/* * Driver for Xilinx TEMAC Ethernet device * * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net> * Copyright (c) 2008-2009 Secret Lab Technologies Ltd. * * This is a driver for the Xilinx ll_temac ipcore which is often used * in the Virtex and Spartan series of chips. * * Notes: * - The ll_temac hardware uses indirect access for many of the TEMAC * registers, include the MDIO bus. However, indirect access to MDIO * registers take considerably more clock cycles than to TEMAC registers. * MDIO accesses are long, so threads doing them should probably sleep * rather than busywait. However, since only one indirect access can be * in progress at any given time, that means that *all* indirect accesses * could end up sleeping (to wait for an MDIO access to complete). * Fortunately none of the indirect accesses are on the 'hot' path for tx * or rx, so this should be okay. * * TODO: * - Factor out locallink DMA code into separate driver * - Fix multicast assignment. * - Fix support for hardware checksumming. * - Testing. Lots and lots of testing. * */ #include <linux/delay.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/of_mdio.h> #include <linux/of_platform.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/tcp.h> /* needed for sizeof(tcphdr) */ #include <linux/udp.h> /* needed for sizeof(udphdr) */ #include <linux/phy.h> #include <linux/in.h> #include <linux/io.h> #include <linux/ip.h> #include <linux/slab.h> #include "ll_temac.h" #define TX_BD_NUM 64 #define RX_BD_NUM 128 /* --------------------------------------------------------------------- * Low level register access functions */ u32 temac_ior(struct temac_local *lp, int offset) { return in_be32((u32 *)(lp->regs + offset)); } void temac_iow(struct temac_local *lp, int offset, u32 value) { out_be32((u32 *) (lp->regs + offset), value); } int temac_indirect_busywait(struct temac_local *lp) { long end = jiffies + 2; while (!(temac_ior(lp, XTE_RDY0_OFFSET) & XTE_RDY0_HARD_ACS_RDY_MASK)) { if (end - jiffies <= 0) { WARN_ON(1); return -ETIMEDOUT; } msleep(1); } return 0; } /** * temac_indirect_in32 * * lp->indirect_mutex must be held when calling this function */ u32 temac_indirect_in32(struct temac_local *lp, int reg) { u32 val; if (temac_indirect_busywait(lp)) return -ETIMEDOUT; temac_iow(lp, XTE_CTL0_OFFSET, reg); if (temac_indirect_busywait(lp)) return -ETIMEDOUT; val = temac_ior(lp, XTE_LSW0_OFFSET); return val; } /** * temac_indirect_out32 * * lp->indirect_mutex must be held when calling this function */ void temac_indirect_out32(struct temac_local *lp, int reg, u32 value) { if (temac_indirect_busywait(lp)) return; temac_iow(lp, XTE_LSW0_OFFSET, value); temac_iow(lp, XTE_CTL0_OFFSET, CNTLREG_WRITE_ENABLE_MASK | reg); } /** * temac_dma_in32 - Memory mapped DMA read, this function expects a * register input that is based on DCR word addresses which * are then converted to memory mapped byte addresses */ static u32 temac_dma_in32(struct temac_local *lp, int reg) { return in_be32((u32 *)(lp->sdma_regs + (reg << 2))); } /** * temac_dma_out32 - Memory mapped DMA read, this function expects a * register input that is based on DCR word addresses which * are then converted to