/* * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation * Copyright (c) 2006, 2007 Maciej W. Rozycki * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * * This driver is designed for the Broadcom SiByte SOC built-in * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp. * * Updated to the driver model and the PHY abstraction layer * by Maciej W. Rozycki. */ #include <linux/bug.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/timer.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/err.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <asm/cache.h> #include <asm/io.h> #include <asm/processor.h> /* Processor type for cache alignment. */ /* This is only here until the firmware is ready. In that case, the firmware leaves the ethernet address in the register for us. */ #ifdef CONFIG_SIBYTE_STANDALONE #define SBMAC_ETH0_HWADDR "40:00:00:00:01:00" #define SBMAC_ETH1_HWADDR "40:00:00:00:01:01" #define SBMAC_ETH2_HWADDR "40:00:00:00:01:02" #define SBMAC_ETH3_HWADDR "40:00:00:00:01:03" #endif /* These identify the driver base version and may not be removed. */ #if 0 static char version1[] __initdata = "sb1250-mac.c:1.00 1/11/2001 Written by Mitch Lichtenberg\n"; #endif /* Operational parameters that usually are not changed. */ #define CONFIG_SBMAC_COALESCE /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (2*HZ) MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)"); MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver"); /* A few user-configurable values which may be modified when a driver module is loaded. */ /* 1 normal messages, 0 quiet .. 7 verbose. */ static int debug = 1; module_param(debug, int, S_IRUGO); MODULE_PARM_DESC(debug, "Debug messages"); #ifdef CONFIG_SBMAC_COALESCE static int int_pktcnt_tx = 255; module_param(int_pktcnt_tx, int, S_IRUGO); MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count"); static int int_timeout_tx = 255; module_param(int_timeout_tx, int, S_IRUGO); MODULE_PARM_DESC(int_timeout_tx, "TX timeout value"); static int int_pktcnt_rx = 64; module_param(int_pktcnt_rx, int, S_IRUGO); MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count"); static int int_timeout_rx = 64; module_param(int_timeout_rx, int, S_IRUGO); MODULE_PARM_DESC(int_timeout_rx, "RX timeout value"); #endif #include <asm/sibyte/board.h> #include <asm/sibyte/sb1250.h> #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/bcm1480_int.h> #define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X) #include <asm/sibyte/sb1250_regs.h> #include <asm/sibyte/sb1250_int.h> #else #error invalid SiByte MAC configuation #endif #include <asm/sibyte/sb1250_scd.h> #include <asm/sibyte/sb1250_mac.h> #include <asm/sibyte/sb1250_dma.h> #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) #define UNIT_INT(n) (K_BCM1480_INT_MAC_0 + ((n) * 2)) #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X) #define UNIT_INT(n) (K_INT_MAC_0 + (n)) #else #error invalid SiByte MAC configuation #endif #ifdef K_INT_PHY #define SBMAC_PHY_INT K_INT_PHY #else #define SBMAC_PHY_INT PHY_POLL #endif /********************************************************************** * Simple types ********************************************************************* */ enum sbmac_speed { sbmac_speed_none = 0, sbmac_speed_10 = SPEED_10, sbmac_speed_100 = SPEED_100, sbmac_speed_1000 = SPEED_1000, }; enum sbmac_duplex { sbmac_duplex_none = -1, sbmac_duplex_half = DUPLEX_HALF, sbmac_duplex_full = DUPLEX_FULL, }; enum sbmac_fc { sbmac_fc_none, sbmac_fc_disabled, sbmac_fc_frame, sbmac_fc_collision, sbmac_fc_carrier, }; enum sbmac_state { sbmac_state_uninit, sbmac_state_off, sbmac_state_on, sbmac_state_broken, }; /********************************************************************** * Macros ********************************************************************* */ #define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \ (d)->sbdma_dscrtable : (d)->f+1) #define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES) #define SBMAC_MAX_TXDESCR 256 #define SBMAC_MAX_RXDESCR 256 #define ETHER_ADDR_LEN 6 #define ENET_PACKET_SIZE 1518 /*#define ENET_PACKET_SIZE 9216 */ /********************************************************************** * DMA Descriptor structure ********************************************************************* */ struct sbdmadscr { uint64_t dscr_a; uint64_t dscr_b; }; /********************************************************************** * DMA Controller structure ********************************************************************* */ struct sbmacdma { /* * This stuff is used to identify the channel and the registers * associated with it. */ struct sbmac_softc *sbdma_eth; /* back pointer to associated MAC */ int sbdma_channel; /* channel number */ int sbdma_txdir; /* direction (1=transmit) */ int sbdma_maxdescr; /* total # of descriptors in ring */ #ifdef CONFIG_SBMAC_COALESCE int sbdma_int_pktcnt; /* # descriptors rx/tx before interrupt */ int sbdma_int_timeout; /* # usec rx/tx interrupt */ #endif void __iomem *sbdma_config0; /* DMA config register 0 */ void __iomem *sbdma_config1; /* DMA config register 1 */ void __iomem *sbdma_dscrbase; /* descriptor base address */ void __iomem *sbdma_dscrcnt; /* descriptor count register */ void __iomem *sbdma_curdscr; /* current descriptor address */ void __iomem *sbdma_oodpktlost; /* pkt drop (rx only) */ /* * This stuff is for maintenance of the ring */ void *sbdma_dscrtable_unaligned; struct sbdmadscr *sbdma_dscrtable; /* base of descriptor table */ struct sbdmadscr *sbdma_dscrtable_end; /* end of descriptor table */ struct sk_buff **sbdma_ctxtable; /* context table, one per descr */ dma_addr_t sbdma_dscrtable_phys; /* and also the phys addr */ struct sbdmadscr *sbdma_addptr; /* next dscr for sw to add */ struct sbdmadscr *sbdma_remptr; /* next dscr for sw to remove */ }; /********************************************************************** * Ethernet softc structure ********************************************************************* */ struct sbmac_softc { /* * Linux-specific things */ struct net_device *sbm_dev; /* pointer to linux device */ struct napi_struct napi; struct phy_device *phy_dev; /* the associated PHY device */ struct mii_bus mii_bus; /* the MII bus */ int phy_irq[PHY_MAX_ADDR]; spinlock_t sbm_lock; /* spin lock */ int sbm_devflags; /* current device flags */ /* * Controller-specific things */ void __iomem *sbm_base; /* MAC's base address */ enum sbmac_state sbm_state; /* current state */ void __iomem *sbm_macenable; /* MAC Enable Register */ void __iomem *sbm_maccfg; /* MAC Config Register */ void __iomem *sbm_fifocfg; /* FIFO Config Register */ void __iomem *sbm_framecfg; /* Frame Config Register */ void __iomem *sbm_rxfilter; /* Receive Filter Register */ void __iomem *sbm_isr; /* Interrupt Status Register */ void __iomem *sbm_imr; /* Interrupt Mask Register */ void __iomem *sbm_mdio; /* MDIO Register */ enum sbmac_speed sbm_speed; /* current speed */ enum sbmac_duplex sbm_duplex; /* current duplex */ enum sbmac_fc sbm_fc; /* cur. flow control setting */ int sbm_pause; /* current pause setting */ int sbm_link; /* current link state */ unsigned char sbm_hwaddr[ETHER_ADDR_LEN]; struct sbmacdma sbm_txdma; /* only channel 0 for now */ struct sbmacdma sbm_rxdma; int rx_hw_checksum; int sbe_idx; }; /********************************************************************** * Externs ********************************************************************* */ /********************************************************************** * Prototypes ********************************************************************* */ static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan, int txrx, int maxdescr); static void sbdma_channel_start(struct sbmacdma *d, int rxtx); static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d, struct sk_buff *m); static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m); static void sbdma_emptyring(struct sbmacdma *d); static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d); static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d, int work_to_do, int poll); static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d, int