(&efx->mac_lock); efx->port_enabled = true; /* efx_mac_work() might have been scheduled after efx_stop_port(), * and then cancelled by efx_flush_all() */ efx->type->push_multicast_hash(efx); efx->mac_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); } /* Prevent efx_mac_work() and efx_monitor() from working */ static void efx_stop_port(struct efx_nic *efx) { EFX_LOG(efx, "stop port\n"); mutex_lock(&efx->mac_lock); efx->port_enabled = false; mutex_unlock(&efx->mac_lock); /* Serialise against efx_set_multicast_list() */ if (efx_dev_registered(efx)) { netif_addr_lock_bh(efx->net_dev); netif_addr_unlock_bh(efx->net_dev); } } static void efx_fini_port(struct efx_nic *efx) { EFX_LOG(efx, "shut down port\n"); if (!efx->port_initialized) return; efx->phy_op->fini(efx); efx->port_initialized = false; efx->link_state.up = false; efx_link_status_changed(efx); } static void efx_remove_port(struct efx_nic *efx) { EFX_LOG(efx, "destroying port\n"); efx->type->remove_port(efx); } /************************************************************************** * * NIC handling * **************************************************************************/ /* This configures the PCI device to enable I/O and DMA. */ static int efx_init_io(struct efx_nic *efx) { struct pci_dev *pci_dev = efx->pci_dev; dma_addr_t dma_mask = efx->type->max_dma_mask; int rc; EFX_LOG(efx, "initialising I/O\n"); rc = pci_enable_device(pci_dev); if (rc) { EFX_ERR(efx, "failed to enable PCI device\n"); goto fail1; } pci_set_master(pci_dev); /* Set the PCI DMA mask. Try all possibilities from our * genuine mask down to 32 bits, because some architectures * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit * masks event though they reject 46 bit masks. */ while (dma_mask > 0x7fffffffUL) { if (pci_dma_supported(pci_dev, dma_mask) && ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) break; dma_mask >>= 1; } if (rc) { EFX_ERR(efx, "could not find a suitable DMA mask\n"); goto fail2; } EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask); rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); if (rc) { /* pci_set_consistent_dma_mask() is not *allowed* to * fail with a mask that pci_set_dma_mask() accepted, * but just in case... */ EFX_ERR(efx, "failed to set consistent DMA mask\n"); goto fail2; } efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); if (rc) { EFX_ERR(efx, "request for memory BAR failed\n"); rc = -EIO; goto fail3; } efx->membase = ioremap_nocache(efx->membase_phys, efx->type->mem_map_size); if (!efx->membase) { EFX_ERR(efx, "could not map memory BAR at %llx+%x\n", (unsigned long long)efx->membase_phys, efx->type->mem_map_size); rc = -ENOMEM; goto fail4; } EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n", (unsigned long long)efx->membase_phys, efx->type->mem_map_size, efx->membase); return 0; fail4: pci_release_region(efx->pci_dev, EFX_MEM_BAR); fail3: efx->membase_phys = 0; fail2: pci_disable_device(efx->pci_dev); fail1: return rc; } static void efx_fini_io(struct efx_nic *efx) { EFX_LOG(efx, "shutting down I/O\n"); if (efx->membase) { iounmap(efx->membase); efx->membase = NULL; } if (efx->membase_phys) { pci_release_region(efx->pci_dev, EFX_MEM_BAR); efx->membase_phys = 0; } pci_disable_device(efx->pci_dev); } /* Get number of channels wanted. Each channel will have its own IRQ, * 1 RX queue and/or 2 TX queues. */ static int efx_wanted_channels(void) { cpumask_var_t core_mask; int count; int cpu; if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { printk(KERN_WARNING "sfc: RSS disabled due to allocation failure\n"); return 1; } count = 0; for_each_online_cpu(cpu) { if (!cpumask_test_cpu(cpu, core_mask)) { ++count; cpumask_or(core_mask, core_mask, topology_core_cpumask(cpu)); } } free_cpumask_var(core_mask); return count; } /* Probe the number and type of interrupts we are able to obtain, and * the resulting numbers of channels and RX queues. */ static void efx_probe_interrupts(struct efx_nic *efx) { int max_channels = min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS); int rc, i; if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { struct msix_entry xentries[EFX_MAX_CHANNELS]; int n_channels; n_channels = efx_wanted_channels(); if (separate_tx_channels) n_channels *= 2; n_channels = min(n_channels, max_channels); for (i = 0; i < n_channels; i++) xentries[i].entry = i; rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); if (rc > 0) { EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors" " available (%d < %d).\n", rc, n_channels); EFX_ERR(efx, "WARNING: Performance may be reduced.