memory mapped byte addresses */ static void temac_dma_out32(struct temac_local *lp, int reg, u32 value) { out_be32((u32 *)(lp->sdma_regs + (reg << 2)), value); } /* DMA register access functions can be DCR based or memory mapped. * The PowerPC 440 is DCR based, the PowerPC 405 and MicroBlaze are both * memory mapped. */ #ifdef CONFIG_PPC_DCR /** * temac_dma_dcr_in32 - DCR based DMA read */ static u32 temac_dma_dcr_in(struct temac_local *lp, int reg) { return dcr_read(lp->sdma_dcrs, reg); } /** * temac_dma_dcr_out32 - DCR based DMA write */ static void temac_dma_dcr_out(struct temac_local *lp, int reg, u32 value) { dcr_write(lp->sdma_dcrs, reg, value); } /** * temac_dcr_setup - If the DMA is DCR based, then setup the address and * I/O functions */ static int temac_dcr_setup(struct temac_local *lp, struct of_device *op, struct device_node *np) { unsigned int dcrs; /* setup the dcr address mapping if it's in the device tree */ dcrs = dcr_resource_start(np, 0); if (dcrs != 0) { lp->sdma_dcrs = dcr_map(np, dcrs, dcr_resource_len(np, 0)); lp->dma_in = temac_dma_dcr_in; lp->dma_out = temac_dma_dcr_out; dev_dbg(&op->dev, "DCR base: %x\n", dcrs); return 0; } /* no DCR in the device tree, indicate a failure */ return -1; } #else /* * temac_dcr_setup - This is a stub for when DCR is not supported, * such as with MicroBlaze */ static int temac_dcr_setup(struct temac_local *lp, struct of_device *op, struct device_node *np) { return -1; } #endif /** * temac_dma_bd_init - Setup buffer descriptor rings */ static int temac_dma_bd_init(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct sk_buff *skb; int i; lp->rx_skb = kzalloc(sizeof(*lp->rx_skb) * RX_BD_NUM, GFP_KERNEL); /* allocate the tx and rx ring buffer descriptors. */ /* returns a virtual addres and a physical address. */ lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*lp->tx_bd_v) * TX_BD_NUM, &lp->tx_bd_p, GFP_KERNEL); lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent, sizeof(*lp->rx_bd_v) * RX_BD_NUM, &lp->rx_bd_p, GFP_KERNEL); memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM); for (i = 0; i < TX_BD_NUM; i++) { lp->tx_bd_v[i].next = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * ((i + 1) % TX_BD_NUM); } memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM); for (i = 0; i < RX_BD_NUM; i++) { lp->rx_bd_v[i].next = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * ((i + 1) % RX_BD_NUM); skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); if (skb == 0) { dev_err(&ndev->dev, "alloc_skb error %d\n", i); return -1; } lp->rx_skb[i] = skb; /* returns physical address of skb->data */ lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent, skb->data, XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); lp->rx_bd_v[i].len = XTE_MAX_JUMBO_FRAME_SIZE; lp->rx_bd_v[i].app0 = STS_CTRL_APP0_IRQONEND; } lp->dma_out(lp, TX_CHNL_CTRL, 0x10220400 | CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN); /* 0x10220483 */ /* 0x00100483 */ lp->dma_out(lp, RX_CHNL_CTRL, 0xff010000 | CHNL_CTRL_IRQ_EN | CHNL_CTRL_IRQ_DLY_EN | CHNL_CTRL_IRQ_COAL_EN | CHNL_CTRL_IRQ_IOE); /* 0xff010283 */ lp->dma_out(lp, RX_CURDESC_PTR, lp->rx_bd_p); lp->dma_out(lp, RX_TAILDESC_PTR, lp->rx_bd_p + (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1))); lp->dma_out(lp, TX_CURDESC_PTR, lp->tx_bd_p); return 0; } /* --------------------------------------------------------------------- * net_device_ops */ static int temac_set_mac_address(struct net_device *ndev, void *address) { struct temac_local *lp = netdev_priv(ndev); if (address) memcpy(ndev->dev_addr, address, ETH_ALEN); if (!is_valid_ether_addr(ndev->dev_addr)) random_ether_addr(ndev->dev_addr); /* set up unicast MAC address filter set its mac address */ mutex_lock(&lp->indirect_mutex); temac_indirect_out32(lp, XTE_UAW0_OFFSET, (ndev->dev_addr[0]) | (ndev->dev_addr[1] << 8) | (ndev->dev_addr[2] << 16) | (ndev->dev_addr[3] << 24)); /* There are reserved bits in EUAW1 * so don't affect them Set MAC bits [47:32] in EUAW1 */ temac_indirect_out32(lp, XTE_UAW1_OFFSET, (ndev->dev_addr[4] & 0x000000ff) | (ndev->dev_addr[5] << 8)); mutex_unlock(&lp->indirect_mutex); return 0; } static int netdev_set_mac_address(struct net_device *ndev, void *p) { struct sockaddr *addr = p; return temac_set_mac_address(ndev, addr->sa_data); } static void temac_set_multicast_list(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); u32 multi_addr_msw, multi_addr_lsw, val; int i; mutex_lock(&lp->indirect_mutex); if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) || netdev_mc_count(ndev) > MULTICAST_CAM_TABLE_NUM) { /* * We must make the kernel realise we had to move * into promisc mode or we start all out war on * the cable. If it was a promisc request the * flag is already set. If not we assert it. */ ndev->flags |= IFF_PROMISC; temac_indirect_out32(lp, XTE_AFM_OFFSET, XTE_AFM_EPPRM_MASK); dev_info(&ndev->dev, "Promiscuous mode enabled.\n"); } else if (!netdev_mc_empty(ndev)) { struct netdev_hw_addr *ha; i = 0; netdev_for_each_mc_addr(ha, ndev) { if (i >= MULTICAST_CAM_TABLE_NUM) break; multi_addr_msw = ((ha->addr[3] << 24) | (ha->addr[2] << 16) | (ha->addr[1] << 8) | (ha->addr[0])); temac_indirect_out32(lp, XTE_MAW0_OFFSET, multi_addr_msw); multi_addr_lsw = ((ha->addr[5] << 8) | (ha->addr[4]) | (i << 16)); temac_indirect_out32(lp, XTE_MAW1_OFFSET, multi_addr_lsw); i++; } } else { val = temac_indirect_in32(lp, XTE_AFM_OFFSET); temac_indirect_out32(lp, XTE_AFM_OFFSET, val & ~XTE_AFM_EPPRM_MASK); temac_indirect_out32(lp, XTE_MAW0_OFFSET, 0); temac_indirect_out32(lp, XTE_MAW1_OFFSET, 0); dev_info(&ndev->dev, "Promiscuous mode disabled.\n"); } mutex_unlock(&lp->indirect_mutex); } struct temac_option { int flg; u32 opt; u32 reg; u32 m_or; u32 m_and; } temac_options[] = { /* Turn on jumbo packet support for both Rx and Tx */ { .opt = XTE_OPTION_JUMBO, .reg = XTE_TXC_OFFSET, .m_or = XTE_TXC_TXJMBO_MASK, }, { .opt = XTE_OPTION_JUMBO, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXJMBO_MASK, }, /* Turn on VLAN packet support for both Rx and Tx */ { .opt = XTE_OPTION_VLAN, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXVLAN_MASK, }, { .opt = XTE_OPTION_VLAN, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXVLAN_MASK, }, /* Turn on FCS stripping on receive packets */ { .opt = XTE_OPTION_FCS_STRIP, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXFCS_MASK, }, /* Turn