/* Silan SC92031 PCI Fast Ethernet Adapter driver * * Based on vendor drivers: * Silan Fast Ethernet Netcard Driver: * MODULE_AUTHOR ("gaoyonghong"); * MODULE_DESCRIPTION ("SILAN Fast Ethernet driver"); * MODULE_LICENSE("GPL"); * 8139D Fast Ethernet driver: * (C) 2002 by gaoyonghong * MODULE_AUTHOR ("gaoyonghong"); * MODULE_DESCRIPTION ("Rsltek 8139D PCI Fast Ethernet Adapter driver"); * MODULE_LICENSE("GPL"); * Both are almost identical and seem to be based on pci-skeleton.c * * Rewritten for 2.6 by Cesar Eduardo Barros */ /* Note about set_mac_address: I don't know how to change the hardware * matching, so you need to enable IFF_PROMISC when using it. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/crc32.h> #include <asm/irq.h> #define PCI_VENDOR_ID_SILAN 0x1904 #define PCI_DEVICE_ID_SILAN_SC92031 0x2031 #define PCI_DEVICE_ID_SILAN_8139D 0x8139 #define SC92031_NAME "sc92031" #define SC92031_DESCRIPTION "Silan SC92031 PCI Fast Ethernet Adapter driver" #define SC92031_VERSION "2.0c" /* BAR 0 is MMIO, BAR 1 is PIO */ #ifndef SC92031_USE_BAR #define SC92031_USE_BAR 0 #endif /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */ static int multicast_filter_limit = 64; module_param(multicast_filter_limit, int, 0); MODULE_PARM_DESC(multicast_filter_limit, "Maximum number of filtered multicast addresses"); static int media; module_param(media, int, 0); MODULE_PARM_DESC(media, "Media type (0x00 = autodetect," " 0x01 = 10M half, 0x02 = 10M full," " 0x04 = 100M half, 0x08 = 100M full)"); /* Size of the in-memory receive ring. */ #define RX_BUF_LEN_IDX 3 /* 0==8K, 1==16K, 2==32K, 3==64K ,4==128K*/ #define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX) /* Number of Tx descriptor registers. */ #define NUM_TX_DESC 4 /* max supported ethernet frame size -- must be at least (dev->mtu+14+4).*/ #define MAX_ETH_FRAME_SIZE 1536 /* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */ #define TX_BUF_SIZE MAX_ETH_FRAME_SIZE #define TX_BUF_TOT_LEN (TX_BUF_SIZE * NUM_TX_DESC) /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */ #define RX_FIFO_THRESH 7 /* Rx buffer level before first PCI xfer. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (4*HZ) #define SILAN_STATS_NUM 2 /* number of ETHTOOL_GSTATS */ /* media options */ #define AUTOSELECT 0x00 #define M10_HALF 0x01 #define M10_FULL 0x02 #define M100_HALF 0x04 #define M100_FULL 0x08 /* Symbolic offsets to registers. */ enum silan_registers { Config0 = 0x00, // Config0 Config1 = 0x04, // Config1 RxBufWPtr = 0x08, // Rx buffer writer poiter IntrStatus = 0x0C, // Interrupt status IntrMask = 0x10, // Interrupt mask RxbufAddr = 0x14, // Rx buffer start address RxBufRPtr = 0x18, // Rx buffer read pointer Txstatusall = 0x1C, // Transmit status of all descriptors TxStatus0 = 0x20, // Transmit status (Four 32bit registers). TxAddr0 = 0x30, // Tx descriptors (also four 32bit). RxConfig = 0x40, // Rx configuration MAC0 = 0x44, // Ethernet hardware address. MAR0 = 0x4C, // Multicast filter. RxStatus0 = 0x54, // Rx status TxConfig = 0x5C, // Tx configuration PhyCtrl = 0x60, // physical control FlowCtrlConfig = 0x64, // flow control Miicmd0 = 0x68, // Mii command0 register Miicmd1 = 0x6C, // Mii command1 register Miistatus = 0x70, // Mii status register Timercnt = 0x74, // Timer counter register TimerIntr = 0x78, // Timer interrupt register PMConfig = 0x7C, // Power Manager configuration CRC0 = 0x80, // Power Manager CRC ( Two 32bit regisers) Wakeup0 = 0x88, // power Manager wakeup( Eight 64bit regiser) LSBCRC0 = 0xC8, // power Manager LSBCRC(Two 32bit regiser) TestD0 = 0xD0, TestD4 = 0xD4, TestD8 = 0xD8, }; #define MII_BMCR 0 // Basic mode control register #define MII_BMSR 1 // Basic mode status register #define MII_JAB 16 #define MII_OutputStatus 24 #define BMCR_FULLDPLX 0x0100 // Full duplex #define BMCR_ANRESTART 0x0200 // Auto negotiation restart #define BMCR_ANENABLE 0x1000 // Enable auto negotiation #define BMCR_SPEED100 0x2000 // Select 100Mbps #define BMSR_LSTATUS 0x0004 // Link status #define PHY_16_JAB_ENB 0x1000 #define PHY_16_PORT_ENB 0x1 enum IntrStatusBits { LinkFail = 0x80000000, LinkOK = 0x40000000, TimeOut = 0x20000000, RxOverflow = 0x0040, RxOK = 0x0020, TxOK = 0x0001, IntrBits = LinkFail|LinkOK|TimeOut|RxOverflow|RxOK|TxOK, }; enum TxStatusBits { TxCarrierLost = 0x20000000, TxAborted = 0x10000000, TxOutOfWindow = 0x08000000, TxNccShift = 22, EarlyTxThresShift = 16, TxStatOK = 0x8000, TxUnderrun = 0x4000, TxOwn = 0x2000, }; enum RxStatusBits { RxStatesOK = 0x80000, RxBadAlign = 