\n"); EFX_BUG_ON_PARANOID(rc >= n_channels); n_channels = rc; rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); } if (rc == 0) { efx->n_channels = n_channels; if (separate_tx_channels) { efx->n_tx_channels = max(efx->n_channels / 2, 1U); efx->n_rx_channels = max(efx->n_channels - efx->n_tx_channels, 1U); } else { efx->n_tx_channels = efx->n_channels; efx->n_rx_channels = efx->n_channels; } for (i = 0; i < n_channels; i++) efx->channel[i].irq = xentries[i].vector; } else { /* Fall back to single channel MSI */ efx->interrupt_mode = EFX_INT_MODE_MSI; EFX_ERR(efx, "could not enable MSI-X\n"); } } /* Try single interrupt MSI */ if (efx->interrupt_mode == EFX_INT_MODE_MSI) { efx->n_channels = 1; efx->n_rx_channels = 1; efx->n_tx_channels = 1; rc = pci_enable_msi(efx->pci_dev); if (rc == 0) { efx->channel[0].irq = efx->pci_dev->irq; } else { EFX_ERR(efx, "could not enable MSI\n"); efx->interrupt_mode = EFX_INT_MODE_LEGACY; } } /* Assume legacy interrupts */ if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); efx->n_rx_channels = 1; efx->n_tx_channels = 1; efx->legacy_irq = efx->pci_dev->irq; } } static void efx_remove_interrupts(struct efx_nic *efx) { struct efx_channel *channel; /* Remove MSI/MSI-X interrupts */ efx_for_each_channel(channel, efx) channel->irq = 0; pci_disable_msi(efx->pci_dev); pci_disable_msix(efx->pci_dev); /* Remove legacy interrupt */ efx->legacy_irq = 0; } static void efx_set_channels(struct efx_nic *efx) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; unsigned tx_channel_offset = separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; efx_for_each_channel(channel, efx) { if (channel->channel - tx_channel_offset < efx->n_tx_channels) { channel->tx_queue = &efx->tx_queue[ (channel->channel - tx_channel_offset) * EFX_TXQ_TYPES]; efx_for_each_channel_tx_queue(tx_queue, channel) tx_queue->channel = channel; } } efx_for_each_rx_queue(rx_queue, efx) rx_queue->channel = &efx->channel[rx_queue->queue]; } static int efx_probe_nic(struct efx_nic *efx) { int rc; EFX_LOG(efx, "creating NIC\n"); /* Carry out hardware-type specific initialisation */ rc = efx->type->probe(efx); if (rc) return rc; /* Determine the number of channels and queues by trying to hook * in MSI-X interrupts. */ efx_probe_interrupts(efx); efx_set_channels(efx); efx->net_dev->real_num_tx_queues = efx->n_tx_channels; /* Initialise the interrupt moderation settings */ efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true); return 0; } static void efx_remove_nic(struct efx_nic *efx) { EFX_LOG(efx, "destroying NIC\n"); efx_remove_interrupts(efx); efx->type->remove(efx); } /************************************************************************** * * NIC startup/shutdown * *************************************************************************/ static int efx_probe_all(struct efx_nic *efx) { struct efx_channel *channel; int rc; /* Create NIC */ rc = efx_probe_nic(efx); if (rc) { EFX_ERR(efx, "failed to create NIC\n"); goto fail1; } /* Create port */ rc = efx_probe_port(efx); if (rc) { EFX_ERR(efx, "failed to create port\n"); goto fail2; } /* Create channels */ efx_for_each_channel(channel, efx) { rc = efx_probe_channel(channel); if (rc) { EFX_ERR(efx, "failed to create channel %d\n", channel->channel); goto fail3; } } efx_set_channel_names(efx); return 0; fail3: efx_for_each_channel(channel, efx) efx_remove_channel(channel); efx_remove_port(efx); fail2: efx_remove_nic(efx); fail1: return rc; } /* Called after previous invocation(s) of efx_stop_all, restarts the * port, kernel transmit queue, NAPI processing and hardware interrupts, * and ensures that the port is scheduled to be reconfigured. * This function is safe to call multiple times when the NIC is in any * state. */ static void efx_start_all(struct efx_nic *efx) { struct efx_channel *channel; EFX_ASSERT_RESET_SERIALISED(efx); /* Check that it is appropriate to restart the interface. All * of these flags are safe to read under just the rtnl lock */ if (efx->port_enabled) return; if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) return; if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) return; /* Mark the port as enabled so port reconfigurations can start, then * restart the transmit interface early so the watchdog timer stops */ efx_start_port(efx); efx_for_each_channel(channel, efx) { if (efx_dev_registered(efx)) efx_wake_queue(channel); efx_start_channel(channel); } efx_nic_enable_interrupts(efx); /* Switch to event based MCDI completions after enabling interrupts. * If a reset has been scheduled, then we need to stay in polled mode. * Rather than serialising efx_mcdi_mode_event() [which sleeps] and * reset_pending [modified from an atomic context], we instead guarantee * that efx_mcdi_mode_poll() isn't reverted erroneously */ efx_mcdi_mode_event(efx); if (efx->reset_pending != RESET_TYPE_NONE) efx_mcdi_mode_poll(efx); /* Start the hardware monitor if there is one. Otherwise (we're link * event driven), we have to poll the PHY because after an event queue * flush, we could have a missed a link state change */ if (efx->type->monitor != NULL) { queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } else { mutex_lock(&efx->mac_lock); if (efx->phy_op->poll(efx)) efx_link_status_changed(efx); mutex_unlock(&efx->mac_lock); } efx->type->start_stats(efx); } /* Flush