poll); static int sbmac_initctx(struct sbmac_softc *s); static void sbmac_channel_start(struct sbmac_softc *s); static void sbmac_channel_stop(struct sbmac_softc *s); static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *, enum sbmac_state); static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff); static uint64_t sbmac_addr2reg(unsigned char *ptr); static irqreturn_t sbmac_intr(int irq, void *dev_instance); static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev); static void sbmac_setmulti(struct sbmac_softc *sc); static int sbmac_init(struct platform_device *pldev, long long base); static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed); static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex, enum sbmac_fc fc); static int sbmac_open(struct net_device *dev); static void sbmac_tx_timeout (struct net_device *dev); static void sbmac_set_rx_mode(struct net_device *dev); static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int sbmac_close(struct net_device *dev); static int sbmac_poll(struct napi_struct *napi, int budget); static void sbmac_mii_poll(struct net_device *dev); static int sbmac_mii_probe(struct net_device *dev); static void sbmac_mii_sync(void __iomem *sbm_mdio); static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data, int bitcnt); static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx); static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx, u16 val); /********************************************************************** * Globals ********************************************************************* */ static char sbmac_string[] = "sb1250-mac"; static char sbmac_pretty[] = "SB1250 MAC"; static char sbmac_mdio_string[] = "sb1250-mac-mdio"; /********************************************************************** * MDIO constants ********************************************************************* */ #define MII_COMMAND_START 0x01 #define MII_COMMAND_READ 0x02 #define MII_COMMAND_WRITE 0x01 #define MII_COMMAND_ACK 0x02 #define M_MAC_MDIO_DIR_OUTPUT 0 /* for clarity */ #define ENABLE 1 #define DISABLE 0 /********************************************************************** * SBMAC_MII_SYNC(sbm_mdio) * * Synchronize with the MII - send a pattern of bits to the MII * that will guarantee that it is ready to accept a command. * * Input parameters: * sbm_mdio - address of the MAC's MDIO register * * Return value: * nothing ********************************************************************* */ static void sbmac_mii_sync(void __iomem *sbm_mdio) { int cnt; uint64_t bits; int mac_mdio_genc; mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC; bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT; __raw_writeq(bits | mac_mdio_genc, sbm_mdio); for (cnt = 0; cnt < 32; cnt++) { __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio); __raw_writeq(bits | mac_mdio_genc, sbm_mdio); } } /********************************************************************** * SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt) * * Send some bits to the MII. The bits to be sent are right- * justified in the 'data' parameter. * * Input parameters: * sbm_mdio - address of the MAC's MDIO register * data - data to send * bitcnt - number of bits to send ********************************************************************* */ static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data, int bitcnt) { int i; uint64_t bits; unsigned int curmask; int mac_mdio_genc; mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC; bits = M_MAC_MDIO_DIR_OUTPUT; __raw_writeq(bits | mac_mdio_genc, sbm_mdio); curmask = 1 << (bitcnt - 1); for (i = 0; i < bitcnt; i++) { if (data & curmask) bits |= M_MAC_MDIO_OUT; else bits &= ~M_MAC_MDIO_OUT; __raw_writeq(bits | mac_mdio_genc, sbm_mdio); __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio); __raw_writeq(bits | mac_mdio_genc, sbm_mdio); curmask >>= 1; } } /********************************************************************** * SBMAC_MII_READ(bus, phyaddr, regidx) * Read a PHY register. * * Input parameters: * bus - MDIO bus handle * phyaddr - PHY's address * regnum - index of register to read * * Return value: * value read, or 0xffff if an error occurred. ********************************************************************* */ static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx) { struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv; void __iomem *sbm_mdio = sc->sbm_mdio; int idx; int error; int regval; int mac_mdio_genc; /* * Synchronize ourselves so that the PHY knows the next * thing coming down is a command */ sbmac_mii_sync(sbm_mdio); /* * Send the data to the PHY. The sequence is * a "start" command (2 bits) * a "read" command (2 bits) * the PHY addr (5 bits) * the register index (5 bits) */ sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2); sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2); sbmac_mii_senddata(sbm_mdio, phyaddr, 5); sbmac_mii_senddata(sbm_mdio, regidx, 5); mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC; /* * Switch the port around without a clock transition. */ __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio); /* * Send out a clock pulse to signal we want the status */ __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, sbm_mdio); __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio); /* * If an error occurred, the PHY will signal '1' back */ error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN; /* * Issue an 'idle' clock pulse, but keep the direction * the same. */ __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, sbm_mdio); __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio); regval = 0; for (idx = 0; idx < 16; idx++) { regval <<= 1; if (error == 0) { if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN) regval |= 1; } __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc, sbm_mdio); __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio); } /* Switch back to output */ __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio); if (error == 0) return regval; return 0xffff; } /********************************************************************** * SBMAC_MII_WRITE(bus, phyaddr, regidx, regval) * * Write a value to a PHY register. * * Input parameters: * bus - MDIO bus handle * phyaddr - PHY to use * regidx - register within the PHY * regval - data to write to register * * Return value: * 0 for success ********************************************************************* */ static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx, u16 regval) { struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv; void __iomem *sbm_mdio = sc->sbm_mdio; int mac_mdio_genc; sbmac_mii_sync(sbm_mdio); sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2); sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2); sbmac_mii_senddata(sbm_mdio, phyaddr, 5); sbmac_mii_senddata(sbm_mdio, regidx, 5); sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2); sbmac_mii_senddata(sbm_mdio, regval, 16); mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC; __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio); return 0; } /********************************************************************** * SBDMA_INITCTX(d,s,chan,txrx,maxdescr) * * Initialize a DMA channel context. Since there are potentially * eight DMA channels per MAC, it's nice to do this in a standard * way. * * Input parameters: * d - struct sbmacdma (DMA channel context) * s - struct sbmac_softc (pointer to a MAC) * chan - channel number (0..1 right now) * txrx - Identifies DMA_TX or DMA_RX for channel direction * maxdescr - number of descriptors * * Return value: * nothing ********************************************************************* */ static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan, int txrx, int maxdescr) { #ifdef CONFIG_SBMAC_COALESCE int int_pktcnt, int_timeout; #endif /* * Save away interesting stuff in the structure */ d->sbdma_eth = s; d->sbdma_channel = chan; d->sbdma_txdir = txrx; #if 0 /* RMON clearing */ s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING; #endif __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES); __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS); __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL); __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL); __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR); __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT); __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD); __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD); __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT); __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR); __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR); /* * initialize register pointers */ d->sbdma_config0 = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0); d->sbdma_config1 = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1); d->sbdma_dscrbase = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE); d->sbdma_dscrcnt = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT); d->sbdma_curdscr = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR); if (d->sbdma_txdir) d->sbdma_oodpktlost = NULL; else d->sbdma_oodpktlost = s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX); /* * Allocate memory for the ring */ d->sbdma_maxdescr = maxdescr; d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1, sizeof(*d->sbdma_dscrtable), GFP_KERNEL); /* * The descriptor table must be aligned to at least 16 bytes or the * MAC will corrupt it. */ d->sbdma_dscrtable = (struct sbdmadscr *) ALIGN((unsigned long)d->sbdma_dscrtable_unaligned, sizeof(*d->sbdma_dscrtable)); d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr; d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable); /* * And context table */ d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr, sizeof(*d->sbdma_ctxtable), GFP_KERNEL); #ifdef CONFIG_SBMAC_COALESCE /* * Setup Rx/Tx DMA coalescing defaults */ int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx; if ( int_pktcnt ) { d->sbdma_int_pktcnt = int_pktcnt; } else { d->sbdma_int_pktcnt = 1; } int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx; if ( int_timeout ) { d->sbdma_int_timeout = int_timeout; } else { d->sbdma_int_timeout = 0; } #endif } /********************************************************************** * SBDMA_CHANNEL_START(d) * * Initialize the hardware registers for a DMA channel. * * Input parameters: * d - DMA channel to init (context must be previously init'd * rxtx - DMA_RX or DMA_TX depending on what type of channel * * Return value: * nothing ********************************************************************* */ static void sbdma_channel_start(struct sbmacdma *d, int rxtx) { /* * Turn on the DMA channel */ #ifdef CONFIG_SBMAC_COALESCE __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) | 0, d->sbdma_config1); __raw_writeq(M_DMA_EOP_INT_EN | V_DMA_RINGSZ(d->sbdma_maxdescr) | V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) | 0, d->sbdma_config0); #else __raw_writeq(0, d->sbdma_config1); __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) | 0, d->sbdma_config0); #endif __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase); /* * Initialize ring pointers */ d->sbdma_addptr = d->sbdma_dscrtable; d->sbdma_remptr = d->sbdma_dscrtable; } /********************************************************************** * SBDMA_CHANNEL_STOP(d) * * Initialize the hardware registers for a DMA channel. * * Input parameters: * d - DMA channel to init (context must be previously init'd * * Return value: * nothing ********************************************************************* */ static void sbdma_channel_stop(struct sbmacdma *d) { /* * Turn off the DMA channel */ __raw_writeq(0, d->sbdma_config1); __raw_writeq(0, d->sbdma_dscrbase); __raw_writeq(0, d->sbdma_config0); /* * Zero ring pointers */ d->sbdma_addptr = NULL; d->sbdma_remptr = NULL; } static inline void sbdma_align_skb(struct sk_buff *skb, unsigned int power2, unsigned int offset) { unsigned char *addr = skb->data; unsigned char *newaddr = PTR_ALIGN(addr, power2); skb_reserve(skb, newaddr - addr + offset); } /********************************************************************** * SBDMA_ADD_RCVBUFFER(d,sb) * * Add a buffer to the specified DMA channel. For receive channels, * this queues a buffer for inbound packets. * * Input parameters: * sc - softc structure * d - DMA channel descriptor * sb - sk_buff to add, or NULL if we should allocate one * * Return value: * 0 if buffer could not be added (ring is full) * 1 if buffer added successfully ********************************************************************* */ static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d, struct sk_buff *sb) { struct net_device *dev = sc->sbm_dev; struct sbdmadscr *dsc; struct sbdmadscr *nextdsc; struct sk_buff *sb_new = NULL; int pktsize = ENET_PACKET_SIZE; /* get pointer to our current place in the ring */ dsc = d->sbdma_addptr; nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr); /* * figure out if the ring is full - if the next descriptor * is the same as the one that we're going to remove from * the ring, the ring is full */ if (nextdsc == d->sbdma_remptr) { return -ENOSPC; } /* * Allocate a sk_buff if we don't already have one. * If we do have an sk_buff, reset it so that it's empty. * * Note: sk_buffs don't seem to be guaranteed to have any sort * of alignment when they are allocated. Therefore, allocate enough * extra space to make sure that: * * 1. the data does not start in the middle of a cache line. * 2. The data does not end in the middle of a cache line * 3. The buffer can be aligned such that the IP addresses are * naturally aligned. * * Remember, the SOCs MAC writes whole cache lines at a time, * without reading the old contents first. So, if the sk_buff's * data portion starts in the middle of a cache line, the SOC * DMA will trash the beginning (and ending) portions. */ if (sb == NULL) { sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE + SMP_CACHE_BYTES * 2 + NET_IP_ALIGN); if (sb_new == NULL) { pr_info("%s: sk_buff allocation failed\n", d->sbdma_eth->sbm_dev->name); return -ENOBUFS; } sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN); } else { sb_new = sb; /* * nothing special to reinit buffer, it's already aligned * and sb->data already points to a good place. */ } /* * fill in the descriptor */ #ifdef CONFIG_SBMAC_COALESCE /* * Do not interrupt per DMA transfer. */ dsc->dscr_a = virt_to_phys(sb_new->data) | V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0; #else dsc->dscr_a = virt_to_phys(sb_new->data) | V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | M_DMA_DSCRA_INTERRUPT; #endif /* receiving: no options */ dsc->dscr_b = 0; /* * fill in the context */ d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new; /* * point at next packet */ d->sbdma_addptr = nextdsc; /* * Give the buffer to the DMA engine. */ __raw_writeq(1, d->sbdma_dscrcnt); return 0; /* we did it */ } /********************************************************************** * SBDMA_ADD_TXBUFFER(d,sb) * * Add a transmit buffer to the specified DMA channel, causing a * transmit to start. * * Input parameters: * d - DMA channel descriptor * sb - sk_buff to add * * Return value: * 0 transmit queued successfully * otherwise error code ********************************************************************* */ static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb) { struct sbdmadscr *dsc; struct sbdmadscr *nextdsc; uint64_t phys; uint64_t ncb; int length; /* get pointer to our current place in the ring */ dsc = d->sbdma_addptr; nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr); /* * figure out if the ring is full - if the next descriptor * is the same as the one that we're going to remove from * the ring, the ring is full */ if (nextdsc == d->sbdma_remptr) { return -ENOSPC; } /* * Under Linux, it's not necessary to copy/coalesce buffers * like it is on NetBSD. We think they're all contiguous, * but that may not be true for GBE. */ length = sb->len; /* * fill in the descriptor. Note that the number of cache * blocks in the descriptor is the number of blocks * *spanned*, so we need to add in the offset (if any) * while doing