0x40000, RxHugeFrame = 0x20000, RxSmallFrame = 0x10000, RxCRCOK = 0x8000, RxCrlFrame = 0x4000, Rx_Broadcast = 0x2000, Rx_Multicast = 0x1000, RxAddrMatch = 0x0800, MiiErr = 0x0400, }; enum RxConfigBits { RxFullDx = 0x80000000, RxEnb = 0x40000000, RxSmall = 0x20000000, RxHuge = 0x10000000, RxErr = 0x08000000, RxAllphys = 0x04000000, RxMulticast = 0x02000000, RxBroadcast = 0x01000000, RxLoopBack = (1 << 23) | (1 << 22), LowThresholdShift = 12, HighThresholdShift = 2, }; enum TxConfigBits { TxFullDx = 0x80000000, TxEnb = 0x40000000, TxEnbPad = 0x20000000, TxEnbHuge = 0x10000000, TxEnbFCS = 0x08000000, TxNoBackOff = 0x04000000, TxEnbPrem = 0x02000000, TxCareLostCrs = 0x1000000, TxExdCollNum = 0xf00000, TxDataRate = 0x80000, }; enum PhyCtrlconfigbits { PhyCtrlAne = 0x80000000, PhyCtrlSpd100 = 0x40000000, PhyCtrlSpd10 = 0x20000000, PhyCtrlPhyBaseAddr = 0x1f000000, PhyCtrlDux = 0x800000, PhyCtrlReset = 0x400000, }; enum FlowCtrlConfigBits { FlowCtrlFullDX = 0x80000000, FlowCtrlEnb = 0x40000000, }; enum Config0Bits { Cfg0_Reset = 0x80000000, Cfg0_Anaoff = 0x40000000, Cfg0_LDPS = 0x20000000, }; enum Config1Bits { Cfg1_EarlyRx = 1 << 31, Cfg1_EarlyTx = 1 << 30, //rx buffer size Cfg1_Rcv8K = 0x0, Cfg1_Rcv16K = 0x1, Cfg1_Rcv32K = 0x3, Cfg1_Rcv64K = 0x7, Cfg1_Rcv128K = 0xf, }; enum MiiCmd0Bits { Mii_Divider = 0x20000000, Mii_WRITE = 0x400000, Mii_READ = 0x200000, Mii_SCAN = 0x100000, Mii_Tamod = 0x80000, Mii_Drvmod = 0x40000, Mii_mdc = 0x20000, Mii_mdoen = 0x10000, Mii_mdo = 0x8000, Mii_mdi = 0x4000, }; enum MiiStatusBits { Mii_StatusBusy = 0x80000000, }; enum PMConfigBits { PM_Enable = 1 << 31, PM_LongWF = 1 << 30, PM_Magic = 1 << 29, PM_LANWake = 1 << 28, PM_LWPTN = (1 << 27 | 1<< 26), PM_LinkUp = 1 << 25, PM_WakeUp = 1 << 24, }; /* Locking rules: * priv->lock protects most of the fields of priv and most of the * hardware registers. It does not have to protect against softirqs * between sc92031_disable_interrupts and sc92031_enable_interrupts; * it also does not need to be used in ->open and ->stop while the * device interrupts are off. * Not having to protect against softirqs is very useful due to heavy * use of mdelay() at _sc92031_reset. * Functions prefixed with _sc92031_ must be called with the lock held; * functions prefixed with sc92031_ must be called without the lock held. * Use mmiowb() before unlocking if the hardware was written to. */ /* Locking rules for the interrupt: * - the interrupt and the tasklet never run at the same time * - neither run between sc92031_disable_interrupts and * sc92031_enable_interrupt */ struct sc92031_priv { spinlock_t lock; /* iomap.h cookie */ void __iomem *port_base; /* pci device structure */ struct pci_dev *pdev; /* tasklet */ struct tasklet_struct tasklet; /* CPU address of rx ring */ void *rx_ring; /* PCI address of rx ring */ dma_addr_t rx_ring_dma_addr; /* PCI address of rx ring read pointer */ dma_addr_t rx_ring_tail; /* tx ring write index */ unsigned tx_head; /* tx ring read index */ unsigned tx_tail; /* CPU address of tx bounce buffer */ void *tx_bufs; /* PCI address of tx bounce buffer */ dma_addr_t tx_bufs_dma_addr; /* copies of some hardware registers */ u32 intr_status; atomic_t intr_mask; u32 rx_config; u32 tx_config; u32 pm_config; /* copy of some flags from dev->flags */ unsigned int mc_flags; /* for ETHTOOL_GSTATS */ u64 tx_timeouts; u64 rx_loss; /* for dev->get_stats */ long rx_value; struct net_device_stats stats; }; /* I don't know which registers can be safely read; however, I can guess * MAC0 is one of them. */ static inline void _sc92031_dummy_read(void __iomem *port_base) { ioread32(port_base + MAC0); } static u32 _sc92031_mii_wait(void __iomem *port_base) { u32 mii_status; do { udelay(10); mii_status = ioread32(port_base + Miistatus); } while (mii_status & Mii_StatusBusy); return mii_status; } static u32 _sc92031_mii_cmd(void __iomem *port_base, u32 cmd0, u32 cmd1) { iowrite32(Mii_Divider, port_base + Miicmd0); _sc92031_mii_wait(port_base); iowrite32(cmd1, port_base + Miicmd1); iowrite32(Mii_Divider | cmd0, port_base + Miicmd0); return _sc92031_mii_wait(port_base); } static void _sc92031_mii_scan(void __iomem *port_base) { _sc92031_mii_cmd(port_base, Mii_SCAN, 0x1 << 6); } static u16 _sc92031_mii_read(void __iomem *port_base, unsigned reg) { return _sc92031_mii_cmd(port_base, Mii_READ, reg << 6) >> 13; } static void _sc92031_mii_write(void __iomem *port_base, unsigned reg, u16 val) { _sc92031_mii_cmd(port_base, Mii_WRITE, (reg << 6) | ((u32)val << 11)); } static void