all delayed work. Should only be called when no more delayed work * will be scheduled. This doesn't flush pending online resets (efx_reset), * since we're holding the rtnl_lock at this point. */ static void efx_flush_all(struct efx_nic *efx) { /* Make sure the hardware monitor is stopped */ cancel_delayed_work_sync(&efx->monitor_work); /* Stop scheduled port reconfigurations */ cancel_work_sync(&efx->mac_work); } /* Quiesce hardware and software without bringing the link down. * Safe to call multiple times, when the nic and interface is in any * state. The caller is guaranteed to subsequently be in a position * to modify any hardware and software state they see fit without * taking locks. */ static void efx_stop_all(struct efx_nic *efx) { struct efx_channel *channel; EFX_ASSERT_RESET_SERIALISED(efx); /* port_enabled can be read safely under the rtnl lock */ if (!efx->port_enabled) return; efx->type->stop_stats(efx); /* Switch to MCDI polling on Siena before disabling interrupts */ efx_mcdi_mode_poll(efx); /* Disable interrupts and wait for ISR to complete */ efx_nic_disable_interrupts(efx); if (efx->legacy_irq) synchronize_irq(efx->legacy_irq); efx_for_each_channel(channel, efx) { if (channel->irq) synchronize_irq(channel->irq); } /* Stop all NAPI processing and synchronous rx refills */ efx_for_each_channel(channel, efx) efx_stop_channel(channel); /* Stop all asynchronous port reconfigurations. Since all * event processing has already been stopped, there is no * window to loose phy events */ efx_stop_port(efx); /* Flush efx_mac_work(), refill_workqueue, monitor_work */ efx_flush_all(efx); /* Stop the kernel transmit interface late, so the watchdog * timer isn't ticking over the flush */ if (efx_dev_registered(efx)) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_stop_queue(channel); netif_tx_lock_bh(efx->net_dev); netif_tx_unlock_bh(efx->net_dev); } } static void efx_remove_all(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_remove_channel(channel); efx_remove_port(efx); efx_remove_nic(efx); } /************************************************************************** * * Interrupt moderation * **************************************************************************/ static unsigned irq_mod_ticks(int usecs, int resolution) { if (usecs <= 0) return 0; /* cannot receive interrupts ahead of time :-) */ if (usecs < resolution) return 1; /* never round down to 0 */ return usecs / resolution; } /* Set interrupt moderation parameters */ void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs, bool rx_adaptive) { struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); EFX_ASSERT_RESET_SERIALISED(efx); efx_for_each_tx_queue(tx_queue, efx) tx_queue->channel->irq_moderation = tx_ticks; efx->irq_rx_adaptive = rx_adaptive; efx->irq_rx_moderation = rx_ticks; efx_for_each_rx_queue(rx_queue, efx) rx_queue->channel->irq_moderation = rx_ticks; } /************************************************************************** * * Hardware monitor * **************************************************************************/ /* Run periodically off the general workqueue. Serialised against * efx_reconfigure_port via the mac_lock */ static void efx_monitor(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, monitor_work.work); EFX_TRACE(efx, "hardware monitor executing on CPU %d\n", raw_smp_processor_id()); BUG_ON(efx->type->monitor == NULL); /* If the mac_lock is already held then it is likely a port * reconfiguration is already in place, which will likely do * most of the work of check_hw() anyway. */ if (!mutex_trylock(&efx->mac_lock)) goto out_requeue; if (!efx->port_enabled) goto out_unlock; efx->type->monitor(efx); out_unlock: mutex_unlock(&efx->mac_lock); out_requeue: queue_delayed_work(efx->workqueue, &efx->monitor_work, efx_monitor_interval); } /************************************************************************** * * ioctls * *************************************************************************/ /* Net device ioctl * Context: process, rtnl_lock() held. */ static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) { struct efx_nic *efx = netdev_priv(net_dev); struct mii_ioctl_data *data = if_mii(ifr); EFX_ASSERT_RESET_SERIALISED(efx); /* Convert phy_id from older PRTAD/DEVAD format */ if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && (data->phy_id & 0xfc00) == 0x0400) data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; return mdio_mii_ioctl(&efx->mdio, data, cmd); } /************************************************************************** * * NAPI interface * **************************************************************************/ static int efx_init_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) { channel->napi_dev = efx->net_dev; netif_napi_add(channel->napi_dev, &channel->napi_str, efx_poll, napi_weight); } return 0; } static void