/* isa-skeleton.c: A network driver outline for linux. * * Written 1993-94 by Donald Becker. * * Copyright 1993 United States Government as represented by the * Director, National Security Agency. * * This software may be used and distributed according to the terms * of the GNU General Public License, incorporated herein by reference. * * The author may be reached as becker@scyld.com, or C/O * Scyld Computing Corporation * 410 Severn Ave., Suite 210 * Annapolis MD 21403 * * This file is an outline for writing a network device driver for the * the Linux operating system. * * To write (or understand) a driver, have a look at the "loopback.c" file to * get a feel of what is going on, and then use the code below as a skeleton * for the new driver. * */ static const char *version = "isa-skeleton.c:v1.51 9/24/94 Donald Becker (becker@cesdis.gsfc.nasa.gov)\n"; /* * Sources: * List your sources of programming information to document that * the driver is your own creation, and give due credit to others * that contributed to the work. Remember that GNU project code * cannot use proprietary or trade secret information. Interface * definitions are generally considered non-copyrightable to the * extent that the same names and structures must be used to be * compatible. * * Finally, keep in mind that the Linux kernel is has an API, not * ABI. Proprietary object-code-only distributions are not permitted * under the GPL. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = "netcard"; /* First, a few definitions that the brave might change. */ /* A zero-terminated list of I/O addresses to be probed. */ static unsigned int netcard_portlist[] __initdata = { 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0}; /* use 0 for production, 1 for verification, >2 for debug */ #ifndef NET_DEBUG #define NET_DEBUG 2 #endif static unsigned int net_debug = NET_DEBUG; /* The number of low I/O ports used by the ethercard. */ #define NETCARD_IO_EXTENT 32 #define MY_TX_TIMEOUT ((400*HZ)/1000) /* Information that need to be kept for each board. */ struct net_local { struct net_device_stats stats; long open_time; /* Useless example local info. */ /* Tx control lock. This protects the transmit buffer ring * state along with the "tx full" state of the driver. This * means all netif_queue flow control actions are protected * by this lock as well. */ spinlock_t lock; }; /* The station (ethernet) address prefix, used for IDing the board. */ #define SA_ADDR0 0x00 #define SA_ADDR1 0x42 #define SA_ADDR2 0x65 /* Index to functions, as function prototypes. */ static int netcard_probe1(struct net_device *dev, int ioaddr); static int net_open(struct net_device *dev); static int net_send_packet(struct sk_buff *skb, struct net_device *dev); static irqreturn_t net_interrupt(int irq, void *dev_id); static void net_rx(struct net_device *dev); static int net_close(struct net_device *dev); static struct net_device_stats *net_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); static void net_tx_timeout(struct net_device *dev); /* Example routines you must write ;->. */ #define tx_done(dev) 1 static void hardware_send_packet(short ioaddr, char *buf, int length); static void chipset_init(struct net_device *dev, int startp); /* * Check for a network adaptor of this type, and return '0' iff one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. * If dev->base_addr == 2, allocate space for the device and return success * (detachable devices only). */ static int __init do_netcard_probe(struct net_device *dev) { int i; int base_addr = dev->base_addr; int irq = dev->irq; if (base_addr > 0x1ff) /* Check a single specified location. */ return netcard_probe1(dev, base_addr); else if (base_addr != 0) /* Don't probe at all. */ return -ENXIO; for (i = 0; netcard_portlist[i]; i++) { int ioaddr = netcard_portlist[i]; if (netcard_probe1(dev, ioaddr) == 0) return 0; dev->irq = irq; } return -ENODEV; } static void cleanup_card(struct net_device *dev) { #ifdef jumpered_dma free_dma(dev->dma); #endif #ifdef jumpered_interrupts free_irq(dev->irq, dev); #endif release_region(dev->base_addr, NETCARD_IO_EXTENT); } #ifndef