sc92031_disable_interrupts(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; /* tell the tasklet/interrupt not to enable interrupts */ atomic_set(&priv->intr_mask, 0); wmb(); /* stop interrupts */ iowrite32(0, port_base + IntrMask); _sc92031_dummy_read(port_base); mmiowb(); /* wait for any concurrent interrupt/tasklet to finish */ synchronize_irq(dev->irq); tasklet_disable(&priv->tasklet); } static void sc92031_enable_interrupts(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; tasklet_enable(&priv->tasklet); atomic_set(&priv->intr_mask, IntrBits); wmb(); iowrite32(IntrBits, port_base + IntrMask); mmiowb(); } static void _sc92031_disable_tx_rx(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; priv->rx_config &= ~RxEnb; priv->tx_config &= ~TxEnb; iowrite32(priv->rx_config, port_base + RxConfig); iowrite32(priv->tx_config, port_base + TxConfig); } static void _sc92031_enable_tx_rx(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; priv->rx_config |= RxEnb; priv->tx_config |= TxEnb; iowrite32(priv->rx_config, port_base + RxConfig); iowrite32(priv->tx_config, port_base + TxConfig); } static void _sc92031_tx_clear(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); while (priv->tx_head - priv->tx_tail > 0) { priv->tx_tail++; priv->stats.tx_dropped++; } priv->tx_head = priv->tx_tail = 0; } static void _sc92031_set_mar(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 mar0 = 0, mar1 = 0; if ((dev->flags & IFF_PROMISC) || dev->mc_count > multicast_filter_limit || (dev->flags & IFF_ALLMULTI)) mar0 = mar1 = 0xffffffff; else if (dev->flags & IFF_MULTICAST) { struct dev_mc_list *mc_list; for (mc_list = dev->mc_list; mc_list; mc_list = mc_list->next) { u32 crc; unsigned bit = 0; crc = ~ether_crc(ETH_ALEN, mc_list->dmi_addr); crc >>= 24; if (crc & 0x01) bit |= 0x02; if (crc & 0x02) bit |= 0x01; if (crc & 0x10) bit |= 0x20; if (crc & 0x20) bit |= 0x10; if (crc & 0x40) bit |= 0x08; if (crc & 0x80) bit |= 0x04; if (bit > 31) mar0 |= 0x1 << (bit - 32); else mar1 |= 0x1 << bit; } } iowrite32(mar0, port_base + MAR0); iowrite32(mar1, port_base + MAR0 + 4); } static void _sc92031_set_rx_config(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; unsigned int old_mc_flags; u32 rx_config_bits = 0; old_mc_flags = priv->mc_flags; if (dev->flags & IFF_PROMISC) rx_config_bits |= RxSmall | RxHuge | RxErr | RxBroadcast | RxMulticast | RxAllphys; if (dev->flags & (IFF_ALLMULTI | IFF_MULTICAST)) rx_config_bits |= RxMulticast; if (dev->flags & IFF_BROADCAST) rx_config_bits |= RxBroadcast; priv->rx_config &= ~(RxSmall | RxHuge | RxErr | RxBroadcast | RxMulticast | RxAllphys); priv->rx_config |= rx_config_bits; priv->mc_flags = dev->flags & (IFF_PROMISC | IFF_ALLMULTI | IFF_MULTICAST | IFF_BROADCAST); if (netif_carrier_ok(dev) && priv->mc_flags != old_mc_flags) iowrite32(priv->rx_config, port_base + RxConfig); } static bool _sc92031_check_media(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u16 bmsr; bmsr = _sc92031_mii_read(port_base, MII_BMSR); rmb(); if (bmsr & BMSR_LSTATUS) { bool speed_100, duplex_full; u32 flow_ctrl_config = 0; u16 output_status = _sc92031_mii_read(port_base, MII_OutputStatus); _sc92031_mii_scan(port_base); speed_100 = output_status & 0x2; duplex_full = output_status & 0x4; /* Initial Tx/Rx configuration */ priv->rx_config = (0x40 << LowThresholdShift) | (0x1c0 << HighThresholdShift); priv->tx_config = 0x48800000; /* NOTE: vendor driver had dead code here to enable tx padding */ if (!speed_100) priv->tx_config |= 0x80000; // configure rx mode _sc92031_set_rx_config(dev); if (duplex_full) { priv->rx_config |= RxFullDx; priv->tx_config |= TxFullDx; flow_ctrl_config = FlowCtrlFullDX | FlowCtrlEnb; } else { priv->rx_config &= ~RxFullDx; priv->tx_config &= ~TxFullDx; } _sc92031_set_mar(dev); _sc92031_set_rx_config(dev); _sc92031_enable_tx_rx(dev); iowrite32(flow_ctrl_config, port_base + FlowCtrlConfig); netif_carrier_on(dev); if (printk_ratelimit()) printk(KERN_INFO "%s: link up, %sMbps, %s-duplex\n", dev->name, speed_100 ? "100" : "10", duplex_full ? "full" : "half"); return true; } else { _sc92031_mii_scan(port_base); netif_carrier_off(dev); _sc92031_disable_tx_rx(dev); if (printk_ratelimit()) printk(KERN_INFO "%s: link down\n", dev->name); return false; } } static void _sc92031_phy_reset(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 phy_ctrl; phy_ctrl = ioread32(port_base + PhyCtrl); phy_ctrl &= ~(PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10); phy_ctrl |= PhyCtrlAne | PhyCtrlReset; switch (media) { default: case AUTOSELECT: phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10; break; case M10_HALF: phy_ctrl |= PhyCtrlSpd10; break; case M10_FULL: phy_ctrl |= PhyCtrlDux | PhyCtrlSpd10; break; case M100_HALF: phy_ctrl |= PhyCtrlSpd100; break; case M100_FULL: phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100; break; } iowrite32(phy_ctrl, port_base + PhyCtrl); mdelay(10); phy_ctrl &= ~PhyCtrlReset; iowrite32(phy_ctrl, port_base + PhyCtrl); mdelay(1); _sc92031_mii_write(port_base, MII_JAB, PHY_16_JAB_ENB | PHY_16_PORT_ENB); _sc92031_mii_scan(port_base); netif_carrier_off(dev); netif_stop_queue(dev); } static void _sc92031_reset(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; /* disable PM */ iowrite32(0, port_base + PMConfig); /* soft reset the chip */ iowrite32(Cfg0_Reset, port_base + Config0); mdelay(200); iowrite32(0, port_base + Config0); mdelay(10); /* disable interrupts */ iowrite32(0, port_base + IntrMask); /* clear multicast address */ iowrite32(0, port_base + MAR0); iowrite32(0, port_base + MAR0 + 4); /* init rx ring */ iowrite32(priv->rx_ring_dma_addr, port_base + RxbufAddr); priv->rx_ring_tail = priv->rx_ring_dma_addr; /* init tx ring */ _sc92031_tx_clear(dev); /* clear old register values */ priv->intr_status = 0; atomic_set(&priv->intr_mask, 0); priv->rx_config = 0; priv->tx_config = 0; priv->mc_flags = 0; /* configure rx buffer size */ /* NOTE: vendor driver had dead code here to enable early tx/rx */ iowrite32(Cfg1_Rcv64K, port_base + Config1); _sc92031_phy_reset(dev); _sc92031_check_media(dev); /* calculate rx fifo overflow */ priv->rx_value = 0; /* enable PM */ iowrite32(priv->pm_config, port_base + PMConfig); /* clear intr register */ ioread32(port_base + IntrStatus); } static void _sc92031_tx_tasklet(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; unsigned old_tx_tail; unsigned entry; u32 tx_status; old_tx_tail = priv->tx_tail; while (priv->tx_head - priv->tx_tail > 0) { entry = priv->tx_tail % NUM_TX_DESC; tx_status = ioread32(port_base + TxStatus0 + entry * 4); if (!(tx_status & (TxStatOK | TxUnderrun | TxAborted))) break; priv->tx_tail++; if (tx_status & TxStatOK) { priv->stats.tx_bytes += tx_status & 0x1fff; priv->stats.tx_packets++; /* Note: TxCarrierLost is always asserted at 100mbps. */ priv->stats.collisions += (tx_status >> 22) & 0xf; } if (tx_status & (TxOutOfWindow | TxAborted)) { priv->stats.tx_errors++; if (tx_status & TxAborted) priv->stats.tx_aborted_errors++; if (tx_status & TxCarrierLost) priv->stats.tx_carrier_errors++; if (tx_status & TxOutOfWindow) priv->stats.tx_window_errors++; } if (tx_status & TxUnderrun) priv->stats.tx_fifo_errors++; } if (priv->tx_tail != old_tx_tail) if (netif_queue_stopped(dev)) netif_wake_queue(dev); } static void _sc92031_rx_tasklet_error(u32 rx_status, struct sc92031_priv *priv, unsigned rx_size) { if(rx_size > (MAX_ETH_FRAME_SIZE + 4) || rx_size < 16) { priv->stats.rx_errors++; priv->stats.rx_length_errors++; } if (!(rx_status & RxStatesOK)) { priv->stats.rx_errors++; if (rx_status & (RxHugeFrame | RxSmallFrame)) priv->stats.rx_length_errors++; if (rx_status & RxBadAlign) priv->stats.rx_frame_errors++; if (!(rx_status & RxCRCOK)) priv->stats.rx_crc_errors++; } else priv->rx_loss++; } static void _sc92031_rx_tasklet(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; dma_addr_t rx_ring_head; unsigned rx_len; unsigned rx_ring_offset; void *rx_ring = priv->rx_ring; rx_ring_head = ioread32(port_base + RxBufWPtr); rmb(); /* rx_ring_head is only 17 bits in the RxBufWPtr register. * we need to change it to 32 bits physical address */ rx_ring_head &= (dma_addr_t)(RX_BUF_LEN - 1); rx_ring_head |= priv->rx_ring_dma_addr & ~(dma_addr_t)(RX_BUF_LEN - 1); if (rx_ring_head < priv->rx_ring_dma_addr) rx_ring_head += RX_BUF_LEN; if (rx_ring_head >= priv->rx_ring_tail) rx_len = rx_ring_head - priv->rx_ring_tail; else rx_len = RX_BUF_LEN - (priv->rx_ring_tail - rx_ring_head); if (!rx_len) return; if (unlikely(rx_len > RX_BUF_LEN)) { if (printk_ratelimit()) printk(KERN_ERR "%s: rx packets length > rx buffer\n", dev->name); return; } rx_ring_offset = (priv->rx_ring_tail - priv->rx_ring_dma_addr) % RX_BUF_LEN; while (rx_len) { u32 rx_status; unsigned rx_size, rx_size_align, pkt_size; struct sk_buff *skb; rx_status = le32_to_cpup((__le32 *)(rx_ring + rx_ring_offset)); rmb(); rx_size = rx_status >> 20; rx_size_align = (rx_size + 3) & ~3; // for 4 bytes aligned pkt_size = rx_size - 4; // Omit the four octet CRC from the length. rx_ring_offset = (rx_ring_offset + 4) % RX_BUF_LEN; if (unlikely(rx_status == 0 || rx_size > (MAX_ETH_FRAME_SIZE + 4) || rx_size < 16 || !