efx_fini_napi(struct efx_nic *efx) { struct efx_channel *channel; efx_for_each_channel(channel, efx) { if (channel->napi_dev) netif_napi_del(&channel->napi_str); channel->napi_dev = NULL; } } /************************************************************************** * * Kernel netpoll interface * *************************************************************************/ #ifdef CONFIG_NET_POLL_CONTROLLER /* Although in the common case interrupts will be disabled, this is not * guaranteed. However, all our work happens inside the NAPI callback, * so no locking is required. */ static void efx_netpoll(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_channel *channel; efx_for_each_channel(channel, efx) efx_schedule_channel(channel); } #endif /************************************************************************** * * Kernel net device interface * *************************************************************************/ /* Context: process, rtnl_lock() held. */ static int efx_net_open(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); EFX_ASSERT_RESET_SERIALISED(efx); EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name, raw_smp_processor_id()); if (efx->state == STATE_DISABLED) return -EIO; if (efx->phy_mode & PHY_MODE_SPECIAL) return -EBUSY; if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) return -EIO; /* Notify the kernel of the link state polled during driver load, * before the monitor starts running */ efx_link_status_changed(efx); efx_start_all(efx); return 0; } /* Context: process, rtnl_lock() held. * Note that the kernel will ignore our return code; this method * should really be a void. */ static int efx_net_stop(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name, raw_smp_processor_id()); if (efx->state != STATE_DISABLED) { /* Stop the device and flush all the channels */ efx_stop_all(efx); efx_fini_channels(efx); efx_init_channels(efx); } return 0; } /* Context: process, dev_base_lock or RTNL held, non-blocking. */ static struct net_device_stats *efx_net_stats(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); struct efx_mac_stats *mac_stats = &efx->mac_stats; struct net_device_stats *stats = &net_dev->stats; spin_lock_bh(&efx->stats_lock); efx->type->update_stats(efx); spin_unlock_bh(&efx->stats_lock); stats->rx_packets = mac_stats->rx_packets; stats->tx_packets = mac_stats->tx_packets; stats->rx_bytes = mac_stats->rx_bytes; stats->tx_bytes = mac_stats->tx_bytes; stats->multicast = mac_stats->rx_multicast; stats->collisions = mac_stats->tx_collision; stats->rx_length_errors = (mac_stats->rx_gtjumbo + mac_stats->rx_length_error); stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt; stats->rx_crc_errors = mac_stats->rx_bad; stats->rx_frame_errors = mac_stats->rx_align_error; stats->rx_fifo_errors = mac_stats->rx_overflow; stats->rx_missed_errors = mac_stats->rx_missed; stats->tx_window_errors = mac_stats->tx_late_collision; stats->rx_errors = (stats->rx_length_errors + stats->rx_over_errors + stats->rx_crc_errors + stats->rx_frame_errors + stats->rx_fifo_errors + stats->rx_missed_errors + mac_stats->rx_symbol_error); stats->tx_errors = (stats->tx_window_errors + mac_stats->tx_bad); return stats; } /* Context: netif_tx_lock held, BHs disabled. */ static void efx_watchdog(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); EFX_ERR(efx, "TX stuck with port_enabled=%d: resetting channels\n", efx->port_enabled); efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); } /* Context: process, rtnl_lock() held. */ static int efx_change_mtu(struct net_device *net_dev, int new_mtu) { struct efx_nic *efx = netdev_priv(net_dev); int rc = 0; EFX_ASSERT_RESET_SERIALISED(efx); if (new_mtu > EFX_MAX_MTU) return -EINVAL; efx_stop_all(efx); EFX_LOG(efx, "changing MTU to %d\n", new_mtu); efx_fini_channels(efx); mutex_lock(&efx->mac_lock); /* Reconfigure the MAC before enabling the dma queues so that * the RX buffers don't overflow */ net_dev->mtu = new_mtu; efx->mac_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); efx_init_channels(efx); efx_start_all(efx); return rc; } static int efx_set_mac_address(struct net_device *net_dev, void *data) { struct efx_nic *efx = netdev_priv(net_dev); struct sockaddr *addr = data; char *new_addr = addr->sa_data; EFX_ASSERT_RESET_SERIALISED(efx); if (!is_valid_ether_addr(new_addr)) { EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n", new_addr); return -EINVAL; } memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); /* Reconfigure the MAC */ mutex_lock(&efx->mac_lock); efx->mac_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); return 0; } /* Context: netif_addr_lock held, BHs disabled. */ static void efx_set_multicast_list(struct net_device *net_dev) { struct efx_nic *efx = netdev_priv(net_dev); struct netdev_hw_addr *ha; union efx_multicast_hash *mc_hash = &efx->multicast_hash; u32 crc; int bit; efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); /* Build