/* * Driver for the Macintosh 68K onboard MACE controller with PSC * driven DMA. The MACE driver code is derived from mace.c. The * Mac68k theory of operation is courtesy of the MacBSD wizards. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Copyright (C) 1996 Paul Mackerras. * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk> * * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver * * Copyright (C) 2007 Finn Thain * * Converted to DMA API, converted to unified driver model, * sync'd some routines with mace.c and fixed various bugs. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/crc32.h> #include <linux/bitrev.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/gfp.h> #include <asm/io.h> #include <asm/irq.h> #include <asm/macintosh.h> #include <asm/macints.h> #include <asm/mac_psc.h> #include <asm/page.h> #include "mace.h" static char mac_mace_string[] = "macmace"; #define N_TX_BUFF_ORDER 0 #define N_TX_RING (1 << N_TX_BUFF_ORDER) #define N_RX_BUFF_ORDER 3 #define N_RX_RING (1 << N_RX_BUFF_ORDER) #define TX_TIMEOUT HZ #define MACE_BUFF_SIZE 0x800 /* Chip rev needs workaround on HW & multicast addr change */ #define BROKEN_ADDRCHG_REV 0x0941 /* The MACE is simply wired down on a Mac68K box */ #define MACE_BASE (void *)(0x50F1C000) #define MACE_PROM (void *)(0x50F08001) struct mace_data { volatile struct mace *mace; unsigned char *tx_ring; dma_addr_t tx_ring_phys; unsigned char *rx_ring; dma_addr_t rx_ring_phys; int dma_intr; int rx_slot, rx_tail; int tx_slot, tx_sloti, tx_count; int chipid; struct device *device; }; struct mace_frame { u8 rcvcnt; u8 pad1; u8 rcvsts; u8 pad2; u8 rntpc; u8 pad3; u8 rcvcc; u8 pad4; u32 pad5; u32 pad6; u8 data[1]; /* And frame continues.. */ }; #define PRIV_BYTES sizeof(struct mace_data) static int mace_open(struct net_device *dev); static int mace_close(struct net_device *dev); static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev); static void mace_set_multicast(struct net_device *dev); static int mace_set_address(struct net_device *dev, void *addr); static void mace_reset(struct net_device *dev); static irqreturn_t mace_interrupt(int irq, void *dev_id); static irqreturn_t mace_dma_intr(int irq, void *dev_id); static void mace_tx_timeout(struct net_device *dev); static void __mace_set_address(struct net_device *dev, void *addr); /* * Load a receive DMA channel with a base address and ring length */ static void mace_load_rxdma_base(struct net_device *dev, int set) { struct mace_data *mp = netdev_priv(dev); psc_write_word(PSC_ENETRD_CMD + set, 0x0100); psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys); psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING); psc_write_word(PSC_ENETRD_CMD + set, 0x9800); mp->rx_tail = 0; } /* * Reset the receive DMA subsystem */ static void mace_rxdma_reset(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mace = mp->mace; u8 maccc = mace->maccc; mace->maccc = maccc & ~ENRCV; psc_write_word(PSC_ENETRD_CTL, 0x8800); mace_load_rxdma_base(dev, 0x00); psc_write_word(PSC_ENETRD_CTL, 0x0400); psc_write_word(PSC_ENETRD_CTL, 0x8800); mace_load_rxdma_base(dev, 0x10); psc_write_word(PSC_ENETRD_CTL, 0x0400); mace->maccc = maccc; mp->rx_slot = 0; psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800); psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800); } /* * Reset the transmit DMA subsystem */ static void mace_txdma_reset(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mace = mp->mace; u8 maccc; psc_write_word(PSC_ENETWR_CTL, 0x8800); maccc = mace->maccc; mace->maccc = maccc & ~ENXMT; mp->tx_slot = mp->tx_sloti = 0; mp->tx_count = N_TX_RING; psc_write_word(PSC_ENETWR_CTL, 0x0400); mace->maccc = maccc; } /* * Disable DMA */ static void mace_dma_off(struct net_device *dev) { psc_write_word(PSC_ENETRD_CTL, 0x8800); psc_write_word(PSC_ENETRD_CTL, 0x1000); psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100); psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100); psc_write_word(PSC_ENETWR_CTL, 0x8800); psc_write_word(PSC_ENETWR_CTL, 0x1000); psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100); psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100); } static const struct net_device_ops