(rx_status & RxStatesOK))) { _sc92031_rx_tasklet_error(rx_status, priv, rx_size); break; } if (unlikely(rx_size_align + 4 > rx_len)) { if (printk_ratelimit()) printk(KERN_ERR "%s: rx_len is too small\n", dev->name); break; } rx_len -= rx_size_align + 4; skb = dev_alloc_skb(pkt_size + NET_IP_ALIGN); if (unlikely(!skb)) { if (printk_ratelimit()) printk(KERN_ERR "%s: Couldn't allocate a skb_buff for a packet of size %u\n", dev->name, pkt_size); goto next; } skb_reserve(skb, NET_IP_ALIGN); if ((rx_ring_offset + pkt_size) > RX_BUF_LEN) { memcpy(skb_put(skb, RX_BUF_LEN - rx_ring_offset), rx_ring + rx_ring_offset, RX_BUF_LEN - rx_ring_offset); memcpy(skb_put(skb, pkt_size - (RX_BUF_LEN - rx_ring_offset)), rx_ring, pkt_size - (RX_BUF_LEN - rx_ring_offset)); } else { memcpy(skb_put(skb, pkt_size), rx_ring + rx_ring_offset, pkt_size); } skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); dev->last_rx = jiffies; netif_rx(skb); priv->stats.rx_bytes += pkt_size; priv->stats.rx_packets++; if (rx_status & Rx_Multicast) priv->stats.multicast++; next: rx_ring_offset = (rx_ring_offset + rx_size_align) % RX_BUF_LEN; } mb(); priv->rx_ring_tail = rx_ring_head; iowrite32(priv->rx_ring_tail, port_base + RxBufRPtr); } static void _sc92031_link_tasklet(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); if (_sc92031_check_media(dev)) netif_wake_queue(dev); else { netif_stop_queue(dev); priv->stats.tx_carrier_errors++; } } static void sc92031_tasklet(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 intr_status, intr_mask; intr_status = priv->intr_status; spin_lock(&priv->lock); if (unlikely(!netif_running(dev))) goto out; if (intr_status & TxOK) _sc92031_tx_tasklet(dev); if (intr_status & RxOK) _sc92031_rx_tasklet(dev); if (intr_status & RxOverflow) priv->stats.rx_errors++; if (intr_status & TimeOut) { priv->stats.rx_errors++; priv->stats.rx_length_errors++; } if (intr_status & (LinkFail | LinkOK)) _sc92031_link_tasklet(dev); out: intr_mask = atomic_read(&priv->intr_mask); rmb(); iowrite32(intr_mask, port_base + IntrMask); mmiowb(); spin_unlock(&priv->lock); } static irqreturn_t sc92031_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 intr_status, intr_mask; /* mask interrupts before clearing IntrStatus */ iowrite32(0, port_base + IntrMask); _sc92031_dummy_read(port_base); intr_status = ioread32(port_base + IntrStatus); if (unlikely(intr_status == 0xffffffff)) return IRQ_NONE; // hardware has gone missing intr_status &= IntrBits; if (!intr_status) goto out_none; priv->intr_status = intr_status; tasklet_schedule(&priv->tasklet); return IRQ_HANDLED; out_none: intr_mask = atomic_read(&priv->intr_mask); rmb(); iowrite32(intr_mask, port_base + IntrMask); mmiowb(); return IRQ_NONE; } static struct net_device_stats *sc92031_get_stats(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; // FIXME I do not understand what is this trying to do. if (netif_running(dev)) { int temp; spin_lock_bh(&priv->lock); /* Update the error count. */ temp = (ioread32(port_base + RxStatus0) >> 16) & 0xffff; if (temp == 0xffff) { priv->rx_value += temp; priv->stats.rx_fifo_errors = priv->rx_value; } else { priv->stats.rx_fifo_errors = temp + priv->rx_value; } spin_unlock_bh(&priv->lock); } return &priv->stats; } static int sc92031_start_xmit(struct sk_buff *skb, struct net_device *dev) { int err = 0; struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; unsigned len; unsigned entry; u32 tx_status; if (unlikely(skb->len > TX_BUF_SIZE)) { err = -EMSGSIZE; priv->stats.tx_dropped++; goto out; } spin_lock_bh(&priv->lock); if (unlikely(!netif_carrier_ok(dev))) { err = -ENOLINK; priv->stats.tx_dropped++; goto out_unlock; } BUG_ON(priv->tx_head - priv->tx_tail >= NUM_TX_DESC); entry = priv->tx_head++ % NUM_TX_DESC; skb_copy_and_csum_dev(skb, priv->tx_bufs + entry * TX_BUF_SIZE); len = skb->len; if (unlikely(len < ETH_ZLEN)) { memset(priv->tx_bufs + entry * TX_BUF_SIZE + len, 0, ETH_ZLEN - len); len = ETH_ZLEN; } wmb(); if (len < 100) tx_status = len; else if (len < 300) tx_status = 0x30000 | len; else tx_status = 0x50000 | len; iowrite32(priv->tx_bufs_dma_addr + entry * TX_BUF_SIZE, port_base + TxAddr0 + entry * 4); iowrite32(tx_status, port_base + TxStatus0 + entry * 4); mmiowb(); dev->trans_start = jiffies; if (priv->tx_head - priv->tx_tail >= NUM_TX_DESC) netif_stop_queue(dev); out_unlock: spin_unlock_bh(&priv->lock); out: dev_kfree_skb(skb); return err; } static int sc92031_open(struct