multicast hash table */ if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { memset(mc_hash, 0xff, sizeof(*mc_hash)); } else { memset(mc_hash, 0x00, sizeof(*mc_hash)); netdev_for_each_mc_addr(ha, net_dev) { crc = ether_crc_le(ETH_ALEN, ha->addr); bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); set_bit_le(bit, mc_hash->byte); } /* Broadcast packets go through the multicast hash filter. * ether_crc_le() of the broadcast address is 0xbe2612ff * so we always add bit 0xff to the mask. */ set_bit_le(0xff, mc_hash->byte); } if (efx->port_enabled) queue_work(efx->workqueue, &efx->mac_work); /* Otherwise efx_start_port() will do this */ } static const struct net_device_ops efx_netdev_ops = { .ndo_open = efx_net_open, .ndo_stop = efx_net_stop, .ndo_get_stats = efx_net_stats, .ndo_tx_timeout = efx_watchdog, .ndo_start_xmit = efx_hard_start_xmit, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = efx_ioctl, .ndo_change_mtu = efx_change_mtu, .ndo_set_mac_address = efx_set_mac_address, .ndo_set_multicast_list = efx_set_multicast_list, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = efx_netpoll, #endif }; static void efx_update_name(struct efx_nic *efx) { strcpy(efx->name, efx->net_dev->name); efx_mtd_rename(efx); efx_set_channel_names(efx); } static int efx_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *net_dev = ptr; if (net_dev->netdev_ops == &efx_netdev_ops && event == NETDEV_CHANGENAME) efx_update_name(netdev_priv(net_dev)); return NOTIFY_DONE; } static struct notifier_block efx_netdev_notifier = { .notifier_call = efx_netdev_event, }; static ssize_t show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); return sprintf(buf, "%d\n", efx->phy_type); } static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); static int efx_register_netdev(struct efx_nic *efx) { struct net_device *net_dev = efx->net_dev; int rc; net_dev->watchdog_timeo = 5 * HZ; net_dev->irq = efx->pci_dev->irq; net_dev->netdev_ops = &efx_netdev_ops; SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev); SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); /* Clear MAC statistics */ efx->mac_op->update_stats(efx); memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); rtnl_lock(); rc = dev_alloc_name(net_dev, net_dev->name); if (rc < 0) goto fail_locked; efx_update_name(efx); rc = register_netdevice(net_dev); if (rc) goto fail_locked; /* Always start with carrier off; PHY events will detect the link */ netif_carrier_off(efx->net_dev); rtnl_unlock(); rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); if (rc) { EFX_ERR(efx, "failed to init net dev attributes\n"); goto fail_registered; } return 0; fail_locked: rtnl_unlock(); EFX_ERR(efx, "could not register net dev\n"); return rc; fail_registered: unregister_netdev(net_dev); return rc; } static void efx_unregister_netdev(struct efx_nic *efx) { struct efx_tx_queue *tx_queue; if (!efx->net_dev) return; BUG_ON(netdev_priv(efx->net_dev) != efx); /* Free up any skbs still remaining. This has to happen before * we try to unregister the netdev as running their destructors * may be needed to get the device ref. count to 0. */ efx_for_each_tx_queue(tx_queue, efx) efx_release_tx_buffers(tx_queue); if (efx_dev_registered(efx)) { strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); unregister_netdev(efx->net_dev); } } /************************************************************************** * * Device reset and suspend * **************************************************************************/ /* Tears down the entire software state and most of the hardware state * before reset. */ void efx_reset_down(struct efx_nic *efx, enum reset_type method) { EFX_ASSERT_RESET_SERIALISED(efx); efx_stop_all(efx); mutex_lock(&efx->mac_lock); mutex_lock(&efx->spi_lock); efx_fini_channels(efx); if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) efx->phy_op->fini(efx); efx->type->fini(efx); } /* This function will always ensure that the locks acquired in * efx_reset_down() are released. A failure return code indicates * that we were unable to reinitialise the hardware, and the * driver should be disabled. If ok is false, then the rx and tx * engines are not restarted, pending a RESET_DISABLE. */ int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) { int rc; EFX_ASSERT_RESET_SERIALISED(efx); rc = efx->type->init(efx); if (rc) { EFX_ERR(efx, "failed to initialise NIC\n"); goto fail; } if (!ok) goto fail; if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { rc = efx->phy_op->init(efx); if (rc) goto fail; if (efx->phy_op->reconfigure(efx)) EFX_ERR(efx, "could not restore PHY settings\n"); } efx->mac_op->reconfigure(efx); efx_init_channels(efx); mutex_unlock(&efx->spi_lock); mutex_unlock(&efx->mac_lock); efx_start_all(efx); return 0; fail: efx->port_initialized = false; mutex_unlock(&efx->spi_lock); mutex_unlock(&efx->mac_lock); return rc; } /* Reset the NIC using the specified