the calculation. */ phys = virt_to_phys(sb->data); ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1))); dsc->dscr_a = phys | V_DMA_DSCRA_A_SIZE(ncb) | #ifndef CONFIG_SBMAC_COALESCE M_DMA_DSCRA_INTERRUPT | #endif M_DMA_ETHTX_SOP; /* transmitting: set outbound options and length */ dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) | V_DMA_DSCRB_PKT_SIZE(length); /* * fill in the context */ d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb; /* * point at next packet */ d->sbdma_addptr = nextdsc; /* * Give the buffer to the DMA engine. */ __raw_writeq(1, d->sbdma_dscrcnt); return 0; /* we did it */ } /********************************************************************** * SBDMA_EMPTYRING(d) * * Free all allocated sk_buffs on the specified DMA channel; * * Input parameters: * d - DMA channel * * Return value: * nothing ********************************************************************* */ static void sbdma_emptyring(struct sbmacdma *d) { int idx; struct sk_buff *sb; for (idx = 0; idx < d->sbdma_maxdescr; idx++) { sb = d->sbdma_ctxtable[idx]; if (sb) { dev_kfree_skb(sb); d->sbdma_ctxtable[idx] = NULL; } } } /********************************************************************** * SBDMA_FILLRING(d) * * Fill the specified DMA channel (must be receive channel) * with sk_buffs * * Input parameters: * sc - softc structure * d - DMA channel * * Return value: * nothing ********************************************************************* */ static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d) { int idx; for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) { if (sbdma_add_rcvbuffer(sc, d, NULL) != 0) break; } } #ifdef CONFIG_NET_POLL_CONTROLLER static void sbmac_netpoll(struct net_device *netdev) { struct sbmac_softc *sc = netdev_priv(netdev); int irq = sc->sbm_dev->irq; __raw_writeq(0, sc->sbm_imr); sbmac_intr(irq, netdev); #ifdef CONFIG_SBMAC_COALESCE __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) | ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), sc->sbm_imr); #else __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr); #endif } #endif /********************************************************************** * SBDMA_RX_PROCESS(sc,d,work_to_do,poll) * * Process "completed" receive buffers on the specified DMA channel. * * Input parameters: * sc - softc structure * d - DMA channel context * work_to_do - no. of packets to process before enabling interrupt * again (for NAPI) * poll - 1: using polling (for NAPI) * * Return value: * nothing ********************************************************************* */ static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d, int work_to_do, int poll) { struct net_device *dev = sc->sbm_dev; int curidx; int hwidx; struct sbdmadscr *dsc; struct sk_buff *sb; int len; int work_done = 0; int dropped = 0; prefetch(d); again: /* Check if the HW dropped any frames */ dev->stats.rx_fifo_errors += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff; __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost); while (work_to_do-- > 0) { /* * figure out where we are (as an index) and where * the hardware is (also as an index) * * This could be done faster if (for example) the * descriptor table was page-aligned and contiguous in * both virtual and physical memory -- you could then * just compare the low-order bits of the virtual address * (sbdma_remptr) and the physical address (sbdma_curdscr CSR) */ dsc = d->sbdma_remptr; curidx = dsc - d->sbdma_dscrtable; prefetch(dsc); prefetch(&d->sbdma_ctxtable[curidx]); hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) - d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable); /* * If they're the same, that means we've processed all * of the descriptors up to (but not including) the one that * the hardware is working on right now. */ if (curidx == hwidx) goto done; /* * Otherwise, get the packet's sk_buff ptr back */ sb = d->sbdma_ctxtable[curidx]; d->sbdma_ctxtable[curidx] = NULL; len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4; /* * Check packet status. If good, process it. * If not, silently drop it and put it back on the * receive ring. */ if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) { /* * Add a new buffer to replace the old one. If we fail * to allocate a buffer, we're going to drop this * packet and put it right back on the receive ring. */ if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) == -ENOBUFS)) { dev->stats.rx_dropped++; /* Re-add old buffer */ sbdma_add_rcvbuffer(sc, d, sb); /* No point in continuing at the moment */ printk(KERN_ERR "dropped packet (1)\n"); d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr); goto done; } else { /* * Set length into the packet */ skb_put(sb,len); /* * Buffer has been replaced on the * receive ring. Pass the buffer to * the kernel */ sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev); /* Check hw IPv4/TCP checksum if supported */ if (sc->rx_hw_checksum == ENABLE) { if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) && !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) { sb->ip_summed = CHECKSUM_UNNECESSARY; /* don't need to set sb->csum */ } else { sb->ip_summed = CHECKSUM_NONE; } } prefetch(sb->data); prefetch((const void *)(((char *)sb->data)+32)); if (poll) dropped = netif_receive_skb(sb); else dropped = netif_rx(sb); if (dropped == NET_RX_DROP) { dev->stats.rx_dropped++; d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr); goto done; } else { dev->stats.rx_bytes += len; dev->stats.rx_packets++; } } } else { /* * Packet was mangled somehow. Just drop it and * put it back on the receive ring. */ dev->stats.rx_errors++; sbdma_add_rcvbuffer(sc, d, sb); } /* * .. and advance to the next buffer. */ d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr); work_done++; } if (!poll) { work_to_do = 32; goto again; /* collect fifo drop statistics again */ } done: return work_done; } /********************************************************************** * SBDMA_TX_PROCESS(sc,d) * * Process "completed" transmit buffers on the specified DMA channel. * This is normally called within the interrupt service routine. * Note that this isn't really ideal for priority channels, since * it processes all of the packets on a given channel before * returning. * * Input parameters: * sc - softc structure * d - DMA channel context * poll - 1: using polling (for NAPI) * * Return value: * nothing ********************************************************************* */ static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d, int poll) { struct net_device *dev = sc->sbm_dev; int curidx; int hwidx; struct sbdmadscr *dsc; struct sk_buff *sb; unsigned long flags; int packets_handled = 0; spin_lock_irqsave(&(sc->sbm_lock), flags); if (d->sbdma_remptr == d->sbdma_addptr) goto end_unlock; hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) - d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable); for (;;) { /* * figure out where we are (as an index) and where * the hardware is (also as an index) * * This could be done faster if (for example) the * descriptor table was page-aligned and contiguous in * both virtual and physical memory -- you could then * just compare the low-order bits of the virtual address * (sbdma_remptr) and the physical address (sbdma_curdscr CSR) */ curidx = d->sbdma_remptr - d->sbdma_dscrtable; /* * If they're the same, that means we've processed all * of the descriptors up to (but not including) the one that * the hardware is working on right now. */ if (curidx == hwidx) break; /* * Otherwise, get the packet's sk_buff ptr back */ dsc = &(d->sbdma_dscrtable[curidx]); sb = d->sbdma_ctxtable[curidx]; d->sbdma_ctxtable[curidx] = NULL; /* * Stats */ dev->stats.tx_bytes += sb->len; dev->stats.tx_packets++; /* * for transmits, we just free buffers. */ dev_kfree_skb_irq(sb); /* * .. and advance to the next buffer. */ d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr); packets_handled++; } /* * Decide if we should wake up the protocol or not. * Other drivers seem to do this when we reach a low * watermark on the transmit queue. */ if (packets_handled) netif_wake_queue(d->sbdma_eth->sbm_dev); end_unlock: spin_unlock_irqrestore(&(sc->sbm_lock), flags); } /********************************************************************** * SBMAC_INITCTX(s) * * Initialize an Ethernet context structure - this is called * once per MAC on the 1250. Memory is allocated here, so don't * call it again from inside the ioctl routines that bring the * interface up/down * * Input parameters: * s - sbmac context structure * * Return value: * 0 ********************************************************************* */ static int sbmac_initctx(struct sbmac_softc *s) { /* * figure out the addresses of some ports */ s->sbm_macenable = s->sbm_base + R_MAC_ENABLE; s->sbm_maccfg = s->sbm_base + R_MAC_CFG; s->sbm_fifocfg = s->sbm_base + R_MAC_THRSH_CFG; s->sbm_framecfg = s->sbm_base + R_MAC_FRAMECFG; s->sbm_rxfilter = s->sbm_base + R_MAC_ADFILTER_CFG; s->sbm_isr = s->sbm_base + R_MAC_STATUS; s->sbm_imr = s->sbm_base + R_MAC_INT_MASK; s->sbm_mdio = s->sbm_base + R_MAC_MDIO; /* * Initialize the DMA channels. Right now, only one per MAC is used * Note: Only do this _once_, as it allocates memory from the kernel! */ sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR); sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR); /* * initial state is OFF */ s->sbm_state = sbmac_state_off; return 0; } static void sbdma_uninitctx(struct sbmacdma *d) { if (d->sbdma_dscrtable_unaligned) { kfree(d->sbdma_dscrtable_unaligned); d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL; } if (d->sbdma_ctxtable) { kfree(d->sbdma_ctxtable); d->sbdma_ctxtable = NULL; } } static void sbmac_uninitctx(struct sbmac_softc *sc) { sbdma_uninitctx(&(sc->sbm_txdma)); sbdma_uninitctx(&(sc->sbm_rxdma)); } /********************************************************************** * SBMAC_CHANNEL_START(s) * * Start packet processing on this MAC. * * Input parameters: * s - sbmac structure * * Return value: * nothing ********************************************************************* */ static void sbmac_channel_start(struct sbmac_softc *s) { uint64_t reg; void __iomem *port; uint64_t cfg,fifo,framecfg; int idx, th_value; /* * Don't do this if running */ if (s->sbm_state == sbmac_state_on) return; /* * Bring the controller out of reset, but leave it off. */ __raw_writeq(0, s->sbm_macenable); /* * Ignore all received packets */ __raw_writeq(0, s->sbm_rxfilter); /* * Calculate values for various control registers. */ cfg = M_MAC_RETRY_EN | M_MAC_TX_HOLD_SOP_EN | V_MAC_TX_PAUSE_CNT_16K | M_MAC_AP_STAT_EN | M_MAC_FAST_SYNC | M_MAC_SS_EN | 0; /* * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above * Use a larger RD_THRSH for gigabit */ if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) th_value = 28; else th_value = 64; fifo = V_MAC_TX_WR_THRSH(4) | /* Must be '4' or '8' */ ((s->sbm_speed == sbmac_speed_1000) ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) | V_MAC_TX_RL_THRSH(4) | V_MAC_RX_PL_THRSH(4) | V_MAC_RX_RD_THRSH(4) | /* Must be '4' */ V_MAC_RX_PL_THRSH(4) | V_MAC_RX_RL_THRSH(8) | 0; framecfg = V_MAC_MIN_FRAMESZ_DEFAULT | V_MAC_MAX_FRAMESZ_DEFAULT | V_MAC_BACKOFF_SEL(1); /* * Clear out the hash address map */ port = s->sbm_base + R_MAC_HASH_BASE; for (idx = 0; idx < MAC_HASH_COUNT; idx++) { __raw_writeq(0, port); port += sizeof(uint64_t); } /* * Clear out the exact-match table */ port = s->sbm_base + R_MAC_ADDR_BASE; for (idx = 0; idx < MAC_ADDR_COUNT; idx++) { __raw_writeq(0, port); port += sizeof(uint64_t); } /* * Clear out the DMA Channel mapping table registers */ port = s->sbm_base + R_MAC_CHUP0_BASE; for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) { __raw_writeq(0, port); port += sizeof(uint64_t); } port = s->sbm_base + R_MAC_CHLO0_BASE; for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) { __raw_writeq(0, port); port += sizeof(uint64_t); } /* * Program the hardware address. It goes into the hardware-address * register as well as the first filter register. */ reg = sbmac_addr2reg(s->sbm_hwaddr); port = s->sbm_base + R_MAC_ADDR_BASE; __raw_writeq(reg, port); port = s->sbm_base + R_MAC_ETHERNET_ADDR; #ifdef CONFIG_SB1_PASS_1_WORKAROUNDS /* * Pass1 SOCs do not receive packets addressed to the * destination address in the R_MAC_ETHERNET_ADDR register. * Set the value to zero. */ __raw_writeq(0, port); #else __raw_writeq(reg, port); #endif /* * Set the receive filter for no packets, and write values * to the various config registers */ __raw_writeq(0, s->sbm_rxfilter); __raw_writeq(0, s->sbm_imr); __raw_writeq(framecfg, s->sbm_framecfg); __raw_writeq(fifo, s->sbm_fifocfg); __raw_writeq(cfg, s->sbm_maccfg); /* * Initialize DMA channels (rings should be ok now) */ sbdma_channel_start(&(s->sbm_rxdma), DMA_RX); sbdma_channel_start(&(s->sbm_txdma), DMA_TX); /* * Configure the speed, duplex, and flow control */ sbmac_set_speed(s,s->sbm_speed); sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc); /* * Fill the receive ring */ sbdma_fillring(s, &(s->sbm_rxdma)); /* * Turn on the rest of the bits in the enable register */ #if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80) __raw_writeq(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0, s->sbm_macenable); #elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X) __raw_writeq(M_MAC_RXDMA_EN0 | M_MAC_TXDMA_EN0 | M_MAC_RX_ENABLE | M_MAC_TX_ENABLE, s->sbm_macenable); #else #error invalid SiByte MAC configuation #endif #ifdef CONFIG_SBMAC_COALESCE __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) | ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr); #else __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr); #endif /* * Enable receiving unicasts and broadcasts */ __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter); /* * we're running now. */ s->sbm_state = sbmac_state_on; /* * Program multicast addresses */ sbmac_setmulti(s); /* * If channel was in promiscuous mode before, turn that on */ if (s->sbm_devflags & IFF_PROMISC) { sbmac_promiscuous_mode(s,1); } } /********************************************************************** * SBMAC_CHANNEL_STOP(s) * * Stop packet processing on this MAC. * * Input parameters: * s - sbmac structure * * Return value: * nothing ********************************************************************* */ static void sbmac_channel_stop(struct sbmac_softc *s) { /* don't do this if already stopped */ if (s->sbm_state == sbmac_state_off) return; /* don't accept any packets, disable all interrupts */ __raw_writeq(0, s->sbm_rxfilter); __raw_writeq(0, s->sbm_imr); /* Turn off ticker */ /* XXX */ /* turn off receiver and transmitter */ __raw_writeq(0, s->sbm_macenable); /* We're stopped now. */ s->sbm_state = sbmac_state_off; /* * Stop DMA channels (rings should be ok now) */ sbdma_channel_stop(&(s->sbm_rxdma)); sbdma_channel_stop(&(s->sbm_txdma)); /* Empty the receive and transmit rings */ sbdma_emptyring(&(s->sbm_rxdma)); sbdma_emptyring(&(s->sbm_txdma)); } /********************************************************************** * SBMAC_SET_CHANNEL_STATE(state) * * Set the channel's state ON or OFF * * Input parameters: * state - new state * * Return value: * old state ********************************************************************* */ static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc, enum sbmac_state state) { enum sbmac_state oldstate = sc->sbm_state; /* * If same as previous state, return */ if (state == oldstate) { return oldstate; } /* * If new state is ON, turn channel on */ if (state == sbmac_state_on) { sbmac_channel_start(sc); } else { sbmac_channel_stop(sc); } /* * Return previous state */ return oldstate; } /********************************************************************** * SBMAC_PROMISCUOUS_MODE(sc,onoff) * * Turn on or off promiscuous mode * * Input parameters: * sc - softc * onoff - 1 to turn on, 0 to turn off * * Return value: * nothing ********************************************************************* */ static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff) { uint64_t reg; if (sc->sbm_state != sbmac_state_on) return; if (onoff) { reg = __raw_readq(sc->sbm_rxfilter); reg |= M_MAC_ALLPKT_EN; __raw_writeq(reg, sc->sbm_rxfilter); } else { reg = __raw_readq(sc->sbm_rxfilter); reg &= ~M_MAC_ALLPKT_EN; __raw_writeq(reg, sc->sbm_rxfilter); } } /********************************************************************** * SBMAC_SETIPHDR_OFFSET(sc,onoff) * * Set the iphdr offset as 15 assuming ethernet encapsulation * * Input parameters: * sc - softc * * Return value: * nothing ********************************************************************* */ static void sbmac_set_iphdr_offset(struct sbmac_softc *sc) { uint64_t reg; /* Hard code the off set to 15 for now */ reg = __raw_readq(sc->sbm_rxfilter); reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15); __raw_writeq(reg, sc->sbm_rxfilter); /* BCM1250 pass1 didn't have hardware checksum. Everything later does. */ if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) { sc->rx_hw_checksum = DISABLE; } else { sc->rx_hw_checksum = ENABLE; } } /********************************************************************** * SBMAC_ADDR2REG(ptr) * * Convert six bytes into the 64-bit register value that * we typically write into the SBMAC's address/mcast registers * * Input parameters: * ptr - pointer to 6 bytes * * Return value: * register value ********************************************************************* */ static uint64_t sbmac_addr2reg(unsigned char *ptr) { uint64_t reg = 0; ptr += 6; reg |= (uint64_t) *(--ptr); reg <<= 8; reg |= (uint64_t) *(--ptr); reg <<= 8; reg |= (uint64_t) *(--ptr); reg <<= 8; reg |= (uint64_t) *(--ptr); reg <<= 8; reg |= (uint64_t) *(--ptr); reg <<= 8; reg |= (uint64_t) *(--ptr); return reg; } /********************************************************************** * SBMAC_SET_SPEED(s,speed) * * Configure LAN speed for the specified MAC. * Warning: must be called when MAC is off! * * Input parameters: * s - sbmac structure * speed - speed to set MAC to (see enum sbmac_speed) * * Return value: * 1 if successful * 0 indicates invalid parameters ********************************************************************* */ static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed) { uint64_t cfg; uint64_t framecfg; /* * Save new current values */ s->sbm_speed = speed; if (s->sbm_state == sbmac_state_on) return 0; /* save for next restart */ /* * Read current register values */ cfg = __raw_readq(s->sbm_maccfg); framecfg = __raw_readq(s->sbm_framecfg); /* * Mask out the stuff we want to change */ cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL); framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH | M_MAC_SLOT_SIZE); /* * Now add in the new bits */ switch (speed) { case sbmac_speed_10: framecfg |= V_MAC_IFG_RX_10 | V_MAC_IFG_TX_10 | K_MAC_IFG_THRSH_10 | V_MAC_SLOT_SIZE_10; cfg |= V_MAC_SPEED_SEL_10MBPS; break; case sbmac_speed_100: framecfg |= V_MAC_IFG_RX_100 | V_MAC_IFG_TX_100 | V_MAC_IFG_THRSH_100 | V_MAC_SLOT_SIZE_100; cfg |= V_MAC_SPEED_SEL_100MBPS ; break; case sbmac_speed_1000: framecfg |= V_MAC_IFG_RX_1000 | V_MAC_IFG_TX_1000 | V_MAC_IFG_THRSH_1000 | V_MAC_SLOT_SIZE_1000; cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN; break; default: return 0; } /* * Send the bits back to the hardware */ __raw_writeq(framecfg, s->sbm_framecfg); __raw_writeq(cfg, s->sbm_maccfg); return 1; } /********************************************************************** * SBMAC_SET_DUPLEX(s,duplex,fc) * * Set Ethernet duplex and flow control options for this MAC * Warning: must be called when MAC is off! * * Input parameters: * s - sbmac structure * duplex - duplex setting (see enum sbmac_duplex) * fc - flow control setting (see enum sbmac_fc) * * Return value: * 1 if ok * 0 if an invalid parameter combination was specified ********************************************************************* */ static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex, enum sbmac_fc fc) { uint64_t cfg; /* * Save new current values */ s->sbm_duplex = duplex; s->sbm_fc = fc; if (s->sbm_state == sbmac_state_on) return 0; /* save for next restart */ /* * Read current register values */ cfg = __raw_readq(s->sbm_maccfg); /* * Mask off the stuff we're about to change */ cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN); switch (duplex) { case sbmac_duplex_half: switch (fc) { case sbmac_fc_disabled: cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED; break; case sbmac_fc_collision: cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED; break; case sbmac_fc_carrier: cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR; break; case sbmac_fc_frame: /* not valid in half duplex */ default: /* invalid selection */ return 0; } break; case sbmac_duplex_full: switch (fc) { case sbmac_fc_disabled: cfg |= V_MAC_FC_CMD_DISABLED; break; case sbmac_fc_frame: cfg |= V_MAC_FC_CMD_ENABLED; break; case sbmac_fc_collision: /* not valid in full duplex */ case sbmac_fc_carrier: /* not valid in full duplex */ default: return 0; } break; default: return 0; } /* * Send the bits back to the hardware */ __raw_writeq(cfg, s->sbm_maccfg); return 1; } /********************************************************************** * SBMAC_INTR() * * Interrupt handler for MAC interrupts * * Input parameters: * MAC structure * * Return value: * nothing ********************************************************************* */ static irqreturn_t sbmac_intr(int irq,void *dev_instance) { struct net_device *dev = (struct net_device *) dev_instance; struct sbmac_softc *sc = netdev_priv(dev); uint64_t isr; int handled = 0; /* * Read the ISR (this clears the bits in the real * register, except for counter addr) */ isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR; if (isr == 0) return IRQ_RETVAL(0); handled = 1; /* * Transmits on channel 0 */ if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0)) sbdma_tx_process(sc,&(sc->sbm_txdma), 0); if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) { if (netif_rx_schedule_prep(dev, &sc->napi)) { __raw_writeq(0, sc->sbm_imr); __netif_rx_schedule(dev, &sc->napi); /* Depend on the exit from poll to reenable intr */ } else { /* may leave some packets behind */ sbdma_rx_process(sc,&(sc->sbm_rxdma), SBMAC_MAX_RXDESCR * 2, 0); } } return IRQ_RETVAL(handled); } /********************************************************************** * SBMAC_START_TX(skb,dev) * * Start output on the specified interface. Basically, we * queue as many buffers as we can until the ring fills up, or * we run off the end of the queue, whichever comes first. * * Input parameters: * * * Return value: * nothing ********************************************************************* */ static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); /* lock eth irq */ spin_lock_irq (&sc->sbm_lock); /* * Put the buffer on the transmit ring. If we * don't have room, stop the queue. */ if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) { /* XXX save skb that we could not send */ netif_stop_queue(dev); spin_unlock_irq(&sc->sbm_lock); return 1; } dev->trans_start = jiffies; spin_unlock_irq (&sc->sbm_lock); return 0; } /********************************************************************** * SBMAC_SETMULTI(sc) * * Reprogram the multicast table into the hardware, given * the list of multicasts associated with the interface * structure. * * Input parameters: * sc - softc * * Return value: * nothing ********************************************************************* */ static void sbmac_setmulti(struct sbmac_softc *sc) { uint64_t reg; void __iomem *port; int idx; struct dev_mc_list *mclist; struct net_device *dev = sc->sbm_dev; /* * Clear out entire multicast table. We do this by nuking * the entire hash table and all the direct matches except * the first one, which is used for our station address */ for (idx = 1; idx < MAC_ADDR_COUNT; idx++) { port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t)); __raw_writeq(0, port); } for (idx = 0; idx < MAC_HASH_COUNT; idx++) { port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t)); __raw_writeq(0, port); } /* * Clear the filter to say we don't want any multicasts. */ reg = __raw_readq(sc->sbm_rxfilter); reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN); __raw_writeq(reg, sc->sbm_rxfilter); if (dev->flags & IFF_ALLMULTI) { /* * Enable ALL multicasts. Do