net_device *dev) { int err; struct sc92031_priv *priv = netdev_priv(dev); struct pci_dev *pdev = priv->pdev; priv->rx_ring = pci_alloc_consistent(pdev, RX_BUF_LEN, &priv->rx_ring_dma_addr); if (unlikely(!priv->rx_ring)) { err = -ENOMEM; goto out_alloc_rx_ring; } priv->tx_bufs = pci_alloc_consistent(pdev, TX_BUF_TOT_LEN, &priv->tx_bufs_dma_addr); if (unlikely(!priv->tx_bufs)) { err = -ENOMEM; goto out_alloc_tx_bufs; } priv->tx_head = priv->tx_tail = 0; err = request_irq(pdev->irq, sc92031_interrupt, IRQF_SHARED, dev->name, dev); if (unlikely(err < 0)) goto out_request_irq; priv->pm_config = 0; /* Interrupts already disabled by sc92031_stop or sc92031_probe */ spin_lock(&priv->lock); _sc92031_reset(dev); mmiowb(); spin_unlock(&priv->lock); sc92031_enable_interrupts(dev); if (netif_carrier_ok(dev)) netif_start_queue(dev); else netif_tx_disable(dev); return 0; out_request_irq: pci_free_consistent(pdev, TX_BUF_TOT_LEN, priv->tx_bufs, priv->tx_bufs_dma_addr); out_alloc_tx_bufs: pci_free_consistent(pdev, RX_BUF_LEN, priv->rx_ring, priv->rx_ring_dma_addr); out_alloc_rx_ring: return err; } static int sc92031_stop(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); struct pci_dev *pdev = priv->pdev; netif_tx_disable(dev); /* Disable interrupts, stop Tx and Rx. */ sc92031_disable_interrupts(dev); spin_lock(&priv->lock); _sc92031_disable_tx_rx(dev); _sc92031_tx_clear(dev); mmiowb(); spin_unlock(&priv->lock); free_irq(pdev->irq, dev); pci_free_consistent(pdev, TX_BUF_TOT_LEN, priv->tx_bufs, priv->tx_bufs_dma_addr); pci_free_consistent(pdev, RX_BUF_LEN, priv->rx_ring, priv->rx_ring_dma_addr); return 0; } static void sc92031_set_multicast_list(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); spin_lock_bh(&priv->lock); _sc92031_set_mar(dev); _sc92031_set_rx_config(dev); mmiowb(); spin_unlock_bh(&priv->lock); } static void sc92031_tx_timeout(struct net_device *dev) { struct sc92031_priv *priv = netdev_priv(dev); /* Disable interrupts by clearing the interrupt mask.*/ sc92031_disable_interrupts(dev); spin_lock(&priv->lock); priv->tx_timeouts++; _sc92031_reset(dev); mmiowb(); spin_unlock(&priv->lock); /* enable interrupts */ sc92031_enable_interrupts(dev); if (netif_carrier_ok(dev)) netif_wake_queue(dev); } #ifdef CONFIG_NET_POLL_CONTROLLER static void sc92031_poll_controller(struct net_device *dev) { disable_irq(dev->irq); if (sc92031_interrupt(dev->irq, dev) != IRQ_NONE) sc92031_tasklet((unsigned long)dev); enable_irq(dev->irq); } #endif static int sc92031_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u8 phy_address; u32 phy_ctrl; u16 output_status; spin_lock_bh(&priv->lock); phy_address = ioread32(port_base + Miicmd1) >> 27; phy_ctrl = ioread32(port_base + PhyCtrl); output_status = _sc92031_mii_read(port_base, MII_OutputStatus); _sc92031_mii_scan(port_base); mmiowb(); spin_unlock_bh(&priv->lock); cmd->supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII; cmd->advertising = ADVERTISED_TP | ADVERTISED_MII; if ((phy_ctrl & (PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10)) == (PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10)) cmd->advertising |= ADVERTISED_Autoneg; if ((phy_ctrl & PhyCtrlSpd10) == PhyCtrlSpd10) cmd->advertising |= ADVERTISED_10baseT_Half; if ((phy_ctrl & (PhyCtrlSpd10 | PhyCtrlDux)) == (PhyCtrlSpd10 | PhyCtrlDux)) cmd->advertising |= ADVERTISED_10baseT_Full; if ((phy_ctrl & PhyCtrlSpd100) == PhyCtrlSpd100) cmd->advertising |= ADVERTISED_100baseT_Half; if ((phy_ctrl & (PhyCtrlSpd100 | PhyCtrlDux)) == (PhyCtrlSpd100 | PhyCtrlDux)) cmd->advertising |= ADVERTISED_100baseT_Full; if (phy_ctrl & PhyCtrlAne) cmd->advertising |= ADVERTISED_Autoneg; cmd->speed = (output_status & 0x2) ? SPEED_100 : SPEED_10; cmd->duplex = (output_status & 0x4) ? DUPLEX_FULL : DUPLEX_HALF; cmd->port = PORT_MII; cmd->phy_address = phy_address; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = (phy_ctrl & PhyCtrlAne) ? AUTONEG_ENABLE : AUTONEG_DISABLE; return 0; } static int sc92031_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 phy_ctrl; u32 old_phy_ctrl; if (!(cmd->speed == SPEED_10 || cmd->speed == SPEED_100)) return -EINVAL; if (!(cmd->duplex == DUPLEX_HALF || cmd->duplex == DUPLEX_FULL)) return -EINVAL; if (!(cmd->port == PORT_MII)) return -EINVAL; if (!(cmd->phy_address == 0x1f)) return -EINVAL; if (!(cmd->transceiver == XCVR_INTERNAL)) return -EINVAL; if (!(cmd->autoneg == AUTONEG_DISABLE || cmd->autoneg == AUTONEG_ENABLE)) return -EINVAL; if (cmd->autoneg == AUTONEG_ENABLE) { if (!