method. Note that the reset may * fail, in which case the card will be left in an unusable state. * * Caller must hold the rtnl_lock. */ int efx_reset(struct efx_nic *efx, enum reset_type method) { int rc, rc2; bool disabled; EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method)); efx_reset_down(efx, method); rc = efx->type->reset(efx, method); if (rc) { EFX_ERR(efx, "failed to reset hardware\n"); goto out; } /* Allow resets to be rescheduled. */ efx->reset_pending = RESET_TYPE_NONE; /* Reinitialise bus-mastering, which may have been turned off before * the reset was scheduled. This is still appropriate, even in the * RESET_TYPE_DISABLE since this driver generally assumes the hardware * can respond to requests. */ pci_set_master(efx->pci_dev); out: /* Leave device stopped if necessary */ disabled = rc || method == RESET_TYPE_DISABLE; rc2 = efx_reset_up(efx, method, !disabled); if (rc2) { disabled = true; if (!rc) rc = rc2; } if (disabled) { dev_close(efx->net_dev); EFX_ERR(efx, "has been disabled\n"); efx->state = STATE_DISABLED; } else { EFX_LOG(efx, "reset complete\n"); } return rc; } /* The worker thread exists so that code that cannot sleep can * schedule a reset for later. */ static void efx_reset_work(struct work_struct *data) { struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); if (efx->reset_pending == RESET_TYPE_NONE) return; /* If we're not RUNNING then don't reset. Leave the reset_pending * flag set so that efx_pci_probe_main will be retried */ if (efx->state != STATE_RUNNING) { EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n"); return; } rtnl_lock(); (void)efx_reset(efx, efx->reset_pending); rtnl_unlock(); } void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) { enum reset_type method; if (efx->reset_pending != RESET_TYPE_NONE) { EFX_INFO(efx, "quenching already scheduled reset\n"); return; } switch (type) { case RESET_TYPE_INVISIBLE: case RESET_TYPE_ALL: case RESET_TYPE_WORLD: case RESET_TYPE_DISABLE: method = type; break; case RESET_TYPE_RX_RECOVERY: case RESET_TYPE_RX_DESC_FETCH: case RESET_TYPE_TX_DESC_FETCH: case RESET_TYPE_TX_SKIP: method = RESET_TYPE_INVISIBLE; break; case RESET_TYPE_MC_FAILURE: default: method = RESET_TYPE_ALL; break; } if (method != type) EFX_LOG(efx, "scheduling %s reset for %s\n", RESET_TYPE(method), RESET_TYPE(type)); else EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method)); efx->reset_pending = method; /* efx_process_channel() will no longer read events once a * reset is scheduled. So switch back to poll'd MCDI completions. */ efx_mcdi_mode_poll(efx); queue_work(reset_workqueue, &efx->reset_work); } /************************************************************************** * * List of NICs we support * **************************************************************************/ /* PCI device ID table */ static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), .driver_data = (unsigned long) &falcon_a1_nic_type}, {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), .driver_data = (unsigned long) &falcon_b0_nic_type}, {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID), .driver_data = (unsigned long) &siena_a0_nic_type}, {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID), .driver_data = (unsigned long) &siena_a0_nic_type}, {0} /* end of list */ }; /************************************************************************** * * Dummy PHY/MAC operations * * Can be used for some unimplemented operations * Needed so all function pointers are valid and do not have to be tested * before use * **************************************************************************/ int efx_port_dummy_op_int(struct efx_nic *efx) { return 0; } void efx_port_dummy_op_void(struct efx_nic *efx) {} void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) { } bool efx_port_dummy_op_poll(struct efx_nic *efx) { return false; } static struct efx_phy_operations efx_dummy_phy_operations = { .init = efx_port_dummy_op_int, .reconfigure = efx_port_dummy_op_int, .poll = efx_port_dummy_op_poll, .fini = efx_port_dummy_op_void, }; /************************************************************************** * * Data housekeeping * **************************************************************************/ /* This zeroes out and then fills in the invariants in a struct * efx_nic (including all sub-structures). */ static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type, struct pci_dev *pci_dev, struct net_device *net_dev) { struct efx_channel *channel; struct efx_tx_queue *tx_queue; struct efx_rx_queue *rx_queue; int i; /* Initialise common structures */ memset(efx, 0, sizeof(*efx)); spin_lock_init(&efx->biu_lock); mutex_init(&efx->mdio_lock); mutex_init(&efx->spi_lock); #ifdef CONFIG_SFC_MTD INIT_LIST_HEAD(&efx->mtd_list); #endif INIT_WORK(&efx->reset_work, efx_reset_work); INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); efx->pci_dev = pci_dev; efx->state = STATE_INIT; efx->reset_pending = RESET_TYPE_NONE; strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); efx->net_dev = net_dev; efx->rx_checksum_enabled = true; spin_lock_init(&efx->stats_lock); mutex_init(&efx->mac_lock); efx->mac_op = type->default_mac_ops; efx->phy_op = &efx_dummy_phy_operations; efx->mdio.dev = net_dev; INIT_WORK(&efx->mac_work, efx_mac_work); for (i = 0; i < EFX_MAX_CHANNELS; i++) { channel = &efx->channel[i]; channel->efx = efx; channel->channel = i; channel->work_pending = false; spin_lock_init(&channel->tx_stop_lock); atomic_set(&channel->tx_stop_count, 1); } for (i = 0; i < EFX_MAX_TX_QUEUES; i++) { tx_queue = &efx->tx_queue[i]; tx_queue->efx = efx; tx_queue->queue = i; tx_queue->buffer = NULL; tx_queue->channel = &efx->channel[0]; /* for safety */ tx_queue->tso_headers_free = NULL; } for (i = 0; i < EFX_MAX_RX_QUEUES; i++) { rx_queue = &efx->rx_queue[i]; rx_queue->efx = efx; rx_queue->queue = i; rx_queue->channel = &efx->channel[0]; /* for safety */ rx_queue->buffer = NULL; setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, (unsigned long)rx_queue); } efx->type = type; /* As close as we can get to guaranteeing that we don't overflow */ BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE); EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); /* Higher numbered interrupt modes are less capable! */ efx->interrupt_mode = max(efx->type->max_interrupt_mode, interrupt_mode); /* Would be good to use the net_dev name, but we're too early */ snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", pci_name(pci_dev)); efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); if (!efx->workqueue) return -ENOMEM; return 0; } static void efx_fini_struct(struct efx_nic *efx) { if (efx->workqueue) { destroy_workqueue(efx->workqueue); efx->workqueue = NULL; } } /************************************************************************** * * PCI interface * **************************************************************************/ /* Main body of final NIC shutdown code * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove_main(struct efx_nic *efx) { efx_nic_fini_interrupt(efx); efx_fini_channels(efx); efx_fini_port(efx); efx->type->fini(efx); efx_fini_napi(efx); efx_remove_all(efx); } /* Final NIC shutdown * This is called only at module unload (or hotplug removal). */ static void efx_pci_remove(struct pci_dev *pci_dev) { struct efx_nic *efx; efx = pci_get_drvdata(pci_dev); if (!efx) return; /* Mark the NIC as fini, then stop the interface */ rtnl_lock(); efx->state = STATE_FINI; dev_close(efx->net_dev); /* Allow any queued efx_resets() to complete */ rtnl_unlock(); efx_unregister_netdev(efx); efx_mtd_remove(efx); /* Wait for any scheduled resets to complete. No more will be * scheduled from this point because efx_stop_all() has been * called, we are no longer registered with driverlink, and * the net_device's have been removed. */ cancel_work_sync(&efx->reset_work); efx_pci_remove_main(efx); efx_fini_io(efx); EFX_LOG(efx, "shutdown successful\n"); pci_set_drvdata(pci_dev, NULL); efx_fini_struct(efx); free_netdev(efx->net_dev); }; /* Main body of NIC initialisation * This is called at module load (or hotplug insertion, theoretically). */ static int efx_pci_probe_main(struct efx_nic *efx) { int rc; /* Do start-of-day initialisation */ rc = efx_probe_all(efx); if (rc) goto fail1; rc = efx_init_napi(efx); if (rc) goto fail2; rc = efx->type->init(efx); if (rc) { EFX_ERR(efx, "failed to initialise NIC\n"); goto fail3; } rc = efx_init_port(efx); if (rc) { EFX_ERR(efx, "failed to initialise port\n"); goto fail4; } efx_init_channels(efx); rc = efx_nic_init_interrupt(efx); if (rc) goto fail5; return 0; fail5: efx_fini_channels(efx); efx_fini_port(efx); fail4: efx->type->fini(efx); fail3: efx_fini_napi(efx); fail2: efx_remove_all(efx); fail1: return rc; } /* NIC initialisation * * This is called at module load (or hotplug insertion, * theoretically). It sets up PCI mappings, tests and resets the NIC, * sets up and registers the network devices with the kernel and hooks * the interrupt service routine. It does not prepare the device for * transmission; this is left to the first time one of the network * interfaces is brought up (i.e. efx_net_open). */ static int __devinit efx_pci_probe(struct pci_dev *pci_dev, const struct pci_device_id *entry) { struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data; struct net_device *net_dev; struct efx_nic *efx; int i, rc; /* Allocate and initialise a struct net_device and struct efx_nic */ net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES); if (!net_dev) return -ENOMEM; net_dev->features |= (type->offload_features | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_TSO | NETIF_F_GRO); if (type->offload_features & NETIF_F_V6_CSUM) net_dev->features |= NETIF_F_TSO6; /* Mask for features that also apply to VLAN devices */ net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_TSO); efx = netdev_priv(net_dev); pci_set_drvdata(pci_dev, efx); rc = efx_init_struct(efx, type, pci_dev, net_dev); if (rc) goto fail1; EFX_INFO(efx, "Solarflare Communications NIC detected\n"); /* Set up basic I/O (BAR mappings etc) */ rc = efx_init_io(efx); if (rc) goto fail2; /* No serialisation is required with the reset path because * we're in STATE_INIT. */ for (i = 0; i < 5; i++) { rc = efx_pci_probe_main(efx); /* Serialise against efx_reset(). No more resets will be * scheduled since efx_stop_all() has been called, and we * have not and never have been registered with either * the rtnetlink or driverlink layers. */ cancel_work_sync(&efx->reset_work); if (rc == 0) { if (efx->reset_pending != RESET_TYPE_NONE) { /* If there was a scheduled reset during * probe, the NIC is probably hosed anyway */ efx_pci_remove_main(efx); rc = -EIO; } else { break; } } /* Retry if a recoverably reset event has been scheduled */ if ((efx->reset_pending != RESET_TYPE_INVISIBLE) && (efx->reset_pending != RESET_TYPE_ALL)) goto fail3; efx->reset_pending = RESET_TYPE_NONE; } if (rc) { EFX_ERR(efx, "Could not reset NIC\n"); goto fail4; } /* Switch to the running state before we expose the device to the OS, * so that dev_open()|efx_start_all() will actually start the device */ efx->state = STATE_RUNNING; rc = efx_register_netdev(efx); if (rc) goto fail5; EFX_LOG(efx, "initialisation successful\n"); rtnl_lock(); efx_mtd_probe(efx); /* allowed to fail */ rtnl_unlock(); return 0; fail5: efx_pci_remove_main(efx); fail4: fail3: efx_fini_io(efx); fail2: efx_fini_struct(efx); fail1: WARN_ON(rc > 0); EFX_LOG(efx, "initialisation failed. rc=%d\n", rc); free_netdev(net_dev); return rc; } static int efx_pm_freeze(struct device *dev) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); efx->state = STATE_FINI; netif_device_detach(efx->net_dev); efx_stop_all(efx); efx_fini_channels(efx); return 0; } static int efx_pm_thaw(struct device *dev) { struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); efx->state = STATE_INIT; efx_init_channels(efx); mutex_lock(&efx->mac_lock); efx->phy_op->reconfigure(efx); mutex_unlock(&efx->mac_lock); efx_start_all(efx); netif_device_attach(efx->net_dev); efx->state = STATE_RUNNING; efx->type->resume_wol(efx); /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ queue_work(reset_workqueue, &efx->reset_work); return 0; } static int efx_pm_poweroff(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); efx->type->fini(efx); efx->reset_pending = RESET_TYPE_NONE; pci_save_state(pci_dev); return pci_set_power_state(pci_dev, PCI_D3hot); } /* Used for both resume and restore */ static int efx_pm_resume(struct device *dev) { struct pci_dev *pci_dev = to_pci_dev(dev); struct efx_nic *efx = pci_get_drvdata(pci_dev); int rc; rc = pci_set_power_state(pci_dev, PCI_D0); if (rc) return rc; pci_restore_state(pci_dev); rc = pci_enable_device(pci_dev); if (rc) return rc; pci_set_master(efx->pci_dev); rc = efx->type->reset(efx, RESET_TYPE_ALL); if (rc) return rc; rc = efx->type->init(efx); if (rc) return rc; efx_pm_thaw(dev); return 0; } static int efx_pm_suspend(struct device *dev) { int rc; efx_pm_freeze(dev); rc = efx_pm_poweroff(dev); if (rc) efx_pm_resume(dev); return rc; } static struct dev_pm_ops efx_pm_ops = { .suspend = efx_pm_suspend, .resume = efx_pm_resume, .freeze = efx_pm_freeze, .thaw = efx_pm_thaw, .poweroff = efx_pm_poweroff, .restore = efx_pm_resume, }; static struct pci_driver efx_pci_driver = { .name = EFX_DRIVER_NAME, .id_table = efx_pci_table, .probe = efx_pci_probe, .remove = efx_pci_remove, .driver.pm = &efx_pm_ops, }; /************************************************************************** * * Kernel module interface * *************************************************************************/ module_param(interrupt_mode, uint, 0444); MODULE_PARM_DESC(interrupt_mode, "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); static int __init efx_init_module(void) { int rc; printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); rc = register_netdevice_notifier(&efx_netdev_notifier); if (rc) goto err_notifier; reset_workqueue = create_singlethread_workqueue("sfc_reset"); if (!reset_workqueue) { rc = -ENOMEM; goto err_reset; } rc = pci_register_driver(&efx_pci_driver); if (rc < 0) goto err_pci; return 0; err_pci: destroy_workqueue(reset_workqueue); err_reset: unregister_netdevice_notifier(&efx_netdev_notifier); err_notifier: return rc; } static void __exit efx_exit_module(void) { printk(KERN_INFO "Solarflare NET driver unloading\n"); pci_unregister_driver(&efx_pci_driver); destroy_workqueue(reset_workqueue); unregister_netdevice_notifier(&efx_netdev_notifier); } module_init(efx_init_module); module_exit(efx_exit_module); MODULE_AUTHOR("Solarflare Communications and " "Michael Brown "); MODULE_DESCRIPTION("Solarflare Communications network driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, efx_pci_table);