/* * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com> * * Based on the 64360 driver from: * Copyright (C) 2002 rabeeh@galileo.co.il * * Copyright (C) 2003 PMC-Sierra, Inc., * written by Manish Lachwani (lachwani@pmc-sierra.com) * * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org> * * Copyright (C) 2004-2005 MontaVista Software, Inc. * Dale Farnsworth <dale@farnsworth.org> * * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com> * <sjhill@realitydiluted.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include <linux/init.h> #include <linux/dma-mapping.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/etherdevice.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <asm/io.h> #include <asm/types.h> #include <asm/pgtable.h> #include <asm/system.h> #include <asm/delay.h> #include "mv643xx_eth.h" /* * The first part is the high level driver of the gigE ethernet ports. */ /* Constants */ #define VLAN_HLEN 4 #define FCS_LEN 4 #define WRAP NET_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN #define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7) #define INT_CAUSE_UNMASK_ALL 0x0007ffff #define INT_CAUSE_UNMASK_ALL_EXT 0x0011ffff #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK #define INT_CAUSE_MASK_ALL 0x00000000 #define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL #define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT #endif #ifdef MV643XX_CHECKSUM_OFFLOAD_TX #define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1) #else #define MAX_DESCS_PER_SKB 1 #endif #define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */ #define PHY_WAIT_MICRO_SECONDS 10 /* Static function declarations */ static int eth_port_link_is_up(unsigned int eth_port_num); static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *MacAddr); static int mv643xx_eth_real_open(struct net_device *); static int mv643xx_eth_real_stop(struct net_device *); static int mv643xx_eth_change_mtu(struct net_device *, int); static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *); static void eth_port_init_mac_tables(unsigned int eth_port_num); #ifdef MV643XX_NAPI static int mv643xx_poll(struct net_device *dev, int *budget); #endif static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr); static int ethernet_phy_detect(unsigned int eth_port_num); static struct ethtool_ops mv643xx_ethtool_ops; static char mv643xx_driver_name[] = "mv643xx_eth"; static char mv643xx_driver_version[] = "1.0"; static void __iomem *mv643xx_eth_shared_base; /* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */ static spinlock_t mv643xx_eth_phy_lock = SPIN_LOCK_UNLOCKED; static inline u32 mv_read(int offset) { void __iomem *reg_base; reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS; return readl(reg_base + offset); } static inline void mv_write(int offset, u32 data) { void __iomem *reg_base; reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS; writel(data, reg_base + offset); } /* * Changes MTU (maximum transfer unit) of the gigabit ethenret port * * Input : pointer to ethernet interface network device structure * new mtu size * Output : 0 upon success, -EINVAL upon failure */ static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu) { struct mv643xx_private *mp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&mp->lock, flags); if ((new_mtu > 9500) || (new_mtu < 64)) { spin_unlock_irqrestore(&mp->lock, flags); return -EINVAL; } dev->mtu = new_mtu; /* * Stop then re-open the interface. This will allocate RX skb's with * the new MTU. * There is a possible danger that the open will not successed, due * to memory is full, which might fail the open function. */ if (netif_running(dev)) { if (mv643xx_eth_real_stop(dev)) printk(KERN_ERR "%s: Fatal error on stopping device\n", dev->name); if (mv643xx_eth_real_open(dev)) printk(KERN_ERR "%s: Fatal error on opening device\n", dev->name); } spin_unlock_irqrestore(&mp->lock, flags); return 0; } /* * mv643xx_eth_rx_task * * Fills / refills RX queue on a certain gigabit ethernet port * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void mv643xx_eth_rx_task(void *data) { struct net_device *dev = (struct net_device *)data; struct mv643xx_private *mp = netdev_priv(dev); struct pkt_info pkt_info; struct sk_buff *skb; if (test_and_set_bit(0, &mp->rx_task_busy)) panic("%s: Error in test_set_bit / clear_bit", dev->name); while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) { skb = dev_alloc_skb(RX_SKB_SIZE); if (!skb) break; mp->rx_ring_skbs++; pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT; pkt_info.byte_cnt = RX_SKB_SIZE; pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE, DMA_FROM_DEVICE); pkt_info.return_info = skb; if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) { printk(KERN_ERR "%s: Error allocating RX Ring\n", dev->name); break; } skb_reserve(skb, 2); } clear_bit(0, &mp->rx_task_busy); /* * If RX ring is empty of SKB, set a timer to try allocating * again in a later time . */ if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) { printk(KERN_INFO "%s: Rx ring is empty\n", dev->name); /* After 100mSec */ mp->timeout.expires = jiffies + (HZ / 10); add_timer(&mp->timeout); mp->rx_timer_flag = 1; } #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK else { /* Return interrupts */ mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num), INT_CAUSE_UNMASK_ALL); } #endif } /* * mv643xx_eth_rx_task_timer_wrapper * * Timer routine to wake up RX queue filling task. This function is * used only in case the RX queue is empty, and all alloc_skb has * failed (due to out of memory event). * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct mv643xx_private *mp = netdev_priv(dev); mp->rx_timer_flag = 0; mv643xx_eth_rx_task((void *)data); } /* * mv643xx_eth_update_mac_address * * Update the MAC address of the port in the address table * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void mv643xx_eth_update_mac_address(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; eth_port_init_mac_tables(port_num); memcpy(mp->port_mac_addr, dev->dev_addr, 6); eth_port_uc_addr_set(port_num, mp->port_mac_addr); } /* * mv643xx_eth_set_rx_mode * * Change from promiscuos to regular rx mode * * Input : pointer to ethernet interface network device structure * Output : N/A */ static void mv643xx_eth_set_rx_mode(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); u32 config_reg; config_reg = ethernet_get_config_reg(mp->port_num); if (dev->flags & IFF_PROMISC) config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE; else config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE; ethernet_set_config_reg(mp->port_num, config_reg); } /* * mv643xx_eth_set_mac_address * * Change the interface's mac address. * No special hardware thing should be done because interface is always * put in promiscuous mode. * * Input : pointer to ethernet interface network device structure and * a pointer to the designated entry to be added to the cache. * Output : zero upon success, negative upon failure */ static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr) { int i; for (i = 0; i < 6; i++) /* +2 is for the offset of the HW addr type */ dev->dev_addr[i] = ((unsigned char *)addr)[i + 2]; mv643xx_eth_update_mac_address(dev); return 0; } /* * mv643xx_eth_tx_timeout * * Called upon a timeout on transmitting a packet * * Input : pointer to ethernet interface network device structure. * Output : N/A */ static void mv643xx_eth_tx_timeout(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); printk(KERN_INFO "%s: TX timeout ", dev->name); /* Do the reset outside of interrupt context */ schedule_work(&mp->tx_timeout_task); } /* * mv643xx_eth_tx_timeout_task * * Actual routine to reset the adapter when a timeout on Tx has occurred */ static void mv643xx_eth_tx_timeout_task(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); netif_device_detach(dev); eth_port_reset(mp->port_num); eth_port_start(mp); netif_device_attach(dev); } /* * mv643xx_eth_free_tx_queue * * Input : dev - a pointer to the required interface * * Output : 0 if was able to release skb , nonzero otherwise */ static int mv643xx_eth_free_tx_queue(struct net_device *dev, unsigned int eth_int_cause_ext) { struct mv643xx_private *mp = netdev_priv(dev); struct net_device_stats *stats = &mp->stats; struct pkt_info pkt_info; int released = 1; if (!(eth_int_cause_ext & (BIT0 | BIT8))) return released; spin_lock(&mp->lock); /* Check only queue 0 */ while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) { if (pkt_info.cmd_sts & BIT0) { printk("%s: Error in TX\n", dev->name); stats->tx_errors++; } /* * If return_info is different than 0, release the skb. * The case where return_info is not 0 is only in case * when transmitted a scatter/gather packet, where only * last skb releases the whole chain. */ if (pkt_info.return_info) { if (skb_shinfo(pkt_info.return_info)->nr_frags) dma_unmap_page(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); else dma_unmap_single(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); dev_kfree_skb_irq(pkt_info.return_info); released = 0; /* * Decrement the number of outstanding skbs counter on * the TX queue. */ if (mp->tx_ring_skbs == 0) panic("ERROR - TX outstanding SKBs" " counter is corrupted"); mp->tx_ring_skbs--; } else dma_unmap_page(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); } spin_unlock(&mp->lock); return released; } /* * mv643xx_eth_receive * * This function is forward packets that are received from the port's * queues toward kernel core or FastRoute them to another interface. * * Input : dev - a pointer to the required interface * max - maximum number to receive (0 means unlimted) * * Output : number of served packets */ #ifdef MV643XX_NAPI static int mv643xx_eth_receive_queue(struct net_device *dev, int budget) #else static int mv643xx_eth_receive_queue(struct net_device *dev) #endif { struct mv643xx_private *mp = netdev_priv(dev); struct net_device_stats *stats = &mp->stats; unsigned int received_packets = 0; struct sk_buff *skb; struct pkt_info pkt_info; #ifdef MV643XX_NAPI while (eth_port_receive(mp, &pkt_info) == ETH_OK && budget > 0) { #else while (eth_port_receive(mp, &pkt_info) == ETH_OK) { #endif mp->rx_ring_skbs--; received_packets++; #ifdef MV643XX_NAPI budget--; #endif /* Update statistics. Note byte count includes 4 byte CRC count */ stats->rx_packets++; stats->rx_bytes += pkt_info.byte_cnt; skb = pkt_info.return_info; /* * In case received a packet without first / last bits on OR * the error summary bit is on, the packets needs to be dropeed. */ if (((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) != (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) { stats->rx_dropped++; if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) != (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) { if (net_ratelimit()) printk(KERN_ERR "%s: Received packet spread " "on multiple descriptors\n", dev->name); } if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY) stats->rx_errors++; dev_kfree_skb_irq(skb); } else { /* * The -4 is for the CRC in the trailer of the * received packet */ skb_put(skb, pkt_info.byte_cnt - 4); skb->dev = dev; if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) { skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum = htons( (pkt_info.cmd_sts & 0x0007fff8) >> 3); } skb->protocol = eth_type_trans(skb, dev); #ifdef MV643XX_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif } } return received_packets; } /* * mv643xx_eth_int_handler * * Main interrupt handler for the gigbit ethernet ports * * Input : irq - irq number (not used) * dev_id - a pointer to the required interface's data structure * regs - not used * Output : N/A */ static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_id; struct mv643xx_private *mp = netdev_priv(dev); u32 eth_int_cause, eth_int_cause_ext = 0; unsigned int port_num = mp->port_num; /* Read interrupt cause registers */ eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) & INT_CAUSE_UNMASK_ALL; if (eth_int_cause & BIT1) eth_int_cause_ext = mv_read( MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) & INT_CAUSE_UNMASK_ALL_EXT; #ifdef MV643XX_NAPI if (!(eth_int_cause & 0x0007fffd)) { /* Dont ack the Rx interrupt */ #endif /* * Clear specific ethernet port intrerrupt registers by * acknowleding relevant bits. */ mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), ~eth_int_cause); if (eth_int_cause_ext != 0x0) mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG (port_num), ~eth_int_cause_ext); /* UDP change : We may need this */ if ((eth_int_cause_ext & 0x0000ffff) && (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) && (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)) netif_wake_queue(dev); #ifdef MV643XX_NAPI } else { if (netif_rx_schedule_prep(dev)) { /* Mask all the interrupts */ mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0); mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG (port_num), 0); __netif_rx_schedule(dev); } #else if (eth_int_cause & (BIT2 | BIT11)) mv643xx_eth_receive_queue(dev, 0); /* * After forwarded received packets to upper layer, add a task * in an interrupts enabled context that refills the RX ring * with skb's. */ #ifdef MV643XX_RX_QUEUE_FILL_ON_TASK /* Unmask all interrupts on ethernet port */ mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_CAUSE_MASK_ALL); queue_task(&mp->rx_task, &tq_immediate); mark_bh(IMMEDIATE_BH); #else mp->rx_task.func(dev); #endif #endif } /* PHY status changed */ if (eth_int_cause_ext & (BIT16 | BIT20)) { if (eth_port_link_is_up(port_num)) { netif_carrier_on(dev); netif_wake_queue(dev); /* Start TX queue */ mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG (port_num), 1); } else { netif_carrier_off(dev); netif_stop_queue(dev); } } /* * If no real interrupt occured, exit. * This can happen when using gigE interrupt coalescing mechanism. */ if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0)) return IRQ_NONE; return IRQ_HANDLED; } #ifdef MV643XX_COAL /* * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path * * DESCRIPTION: * This routine sets the RX coalescing interrupt mechanism parameter. * This parameter is a timeout counter, that counts in 64 t_clk * chunks ; that when timeout event occurs a maskable interrupt * occurs. * The parameter is calculated using the tClk of the MV-643xx chip * , and the required delay of the interrupt in usec. * * INPUT: * unsigned int eth_port_num Ethernet port number * unsigned int t_clk t_clk of the MV-643xx chip in HZ units * unsigned int delay Delay in usec * * OUTPUT: * Interrupt coalescing mechanism value is set in MV-643xx chip. * * RETURN: * The interrupt coalescing value set in the gigE port. * */ static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num, unsigned int t_clk, unsigned int delay) { unsigned int coal = ((t_clk / 1000000) * delay) / 64; /* Set RX Coalescing mechanism */ mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num), ((coal & 0x3fff) << 8) | (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num)) & 0xffc000ff)); return coal; } #endif /* * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path * * DESCRIPTION: * This routine sets the TX coalescing interrupt mechanism parameter. * This parameter is a timeout counter, that counts in 64 t_clk * chunks ; that when timeout event occurs a maskable interrupt * occurs. * The parameter is calculated using the t_cLK frequency of the * MV-643xx chip and the required delay in the interrupt in uSec * * INPUT: * unsigned int eth_port_num Ethernet port number * unsigned int t_clk t_clk of the MV-643xx chip in HZ units * unsigned int delay Delay in uSeconds * * OUTPUT: * Interrupt coalescing mechanism value is set in MV-643xx chip. * * RETURN: * The interrupt coalescing value set in the gigE port. * */ static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num, unsigned int t_clk, unsigned int delay) { unsigned int coal; coal = ((t_clk / 1000000) * delay) / 64; /* Set TX Coalescing mechanism */ mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num), coal << 4); return coal; } /* * mv643xx_eth_open * * This function is called when openning the network device. The function * should initialize all the hardware, initialize cyclic Rx/Tx * descriptors chain and buffers and allocate an IRQ to the network * device. * * Input : a pointer to the network device structure * * Output : zero of success , nonzero if fails. */ static int mv643xx_eth_open(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; int err; spin_lock_irq(&mp->lock); err = request_irq(dev->irq, mv643xx_eth_int_handler, SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev); if (err) { printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n", port_num); err = -EAGAIN; goto out; } if (mv643xx_eth_real_open(dev)) { printk("%s: Error opening interface\n", dev->name); err = -EBUSY; goto out_free; } spin_unlock_irq(&mp->lock); return 0; out_free: free_irq(dev->irq, dev); out: spin_unlock_irq(&mp->lock); return err; } /* * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory. * * DESCRIPTION: * This function prepares a Rx chained list of descriptors and packet * buffers in a form of a ring. The routine must be called after port * initialization routine and before port start routine. * The Ethernet SDMA engine uses CPU bus addresses to access the various * devices in the system (i.e. DRAM). This function uses the ethernet * struct 'virtual to physical' routine (set by the user) to set the ring * with physical addresses. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * * OUTPUT: * The routine updates the Ethernet port control struct with information * regarding the Rx descriptors and buffers. * * RETURN: * None. */ static void ether_init_rx_desc_ring(struct mv643xx_private *mp) { volatile struct eth_rx_desc *p_rx_desc; int rx_desc_num = mp->rx_ring_size; int i; /* initialize the next_desc_ptr links in the Rx descriptors ring */ p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area; for (i = 0; i < rx_desc_num; i++) { p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma + ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc); } /* Save Rx desc pointer to driver struct. */ mp->rx_curr_desc_q = 0; mp->rx_used_desc_q = 0; mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc); /* Add the queue to the list of RX queues of this port */ mp->port_rx_queue_command |= 1; } /* * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory. * * DESCRIPTION: * This function prepares a Tx chained list of descriptors and packet * buffers in a form of a ring. The routine must be called after port * initialization routine and before port start routine. * The Ethernet SDMA engine uses CPU bus addresses to access the various * devices in the system (i.e. DRAM). This function uses the ethernet * struct 'virtual to physical' routine (set by the user) to set the ring * with physical addresses. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * * OUTPUT: * The routine updates the Ethernet port control struct with information * regarding the Tx descriptors and buffers. * * RETURN: * None. */ static void ether_init_tx_desc_ring(struct mv643xx_private *mp) { int tx_desc_num = mp->tx_ring_size; struct eth_tx_desc *p_tx_desc; int i; /* Initialize the next_desc_ptr links in the Tx descriptors ring */ p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area; for (i = 0; i < tx_desc_num; i++) { p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma + ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc); } mp->tx_curr_desc_q = 0; mp->tx_used_desc_q = 0; #ifdef MV643XX_CHECKSUM_OFFLOAD_TX mp->tx_first_desc_q = 0; #endif mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc); /* Add the queue to the list of Tx queues of this port */ mp->port_tx_queue_command |= 1; } /* Helper function for mv643xx_eth_open */ static int mv643xx_eth_real_open(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; unsigned int size; /* Stop RX Queues */ mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00); /* Clear the ethernet port interrupts */ mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0); mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0); /* Unmask RX buffer and TX end interrupt */ mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_CAUSE_UNMASK_ALL); /* Unmask phy and link status changes interrupts */ mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), INT_CAUSE_UNMASK_ALL_EXT); /* Set the MAC Address */ memcpy(mp->port_mac_addr, dev->dev_addr, 6); eth_port_init(mp); INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev); memset(&mp->timeout, 0, sizeof(struct timer_list)); mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper; mp->timeout.data = (unsigned long)dev; mp->rx_task_busy = 0; mp->rx_timer_flag = 0; /* Allocate RX and TX skb rings */ mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size, GFP_KERNEL); if (!mp->rx_skb) { printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name); return -ENOMEM; } mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size, GFP_KERNEL); if (!mp->tx_skb) { printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name); kfree(mp->rx_skb); return -ENOMEM; } /* Allocate TX ring */ mp->tx_ring_skbs = 0; size = mp->tx_ring_size * sizeof(struct eth_tx_desc); mp->tx_desc_area_size = size; if (mp->tx_sram_size) { mp->p_tx_desc_area = ioremap(mp->tx_sram_addr, mp->tx_sram_size); mp->tx_desc_dma = mp->tx_sram_addr; } else mp->p_tx_desc_area = dma_alloc_coherent(NULL, size, &mp->tx_desc_dma, GFP_KERNEL); if (!mp->p_tx_desc_area) { printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n", dev->name, size); kfree(mp->rx_skb); kfree(mp->tx_skb); return -ENOMEM; } BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */ memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size); ether_init_tx_desc_ring(mp); /* Allocate RX ring */ mp->rx_ring_skbs = 0; size = mp->rx_ring_size * sizeof(struct eth_rx_desc); mp->rx_desc_area_size = size; if (mp->rx_sram_size) { mp->p_rx_desc_area = ioremap(mp->rx_sram_addr, mp->rx_sram_size); mp->rx_desc_dma = mp->rx_sram_addr; } else mp->p_rx_desc_area = dma_alloc_coherent(NULL, size, &mp->rx_desc_dma, GFP_KERNEL); if (!mp->p_rx_desc_area) { printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n", dev->name, size); printk(KERN_ERR "%s: Freeing previously allocated TX queues...", dev->name); if (mp->rx_sram_size) iounmap(mp->p_rx_desc_area); else dma_free_coherent(NULL, mp->tx_desc_area_size, mp->p_tx_desc_area, mp->tx_desc_dma); kfree(mp->rx_skb); kfree(mp->tx_skb); return -ENOMEM; } memset((void *)mp->p_rx_desc_area, 0, size); ether_init_rx_desc_ring(mp); mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */ eth_port_start(mp); /* Interrupt Coalescing */ #ifdef MV643XX_COAL mp->rx_int_coal = eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL); #endif mp->tx_int_coal = eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL); netif_start_queue(dev); return 0; } static void mv643xx_eth_free_tx_rings(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; unsigned int curr; /* Stop Tx Queues */ mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00); /* Free outstanding skb's on TX rings */ for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) { if (mp->tx_skb[curr]) { dev_kfree_skb(mp->tx_skb[curr]); mp->tx_ring_skbs--; } } if (mp->tx_ring_skbs) printk("%s: Error on Tx descriptor free - could not free %d" " descriptors\n", dev->name, mp->tx_ring_skbs); /* Free TX ring */ if (mp->tx_sram_size) iounmap(mp->p_tx_desc_area); else dma_free_coherent(NULL, mp->tx_desc_area_size, mp->p_tx_desc_area, mp->tx_desc_dma); } static void mv643xx_eth_free_rx_rings(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; int curr; /* Stop RX Queues */ mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00); /* Free preallocated skb's on RX rings */ for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) { if (mp->rx_skb[curr]) { dev_kfree_skb(mp->rx_skb[curr]); mp->rx_ring_skbs--; } } if (mp->rx_ring_skbs) printk(KERN_ERR "%s: Error in freeing Rx Ring. %d skb's still" " stuck in RX Ring - ignoring them\n", dev->name, mp->rx_ring_skbs); /* Free RX ring */ if (mp->rx_sram_size) iounmap(mp->p_rx_desc_area); else dma_free_coherent(NULL, mp->rx_desc_area_size, mp->p_rx_desc_area, mp->rx_desc_dma); } /* * mv643xx_eth_stop * * This function is used when closing the network device. * It updates the hardware, * release all memory that holds buffers and descriptors and release the IRQ. * Input : a pointer to the device structure * Output : zero if success , nonzero if fails */ /* Helper function for mv643xx_eth_stop */ static int mv643xx_eth_real_stop(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int port_num = mp->port_num; netif_carrier_off(dev); netif_stop_queue(dev); mv643xx_eth_free_tx_rings(dev); mv643xx_eth_free_rx_rings(dev); eth_port_reset(mp->port_num); /* Disable ethernet port interrupts */ mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0); mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0); /* Mask RX buffer and TX end interrupt */ mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), 0); /* Mask phy and link status changes interrupts */ mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), 0); return 0; } static int mv643xx_eth_stop(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); spin_lock_irq(&mp->lock); mv643xx_eth_real_stop(dev); free_irq(dev->irq, dev); spin_unlock_irq(&mp->lock); return 0; } #ifdef MV643XX_NAPI static void mv643xx_tx(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); struct pkt_info pkt_info; while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) { if (pkt_info.return_info) { if (skb_shinfo(pkt_info.return_info)->nr_frags) dma_unmap_page(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); else dma_unmap_single(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); dev_kfree_skb_irq(pkt_info.return_info); if (mp->tx_ring_skbs) mp->tx_ring_skbs--; } else dma_unmap_page(NULL, pkt_info.buf_ptr, pkt_info.byte_cnt, DMA_TO_DEVICE); } if (netif_queue_stopped(dev) && mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB) netif_wake_queue(dev); } /* * mv643xx_poll * * This function is used in case of NAPI */ static int mv643xx_poll(struct net_device *dev, int *budget) { struct mv643xx_private *mp = netdev_priv(dev); int done = 1, orig_budget, work_done; unsigned int port_num = mp->port_num; unsigned long flags; #ifdef MV643XX_TX_FAST_REFILL if (++mp->tx_clean_threshold > 5) { spin_lock_irqsave(&mp->lock, flags); mv643xx_tx(dev); mp->tx_clean_threshold = 0; spin_unlock_irqrestore(&mp->lock, flags); } #endif if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num))) != (u32) mp->rx_used_desc_q) { orig_budget = *budget; if (orig_budget > dev->quota) orig_budget = dev->quota; work_done = mv643xx_eth_receive_queue(dev, orig_budget); mp->rx_task.func(dev); *budget -= work_done; dev->quota -= work_done; if (work_done >= orig_budget) done = 0; } if (done) { spin_lock_irqsave(&mp->lock, flags); __netif_rx_complete(dev); mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0); mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0); mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_CAUSE_UNMASK_ALL); mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num), INT_CAUSE_UNMASK_ALL_EXT); spin_unlock_irqrestore(&mp->lock, flags); } return done ? 0 : 1; } #endif /* * mv643xx_eth_start_xmit * * This function is queues a packet in the Tx descriptor for * required port. * * Input : skb - a pointer to socket buffer * dev - a pointer to the required port * * Output : zero upon success */ static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); struct net_device_stats *stats = &mp->stats; ETH_FUNC_RET_STATUS status; unsigned long flags; struct pkt_info pkt_info; if (netif_queue_stopped(dev)) { printk(KERN_ERR "%s: Tried sending packet when interface is stopped\n", dev->name); return 1; } /* This is a hard error, log it. */ if ((mp->tx_ring_size - mp->tx_ring_skbs) <= (skb_shinfo(skb)->nr_frags + 1)) { netif_stop_queue(dev); printk(KERN_ERR "%s: Bug in mv643xx_eth - Trying to transmit when" " queue full !\n", dev->name); return 1; } /* Paranoid check - this shouldn't happen */ if (skb == NULL) { stats->tx_dropped++; printk(KERN_ERR "mv64320_eth paranoid check failed\n"); return 1; } spin_lock_irqsave(&mp->lock, flags); /* Update packet info data structure -- DMA owned, first last */ #ifdef MV643XX_CHECKSUM_OFFLOAD_TX if (!skb_shinfo(skb)->nr_frags) { linear: if (skb->ip_summed != CHECKSUM_HW) { /* Errata BTS #50, IHL must be 5 if no HW checksum */ pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC | ETH_TX_LAST_DESC | 5 << ETH_TX_IHL_SHIFT; pkt_info.l4i_chk = 0; } else { pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC | ETH_TX_LAST_DESC | ETH_GEN_TCP_UDP_CHECKSUM | ETH_GEN_IP_V_4_CHECKSUM | skb->nh.iph->ihl << ETH_TX_IHL_SHIFT; /* CPU already calculated pseudo header checksum. */ if (skb->nh.iph->protocol == IPPROTO_UDP) { pkt_info.cmd_sts |= ETH_UDP_FRAME; pkt_info.l4i_chk = skb->h.uh->check; } else if (skb->nh.iph->protocol == IPPROTO_TCP) pkt_info.l4i_chk = skb->h.th->check; else { printk(KERN_ERR "%s: chksum proto != TCP or UDP\n", dev->name); spin_unlock_irqrestore(&mp->lock, flags); return 1; } } pkt_info.byte_cnt = skb->len; pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE); pkt_info.return_info = skb; mp->tx_ring_skbs++; status = eth_port_send(mp, &pkt_info); if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL)) printk(KERN_ERR "%s: Error on transmitting packet\n", dev->name); stats->tx_bytes += pkt_info.byte_cnt; } else { unsigned int frag; /* Since hardware can't handle unaligned fragments smaller * than 9 bytes, if we find any, we linearize the skb * and start again. When I've seen it, it's always been * the first frag (probably near the end