this by inverting the * multicast enable bit. */ reg = __raw_readq(sc->sbm_rxfilter); reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN); __raw_writeq(reg, sc->sbm_rxfilter); return; } /* * Progam new multicast entries. For now, only use the * perfect filter. In the future we'll need to use the * hash filter if the perfect filter overflows */ /* XXX only using perfect filter for now, need to use hash * XXX if the table overflows */ idx = 1; /* skip station address */ mclist = dev->mc_list; while (mclist && (idx < MAC_ADDR_COUNT)) { reg = sbmac_addr2reg(mclist->dmi_addr); port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t)); __raw_writeq(reg, port); idx++; mclist = mclist->next; } /* * Enable the "accept multicast bits" if we programmed at least one * multicast. */ if (idx > 1) { reg = __raw_readq(sc->sbm_rxfilter); reg |= M_MAC_MCAST_EN; __raw_writeq(reg, sc->sbm_rxfilter); } } #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR) /********************************************************************** * SBMAC_PARSE_XDIGIT(str) * * Parse a hex digit, returning its value * * Input parameters: * str - character * * Return value: * hex value, or -1 if invalid ********************************************************************* */ static int sbmac_parse_xdigit(char str) { int digit; if ((str >= '0') && (str <= '9')) digit = str - '0'; else if ((str >= 'a') && (str <= 'f')) digit = str - 'a' + 10; else if ((str >= 'A') && (str <= 'F')) digit = str - 'A' + 10; else return -1; return digit; } /********************************************************************** * SBMAC_PARSE_HWADDR(str,hwaddr) * * Convert a string in the form xx:xx:xx:xx:xx:xx into a 6-byte * Ethernet address. * * Input parameters: * str - string * hwaddr - pointer to hardware address * * Return value: * 0 if ok, else -1 ********************************************************************* */ static int sbmac_parse_hwaddr(char *str, unsigned char *hwaddr) { int digit1,digit2; int idx = 6; while (*str && (idx > 0)) { digit1 = sbmac_parse_xdigit(*str); if (digit1 < 0) return -1; str++; if (!*str) return -1; if ((*str == ':') || (*str == '-')) { digit2 = digit1; digit1 = 0; } else { digit2 = sbmac_parse_xdigit(*str); if (digit2 < 0) return -1; str++; } *hwaddr++ = (digit1 << 4) | digit2; idx--; if (*str == '-') str++; if (*str == ':') str++; } return 0; } #endif static int sb1250_change_mtu(struct net_device *_dev, int new_mtu) { if (new_mtu > ENET_PACKET_SIZE) return -EINVAL; _dev->mtu = new_mtu; pr_info("changing the mtu to %d\n", new_mtu); return 0; } /********************************************************************** * SBMAC_INIT(dev) * * Attach routine - init hardware and hook ourselves into linux * * Input parameters: * dev - net_device structure * * Return value: * status ********************************************************************* */ static int sbmac_init(struct platform_device *pldev, long long base) { struct net_device *dev = pldev->dev.driver_data; int idx = pldev->id; struct sbmac_softc *sc = netdev_priv(dev); unsigned char *eaddr; uint64_t ea_reg; int i; int err; DECLARE_MAC_BUF(mac); sc->sbm_dev = dev; sc->sbe_idx = idx; eaddr = sc->sbm_hwaddr; /* * Read the ethernet address. The firwmare left this programmed * for us in the ethernet address register for each mac. */ ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR); __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR); for (i = 0; i < 6; i++) { eaddr[i] = (uint8_t) (ea_reg & 0xFF); ea_reg >>= 8; } for (i = 0; i < 6; i++) { dev->dev_addr[i] = eaddr[i]; } /* * Initialize context (get pointers to registers and stuff), then * allocate the memory for the descriptor tables. */ sbmac_initctx(sc); /* * Set up Linux device callins */ spin_lock_init(&(sc->sbm_lock)); dev->open = sbmac_open; dev->hard_start_xmit = sbmac_start_tx; dev->stop = sbmac_close; dev->set_multicast_list = sbmac_set_rx_mode; dev->do_ioctl = sbmac_mii_ioctl; dev->tx_timeout = sbmac_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; netif_napi_add(dev, &sc->napi, sbmac_poll, 16); dev->change_mtu = sb1250_change_mtu; #ifdef CONFIG_NET_POLL_CONTROLLER dev->poll_controller = sbmac_netpoll; #endif dev->irq = UNIT_INT(idx); /* This is needed for PASS2 for Rx H/W checksum feature */ sbmac_set_iphdr_offset(sc); err = register_netdev(dev); if (err) { printk(KERN_ERR "%s.%d: unable to register netdev\n", sbmac_string, idx); sbmac_uninitctx(sc); return err; } pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name); if (sc->rx_hw_checksum == ENABLE) pr_info("%s: enabling TCP rcv checksum\n", dev->name); /* * Display Ethernet address (this is called during the config * process so we need to finish off the config message that * was being displayed) */ pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %s\n", dev->name, base, print_mac(mac, eaddr)); sc->mii_bus.name = sbmac_mdio_string; snprintf(sc->mii_bus.id, MII_BUS_ID_SIZE, "%x", idx); sc->mii_bus.priv = sc; sc->mii_bus.read = sbmac_mii_read; sc->mii_bus.write = sbmac_mii_write; sc->mii_bus.irq = sc->phy_irq; for (i = 0; i < PHY_MAX_ADDR; ++i) sc->mii_bus.irq[i] = SBMAC_PHY_INT; sc->mii_bus.dev = &pldev->dev; dev_set_drvdata(&pldev->dev, &sc->mii_bus); return 0; } static int sbmac_open(struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); int err; if (debug > 1) pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq); /* * map/route interrupt (clear status first, in case something * weird is pending; we haven't initialized the mac registers * yet) */ __raw_readq(sc->sbm_isr); err = request_irq(dev->irq, &sbmac_intr, IRQF_SHARED, dev->name, dev); if (err) { printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq); goto out_err; } /* * Probe PHY address */ err = mdiobus_register(&sc->mii_bus); if (err) { printk(KERN_ERR "%s: unable to register MDIO bus\n", dev->name); goto out_unirq; } sc->sbm_speed = sbmac_speed_none; sc->sbm_duplex = sbmac_duplex_none; sc->sbm_fc = sbmac_fc_none; sc->sbm_pause = -1; sc->sbm_link = 0; /* * Attach to the PHY */ err = sbmac_mii_probe(dev); if (err) goto out_unregister; /* * Turn on the channel */ sbmac_set_channel_state(sc,sbmac_state_on); netif_start_queue(dev); sbmac_set_rx_mode(dev); phy_start(sc->phy_dev); napi_enable(&sc->napi); return 0; out_unregister: mdiobus_unregister(&sc->mii_bus); out_unirq: free_irq(dev->irq, dev); out_err: return err; } static int sbmac_mii_probe(struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); struct phy_device *phy_dev; int i; for (i = 0; i < PHY_MAX_ADDR; i++) { phy_dev = sc->mii_bus.phy_map[i]; if (phy_dev) break; } if (!phy_dev) { printk(KERN_ERR "%s: no PHY found\n", dev->name); return -ENXIO; } phy_dev = phy_connect(dev, phy_dev->dev.bus_id, &sbmac_mii_poll, 0, PHY_INTERFACE_MODE_GMII); if (IS_ERR(phy_dev)) { printk(KERN_ERR "%s: could not attach to PHY\n", dev->name); return PTR_ERR(phy_dev); } /* Remove any features not supported by the controller */ phy_dev->supported &= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII | SUPPORTED_Pause | SUPPORTED_Asym_Pause; phy_dev->advertising = phy_dev->supported; pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", dev->name, phy_dev->drv->name, phy_dev->dev.bus_id, phy_dev->irq); sc->phy_dev = phy_dev; return 0; } static void sbmac_mii_poll(struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); struct phy_device *phy_dev = sc->phy_dev; unsigned long flags; enum sbmac_fc fc; int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg; link_chg = (sc->sbm_link != phy_dev->link); speed_chg = (sc->sbm_speed != phy_dev->speed); duplex_chg = (sc->sbm_duplex != phy_dev->duplex); pause_chg = (sc->sbm_pause != phy_dev->pause); if (!link_chg && !speed_chg && !duplex_chg && !pause_chg) return; /* Hmmm... */ if (!phy_dev->link) { if (link_chg) { sc->sbm_link = phy_dev->link; sc->sbm_speed = sbmac_speed_none; sc->sbm_duplex = sbmac_duplex_none; sc->sbm_fc = sbmac_fc_disabled; sc->sbm_pause = -1; pr_info("%s: link unavailable\n", dev->name); } return; } if (phy_dev->duplex == DUPLEX_FULL) { if (phy_dev->pause) fc = sbmac_fc_frame; else fc = sbmac_fc_disabled; } else fc = sbmac_fc_collision; fc_chg = (sc->sbm_fc != fc); pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed, phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H'); spin_lock_irqsave(&sc->sbm_lock, flags); sc->sbm_speed = phy_dev->speed; sc->sbm_duplex = phy_dev->duplex; sc->sbm_fc = fc; sc->sbm_pause = phy_dev->pause; sc->sbm_link = phy_dev->link; if ((speed_chg || duplex_chg || fc_chg) && sc->sbm_state != sbmac_state_off) { /* * something changed, restart the channel */ if (debug > 1) pr_debug("%s: restarting channel " "because PHY state changed\n", dev->name); sbmac_channel_stop(sc); sbmac_channel_start(sc); } spin_unlock_irqrestore(&sc->sbm_lock, flags); } static void sbmac_tx_timeout (struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); spin_lock_irq (&sc->sbm_lock); dev->trans_start = jiffies; dev->stats.tx_errors++; spin_unlock_irq (&sc->sbm_lock); printk (KERN_WARNING "%s: Transmit timed out\n",dev->name); } static void sbmac_set_rx_mode(struct net_device *dev) { unsigned long flags; struct sbmac_softc *sc = netdev_priv(dev); spin_lock_irqsave(&sc->sbm_lock, flags); if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) { /* * Promiscuous changed. */ if (dev->flags & IFF_PROMISC) { sbmac_promiscuous_mode(sc,1); } else { sbmac_promiscuous_mode(sc,0); } } spin_unlock_irqrestore(&sc->sbm_lock, flags); /* * Program the multicasts. Do this every time. */ sbmac_setmulti(sc); } static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct sbmac_softc *sc = netdev_priv(dev); if (!netif_running(dev) || !sc->phy_dev) return -EINVAL; return phy_mii_ioctl(sc->phy_dev, if_mii(rq), cmd); } static int sbmac_close(struct net_device *dev) { struct sbmac_softc *sc = netdev_priv(dev); napi_disable(&sc->napi); phy_stop(sc->phy_dev); sbmac_set_channel_state(sc, sbmac_state_off); netif_stop_queue(dev); if (debug > 1) pr_debug("%s: Shutting down ethercard\n", dev->name); phy_disconnect(sc->phy_dev); sc->phy_dev = NULL; mdiobus_unregister(&sc->mii_bus); free_irq(dev->irq, dev); sbdma_emptyring(&(sc->sbm_txdma)); sbdma_emptyring(&(sc->sbm_rxdma)); return 0; } static int sbmac_poll(struct napi_struct *napi, int budget) { struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi); struct net_device *dev = sc->sbm_dev; int work_done; work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1); sbdma_tx_process(sc, &(sc->sbm_txdma), 1); if (work_done < budget) { netif_rx_complete(dev, napi); #ifdef CONFIG_SBMAC_COALESCE __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) | ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), sc->sbm_imr); #else __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) | (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr); #endif } return work_done; } static int __init sbmac_probe(struct platform_device *pldev) { struct net_device *dev; struct sbmac_softc *sc; void __iomem *sbm_base; struct resource *res; u64 sbmac_orig_hwaddr; int err; res = platform_get_resource(pldev, IORESOURCE_MEM, 0); BUG_ON(!res); sbm_base = ioremap_nocache(res->start, res->end - res->start + 1); if (!sbm_base) { printk(KERN_ERR "%s: unable to map device registers\n", pldev->dev.bus_id); err = -ENOMEM; goto out_out; } /* * The R_MAC_ETHERNET_ADDR register will be set to some nonzero * value for us by the firmware if we're going to use this MAC. * If we find a zero, skip this MAC. */ sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR); pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", pldev->dev.bus_id, sbmac_orig_hwaddr ? "" : "not ", (long long)res->start); if (sbmac_orig_hwaddr == 0) { err = 0; goto out_unmap; } /* * Okay, cool. Initialize this MAC. */ dev = alloc_etherdev(sizeof(struct sbmac_softc)); if (!dev) { printk(KERN_ERR "%s: unable to allocate etherdev\n", pldev->dev.bus_id); err = -ENOMEM; goto out_unmap; } pldev->dev.driver_data = dev; SET_NETDEV_DEV(dev, &pldev->dev); sc = netdev_priv(dev); sc->sbm_base = sbm_base; err = sbmac_init(pldev, res->start); if (err) goto out_kfree; return 0; out_kfree: free_netdev(dev); __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR); out_unmap: iounmap(sbm_base); out_out: return err; } static int __exit sbmac_remove(struct platform_device *pldev) { struct net_device *dev = pldev->dev.driver_data; struct sbmac_softc *sc = netdev_priv(dev); unregister_netdev(dev); sbmac_uninitctx(sc); iounmap(sc->sbm_base); free_netdev(dev); return 0; } static struct platform_device **sbmac_pldev; static int sbmac_max_units; #if defined(SBMAC_ETH0_HWADDR) || defined(SBMAC_ETH1_HWADDR) || defined(SBMAC_ETH2_HWADDR) || defined(SBMAC_ETH3_HWADDR) static void __init sbmac_setup_hwaddr(int idx, char *addr) { void __iomem *sbm_base; unsigned long start, end; uint8_t eaddr[6]; uint64_t val; if (idx >= sbmac_max_units) return; start = A_MAC_CHANNEL_BASE(idx); end = A_MAC_CHANNEL_BASE(idx + 1) - 1; sbm_base = ioremap_nocache(start, end - start + 1); if (!sbm_base) { printk(KERN_ERR "%s: unable to map device registers\n", sbmac_string); return; } sbmac_parse_hwaddr(addr, eaddr); val = sbmac_addr2reg(eaddr); __raw_writeq(val, sbm_base + R_MAC_ETHERNET_ADDR); val = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR); iounmap(sbm_base); } #endif static int __init sbmac_platform_probe_one(int idx) { struct platform_device *pldev; struct { struct resource r; char name[strlen(sbmac_pretty) + 4]; } *res; int err; res = kzalloc(sizeof(*res), GFP_KERNEL); if (!res) { printk(KERN_ERR "%s.%d: unable to allocate memory\n", sbmac_string, idx); err = -ENOMEM; goto out_err; } /* * This is the base address of the MAC. */ snprintf(res->name, sizeof(res->name), "%s %d", sbmac_pretty, idx); res->r.name = res->name; res->r.flags = IORESOURCE_MEM; res->r.start = A_MAC_CHANNEL_BASE(idx); res->r.end = A_MAC_CHANNEL_BASE(idx + 1) - 1; pldev = platform_device_register_simple(sbmac_string, idx, &res->r, 1); if (IS_ERR(pldev)) { printk(KERN_ERR "%s.%d: unable to register platform device\n", sbmac_string, idx); err = PTR_ERR(pldev); goto out_kfree; } if (!pldev->dev.driver) { err = 0; /* No hardware at this address. */ goto out_unregister; } sbmac_pldev[idx] = pldev; return 0; out_unregister: platform_device_unregister(pldev); out_kfree: kfree(res); out_err: return err; } static void __init sbmac_platform_probe(void) { int i; /* Set the number of available units based on the SOC type. */ switch (soc_type) { case K_SYS_SOC_TYPE_BCM1250: case K_SYS_SOC_TYPE_BCM1250_ALT: sbmac_max_units = 3; break; case K_SYS_SOC_TYPE_BCM1120: case K_SYS_SOC_TYPE_BCM1125: case K_SYS_SOC_TYPE_BCM1125H: case K_SYS_SOC_TYPE_BCM1250_ALT2: /* Hybrid */ sbmac_max_units = 2; break; case K_SYS_SOC_TYPE_BCM1x55: case K_SYS_SOC_TYPE_BCM1x80: sbmac_max_units = 4; break; default: return; /* none */ } /* * For bringup when not using the firmware, we can pre-fill * the MAC addresses using the environment variables * specified in this file (or maybe from the config file?) */ #ifdef SBMAC_ETH0_HWADDR sbmac_setup_hwaddr(0, SBMAC_ETH0_HWADDR); #endif #ifdef SBMAC_ETH1_HWADDR sbmac_setup_hwaddr(1, SBMAC_ETH1_HWADDR); #endif #ifdef SBMAC_ETH2_HWADDR sbmac_setup_hwaddr(2, SBMAC_ETH2_HWADDR); #endif #ifdef SBMAC_ETH3_HWADDR sbmac_setup_hwaddr(3, SBMAC_ETH3_HWADDR); #endif sbmac_pldev = kcalloc(sbmac_max_units, sizeof(*sbmac_pldev), GFP_KERNEL); if (!sbmac_pldev) { printk(KERN_ERR "%s: unable to allocate memory\n", sbmac_string); return; } /* * Walk through the Ethernet controllers and find * those who have their MAC addresses set. */ for (i = 0; i < sbmac_max_units; i++) if (sbmac_platform_probe_one(i)) break; } static void __exit sbmac_platform_cleanup(void) { int i; for (i = 0; i < sbmac_max_units; i++) platform_device_unregister(sbmac_pldev[i]); kfree(sbmac_pldev); } static struct platform_driver sbmac_driver = { .probe = sbmac_probe, .remove = __exit_p(sbmac_remove), .driver = { .name = sbmac_string, }, }; static int __init sbmac_init_module(void) { int err; err = platform_driver_register(&sbmac_driver); if (err) return err; sbmac_platform_probe(); return err; } static void __exit sbmac_cleanup_module(void) { sbmac_platform_cleanup(); platform_driver_unregister(&sbmac_driver); } module_init(sbmac_init_module); module_exit(sbmac_cleanup_module);