mace_netdev_ops = { .ndo_open = mace_open, .ndo_stop = mace_close, .ndo_start_xmit = mace_xmit_start, .ndo_tx_timeout = mace_tx_timeout, .ndo_set_multicast_list = mace_set_multicast, .ndo_set_mac_address = mace_set_address, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; /* * Not really much of a probe. The hardware table tells us if this * model of Macintrash has a MACE (AV macintoshes) */ static int __devinit mace_probe(struct platform_device *pdev) { int j; struct mace_data *mp; unsigned char *addr; struct net_device *dev; unsigned char checksum = 0; static int found = 0; int err; if (found || macintosh_config->ether_type != MAC_ETHER_MACE) return -ENODEV; found = 1; /* prevent 'finding' one on every device probe */ dev = alloc_etherdev(PRIV_BYTES); if (!dev) return -ENOMEM; mp = netdev_priv(dev); mp->device = &pdev->dev; SET_NETDEV_DEV(dev, &pdev->dev); dev->base_addr = (u32)MACE_BASE; mp->mace = (volatile struct mace *) MACE_BASE; dev->irq = IRQ_MAC_MACE; mp->dma_intr = IRQ_MAC_MACE_DMA; mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo; /* * The PROM contains 8 bytes which total 0xFF when XOR'd * together. Due to the usual peculiar apple brain damage * the bytes are spaced out in a strange boundary and the * bits are reversed. */ addr = (void *)MACE_PROM; for (j = 0; j < 6; ++j) { u8 v = bitrev8(addr[j<<4]); checksum ^= v; dev->dev_addr[j] = v; } for (; j < 8; ++j) { checksum ^= bitrev8(addr[j<<4]); } if (checksum != 0xFF) { free_netdev(dev); return -ENODEV; } dev->netdev_ops = &mace_netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n", dev->name, dev->dev_addr); err = register_netdev(dev); if (!err) return 0; free_netdev(dev); return err; } /* * Reset the chip. */ static void mace_reset(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; int i; /* soft-reset the chip */ i = 200; while (--i) { mb->biucc = SWRST; if (mb->biucc & SWRST) { udelay(10); continue; } break; } if (!i) { printk(KERN_ERR "macmace: cannot reset chip!\n"); return; } mb->maccc = 0; /* turn off tx, rx */ mb->imr = 0xFF; /* disable all intrs for now */ i = mb->ir; mb->biucc = XMTSP_64; mb->utr = RTRD; mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU; mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */ mb->rcvfc = 0; /* load up the hardware address */ __mace_set_address(dev, dev->dev_addr); /* clear the multicast filter */ if (mp->chipid == BROKEN_ADDRCHG_REV) mb->iac = LOGADDR; else { mb->iac = ADDRCHG | LOGADDR; while ((mb->iac & ADDRCHG) != 0) ; } for (i = 0; i < 8; ++i) mb->ladrf = 0; /* done changing address */ if (mp->chipid != BROKEN_ADDRCHG_REV) mb->iac = 0; mb->plscc = PORTSEL_AUI; } /* * Load the address on a mace controller. */ static void __mace_set_address(struct net_device *dev, void *addr) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; unsigned char *p = addr; int i; /* load up the hardware address */ if (mp->chipid == BROKEN_ADDRCHG_REV) mb->iac = PHYADDR; else { mb->iac = ADDRCHG | PHYADDR; while ((mb->iac & ADDRCHG) != 0) ; } for (i = 0; i < 6; ++i) mb->padr = dev->dev_addr[i] = p[i]; if (mp->chipid != BROKEN_ADDRCHG_REV) mb->iac = 0; } static int mace_set_address(struct net_device *dev, void *addr) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; unsigned long flags; u8 maccc; local_irq_save(flags); maccc = mb->maccc; __mace_set_address(dev, addr); mb->maccc = maccc; local_irq_restore(flags); return 0; } /* * Open the Macintosh MACE. Most of this is playing with the DMA * engine. The ethernet chip is quite friendly. */ static int mace_open(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; /* reset the chip */ mace_reset(dev); if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) { printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq); return -EAGAIN; } if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) { printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr); free_irq(dev->irq, dev); return -EAGAIN; } /* Allocate the DMA ring buffers */ mp->tx_ring = dma_alloc_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, &mp->tx_ring_phys, GFP_KERNEL); if (mp->tx_ring == NULL) { printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name); goto out1; } mp->rx_ring = dma_alloc_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE, &mp->rx_ring_phys, GFP_KERNEL); if (mp->rx_ring == NULL) { printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name); goto out2; } mace_dma_off(dev); /* Not sure what these do */ psc_write_word(PSC_ENETWR_CTL, 0x9000); psc_write_word(PSC_ENETRD_CTL, 0x9000); psc_write_word(PSC_ENETWR_CTL, 0x0400); psc_write_word(PSC_ENETRD_CTL, 0x0400); mace_rxdma_reset(dev); mace_txdma_reset(dev); /* turn it on! */ mb->maccc = ENXMT | ENRCV; /* enable all interrupts except receive interrupts */ mb->imr = RCVINT; return 0; out2: dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, mp->tx_ring, mp->tx_ring_phys); out1: free_irq(dev->irq, dev); free_irq(mp->dma_intr, dev); return -ENOMEM; } /* * Shut down the mace and its interrupt channel */ static int mace_close(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; mb->maccc = 0; /* disable rx and tx */ mb->imr = 0xFF; /* disable all irqs */ mace_dma_off(dev); /* disable rx and tx dma */ return 0; } /* * Transmit a frame */ static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); unsigned long flags; /* Stop the queue since there's only the one buffer */ local_irq_save(flags); netif_stop_queue(dev); if (!mp->tx_count) { printk(KERN_ERR "macmace: tx queue running but no free buffers.\n"); local_irq_restore(flags); return NETDEV_TX_BUSY; } mp->tx_count--; local_irq_restore(flags); dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; /* We need to copy into our xmit buffer to take care of alignment and caching issues */ skb_copy_from_linear_data(skb, mp->tx_ring, skb->len); /* load the Tx DMA and fire it off */ psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys); psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len); psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800); mp->tx_slot ^= 0x10; dev_kfree_skb(skb); return NETDEV_TX_OK; } static void mace_set_multicast(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; int i; u32 crc; u8 maccc; unsigned long flags; local_irq_save(flags); maccc = mb->maccc; mb->maccc &= ~PROM; if (dev->flags & IFF_PROMISC) { mb->maccc |= PROM; } else { unsigned char multicast_filter[8]; struct netdev_hw_addr *ha; if (dev->flags & IFF_ALLMULTI) { for (i = 0; i < 8; i++) { multicast_filter[i] = 0xFF; } } else { for (i = 0; i < 8; i++) multicast_filter[i] = 0; netdev_for_each_mc_addr(ha, dev) { crc = ether_crc_le(6, ha->addr); /* bit number in multicast_filter */ i = crc >> 26; multicast_filter[i >> 3] |= 1 << (i & 7); } } if (mp->chipid == BROKEN_ADDRCHG_REV) mb->iac = LOGADDR; else { mb->iac = ADDRCHG | LOGADDR; while ((mb->iac & ADDRCHG) != 0) ; } for (i = 0; i < 8; ++i) mb->ladrf = multicast_filter[i]; if (mp->chipid != BROKEN_ADDRCHG_REV) mb->iac = 0; } mb->maccc = maccc; local_irq_restore(flags); } static void mace_handle_misc_intrs(struct net_device *dev, int intr) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; static int mace_babbles, mace_jabbers; if (intr & MPCO) dev->stats.rx_missed_errors += 256; dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */ if (intr & RNTPCO) dev->stats.rx_length_errors += 256; dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */ if (intr & CERR) ++dev->stats.tx_heartbeat_errors; if (intr & BABBLE) if (mace_babbles++ < 4) printk(KERN_DEBUG "macmace: babbling transmitter\n"); if (intr & JABBER) if (mace_jabbers++ < 4) printk(KERN_DEBUG "macmace: jabbering transceiver\n"); } static irqreturn_t mace_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; int intr, fs; unsigned long flags; /* don't want the dma interrupt handler to fire */ local_irq_save(flags); intr = mb->ir; /* read interrupt register */ mace_handle_misc_intrs(dev, intr); if (intr & XMTINT) { fs = mb->xmtfs; if ((fs & XMTSV) == 0) { printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs); mace_reset(dev); /* * XXX mace likes to hang the machine after a xmtfs error. * This is hard to reproduce, reseting *may* help */ } /* dma should have finished */ if (!mp->tx_count) { printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs); } /* Update stats */ if (fs & (UFLO|LCOL|LCAR|RTRY)) { ++dev->stats.tx_errors; if (fs & LCAR) ++dev->stats.tx_carrier_errors; else if (fs & (UFLO|LCOL|RTRY)) { ++dev->stats.tx_aborted_errors; if (mb->xmtfs & UFLO) { printk(KERN_ERR "%s: DMA underrun.