of the page), * but we check all frags to be safe. */ for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { skb_frag_t *fragp; fragp = &skb_shinfo(skb)->frags[frag]; if (fragp->size <= 8 && fragp->page_offset & 0x7) { skb_linearize(skb, GFP_ATOMIC); printk(KERN_DEBUG "%s: unaligned tiny fragment" "%d of %d, fixed\n", dev->name, frag, skb_shinfo(skb)->nr_frags); goto linear; } } /* first frag which is skb header */ pkt_info.byte_cnt = skb_headlen(skb); pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb_headlen(skb), DMA_TO_DEVICE); pkt_info.l4i_chk = 0; pkt_info.return_info = 0; if (skb->ip_summed != CHECKSUM_HW) /* Errata BTS #50, IHL must be 5 if no HW checksum */ pkt_info.cmd_sts = ETH_TX_FIRST_DESC | 5 << ETH_TX_IHL_SHIFT; else { pkt_info.cmd_sts = ETH_TX_FIRST_DESC | ETH_GEN_TCP_UDP_CHECKSUM | ETH_GEN_IP_V_4_CHECKSUM | skb->nh.iph->ihl << ETH_TX_IHL_SHIFT; /* CPU already calculated pseudo header checksum. */ if (skb->nh.iph->protocol == IPPROTO_UDP) { pkt_info.cmd_sts |= ETH_UDP_FRAME; pkt_info.l4i_chk = skb->h.uh->check; } else if (skb->nh.iph->protocol == IPPROTO_TCP) pkt_info.l4i_chk = skb->h.th->check; else { printk(KERN_ERR "%s: chksum proto != TCP or UDP\n", dev->name); spin_unlock_irqrestore(&mp->lock, flags); return 1; } } status = eth_port_send(mp, &pkt_info); if (status != ETH_OK) { if ((status == ETH_ERROR)) printk(KERN_ERR "%s: Error on transmitting packet\n", dev->name); if (status == ETH_QUEUE_FULL) printk("Error on Queue Full \n"); if (status == ETH_QUEUE_LAST_RESOURCE) printk("Tx resource error \n"); } stats->tx_bytes += pkt_info.byte_cnt; /* Check for the remaining frags */ for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; pkt_info.l4i_chk = 0x0000; pkt_info.cmd_sts = 0x00000000; /* Last Frag enables interrupt and frees the skb */ if (frag == (skb_shinfo(skb)->nr_frags - 1)) { pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT | ETH_TX_LAST_DESC; pkt_info.return_info = skb; mp->tx_ring_skbs++; } else { pkt_info.return_info = 0; } pkt_info.l4i_chk = 0; pkt_info.byte_cnt = this_frag->size; pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page, this_frag->page_offset, this_frag->size, DMA_TO_DEVICE); status = eth_port_send(mp, &pkt_info); if (status != ETH_OK) { if ((status == ETH_ERROR)) printk(KERN_ERR "%s: Error on " "transmitting packet\n", dev->name); if (status == ETH_QUEUE_LAST_RESOURCE) printk("Tx resource error \n"); if (status == ETH_QUEUE_FULL) printk("Queue is full \n"); } stats->tx_bytes += pkt_info.byte_cnt; } } #else pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC | ETH_TX_LAST_DESC; pkt_info.l4i_chk = 0; pkt_info.byte_cnt = skb->len; pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE); pkt_info.return_info = skb; mp->tx_ring_skbs++; status = eth_port_send(mp, &pkt_info); if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL)) printk(KERN_ERR "%s: Error on transmitting packet\n", dev->name); stats->tx_bytes += pkt_info.byte_cnt; #endif /* Check if TX queue can handle another skb. If not, then * signal higher layers to stop requesting TX */ if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB)) /* * Stop getting skb's from upper layers. * Getting skb's from upper layers will be enabled again after * packets are released. */ netif_stop_queue(dev); /* Update statistics and start of transmittion time */ stats->tx_packets++; dev->trans_start = jiffies; spin_unlock_irqrestore(&mp->lock, flags); return 0; /* success */ } /* * mv643xx_eth_get_stats * * Returns a pointer to the interface statistics. * * Input : dev - a pointer to the required interface * * Output : a pointer to the interface's statistics */ static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev) { struct mv643xx_private *mp = netdev_priv(dev); return &mp->stats; } /*/ * mv643xx_eth_probe * * First function called after registering the network device. * It's purpose is to initialize the device as an ethernet device, * fill the ethernet device structure with pointers * to functions, * and set the MAC address of the interface * * Input : struct device * * Output : -ENOMEM if failed , 0 if success */ static int mv643xx_eth_probe(struct device *ddev) { struct platform_device *pdev = to_platform_device(ddev); struct mv643xx_eth_platform_data *pd; int port_num = pdev->id; struct mv643xx_private *mp; struct net_device *dev; u8 *p; struct resource *res; int err; dev = alloc_etherdev(sizeof(struct mv643xx_private)); if (!dev) return -ENOMEM; dev_set_drvdata(ddev, dev); mp = netdev_priv(dev); res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); BUG_ON(!res); dev->irq = res->start; mp->port_num = port_num; dev->open = mv643xx_eth_open; dev->stop = mv643xx_eth_stop; dev->hard_start_xmit = mv643xx_eth_start_xmit; dev->get_stats = mv643xx_eth_get_stats; dev->set_mac_address = mv643xx_eth_set_mac_address; dev->set_multicast_list = mv643xx_eth_set_rx_mode; /* No need to Tx Timeout */ dev->tx_timeout = mv643xx_eth_tx_timeout; #ifdef MV643XX_NAPI dev->poll = mv643xx_poll; dev->weight = 64; #endif dev->watchdog_timeo = 2 * HZ; dev->tx_queue_len = mp->tx_ring_size; dev->base_addr = 0; dev->change_mtu = mv643xx_eth_change_mtu; SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops); #ifdef MV643XX_CHECKSUM_OFFLOAD_TX #ifdef MAX_SKB_FRAGS /* * Zero copy can only work if we use Discovery II memory. Else, we will * have to map the buffers to ISA memory which is only 16 MB */ dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_HW_CSUM; #endif #endif /* Configure the timeout task */ INIT_WORK(&mp->tx_timeout_task, (void (*)(void *))mv643xx_eth_tx_timeout_task, dev); spin_lock_init(&mp->lock); /* set default config values */ eth_port_uc_addr_get(dev, dev->dev_addr); mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE; mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE; mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE; mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE; mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE; mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE; pd = pdev->dev.platform_data; if (pd) { if (pd->mac_addr != NULL) memcpy(dev->dev_addr, pd->mac_addr, 6); if (pd->phy_addr || pd->force_phy_addr) ethernet_phy_set(port_num, pd->phy_addr); if (pd->port_config || pd->force_port_config) mp->port_config = pd->port_config; if (pd->port_config_extend || pd->force_port_config_extend) mp->port_config_extend = pd->port_config_extend; if (pd->port_sdma_config || pd->force_port_sdma_config) mp->port_sdma_config = pd->port_sdma_config; if (pd->port_serial_control || pd->force_port_serial_control) mp->port_serial_control = pd->port_serial_control; if (pd->rx_queue_size) mp->rx_ring_size = pd->rx_queue_size; if (pd->tx_queue_size) mp->tx_ring_size = pd->tx_queue_size; if (pd->tx_sram_size) { mp->tx_sram_size = pd->tx_sram_size; mp->tx_sram_addr = pd->tx_sram_addr; } if (pd->rx_sram_size) { mp->rx_sram_size = pd->rx_sram_size; mp->rx_sram_addr = pd->rx_sram_addr; } } err = ethernet_phy_detect(port_num); if (err) { pr_debug("MV643xx ethernet port %d: " "No PHY detected at addr %d\n", port_num, ethernet_phy_get(port_num)); return err; } err = register_netdev(dev); if (err) goto out; p = dev->dev_addr; printk(KERN_NOTICE "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n", dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]); if (dev->features & NETIF_F_SG) printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name); if (dev->features & NETIF_F_IP_CSUM) printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n", dev->name); #ifdef MV643XX_CHECKSUM_OFFLOAD_TX printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name); #endif #ifdef MV643XX_COAL printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n", dev->name); #endif #ifdef MV643XX_NAPI printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name); #endif return 0; out: free_netdev(dev); return err; } static int mv643xx_eth_remove(struct device *ddev) { struct net_device *dev = dev_get_drvdata(ddev); unregister_netdev(dev); flush_scheduled_work(); free_netdev(dev); dev_set_drvdata(ddev, NULL); return 0; } static int mv643xx_eth_shared_probe(struct device *ddev) { struct platform_device *pdev = to_platform_device(ddev); struct resource *res; printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n"); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res == NULL) return -ENODEV; mv643xx_eth_shared_base = ioremap(res->start, MV643XX_ETH_SHARED_REGS_SIZE); if (mv643xx_eth_shared_base == NULL) return -ENOMEM; return 0; } static int mv643xx_eth_shared_remove(struct device *ddev) { iounmap(mv643xx_eth_shared_base); mv643xx_eth_shared_base = NULL; return 0; } static struct device_driver mv643xx_eth_driver = { .name = MV643XX_ETH_NAME, .bus = &platform_bus_type, .probe = mv643xx_eth_probe, .remove = mv643xx_eth_remove, }; static struct device_driver mv643xx_eth_shared_driver = { .name = MV643XX_ETH_SHARED_NAME, .bus = &platform_bus_type, .probe = mv643xx_eth_shared_probe, .remove = mv643xx_eth_shared_remove, }; /* * mv643xx_init_module * * Registers the network drivers into the Linux kernel * * Input : N/A * * Output : N/A */ static int __init mv643xx_init_module(void) { int rc; rc = driver_register(&mv643xx_eth_shared_driver); if (!rc) { rc = driver_register(&mv643xx_eth_driver); if (rc) driver_unregister(&mv643xx_eth_shared_driver); } return rc; } /* * mv643xx_cleanup_module * * Registers the network drivers into the Linux kernel * * Input : N/A * * Output : N/A */ static void __exit mv643xx_cleanup_module(void) { driver_unregister(&mv643xx_eth_driver); driver_unregister(&mv643xx_eth_shared_driver); } module_init(mv643xx_init_module); module_exit(mv643xx_cleanup_module); MODULE_LICENSE("GPL"); MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani" " and Dale Farnsworth"); MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX"); /* * The second part is the low level driver of the gigE ethernet ports. */ /* * Marvell's Gigabit