on FCS insertion on transmit packets */ { .opt = XTE_OPTION_FCS_INSERT, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXFCS_MASK, }, /* Turn on length/type field checking on receive packets */ { .opt = XTE_OPTION_LENTYPE_ERR, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXLT_MASK, }, /* Turn on flow control */ { .opt = XTE_OPTION_FLOW_CONTROL, .reg = XTE_FCC_OFFSET, .m_or =XTE_FCC_RXFLO_MASK, }, /* Turn on flow control */ { .opt = XTE_OPTION_FLOW_CONTROL, .reg = XTE_FCC_OFFSET, .m_or =XTE_FCC_TXFLO_MASK, }, /* Turn on promiscuous frame filtering (all frames are received ) */ { .opt = XTE_OPTION_PROMISC, .reg = XTE_AFM_OFFSET, .m_or =XTE_AFM_EPPRM_MASK, }, /* Enable transmitter if not already enabled */ { .opt = XTE_OPTION_TXEN, .reg = XTE_TXC_OFFSET, .m_or =XTE_TXC_TXEN_MASK, }, /* Enable receiver? */ { .opt = XTE_OPTION_RXEN, .reg = XTE_RXC1_OFFSET, .m_or =XTE_RXC1_RXEN_MASK, }, {} }; /** * temac_setoptions */ static u32 temac_setoptions(struct net_device *ndev, u32 options) { struct temac_local *lp = netdev_priv(ndev); struct temac_option *tp = &temac_options[0]; int reg; mutex_lock(&lp->indirect_mutex); while (tp->opt) { reg = temac_indirect_in32(lp, tp->reg) & ~tp->m_or; if (options & tp->opt) reg |= tp->m_or; temac_indirect_out32(lp, tp->reg, reg); tp++; } lp->options |= options; mutex_unlock(&lp->indirect_mutex); return (0); } /* Initilize temac */ static void temac_device_reset(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); u32 timeout; u32 val; /* Perform a software reset */ /* 0x300 host enable bit ? */ /* reset PHY through control register ?:1 */ dev_dbg(&ndev->dev, "%s()\n", __func__); mutex_lock(&lp->indirect_mutex); /* Reset the receiver and wait for it to finish reset */ temac_indirect_out32(lp, XTE_RXC1_OFFSET, XTE_RXC1_RXRST_MASK); timeout = 1000; while (temac_indirect_in32(lp, XTE_RXC1_OFFSET) & XTE_RXC1_RXRST_MASK) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset RX reset timeout!!\n"); break; } } /* Reset the transmitter and wait for it to finish reset */ temac_indirect_out32(lp, XTE_TXC_OFFSET, XTE_TXC_TXRST_MASK); timeout = 1000; while (temac_indirect_in32(lp, XTE_TXC_OFFSET) & XTE_TXC_TXRST_MASK) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset TX reset timeout!!\n"); break; } } /* Disable the receiver */ val = temac_indirect_in32(lp, XTE_RXC1_OFFSET); temac_indirect_out32(lp, XTE_RXC1_OFFSET, val & ~XTE_RXC1_RXEN_MASK); /* Reset Local Link (DMA) */ lp->dma_out(lp, DMA_CONTROL_REG, DMA_CONTROL_RST); timeout = 1000; while (lp->dma_in(lp, DMA_CONTROL_REG) & DMA_CONTROL_RST) { udelay(1); if (--timeout == 0) { dev_err(&ndev->dev, "temac_device_reset DMA reset timeout!!\n"); break; } } lp->dma_out(lp, DMA_CONTROL_REG, DMA_TAIL_ENABLE); temac_dma_bd_init(ndev); temac_indirect_out32(lp, XTE_RXC0_OFFSET, 0); temac_indirect_out32(lp, XTE_RXC1_OFFSET, 0); temac_indirect_out32(lp, XTE_TXC_OFFSET, 0); temac_indirect_out32(lp, XTE_FCC_OFFSET, XTE_FCC_RXFLO_MASK); mutex_unlock(&lp->indirect_mutex); /* Sync default options with HW * but leave receiver and transmitter disabled. */ temac_setoptions(ndev, lp->options & ~(XTE_OPTION_TXEN | XTE_OPTION_RXEN)); temac_set_mac_address(ndev, NULL); /* Set