(cmd->advertising & (ADVERTISED_Autoneg | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half))) return -EINVAL; phy_ctrl = PhyCtrlAne; // FIXME: I'm not sure what the original code was trying to do if (cmd->advertising & ADVERTISED_Autoneg) phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10; if (cmd->advertising & ADVERTISED_100baseT_Full) phy_ctrl |= PhyCtrlDux | PhyCtrlSpd100; if (cmd->advertising & ADVERTISED_100baseT_Half) phy_ctrl |= PhyCtrlSpd100; if (cmd->advertising & ADVERTISED_10baseT_Full) phy_ctrl |= PhyCtrlSpd10 | PhyCtrlDux; if (cmd->advertising & ADVERTISED_10baseT_Half) phy_ctrl |= PhyCtrlSpd10; } else { // FIXME: Whole branch guessed phy_ctrl = 0; if (cmd->speed == SPEED_10) phy_ctrl |= PhyCtrlSpd10; else /* cmd->speed == SPEED_100 */ phy_ctrl |= PhyCtrlSpd100; if (cmd->duplex == DUPLEX_FULL) phy_ctrl |= PhyCtrlDux; } spin_lock_bh(&priv->lock); old_phy_ctrl = ioread32(port_base + PhyCtrl); phy_ctrl |= old_phy_ctrl & ~(PhyCtrlAne | PhyCtrlDux | PhyCtrlSpd100 | PhyCtrlSpd10); if (phy_ctrl != old_phy_ctrl) iowrite32(phy_ctrl, port_base + PhyCtrl); spin_unlock_bh(&priv->lock); return 0; } static void sc92031_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { struct sc92031_priv *priv = netdev_priv(dev); struct pci_dev *pdev = priv->pdev; strcpy(drvinfo->driver, SC92031_NAME); strcpy(drvinfo->version, SC92031_VERSION); strcpy(drvinfo->bus_info, pci_name(pdev)); } static void sc92031_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 pm_config; spin_lock_bh(&priv->lock); pm_config = ioread32(port_base + PMConfig); spin_unlock_bh(&priv->lock); // FIXME: Guessed wolinfo->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; wolinfo->wolopts = 0; if (pm_config & PM_LinkUp) wolinfo->wolopts |= WAKE_PHY; if (pm_config & PM_Magic) wolinfo->wolopts |= WAKE_MAGIC; if (pm_config & PM_WakeUp) // FIXME: Guessed wolinfo->wolopts |= WAKE_UCAST | WAKE_MCAST | WAKE_BCAST; } static int sc92031_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u32 pm_config; spin_lock_bh(&priv->lock); pm_config = ioread32(port_base + PMConfig) & ~(PM_LinkUp | PM_Magic | PM_WakeUp); if (wolinfo->wolopts & WAKE_PHY) pm_config |= PM_LinkUp; if (wolinfo->wolopts & WAKE_MAGIC) pm_config |= PM_Magic; // FIXME: Guessed if (wolinfo->wolopts & (WAKE_UCAST | WAKE_MCAST | WAKE_BCAST)) pm_config |= PM_WakeUp; priv->pm_config = pm_config; iowrite32(pm_config, port_base + PMConfig); mmiowb(); spin_unlock_bh(&priv->lock); return 0; } static int sc92031_ethtool_nway_reset(struct net_device *dev) { int err = 0; struct sc92031_priv *priv = netdev_priv(dev); void __iomem *port_base = priv->port_base; u16 bmcr; spin_lock_bh(&priv->lock); bmcr = _sc92031_mii_read(port_base, MII_BMCR); if (!(bmcr & BMCR_ANENABLE)) { err = -EINVAL; goto out; } _sc92031_mii_write(port_base, MII_BMCR, bmcr | BMCR_ANRESTART); out: _sc92031_mii_scan(port_base); mmiowb(); spin_unlock_bh(&priv->lock); return err; } static const char sc92031_ethtool_stats_strings[SILAN_STATS_NUM][ETH_GSTRING_LEN] = { "tx_timeout", "rx_loss", }; static void sc92031_ethtool_get_strings(struct net_device *dev, u32 stringset, u8 *data) { if (stringset == ETH_SS_STATS) memcpy(data, sc92031_ethtool_stats_strings, SILAN_STATS_NUM * ETH_GSTRING_LEN); } static int sc92031_ethtool_get_stats_count(struct net_device *dev) { return SILAN_STATS_NUM; } static void sc92031_ethtool_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct sc92031_priv *priv = netdev_priv(dev); spin_lock_bh(&priv->lock); data[0] = priv->tx_timeouts; data[1] = priv->rx_loss; spin_unlock_bh(&priv->lock); } static struct ethtool_ops sc92031_ethtool_ops = { .get_settings = sc92031_ethtool_get_settings, .set_settings = sc92031_ethtool_set_settings, .get_drvinfo = sc92031_ethtool_get_drvinfo, .get_wol = sc92031_ethtool_get_wol, .set_wol = sc92031_ethtool_set_wol, .nway_reset = sc92031_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_tx_csum = ethtool_op_get_tx_csum, .get_sg = ethtool_op_get_sg, .get_tso = ethtool_op_get_tso, .get_strings = sc92031_ethtool_get_strings, .get_stats_count = sc92031_ethtool_get_stats_count, .get_ethtool_stats = sc92031_ethtool_get_ethtool_stats, .get_perm_addr = ethtool_op_get_perm_addr, .get_ufo = ethtool_op_get_ufo, }; static int __devinit sc92031_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int err; void __iomem* port_base; struct net_device *dev; struct sc92031_priv *priv; u32 mac0, mac1; err = pci_enable_device(pdev); if (unlikely(err < 0)) goto out_enable_device; pci_set_master(pdev); err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (unlikely(err < 0)) goto out_set_dma_mask; err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (unlikely(err < 0)) goto out_set_dma_mask; err = pci_request_regions(pdev, SC92031_NAME); if (unlikely(err < 0)) goto out_request_regions; port_base = pci_iomap(pdev, SC92031_USE_BAR, 0); if (unlikely(!port_base)) { err = -EIO; goto out_iomap; } dev = alloc_etherdev(sizeof(struct sc92031_priv)); if (unlikely(!dev)) { err = -ENOMEM; goto out_alloc_etherdev; } pci_set_drvdata(pdev, dev); #if SC92031_USE_BAR == 0 dev->mem_start = pci_resource_start(pdev, SC92031_USE_BAR); dev->mem_end = pci_resource_end(pdev, SC92031_USE_BAR); #elif SC92031_USE_BAR == 1 dev->base_addr = pci_resource_start(pdev, SC92031_USE_BAR); #endif dev->irq = pdev->irq; /* faked with skb_copy_and_csum_dev */ dev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA; dev->get_stats = sc92031_get_stats; dev->ethtool_ops = &sc92031_ethtool_ops; dev->hard_start_xmit = sc92031_start_xmit; dev->watchdog_timeo = TX_TIMEOUT; dev->open = sc92031_open; dev->stop = sc92031_stop; dev->set_multicast_list = sc92031_set_multicast_list; dev->tx_timeout = sc92031_tx_timeout; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = sc92031_poll_controller; #endif priv = netdev_priv(dev); spin_lock_init(&priv->lock); priv->port_base = port_base; priv->pdev = pdev; tasklet_init(&priv->tasklet, sc92031_tasklet, (unsigned long)dev); /* Fudge tasklet count so the call to sc92031_enable_interrupts at * sc92031_open will work correctly */ tasklet_disable_nosync(&priv->tasklet); /* PCI PM Wakeup */ iowrite32((~PM_LongWF & ~PM_LWPTN) | PM_Enable, port_base + PMConfig); mac0 = ioread32(port_base + MAC0); mac1 = ioread32(port_base + MAC0 + 4); dev->dev_addr[0] = dev->perm_addr[0] = mac0 >> 24; dev->dev_addr[1] = dev->perm_addr[1] = mac0 >> 16; dev->dev_addr[2] = dev->perm_addr[2] = mac0 >> 8; dev->dev_addr[3] = dev->perm_addr[3] = mac0; dev->dev_addr[4] = dev->perm_addr[4] = mac1 >> 8; dev->dev_addr[5] = dev->perm_addr[5] = mac1; err = register_netdev(dev); if (err < 0) goto out_register_netdev; return 0; out_register_netdev: free_netdev(dev); out_alloc_etherdev: pci_iounmap(pdev, port_base); out_iomap: pci_release_regions(pdev); out_request_regions: out_set_dma_mask: pci_disable_device(pdev); out_enable_device: return err; } static void __devexit sc92031_remove(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct sc92031_priv *priv = netdev_priv(dev); void __iomem* port_base = priv->port_base; unregister_netdev(dev); free_netdev(dev); pci_iounmap(pdev, port_base); pci_release_regions(pdev); pci_disable_device(pdev); } static int sc92031_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct sc92031_priv *priv = netdev_priv(dev); pci_save_state(pdev); if (!netif_running(dev)) goto out; netif_device_detach(dev); /* Disable interrupts, stop Tx and Rx. */ sc92031_disable_interrupts(dev); spin_lock(&priv->lock); _sc92031_disable_tx_rx(dev); _sc92031_tx_clear(dev); mmiowb(); spin_unlock(&priv->lock); out: pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int sc92031_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct sc92031_priv *priv = netdev_priv(dev); pci_restore_state(pdev); pci_set_power_state(pdev, PCI_D0); if (!netif_running(dev)) goto out; /* Interrupts already disabled by sc92031_suspend */ spin_lock(&priv->lock); _sc92031_reset(dev); mmiowb(); spin_unlock(&priv->lock); sc92031_enable_interrupts(dev); netif_device_attach(dev); if (netif_carrier_ok(dev)) netif_wake_queue(dev); else netif_tx_disable(dev); out: return 0; } static struct pci_device_id sc92031_pci_device_id_table[] __devinitdata = { { PCI_DEVICE(PCI_VENDOR_ID_SILAN, PCI_DEVICE_ID_SILAN_SC92031) }, { PCI_DEVICE(PCI_VENDOR_ID_SILAN, PCI_DEVICE_ID_SILAN_8139D) }, { 0, } }; MODULE_DEVICE_TABLE(pci, sc92031_pci_device_id_table); static struct pci_driver sc92031_pci_driver = { .name = SC92031_NAME, .id_table = sc92031_pci_device_id_table, .probe = sc92031_probe, .remove = __devexit_p(sc92031_remove), .suspend = sc92031_suspend, .resume = sc92031_resume, }; static int __init sc92031_init(void) { printk(KERN_INFO SC92031_DESCRIPTION " " SC92031_VERSION "\n"); return pci_register_driver(&sc92031_pci_driver); } static void __exit sc92031_exit(void) { pci_unregister_driver(&sc92031_pci_driver); } module_init(sc92031_init); module_exit(sc92031_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Cesar Eduardo Barros <cesarb@cesarb.net>"); MODULE_DESCRIPTION(SC92031_DESCRIPTION); MODULE_VERSION(SC92031_VERSION);