Ethernet controller low level driver * * DESCRIPTION: * This file introduce low level API to Marvell's Gigabit Ethernet * controller. This Gigabit Ethernet Controller driver API controls * 1) Operations (i.e. port init, start, reset etc'). * 2) Data flow (i.e. port send, receive etc'). * Each Gigabit Ethernet port is controlled via * struct mv643xx_private. * This struct includes user configuration information as well as * driver internal data needed for its operations. * * Supported Features: * - This low level driver is OS independent. Allocating memory for * the descriptor rings and buffers are not within the scope of * this driver. * - The user is free from Rx/Tx queue managing. * - This low level driver introduce functionality API that enable * the to operate Marvell's Gigabit Ethernet Controller in a * convenient way. * - Simple Gigabit Ethernet port operation API. * - Simple Gigabit Ethernet port data flow API. * - Data flow and operation API support per queue functionality. * - Support cached descriptors for better performance. * - Enable access to all four DRAM banks and internal SRAM memory * spaces. * - PHY access and control API. * - Port control register configuration API. * - Full control over Unicast and Multicast MAC configurations. * * Operation flow: * * Initialization phase * This phase complete the initialization of the the * mv643xx_private struct. * User information regarding port configuration has to be set * prior to calling the port initialization routine. * * In this phase any port Tx/Rx activity is halted, MIB counters * are cleared, PHY address is set according to user parameter and * access to DRAM and internal SRAM memory spaces. * * Driver ring initialization * Allocating memory for the descriptor rings and buffers is not * within the scope of this driver. Thus, the user is required to * allocate memory for the descriptors ring and buffers. Those * memory parameters are used by the Rx and Tx ring initialization * routines in order to curve the descriptor linked list in a form * of a ring. * Note: Pay special attention to alignment issues when using * cached descriptors/buffers. In this phase the driver store * information in the mv643xx_private struct regarding each queue * ring. * * Driver start * This phase prepares the Ethernet port for Rx and Tx activity. * It uses the information stored in the mv643xx_private struct to * initialize the various port registers. * * Data flow: * All packet references to/from the driver are done using * struct pkt_info. * This struct is a unified struct used with Rx and Tx operations. * This way the user is not required to be familiar with neither * Tx nor Rx descriptors structures. * The driver's descriptors rings are management by indexes. * Those indexes controls the ring resources and used to indicate * a SW resource error: * 'current' * This index points to the current available resource for use. For * example in Rx process this index will point to the descriptor * that will be passed to the user upon calling the receive * routine. In Tx process, this index will point to the descriptor * that will be assigned with the user packet info and transmitted. * 'used' * This index points to the descriptor that need to restore its * resources. For example in Rx process, using the Rx buffer return * API will attach the buffer returned in packet info to the * descriptor pointed by 'used'. In Tx process, using the Tx * descriptor return will merely return the user packet info with * the command status of the transmitted buffer pointed by the * 'used' index. Nevertheless, it is essential to use this routine * to update the 'used' index. * 'first' * This index supports Tx Scatter-Gather. It points to the first * descriptor of a packet assembled of multiple buffers. For * example when in middle of Such packet we have a Tx resource * error the 'curr' index get the value of 'first' to indicate * that the ring returned to its state before trying to transmit * this packet. * * Receive operation: * The eth_port_receive API set the packet information struct, * passed by the caller, with received information from the * 'current' SDMA descriptor. * It is the user responsibility to return this resource back * to the Rx descriptor ring to enable the reuse of this source. * Return Rx resource is done using the eth_rx_return_buff API. * * Transmit operation: * The eth_port_send API supports Scatter-Gather which enables to * send a packet spanned over multiple buffers. This means that * for each packet info structure given by the user and put into * the Tx descriptors ring, will be transmitted only if the 'LAST' * bit will be set in the packet info command status field. This * API also consider restriction regarding buffer alignments and * sizes. * The user must return a Tx resource after ensuring the buffer * has been transmitted to enable the Tx ring indexes to update. * * BOARD LAYOUT * This device is on-board. No jumper diagram is necessary. * * EXTERNAL INTERFACE * * Prior to calling the initialization routine eth_port_init() the user * must set the following fields under mv643xx_private struct: * port_num User Ethernet port number. * port_mac_addr[6] User defined port MAC address. * port_config User port configuration value. * port_config_extend User port config extend value. * port_sdma_config User port SDMA config value. * port_serial_control User port serial control value. * * This driver data flow is done using the struct pkt_info which * is a unified struct for Rx and Tx operations: * * byte_cnt Tx/Rx descriptor buffer byte count. * l4i_chk CPU provided TCP Checksum. For Tx operation * only. * cmd_sts Tx/Rx descriptor command status. * buf_ptr Tx/Rx descriptor buffer pointer. * return_info Tx/Rx user resource return information. */ /* defines */ /* SDMA command macros */ #define ETH_ENABLE_TX_QUEUE(eth_port) \ mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1) /* locals */ /* PHY routines */ static int ethernet_phy_get(unsigned int eth_port_num); static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr); /* Ethernet Port routines */ static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble, int option); /* * eth_port_init - Initialize the Ethernet port driver * * DESCRIPTION: * This function prepares the ethernet port to start its activity: * 1) Completes the ethernet port driver struct initialization toward port * start routine. * 2) Resets the device to a quiescent state in case of warm reboot. * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM. * 4) Clean MAC tables. The reset status of those tables is unknown. * 5) Set PHY address. * Note: Call this routine prior to eth_port_start routine and after * setting user values in the user fields of Ethernet port control * struct. * * INPUT: * struct mv643xx_private *mp Ethernet port control struct * * OUTPUT: * See description. * * RETURN: * None. */ static void eth_port_init(struct mv643xx_private *mp) { mp->port_rx_queue_command = 0; mp->port_tx_queue_command = 0; mp->rx_resource_err = 0; mp->tx_resource_err = 0; eth_port_reset(mp->port_num); eth_port_init_mac_tables(mp->port_num); ethernet_phy_reset(mp->port_num); } /* * eth_port_start - Start the Ethernet port activity. * * DESCRIPTION: * This routine prepares the Ethernet port for Rx and Tx activity: * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that * has been initialized a descriptor's ring (using * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx) * 2. Initialize and enable the Ethernet configuration port by writing to * the port's configuration and command registers. * 3. Initialize and enable the SDMA by writing to the SDMA's * configuration and command registers. After completing these steps, * the ethernet port SDMA can starts to perform Rx and Tx activities. * * Note: Each Rx and Tx queue descriptor's list must be initialized prior * to calling this function (use ether_init_tx_desc_ring for Tx queues * and ether_init_rx_desc_ring for Rx queues). * * INPUT: * struct mv643xx_private *mp Ethernet port control struct * * OUTPUT: * Ethernet port is ready to receive and transmit. * * RETURN: * None. */ static void eth_port_start(struct mv643xx_private *mp) { unsigned int port_num = mp->port_num; int tx_curr_desc, rx_curr_desc; /* Assignment of Tx CTRP of given queue */ tx_curr_desc = mp->tx_curr_desc_q; mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num), (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc)); /* Assignment of Rx CRDP of given queue */ rx_curr_desc = mp->rx_curr_desc_q; mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num), (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc)); /* Add the assigned Ethernet address to the port's address table */ eth_port_uc_addr_set(port_num, mp->port_mac_addr); /* Assign port configuration and command. */ mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config); mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num), mp->port_config_extend); /* Increase the Rx side buffer size if supporting GigE */ if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000) mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17)); else mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), mp->port_serial_control); mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) | MV643XX_ETH_SERIAL_PORT_ENABLE); /* Assign port SDMA configuration */ mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num), mp->port_sdma_config); /* Enable port Rx. */ mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), mp->port_rx_queue_command); } /* * eth_port_uc_addr_set - This function Set the port Unicast address. * * DESCRIPTION: * This function Set the port Ethernet MAC address. * * INPUT: * unsigned int eth_port_num Port number. * char * p_addr Address to be set * * OUTPUT: * Set MAC address low and high registers. also calls eth_port_uc_addr() * To set the unicast table with the proper information. * * RETURN: * N/A. * */ static void eth_port_uc_addr_set(unsigned int eth_port_num, unsigned char *p_addr) { unsigned int mac_h; unsigned int mac_l; mac_l = (p_addr[4] << 8) | (p_addr[5]); mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) | (p_addr[3] << 0); mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l); mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h); /* Accept frames of this address */ eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR); return; } /* * eth_port_uc_addr_get - This function retrieves the port Unicast address * (MAC address) from the ethernet hw registers. * * DESCRIPTION: * This function retrieves the port Ethernet MAC address. * * INPUT: * unsigned int eth_port_num Port number. * char *MacAddr pointer where the MAC address is stored * * OUTPUT: * Copy the MAC address to the location pointed to by MacAddr * * RETURN: * N/A. * */ static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr) { struct mv643xx_private *mp = netdev_priv(dev); unsigned int mac_h; unsigned int mac_l; mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num)); mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num)); p_addr[0] = (mac_h >> 24) & 0xff; p_addr[1] = (mac_h >> 16) & 0xff; p_addr[2] = (mac_h >> 8) & 0xff; p_addr[3] = mac_h & 0xff; p_addr[4] = (mac_l >> 8) & 0xff; p_addr[5] = mac_l & 0xff; } /* * eth_port_uc_addr - This function Set the port unicast address table * * DESCRIPTION: * This function locates the proper entry in the Unicast table for the * specified MAC nibble and sets its properties according to function * parameters. * * INPUT: * unsigned int eth_port_num Port number. * unsigned char uc_nibble Unicast MAC Address last nibble. * int option 0 = Add, 1 = remove address. * * OUTPUT: * This function add/removes MAC addresses from the port unicast address * table. * * RETURN: * true is output succeeded. * false if option parameter is invalid. * */ static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble, int option) { unsigned int unicast_reg; unsigned int tbl_offset; unsigned int reg_offset; /* Locate the Unicast table entry */ uc_nibble = (0xf & uc_nibble); tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */ reg_offset = uc_nibble % 4; /* Entry offset within the above register */ switch (option) { case REJECT_MAC_ADDR: /* Clear accepts frame bit at given unicast DA table entry */ unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE (eth_port_num) + tbl_offset)); unicast_reg &= (0x0E << (8 * reg_offset)); mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE (eth_port_num) + tbl_offset), unicast_reg); break; case ACCEPT_MAC_ADDR: /* Set accepts frame bit at unicast DA filter table entry */ unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE (eth_port_num) + tbl_offset)); unicast_reg |= (0x01 << (8 * reg_offset)); mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE (eth_port_num) + tbl_offset), unicast_reg); break; default: return 0; } return 1; } /* * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables * * DESCRIPTION: * Go through all the DA filter tables (Unicast, Special Multicast & * Other Multicast) and set each entry to 0. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * Multicast and Unicast packets are rejected. * * RETURN: * None. */ static void eth_port_init_mac_tables(unsigned int eth_port_num) { int table_index; /* Clear DA filter unicast table (Ex_dFUT) */ for (table_index = 0; table_index <= 0xC; table_index += 4) mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE (eth_port_num) + table_index), 0); for (table_index = 0; table_index <= 0xFC; table_index += 4) { /* Clear DA filter special multicast table (Ex_dFSMT) */ mv_write((MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE (eth_port_num) + table_index), 0); /* Clear DA filter other multicast table (Ex_dFOMT) */ mv_write((MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE (eth_port_num) + table_index), 0); } } /* * eth_clear_mib_counters - Clear all MIB counters * * DESCRIPTION: * This function clears all MIB counters of a specific ethernet port. * A read from the MIB counter will reset the counter. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * After reading all MIB counters, the counters resets. * * RETURN: * MIB counter value. * */ static void eth_clear_mib_counters(unsigned int eth_port_num) { int i; /* Perform dummy reads from MIB counters */ for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION; i += 4) mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i); } static inline u32 read_mib(struct mv643xx_private *mp, int offset) { return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset); } static void eth_update_mib_counters(struct mv643xx_private *mp) { struct mv643xx_mib_counters *p = &mp->mib_counters; int offset; p->good_octets_received += read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW); p->good_octets_received += (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32; for (offset = ETH_MIB_BAD_OCTETS_RECEIVED; offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS; offset += 4) *(u32 *)((char *)p + offset) = read_mib(mp, offset); p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW); p->good_octets_sent += (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32; for (offset = ETH_MIB_GOOD_FRAMES_SENT; offset <= ETH_MIB_LATE_COLLISION; offset += 4) *(u32 *)((char *)p + offset) = read_mib(mp, offset); } /* * ethernet_phy_detect - Detect whether a phy is present * * DESCRIPTION: * This function tests whether there is a PHY present on * the specified port. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * None * * RETURN: * 0 on success * -ENODEV on failure * */ static int ethernet_phy_detect(unsigned int port_num) { unsigned int phy_reg_data0; int auto_neg; eth_port_read_smi_reg(port_num, 0, &phy_reg_data0); auto_neg = phy_reg_data0 & 0x1000; phy_reg_data0 ^= 0x1000; /* invert auto_neg */ eth_port_write_smi_reg(port_num, 0, phy_reg_data0); eth_port_read_smi_reg(port_num, 0, &phy_reg_data0); if ((phy_reg_data0 & 0x1000) == auto_neg) return -ENODEV; /* change didn't take */ phy_reg_data0 ^= 0x1000; eth_port_write_smi_reg(port_num, 0, phy_reg_data0); return 0; } /* * ethernet_phy_get - Get the ethernet port PHY address. * * DESCRIPTION: * This routine returns the given ethernet port PHY address. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * None. * * RETURN: * PHY address. * */ static int ethernet_phy_get(unsigned int eth_port_num) { unsigned int reg_data; reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG); return ((reg_data >> (5 * eth_port_num)) & 0x1f); } /* * ethernet_phy_set - Set the ethernet port PHY address. * * DESCRIPTION: * This routine sets the given ethernet port PHY address. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * int phy_addr PHY address. * * OUTPUT: * None. * * RETURN: * None. * */ static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr) { u32 reg_data; int addr_shift = 5 * eth_port_num; reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG); reg_data &= ~(0x1f << addr_shift); reg_data |= (phy_addr & 0x1f) << addr_shift; mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data); } /* * ethernet_phy_reset - Reset Ethernet port PHY. * * DESCRIPTION: * This routine utilizes the SMI interface to reset the ethernet port PHY. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * The PHY is reset. * * RETURN: * None. * */ static void ethernet_phy_reset(unsigned int eth_port_num) { unsigned int phy_reg_data; /* Reset the PHY */ eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data); phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */ eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data); } /* * eth_port_reset - Reset Ethernet port * * DESCRIPTION: * This routine resets the chip by aborting any SDMA engine activity and * clearing the MIB counters. The Receiver and the Transmit unit are in * idle state after this command is performed and the port is disabled. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * Channel activity is halted. * * RETURN: * None. * */ static void eth_port_reset(unsigned int port_num) { unsigned int reg_data; /* Stop Tx port activity. Check port Tx activity. */ reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num)); if (reg_data & 0xFF) { /* Issue stop command for active channels only */ mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), (reg_data << 8)); /* Wait for all Tx activity to terminate. */ /* Check port cause register that all Tx queues are stopped */ while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num)) & 0xFF) udelay(10); } /* Stop Rx port activity. Check port Rx activity. */ reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num)); if (reg_data & 0xFF) { /* Issue stop command for active channels only */ mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), (reg_data << 8)); /* Wait for all Rx activity to terminate. */ /* Check port cause register that all Rx queues are stopped */ while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num)) & 0xFF) udelay(10); } /* Clear all MIB counters */ eth_clear_mib_counters(port_num); /* Reset the Enable bit in the Configuration Register */ reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)); reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE; mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data); } /* * ethernet_set_config_reg - Set specified bits in configuration register. * * DESCRIPTION: * This function sets specified bits in the given ethernet * configuration register. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * unsigned int value 32 bit value. * * OUTPUT: * The set bits in the value parameter are set in the configuration * register. * * RETURN: * None. * */ static void ethernet_set_config_reg(unsigned int eth_port_num, unsigned int value) { unsigned int eth_config_reg; eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num)); eth_config_reg |= value; mv_write(MV643XX_ETH_PORT_CONFIG_REG(eth_port_num), eth_config_reg); } static int eth_port_autoneg_supported(unsigned int eth_port_num) { unsigned int phy_reg_data0; eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0); return phy_reg_data0 & 0x1000; } static int eth_port_link_is_up(unsigned int eth_port_num) { unsigned int phy_reg_data1; eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1); if (eth_port_autoneg_supported(eth_port_num)) { if (phy_reg_data1 & 0x20) /* auto-neg complete */ return 1; } else if (phy_reg_data1 & 0x4) /* link up */ return 1; return 0; } /* * ethernet_get_config_reg - Get the port configuration register * * DESCRIPTION: * This function returns the configuration register value of the given * ethernet port. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * * OUTPUT: * None. * * RETURN: * Port configuration register value. */ static unsigned int ethernet_get_config_reg(unsigned int eth_port_num) { unsigned int eth_config_reg; eth_config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_EXTEND_REG (eth_port_num)); return eth_config_reg; } /* * eth_port_read_smi_reg - Read PHY registers * * DESCRIPTION: * This routine utilize the SMI interface to interact with the PHY in * order to perform PHY register read. * * INPUT: * unsigned int port_num Ethernet Port number. * unsigned int phy_reg PHY register address offset. * unsigned int *value Register value buffer. * * OUTPUT: * Write the value of a specified PHY register into given buffer. * * RETURN: * false if the PHY is busy or read data is not in valid state. * true otherwise. * */ static void eth_port_read_smi_reg(unsigned int port_num, unsigned int phy_reg, unsigned int *value) { int phy_addr = ethernet_phy_get(port_num); unsigned long flags; int i; /* the SMI register is a shared resource */ spin_lock_irqsave(&mv643xx_eth_phy_lock, flags); /* wait for the SMI register to become available */ for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) { if (i == PHY_WAIT_ITERATIONS) { printk("mv643xx PHY busy timeout, port %d\n", port_num); goto out; } udelay(PHY_WAIT_MICRO_SECONDS); } mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ); /* now wait for the data to be valid */ for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) { if (i == PHY_WAIT_ITERATIONS) { printk("mv643xx PHY read timeout, port %d\n", port_num); goto out; } udelay(PHY_WAIT_MICRO_SECONDS); } *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff; out: spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags); } /* * eth_port_write_smi_reg - Write to PHY registers * * DESCRIPTION: * This routine utilize the SMI interface to interact with the PHY in * order to perform writes to PHY registers. * * INPUT: * unsigned int eth_port_num Ethernet Port number. * unsigned int phy_reg PHY register address offset. * unsigned int value Register value. * * OUTPUT: * Write the given value to the specified PHY register. * * RETURN: * false if the PHY is busy. * true otherwise. * */ static void eth_port_write_smi_reg(unsigned int eth_port_num, unsigned int phy_reg, unsigned int value) { int phy_addr; int i; unsigned long flags; phy_addr = ethernet_phy_get(eth_port_num); /* the SMI register is a shared resource */ spin_lock_irqsave(&mv643xx_eth_phy_lock, flags); /* wait for the SMI register to become available */ for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) { if (i == PHY_WAIT_ITERATIONS) { printk("mv643xx PHY busy timeout, port %d\n", eth_port_num); goto out; } udelay(PHY_WAIT_MICRO_SECONDS); } mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_WRITE | (value & 0xffff)); out: spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags); } /* * eth_port_send - Send an Ethernet packet * * DESCRIPTION: * This routine send a given packet described by p_pktinfo parameter. It * supports transmitting of a packet spaned over multiple buffers. The * routine updates 'curr' and 'first' indexes according to the packet * segment passed to the routine. In case the packet segment is first, * the 'first' index is update. In any case, the 'curr' index is updated. * If the routine get into Tx resource error it assigns 'curr' index as * 'first'. This way the function can abort Tx process of multiple * descriptors per packet. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * struct pkt_info *p_pkt_info User packet buffer. * * OUTPUT: * Tx ring 'curr' and 'first' indexes are updated. * * RETURN: * ETH_QUEUE_FULL in case of Tx resource error. * ETH_ERROR in case the routine can not access Tx desc ring. * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource. * ETH_OK otherwise. * */ #ifdef MV643XX_CHECKSUM_OFFLOAD_TX /* * Modified to include the first descriptor pointer in case of SG */ static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp, struct pkt_info *p_pkt_info) { int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc; struct eth_tx_desc *current_descriptor; struct eth_tx_desc *first_descriptor; u32 command; /* Do not process Tx ring in case of Tx ring resource error */ if (mp->tx_resource_err) return ETH_QUEUE_FULL; /* * The hardware requires that each buffer that is <= 8 bytes * in length must be aligned on an 8 byte boundary. */ if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) { printk(KERN_ERR "mv643xx_eth port %d: packet size <= 8 problem\n", mp->port_num); return ETH_ERROR; } /* Get the Tx Desc ring indexes */ tx_desc_curr = mp->tx_curr_desc_q; tx_desc_used = mp->tx_used_desc_q; current_descriptor = &mp->p_tx_desc_area[tx_desc_curr]; tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size; current_descriptor->buf_ptr = p_pkt_info->buf_ptr; current_descriptor->byte_cnt = p_pkt_info->byte_cnt; current_descriptor->l4i_chk = p_pkt_info->l4i_chk; mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info; command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC | ETH_BUFFER_OWNED_BY_DMA; if (command & ETH_TX_FIRST_DESC) { tx_first_desc = tx_desc_curr; mp->tx_first_desc_q = tx_first_desc; first_descriptor = current_descriptor; mp->tx_first_command = command; } else { tx_first_desc = mp->tx_first_desc_q; first_descriptor = &mp->p_tx_desc_area[tx_first_desc]; BUG_ON(first_descriptor == NULL); current_descriptor->cmd_sts = command; } if (command & ETH_TX_LAST_DESC) { wmb(); first_descriptor->cmd_sts = mp->tx_first_command; wmb(); ETH_ENABLE_TX_QUEUE(mp->port_num); /* * Finish Tx packet. Update first desc in case of Tx resource * error */ tx_first_desc = tx_next_desc; mp->tx_first_desc_q = tx_first_desc; } /* Check for ring index overlap in the Tx desc ring */ if (tx_next_desc == tx_desc_used) { mp->tx_resource_err = 1; mp->tx_curr_desc_q = tx_first_desc; return ETH_QUEUE_LAST_RESOURCE; } mp->tx_curr_desc_q = tx_next_desc; return ETH_OK; } #else static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp, struct pkt_info *p_pkt_info) { int tx_desc_curr; int tx_desc_used; struct eth_tx_desc *current_descriptor; unsigned int command_status; /* Do not process Tx ring in case of Tx ring resource error */ if (mp->tx_resource_err) return ETH_QUEUE_FULL; /* Get the Tx Desc ring indexes */ tx_desc_curr = mp->tx_curr_desc_q; tx_desc_used = mp->tx_used_desc_q; current_descriptor = &mp->p_tx_desc_area[tx_desc_curr]; command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC; current_descriptor->buf_ptr = p_pkt_info->buf_ptr; current_descriptor->byte_cnt = p_pkt_info->byte_cnt; mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info; /* Set last desc with DMA ownership and interrupt enable. */ wmb(); current_descriptor->cmd_sts = command_status | ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT; wmb(); ETH_ENABLE_TX_QUEUE(mp->port_num); /* Finish Tx packet. Update first desc in case of Tx resource error */ tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size; /* Update the current descriptor */ mp->tx_curr_desc_q = tx_desc_curr; /* Check for ring index overlap in the Tx desc ring */ if (tx_desc_curr == tx_desc_used) { mp->tx_resource_err = 1; return ETH_QUEUE_LAST_RESOURCE; } return ETH_OK; } #endif /* * eth_tx_return_desc - Free all used Tx descriptors * * DESCRIPTION: * This routine returns the transmitted packet information to the caller. * It uses the 'first' index to support Tx desc return in case a transmit * of a packet spanned over multiple buffer still in process. * In case the Tx queue was in "resource error" condition, where there are * no available Tx resources, the function resets the resource error flag. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * struct pkt_info *p_pkt_info User packet buffer. * * OUTPUT: * Tx ring 'first' and 'used' indexes are updated. * * RETURN: * ETH_ERROR in case the routine can not access Tx desc ring. * ETH_RETRY in case there is transmission in process. * ETH_END_OF_JOB if the routine has nothing to release. * ETH_OK otherwise. * */ static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp, struct pkt_info *p_pkt_info) { int tx_desc_used; #ifdef MV643XX_CHECKSUM_OFFLOAD_TX int tx_busy_desc = mp->tx_first_desc_q; #else int tx_busy_desc = mp->tx_curr_desc_q; #endif struct eth_tx_desc *p_tx_desc_used; unsigned int command_status; /* Get the Tx Desc ring indexes */ tx_desc_used = mp->tx_used_desc_q; p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used]; /* Sanity check */ if (p_tx_desc_used == NULL) return ETH_ERROR; /* Stop release. About to overlap the current available Tx descriptor */ if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) return ETH_END_OF_JOB; command_status = p_tx_desc_used->cmd_sts; /* Still transmitting... */ if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) return ETH_RETRY; /* Pass the packet information to the caller */ p_pkt_info->cmd_sts = command_status; p_pkt_info->return_info = mp->tx_skb[tx_desc_used]; mp->tx_skb[tx_desc_used] = NULL; /* Update the next descriptor to release. */ mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size; /* Any Tx return cancels the Tx resource error status */ mp->tx_resource_err = 0; return ETH_OK; } /* * eth_port_receive - Get received information from Rx ring. * * DESCRIPTION: * This routine returns the received data to the caller. There is no * data copying during routine operation. All information is returned * using pointer to packet information struct passed from the caller. * If the routine exhausts Rx ring resources then the resource error flag * is set. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * struct pkt_info *p_pkt_info User packet buffer. * * OUTPUT: * Rx ring current and used indexes are updated. * * RETURN: * ETH_ERROR in case the routine can not access Rx desc ring. * ETH_QUEUE_FULL if Rx ring resources are exhausted. * ETH_END_OF_JOB if there is no received data. * ETH_OK otherwise. */ static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp, struct pkt_info *p_pkt_info) { int rx_next_curr_desc, rx_curr_desc, rx_used_desc; volatile struct eth_rx_desc *p_rx_desc; unsigned int command_status; /* Do not process Rx ring in case of Rx ring resource error */ if (mp->rx_resource_err) return ETH_QUEUE_FULL; /* Get the Rx Desc ring 'curr and 'used' indexes */ rx_curr_desc = mp->rx_curr_desc_q; rx_used_desc = mp->rx_used_desc_q; p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc]; /* The following parameters are used to save readings from memory */ command_status = p_rx_desc->cmd_sts; rmb(); /* Nothing to receive... */ if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) return ETH_END_OF_JOB; p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET; p_pkt_info->cmd_sts = command_status; p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET; p_pkt_info->return_info = mp->rx_skb[rx_curr_desc]; p_pkt_info->l4i_chk = p_rx_desc->buf_size; /* Clean the return info field to indicate that the packet has been */ /* moved to the upper layers */ mp->rx_skb[rx_curr_desc] = NULL; /* Update current index in data structure */ rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size; mp->rx_curr_desc_q = rx_next_curr_desc; /* Rx descriptors exhausted. Set the Rx ring resource error flag */ if (rx_next_curr_desc == rx_used_desc) mp->rx_resource_err = 1; return ETH_OK; } /* * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring. * * DESCRIPTION: * This routine returns a Rx buffer back to the Rx ring. It retrieves the * next 'used' descriptor and attached the returned buffer to it. * In case the Rx ring was in "resource error" condition, where there are * no available Rx resources, the function resets the resource error flag. * * INPUT: * struct mv643xx_private *mp Ethernet Port Control srtuct. * struct pkt_info *p_pkt_info Information on returned buffer. * * OUTPUT: * New available Rx resource in Rx descriptor ring. * * RETURN: * ETH_ERROR in case the routine can not access Rx desc ring. * ETH_OK otherwise. */ static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp, struct pkt_info *p_pkt_info) { int used_rx_desc; /* Where to return Rx resource */ volatile struct eth_rx_desc *p_used_rx_desc; /* Get 'used' Rx descriptor */ used_rx_desc = mp->rx_used_desc_q; p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc]; p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr; p_used_rx_desc->buf_size = p_pkt_info->byte_cnt; mp->rx_skb[used_rx_desc] = p_pkt_info->return_info; /* Flush the write pipe */ /* Return the descriptor to DMA ownership */ wmb(); p_used_rx_desc->cmd_sts = ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT; wmb(); /* Move the used descriptor pointer to the next descriptor */ mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size; /* Any Rx return cancels the Rx resource error status */ mp->rx_resource_err = 0; return ETH_OK; } /************* Begin ethtool support *************************/ struct mv643xx_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; }; #define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \ offsetof(struct mv643xx_private, m) static const struct mv643xx_stats mv643xx_gstrings_stats[] = { { "rx_packets", MV643XX_STAT(stats.rx_packets) }, { "tx_packets", MV643XX_STAT(stats.tx_packets) }, { "rx_bytes", MV643XX_STAT(stats.rx_bytes) }, { "tx_bytes", MV643XX_STAT(stats.tx_bytes) }, { "rx_errors", MV643XX_STAT(stats.rx_errors) }, { "tx_errors", MV643XX_STAT(stats.tx_errors) }, { "rx_dropped", MV643XX_STAT(stats.rx_dropped) }, { "tx_dropped", MV643XX_STAT(stats.tx_dropped) }, { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) }, { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) }, { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) }, { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) }, { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) }, { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) }, { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) }, { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) }, { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) }, { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) }, { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) }, { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) }, { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) }, { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) }, { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) }, { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) }, { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) }, { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) }, { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) }, { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) }, { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) }, { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) }, { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) }, { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) }, { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) }, { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) }, { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) }, { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) }, { "collision", MV643XX_STAT(mib_counters.collision) }, { "late_collision", MV643XX_STAT(mib_counters.late_collision) }, }; #define MV643XX_STATS_LEN \ sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats) static int mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct mv643xx_private *mp = netdev->priv; int port_num = mp->port_num; int autoneg = eth_port_autoneg_supported(port_num); int mode_10_bit; int auto_duplex; int half_duplex = 0; int full_duplex = 0; int auto_speed; int speed_10 = 0; int speed_100 = 0; int speed_1000 = 0; u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)); u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)); mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT; if (mode_10_bit) { ecmd->supported = SUPPORTED_10baseT_Half; } else { ecmd->supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | (autoneg ? SUPPORTED_Autoneg : 0) | SUPPORTED_TP); auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX); auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII); ecmd->advertising = ADVERTISED_TP; if (autoneg) { ecmd->advertising |= ADVERTISED_Autoneg; if (auto_duplex) { half_duplex = 1; full_duplex = 1; } else { if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE) full_duplex = 1; else half_duplex = 1; } if (auto_speed) { speed_10 = 1; speed_100 = 1; speed_1000 = 1; } else { if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000) speed_1000 = 1; else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100) speed_100 = 1; else speed_10 = 1; } if (speed_10 & half_duplex) ecmd->advertising |= ADVERTISED_10baseT_Half; if (speed_10 & full_duplex) ecmd->advertising |= ADVERTISED_10baseT_Full; if (speed_100 & half_duplex) ecmd->advertising |= ADVERTISED_100baseT_Half; if (speed_100 & full_duplex) ecmd->advertising |= ADVERTISED_100baseT_Full; if (speed_1000) ecmd->advertising |= ADVERTISED_1000baseT_Full; } } ecmd->port = PORT_TP; ecmd->phy_address = ethernet_phy_get(port_num); ecmd->transceiver = XCVR_EXTERNAL; if (netif_carrier_ok(netdev)) { if (mode_10_bit) ecmd->speed = SPEED_10; else { if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000) ecmd->speed = SPEED_1000; else if (psr & MV643XX_ETH_PORT_STATUS_MII_100) ecmd->speed = SPEED_100; else ecmd->speed = SPEED_10; } if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX) ecmd->duplex = DUPLEX_FULL; else ecmd->duplex = DUPLEX_HALF; } else { ecmd->speed = -1; ecmd->duplex = -1; } ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE; return 0; } static void mv643xx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { strncpy(drvinfo->driver, mv643xx_driver_name, 32); strncpy(drvinfo->version, mv643xx_driver_version, 32); strncpy(drvinfo->fw_version, "N/A", 32); strncpy(drvinfo->bus_info, "mv643xx", 32); drvinfo->n_stats = MV643XX_STATS_LEN; } static int mv643xx_get_stats_count(struct net_device *netdev) { return MV643XX_STATS_LEN; } static void mv643xx_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, uint64_t *data) { struct mv643xx_private *mp = netdev->priv; int i; eth_update_mib_counters(mp); for(i = 0; i < MV643XX_STATS_LEN; i++) { char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset; data[i] = (mv643xx_gstrings_stats[i].sizeof_stat == sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; } } static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) { int i; switch(stringset) { case ETH_SS_STATS: for (i=0; i < MV643XX_STATS_LEN; i++) { memcpy(data + i * ETH_GSTRING_LEN, mv643xx_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); } break; } } static struct ethtool_ops mv643xx_ethtool_ops = { .get_settings = mv643xx_get_settings, .get_drvinfo = mv643xx_get_drvinfo, .get_link = ethtool_op_get_link, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, .get_strings = mv643xx_get_strings, .get_stats_count = mv643xx_get_stats_count, .get_ethtool_stats = mv643xx_get_ethtool_stats, }; /************* End ethtool support *************************/