address filter table */ temac_set_multicast_list(ndev); if (temac_setoptions(ndev, lp->options)) dev_err(&ndev->dev, "Error setting TEMAC options\n"); /* Init Driver variable */ ndev->trans_start = jiffies; /* prevent tx timeout */ } void temac_adjust_link(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct phy_device *phy = lp->phy_dev; u32 mii_speed; int link_state; /* hash together the state values to decide if something has changed */ link_state = phy->speed | (phy->duplex << 1) | phy->link; mutex_lock(&lp->indirect_mutex); if (lp->last_link != link_state) { mii_speed = temac_indirect_in32(lp, XTE_EMCFG_OFFSET); mii_speed &= ~XTE_EMCFG_LINKSPD_MASK; switch (phy->speed) { case SPEED_1000: mii_speed |= XTE_EMCFG_LINKSPD_1000; break; case SPEED_100: mii_speed |= XTE_EMCFG_LINKSPD_100; break; case SPEED_10: mii_speed |= XTE_EMCFG_LINKSPD_10; break; } /* Write new speed setting out to TEMAC */ temac_indirect_out32(lp, XTE_EMCFG_OFFSET, mii_speed); lp->last_link = link_state; phy_print_status(phy); } mutex_unlock(&lp->indirect_mutex); } static void temac_start_xmit_done(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct cdmac_bd *cur_p; unsigned int stat = 0; cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; stat = cur_p->app0; while (stat & STS_CTRL_APP0_CMPLT) { dma_unmap_single(ndev->dev.parent, cur_p->phys, cur_p->len, DMA_TO_DEVICE); if (cur_p->app4) dev_kfree_skb_irq((struct sk_buff *)cur_p->app4); cur_p->app0 = 0; ndev->stats.tx_packets++; ndev->stats.tx_bytes += cur_p->len; lp->tx_bd_ci++; if (lp->tx_bd_ci >= TX_BD_NUM) lp->tx_bd_ci = 0; cur_p = &lp->tx_bd_v[lp->tx_bd_ci]; stat = cur_p->app0; } netif_wake_queue(ndev); } static int temac_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct cdmac_bd *cur_p; dma_addr_t start_p, tail_p; int ii; unsigned long num_frag; skb_frag_t *frag; num_frag = skb_shinfo(skb)->nr_frags; frag = &skb_shinfo(skb)->frags[0]; start_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; if (cur_p->app0 & STS_CTRL_APP0_CMPLT) { if (!netif_queue_stopped(ndev)) { netif_stop_queue(ndev); return NETDEV_TX_BUSY; } return NETDEV_TX_BUSY; } cur_p->app0 = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { const struct iphdr *ip = ip_hdr(skb); int length = 0, start = 0, insert = 0; switch (ip->protocol) { case IPPROTO_TCP: start = sizeof(struct iphdr) + ETH_HLEN; insert = sizeof(struct iphdr) + ETH_HLEN + 16; length = ip->tot_len - sizeof(struct iphdr); break; case IPPROTO_UDP: start = sizeof(struct iphdr) + ETH_HLEN; insert = sizeof(struct iphdr) + ETH_HLEN + 6; length = ip->tot_len - sizeof(struct iphdr); break; default: break; } cur_p->app1 = ((start << 16) | insert); cur_p->app2 = csum_tcpudp_magic(ip->saddr, ip->daddr, length, ip->protocol, 0); skb->data[insert] = 0; skb->data[insert + 1] = 0; } cur_p->app0 |= STS_CTRL_APP0_SOP; cur_p->len = skb_headlen(skb); cur_p->phys = dma_map_single(ndev->dev.parent, skb->data, skb->len, DMA_TO_DEVICE); cur_p->app4 = (unsigned long)skb; for (ii = 0; ii < num_frag; ii++) { lp->tx_bd_tail++; if (lp->tx_bd_tail >= TX_BD_NUM) lp->tx_bd_tail = 0; cur_p = &lp->tx_bd_v[lp->tx_bd_tail]; cur_p->phys = dma_map_single(ndev->dev.parent, (void *)page_address(frag->page) + frag->page_offset, frag->size, DMA_TO_DEVICE); cur_p->len = frag->size; cur_p->app0 = 0; frag++; } cur_p->app0 |= STS_CTRL_APP0_EOP; tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail; lp->tx_bd_tail++; if (lp->tx_bd_tail >= TX_BD_NUM) lp->tx_bd_tail = 0; /* Kick off the transfer */ lp->dma_out(lp, TX_TAILDESC_PTR, tail_p); /* DMA start */ return NETDEV_TX_OK; } static void ll_temac_recv(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); struct sk_buff *skb, *new_skb; unsigned int bdstat; struct cdmac_bd *cur_p; dma_addr_t tail_p; int length; unsigned long flags; spin_lock_irqsave(&lp->rx_lock, flags); tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci; cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; bdstat = cur_p->app0; while ((bdstat & STS_CTRL_APP0_CMPLT)) { skb = lp->rx_skb[lp->rx_bd_ci]; length = cur_p->app4 & 0x3FFF; dma_unmap_single(ndev->dev.parent, cur_p->phys, length, DMA_FROM_DEVICE); skb_put(skb, length); skb->dev = ndev; skb->protocol = eth_type_trans(skb, ndev); skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); ndev->stats.rx_packets++; ndev->stats.rx_bytes += length; new_skb = netdev_alloc_skb_ip_align(ndev, XTE_MAX_JUMBO_FRAME_SIZE); if (new_skb == 0) { dev_err(&ndev->dev, "no memory for new sk_buff\n"); spin_unlock_irqrestore(&lp->rx_lock, flags); return; } cur_p->app0 = STS_CTRL_APP0_IRQONEND; cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data, XTE_MAX_JUMBO_FRAME_SIZE, DMA_FROM_DEVICE); cur_p->len = XTE_MAX_JUMBO_FRAME_SIZE; lp->rx_skb[lp->rx_bd_ci] = new_skb; lp->rx_bd_ci++; if (lp->rx_bd_ci >= RX_BD_NUM) lp->rx_bd_ci = 0; cur_p = &lp->rx_bd_v[lp->rx_bd_ci]; bdstat = cur_p->app0; } lp->dma_out(lp, RX_TAILDESC_PTR, tail_p); spin_unlock_irqrestore(&lp->rx_lock, flags); } static irqreturn_t ll_temac_tx_irq(int irq, void *_ndev) { struct net_device *ndev = _ndev; struct temac_local *lp = netdev_priv(ndev); unsigned int status; status = lp->dma_in(lp, TX_IRQ_REG); lp->dma_out(lp, TX_IRQ_REG, status); if (status & (IRQ_COAL | IRQ_DLY)) temac_start_xmit_done(lp->ndev); if (status & 0x080) dev_err(&ndev->dev, "DMA error 0x%x\n", status); return IRQ_HANDLED; } static irqreturn_t ll_temac_rx_irq(int irq, void *_ndev) { struct net_device *ndev = _ndev; struct temac_local *lp = netdev_priv(ndev); unsigned int status; /* Read and clear the status registers */ status = lp->dma_in(lp, RX_IRQ_REG); lp->dma_out(lp, RX_IRQ_REG, status); if (status & (IRQ_COAL | IRQ_DLY)) ll_temac_recv(lp->ndev); return IRQ_HANDLED; } static int temac_open(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); int rc; dev_dbg(&ndev->dev, "temac_open()\n"); if (lp->phy_node) { lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node, temac_adjust_link, 0, 0); if (!lp->phy_dev) { dev_err(lp->dev, "of_phy_connect() failed\n"); return -ENODEV; } phy_start(lp->phy_dev); } rc = request_irq(lp->tx_irq, ll_temac_tx_irq, 0, ndev->name, ndev); if (rc) goto err_tx_irq; rc = request_irq(lp->rx_irq, ll_temac_rx_irq, 0, ndev->name, ndev); if (rc) goto err_rx_irq; temac_device_reset(ndev); return 0; err_rx_irq: free_irq(lp->tx_irq, ndev); err_tx_irq: if (lp->phy_dev) phy_disconnect(lp->phy_dev); lp->phy_dev = NULL; dev_err(lp->dev, "request_irq() failed\n"); return rc; } static int temac_stop(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); dev_dbg(&ndev->dev, "temac_close()\n"); free_irq(lp->tx_irq, ndev); free_irq(lp->rx_irq, ndev); if (lp->phy_dev) phy_disconnect(lp->phy_dev); lp->phy_dev = NULL; return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void temac_poll_controller(struct net_device *ndev) { struct temac_local *lp = netdev_priv(ndev); disable_irq(lp->tx_irq); disable_irq(lp->rx_irq); ll_temac_rx_irq(lp->tx_irq, lp); ll_temac_tx_irq(lp->rx_irq, lp); enable_irq(lp->tx_irq); enable_irq(lp->rx_irq); } #endif static const struct net_device_ops temac_netdev_ops = { .ndo_open = temac_open, .ndo_stop = temac_stop, .ndo_start_xmit = temac_start_xmit, .ndo_set_mac_address = netdev_set_mac_address, //.ndo_set_multicast_list = temac_set_multicast_list, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = temac_poll_controller, #endif }; /* --------------------------------------------------------------------- * SYSFS device attributes */ static ssize_t temac_show_llink_regs(struct device *dev, struct device_attribute *attr, char *buf) { struct net_device *ndev = dev_get_drvdata(dev); struct temac_local *lp = netdev_priv(ndev); int i, len = 0; for (i = 0; i < 0x11; i++) len += sprintf(buf + len, "%.8x%s", lp->dma_in(lp, i), (i % 8) == 7 ? "\n" : " "); len += sprintf(buf + len, "\n"); return len; } static DEVICE_ATTR(llink_regs, 0440, temac_show_llink_regs, NULL); static struct attribute *temac_device_attrs[] = { &dev_attr_llink_regs.attr, NULL, }; static const struct attribute_group temac_attr_group = { .attrs = temac_device_attrs, }; static int __init temac_of_probe(struct of_device *op, const struct of_device_id *match) { struct device_node *np; struct temac_local *lp; struct net_device *ndev; const void *addr; int size, rc = 0; /* Init network device structure */ ndev = alloc_etherdev(sizeof(*lp)); if (!ndev) { dev_err(&op->dev, "could not allocate device.\n"); return -ENOMEM; } ether_setup(ndev); dev_set_drvdata(&op->dev, ndev); SET_NETDEV_DEV(ndev, &op->dev); ndev->flags &= ~IFF_MULTICAST; /* clear multicast */ ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST; ndev->netdev_ops = &temac_netdev_ops; #if 0 ndev->features |= NETIF_F_IP_CSUM; /* Can checksum TCP/UDP over IPv4. */ ndev->features |= NETIF_F_HW_CSUM; /* Can checksum all the packets. */ ndev->features |= NETIF_F_IPV6_CSUM; /* Can checksum IPV6 TCP/UDP */ ndev->features |= NETIF_F_HIGHDMA; /* Can DMA to high memory. */ ndev->features |= NETIF_F_HW_VLAN_TX; /* Transmit VLAN hw accel */ ndev->features |= NETIF_F_HW_VLAN_RX; /* Receive VLAN hw acceleration */ ndev->features |= NETIF_F_HW_VLAN_FILTER; /* Receive VLAN filtering */ ndev->features |= NETIF_F_VLAN_CHALLENGED; /* cannot handle VLAN pkts */ ndev->features |= NETIF_F_GSO; /* Enable software GSO. */ ndev->features |= NETIF_F_MULTI_QUEUE; /* Has multiple TX/RX queues */ ndev->features |= NETIF_F_LRO; /* large receive offload */ #endif /* setup temac private info structure */ lp = netdev_priv(ndev); lp->ndev = ndev; lp->dev = &op->dev; lp->options = XTE_OPTION_DEFAULTS; spin_lock_init(&lp->rx_lock); mutex_init(&lp->indirect_mutex); /* map device registers */ lp->regs = of_iomap(op->node, 0); if (!lp->regs) { dev_err(&op->dev, "could not map temac regs.