MODULE struct net_device * __init netcard_probe(int unit) { struct net_device *dev = alloc_etherdev(sizeof(struct net_local)); int err; if (!dev) return ERR_PTR(-ENOMEM); sprintf(dev->name, "eth%d", unit); netdev_boot_setup_check(dev); err = do_netcard_probe(dev); if (err) goto out; return dev; out: free_netdev(dev); return ERR_PTR(err); } #endif static const struct net_device_ops netcard_netdev_ops = { .ndo_open = net_open, .ndo_stop = net_close, .ndo_start_xmit = net_send_packet, .ndo_get_stats = net_get_stats, .ndo_set_multicast_list = set_multicast_list, .ndo_tx_timeout = net_tx_timeout, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_change_mtu = eth_change_mtu, }; /* * This is the real probe routine. Linux has a history of friendly device * probes on the ISA bus. A good device probes avoids doing writes, and * verifies that the correct device exists and functions. */ static int __init netcard_probe1(struct net_device *dev, int ioaddr) { struct net_local *np; static unsigned version_printed; int i; int err = -ENODEV; /* Grab the region so that no one else tries to probe our ioports. */ if (!request_region(ioaddr, NETCARD_IO_EXTENT, cardname)) return -EBUSY; /* * For ethernet adaptors the first three octets of the station address * contains the manufacturer's unique code. That might be a good probe * method. Ideally you would add additional checks. */ if (inb(ioaddr + 0) != SA_ADDR0 || inb(ioaddr + 1) != SA_ADDR1 || inb(ioaddr + 2) != SA_ADDR2) goto out; if (net_debug && version_printed++ == 0) printk(KERN_DEBUG "%s", version); printk(KERN_INFO "%s: %s found at %#3x, ", dev->name, cardname, ioaddr); /* Fill in the 'dev' fields. */ dev->base_addr = ioaddr; /* Retrieve and print the ethernet address. */ for (i = 0; i < 6; i++) dev->dev_addr[i] = inb(ioaddr + i); printk("%pM", dev->dev_addr); err = -EAGAIN; #ifdef jumpered_interrupts /* * If this board has jumpered interrupts, allocate the interrupt * vector now. There is no point in waiting since no other device * can use the interrupt, and this marks the irq as busy. Jumpered * interrupts are typically not reported by the boards, and we must * used autoIRQ to find them. */ if (dev->irq == -1) ; /* Do nothing: a user-level program will set it. */ else if (dev->irq < 2) { /* "Auto-IRQ" */ unsigned long irq_mask = probe_irq_on(); /* Trigger an interrupt here. */ dev->irq = probe_irq_off(irq_mask); if (net_debug >= 2) printk(" autoirq is %d", dev->irq); } else if (dev->irq == 2) /* * Fixup for users that don't know that IRQ 2 is really * IRQ9, or don't know which one to set. */ dev->irq = 9; { int irqval = request_irq(dev->irq, net_interrupt, 0, cardname, dev); if (irqval) { printk("%s: unable to get IRQ %d (irqval=%d).\n", dev->name, dev->irq, irqval); goto out; } } #endif /* jumpered interrupt */ #ifdef jumpered_dma /* * If we use a jumpered DMA channel, that should be probed for and * allocated here as well. See lance.c for an example. */ if (dev->dma == 0) { if (request_dma(dev->dma, cardname)) { printk("DMA %d allocation failed.\n", dev->dma); goto out1; } else printk(", assigned DMA %d.\n", dev->dma); } else { short dma_status, new_dma_status; /* Read the DMA channel status registers. */ dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | (inb(DMA2_STAT_REG) & 0xf0); /* Trigger a DMA request, perhaps pause a bit. */ outw(0x1234, ioaddr + 8); /* Re-read the DMA status registers. */ new_dma_status = ((inb(DMA1_STAT_REG) >> 4) & 0x0f) | (inb(DMA2_STAT_REG) & 0xf0); /* * Eliminate the old and floating requests, * and DMA4 the cascade. */ new_dma_status ^= dma_status; new_dma_status &= ~0x10; for (i = 7; i > 0; i--) if (test_bit(i, &new_dma_status)) { dev->dma = i; break; } if (i <= 0) { printk("DMA probe failed.\n"); goto out1; } if (request_dma(dev->dma, cardname)) { printk("probed DMA %d allocation failed.