\n", dev->name); dev->stats.tx_fifo_errors++; mace_txdma_reset(dev); } } } } if (mp->tx_count) netif_wake_queue(dev); local_irq_restore(flags); return IRQ_HANDLED; } static void mace_tx_timeout(struct net_device *dev) { struct mace_data *mp = netdev_priv(dev); volatile struct mace *mb = mp->mace; unsigned long flags; local_irq_save(flags); /* turn off both tx and rx and reset the chip */ mb->maccc = 0; printk(KERN_ERR "macmace: transmit timeout - resetting\n"); mace_txdma_reset(dev); mace_reset(dev); /* restart rx dma */ mace_rxdma_reset(dev); mp->tx_count = N_TX_RING; netif_wake_queue(dev); /* turn it on! */ mb->maccc = ENXMT | ENRCV; /* enable all interrupts except receive interrupts */ mb->imr = RCVINT; local_irq_restore(flags); } /* * Handle a newly arrived frame */ static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf) { struct sk_buff *skb; unsigned int frame_status = mf->rcvsts; if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) { dev->stats.rx_errors++; if (frame_status & RS_OFLO) { printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name); dev->stats.rx_fifo_errors++; } if (frame_status & RS_CLSN) dev->stats.collisions++; if (frame_status & RS_FRAMERR) dev->stats.rx_frame_errors++; if (frame_status & RS_FCSERR) dev->stats.rx_crc_errors++; } else { unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 ); skb = dev_alloc_skb(frame_length + 2); if (!skb) { dev->stats.rx_dropped++; return; } skb_reserve(skb, 2); memcpy(skb_put(skb, frame_length), mf->data, frame_length); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->stats.rx_packets++; dev->stats.rx_bytes += frame_length; } } /* * The PSC has passed us a DMA interrupt event. */ static irqreturn_t mace_dma_intr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct mace_data *mp = netdev_priv(dev); int left, head; u16 status; u32 baka; /* Not sure what this does */ while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY)); if (!(baka & 0x60000000)) return IRQ_NONE; /* * Process the read queue */ status = psc_read_word(PSC_ENETRD_CTL); if (status & 0x2000) { mace_rxdma_reset(dev); } else if (status & 0x0100) { psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100); left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot); head = N_RX_RING - left; /* Loop through the ring buffer and process new packages */ while (mp->rx_tail < head) { mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring + (mp->rx_tail * MACE_BUFF_SIZE))); mp->rx_tail++; } /* If we're out of buffers in this ring then switch to */ /* the other set, otherwise just reactivate this one. */ if (!left) { mace_load_rxdma_base(dev, mp->rx_slot); mp->rx_slot ^= 0x10; } else { psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800); } } /* * Process the write queue */ status = psc_read_word(PSC_ENETWR_CTL); if (status & 0x2000) { mace_txdma_reset(dev); } else if (status & 0x0100) { psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100); mp->tx_sloti ^= 0x10; mp->tx_count++; } return IRQ_HANDLED; } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Macintosh MACE ethernet driver"); MODULE_ALIAS("platform:macmace"); static int __devexit mac_mace_device_remove (struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct mace_data *mp = netdev_priv(dev); unregister_netdev(dev); free_irq(dev->irq, dev); free_irq(IRQ_MAC_MACE_DMA, dev); dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE, mp->rx_ring, mp->rx_ring_phys); dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE, mp->tx_ring, mp->tx_ring_phys); free_netdev(dev); return 0; } static struct platform_driver mac_mace_driver = { .probe = mace_probe, .remove = __devexit_p(mac_mace_device_remove), .driver = { .name = mac_mace_string, .owner = THIS_MODULE, }, }; static int __init mac_mace_init_module(void) { if (!MACH_IS_MAC) return -ENODEV; return platform_driver_register(&mac_mace_driver); } static void __exit mac_mace_cleanup_module(void) { platform_driver_unregister(&mac_mace_driver); } module_init(mac_mace_init_module); module_exit(mac_mace_cleanup_module);