\n"); goto nodev; } /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */ np = of_parse_phandle(op->node, "llink-connected", 0); if (!np) { dev_err(&op->dev, "could not find DMA node\n"); goto nodev; } /* Setup the DMA register accesses, could be DCR or memory mapped */ if (temac_dcr_setup(lp, op, np)) { /* no DCR in the device tree, try non-DCR */ lp->sdma_regs = of_iomap(np, 0); if (lp->sdma_regs) { lp->dma_in = temac_dma_in32; lp->dma_out = temac_dma_out32; dev_dbg(&op->dev, "MEM base: %p\n", lp->sdma_regs); } else { dev_err(&op->dev, "unable to map DMA registers\n"); goto nodev; } } lp->rx_irq = irq_of_parse_and_map(np, 0); lp->tx_irq = irq_of_parse_and_map(np, 1); if (!lp->rx_irq || !lp->tx_irq) { dev_err(&op->dev, "could not determine irqs\n"); rc = -ENOMEM; goto nodev; } of_node_put(np); /* Finished with the DMA node; drop the reference */ /* Retrieve the MAC address */ addr = of_get_property(op->node, "local-mac-address", &size); if ((!addr) || (size != 6)) { dev_err(&op->dev, "could not find MAC address\n"); rc = -ENODEV; goto nodev; } temac_set_mac_address(ndev, (void *)addr); rc = temac_mdio_setup(lp, op->node); if (rc) dev_warn(&op->dev, "error registering MDIO bus\n"); lp->phy_node = of_parse_phandle(op->node, "phy-handle", 0); if (lp->phy_node) dev_dbg(lp->dev, "using PHY node %s (%p)\n", np->full_name, np); /* Add the device attributes */ rc = sysfs_create_group(&lp->dev->kobj, &temac_attr_group); if (rc) { dev_err(lp->dev, "Error creating sysfs files\n"); goto nodev; } rc = register_netdev(lp->ndev); if (rc) { dev_err(lp->dev, "register_netdev() error (%i)\n", rc); goto err_register_ndev; } return 0; err_register_ndev: sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); nodev: free_netdev(ndev); ndev = NULL; return rc; } static int __devexit temac_of_remove(struct of_device *op) { struct net_device *ndev = dev_get_drvdata(&op->dev); struct temac_local *lp = netdev_priv(ndev); temac_mdio_teardown(lp); unregister_netdev(ndev); sysfs_remove_group(&lp->dev->kobj, &temac_attr_group); if (lp->phy_node) of_node_put(lp->phy_node); lp->phy_node = NULL; dev_set_drvdata(&op->dev, NULL); free_netdev(ndev); return 0; } static struct of_device_id temac_of_match[] __devinitdata = { { .compatible = "xlnx,xps-ll-temac-1.01.b", }, { .compatible = "xlnx,xps-ll-temac-2.00.a", }, { .compatible = "xlnx,xps-ll-temac-2.02.a", }, { .compatible = "xlnx,xps-ll-temac-2.03.a", }, {}, }; MODULE_DEVICE_TABLE(of, temac_of_match); static struct of_platform_driver temac_of_driver = { .match_table = temac_of_match, .probe = temac_of_probe, .remove = __devexit_p(temac_of_remove), .driver = { .owner = THIS_MODULE, .name = "xilinx_temac", }, }; static int __init temac_init(void) { return of_register_platform_driver(&temac_of_driver); } module_init(temac_init); static void __exit temac_exit(void) { of_unregister_platform_driver(&temac_of_driver); } module_exit(temac_exit); MODULE_DESCRIPTION("Xilinx LL_TEMAC Ethernet driver"); MODULE_AUTHOR("Yoshio Kashiwagi"); MODULE_LICENSE("GPL");