\n", dev->dma); goto out1; } } #endif /* jumpered DMA */ np = netdev_priv(dev); spin_lock_init(&np->lock); dev->netdev_ops = &netcard_netdev_ops; dev->watchdog_timeo = MY_TX_TIMEOUT; err = register_netdev(dev); if (err) goto out2; return 0; out2: #ifdef jumpered_dma free_dma(dev->dma); #endif out1: #ifdef jumpered_interrupts free_irq(dev->irq, dev); #endif out: release_region(base_addr, NETCARD_IO_EXTENT); return err; } static void net_tx_timeout(struct net_device *dev) { struct net_local *np = netdev_priv(dev); printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name, tx_done(dev) ? "IRQ conflict" : "network cable problem"); /* Try to restart the adaptor. */ chipset_init(dev, 1); np->stats.tx_errors++; /* If we have space available to accept new transmit * requests, wake up the queueing layer. This would * be the case if the chipset_init() call above just * flushes out the tx queue and empties it. * * If instead, the tx queue is retained then the * netif_wake_queue() call should be placed in the * TX completion interrupt handler of the driver instead * of here. */ if (!tx_full(dev)) netif_wake_queue(dev); } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int net_open(struct net_device *dev) { struct net_local *np = netdev_priv(dev); int ioaddr = dev->base_addr; /* * This is used if the interrupt line can turned off (shared). * See 3c503.c for an example of selecting the IRQ at config-time. */ if (request_irq(dev->irq, net_interrupt, 0, cardname, dev)) { return -EAGAIN; } /* * Always allocate the DMA channel after the IRQ, * and clean up on failure. */ if (request_dma(dev->dma, cardname)) { free_irq(dev->irq, dev); return -EAGAIN; } /* Reset the hardware here. Don't forget to set the station address. */ chipset_init(dev, 1); outb(0x00, ioaddr); np->open_time = jiffies; /* We are now ready to accept transmit requeusts from * the queueing layer of the networking. */ netif_start_queue(dev); return 0; } /* This will only be invoked if your driver is _not_ in XOFF state. * What this means is that you need not check it, and that this * invariant will hold if you make sure that the netif_*_queue() * calls are done at the proper times. */ static int net_send_packet(struct sk_buff *skb, struct net_device *dev) { struct net_local *np = netdev_priv(dev); int ioaddr = dev->base_addr; short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; /* If some error occurs while trying to transmit this * packet, you should return '1' from this function. * In such a case you _may not_ do anything to the * SKB, it is still owned by the network queueing * layer when an error is returned. This means you * may not modify any SKB fields, you may not free * the SKB, etc. */ #if TX_RING /* This is the most common case for modern hardware. * The spinlock protects this code from the TX complete * hardware interrupt handler. Queue flow control is * thus managed under this lock as well. */ unsigned long flags; spin_lock_irqsave(&np->lock, flags); add_to_tx_ring(np, skb, length); dev->trans_start = jiffies; /* If we just used up the very last entry in the * TX ring on this device, tell the queueing * layer to send no more. */ if (tx_full(dev)) netif_stop_queue(dev); /* When the TX completion hw interrupt arrives, this * is when the transmit statistics are updated. */ spin_unlock_irqrestore(&np->lock, flags); #else /* This is the case for older hardware which takes * a single transmit buffer at a time, and it is * just written to the device via PIO. * * No spin locking is needed since there is no TX complete * event. If by chance your card does have a TX complete * hardware IRQ then you may need to utilize np->lock here. */ hardware_send_packet(ioaddr, buf, length); np->stats.tx_bytes += skb->len; dev->trans_start = jiffies; /* You might need to clean up and record Tx statistics here. */ if (inw(ioaddr) == /*RU*/81) np->stats.tx_aborted_errors++; dev_kfree_skb (skb); #endif return NETDEV_TX_OK; } #if TX_RING /* This handles TX complete events posted by the device * via interrupts. */ void net_tx(struct net_device *dev) { struct net_local *np = netdev_priv(dev); int entry; /* This protects us from concurrent execution of * our dev->hard_start_xmit function above. */ spin_lock(&np->lock); entry = np->tx_old; while (tx_entry_is_sent(np, entry)) { struct sk_buff *skb = np->skbs[entry]; np->stats.tx_bytes += skb->len; dev_kfree_skb_irq (skb); entry = next_tx_entry(np, entry); } np->tx_old = entry; /* If we had stopped the queue due to a "tx full" * condition, and space has now been made available, * wake up the queue. */ if (netif_queue_stopped(dev) && ! tx_full(dev)) netif_wake_queue(dev); spin_unlock(&np->lock); } #endif /* * The typical workload of the driver: * Handle the network interface interrupts. */ static irqreturn_t net_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct net_local *np; int ioaddr, status; int handled = 0; ioaddr = dev->base_addr; np = netdev_priv(dev); status = inw(ioaddr + 0); if (status == 0) goto out; handled = 1; if (status & RX_INTR) { /* Got a packet(s). */ net_rx(dev); } #if TX_RING if (status & TX_INTR) { /* Transmit complete. */ net_tx(dev); np->stats.tx_packets++; } #endif if (status & COUNTERS_INTR) { /* Increment the appropriate 'localstats' field. */ np->stats.tx_window_errors++; } out: return IRQ_RETVAL(handled); } /* We have a good packet(s), get it/them out of the buffers. */ static void net_rx(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; int boguscount = 10; do { int status = inw(ioaddr); int pkt_len = inw(ioaddr); if (pkt_len == 0) /* Read all the frames? */ break; /* Done for now */ if (status & 0x40) { /* There was an error. */ lp->stats.rx_errors++; if (status & 0x20) lp->stats.rx_frame_errors++; if (status & 0x10) lp->stats.rx_over_errors++; if (status & 0x08) lp->stats.rx_crc_errors++; if (status & 0x04) lp->stats.rx_fifo_errors++; } else { /* Malloc up new buffer. */ struct sk_buff *skb; lp->stats.rx_bytes+=pkt_len; skb = dev_alloc_skb(pkt_len); if (skb == NULL) { printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb->dev = dev; /* 'skb->data' points to the start of sk_buff data area. */ memcpy(skb_put(skb,pkt_len), (void*)dev->rmem_start, pkt_len); /* or */ insw(ioaddr, skb->data, (pkt_len + 1) >> 1); netif_rx(skb); lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; } } while (--boguscount); return; } /* The inverse routine to net_open(). */ static int net_close(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); int ioaddr = dev->base_addr; lp->open_time = 0; netif_stop_queue(dev); /* Flush the Tx and disable Rx here. */ disable_dma(dev->dma); /* If not IRQ or DMA jumpered, free up the line. */ outw(0x00, ioaddr+0); /* Release the physical interrupt line. */ free_irq(dev->irq, dev); free_dma(dev->dma); /* Update the statistics here. */ return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *net_get_stats(struct net_device *dev) { struct net_local *lp = netdev_priv(dev); short ioaddr = dev->base_addr; /* Update the statistics from the device registers. */ lp->stats.rx_missed_errors = inw(ioaddr+1); return &lp->stats; } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void set_multicast_list(struct net_device *dev) { short ioaddr = dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Enable promiscuous mode */ outw(MULTICAST|PROMISC, ioaddr); } else if ((dev->flags&IFF_ALLMULTI) || netdev_mc_count(dev) > HW_MAX_ADDRS) { /* Disable promiscuous mode, use normal mode. */ hardware_set_filter(NULL); outw(MULTICAST, ioaddr); } else if (!netdev_mc_empty(dev)) { /* Walk the address list, and load the filter */ hardware_set_filter(dev); outw(MULTICAST, ioaddr); } else outw(0, ioaddr); } #ifdef MODULE static struct net_device *this_device; static int io = 0x300; static int irq; static int dma; static int mem; MODULE_LICENSE("GPL"); int init_module(void) { struct net_device *dev; int result; if (io == 0) printk(KERN_WARNING "%s: You shouldn't use auto-probing with insmod!\n", cardname); dev = alloc_etherdev(sizeof(struct net_local)); if (!dev) return -ENOMEM; /* Copy the parameters from insmod into the device structure. */ dev->base_addr = io; dev->irq = irq; dev->dma = dma; dev->mem_start = mem; if (do_netcard_probe(dev) == 0) { this_device = dev; return 0; } free_netdev(dev); return -ENXIO; } void cleanup_module(void) { unregister_netdev(this_device); cleanup_card(this_device); free_netdev(this_device); } #endif /* MODULE */