/**************************************************************************/ /* */ /* IBM eServer i/pSeries Virtual Ethernet Device Driver */ /* Copyright (C) 2003 IBM Corp. */ /* Originally written by Dave Larson (larson1@us.ibm.com) */ /* Maintained by Santiago Leon (santil@us.ibm.com) */ /* */ /* This program is free software; you can redistribute it and/or modify */ /* it under the terms of the GNU General Public License as published by */ /* the Free Software Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will be useful, */ /* but WITHOUT ANY WARRANTY; without even the implied warranty of */ /* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */ /* GNU General Public License for more details. */ /* */ /* You should have received a copy of the GNU General Public License */ /* along with this program; if not, write to the Free Software */ /* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 */ /* USA */ /* */ /* This module contains the implementation of a virtual ethernet device */ /* for use with IBM i/pSeries LPAR Linux. It utilizes the logical LAN */ /* option of the RS/6000 Platform Architechture to interface with virtual */ /* ethernet NICs that are presented to the partition by the hypervisor. */ /* */ /**************************************************************************/ /* TODO: - add support for sysfs - possibly remove procfs support */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/mm.h> #include <linux/ethtool.h> #include <linux/proc_fs.h> #include <linux/in.h> #include <linux/ip.h> #include <net/net_namespace.h> #include <asm/hvcall.h> #include <asm/atomic.h> #include <asm/vio.h> #include <asm/iommu.h> #include <asm/uaccess.h> #include <asm/firmware.h> #include <linux/seq_file.h> #include "ibmveth.h" #undef DEBUG #define ibmveth_printk(fmt, args...) \ printk(KERN_DEBUG "%s: " fmt, __FILE__, ## args) #define ibmveth_error_printk(fmt, args...) \ printk(KERN_ERR "(%s:%3.3d ua:%x) ERROR: " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args) #ifdef DEBUG #define ibmveth_debug_printk_no_adapter(fmt, args...) \ printk(KERN_DEBUG "(%s:%3.3d): " fmt, __FILE__, __LINE__ , ## args) #define ibmveth_debug_printk(fmt, args...) \ printk(KERN_DEBUG "(%s:%3.3d ua:%x): " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args) #define ibmveth_assert(expr) \ if(!(expr)) { \ printk(KERN_DEBUG "assertion failed (%s:%3.3d ua:%x): %s\n", __FILE__, __LINE__, adapter->vdev->unit_address, #expr); \ BUG(); \ } #else #define ibmveth_debug_printk_no_adapter(fmt, args...) #define ibmveth_debug_printk(fmt, args...) #define ibmveth_assert(expr) #endif static int ibmveth_open(struct net_device *dev); static int ibmveth_close(struct net_device *dev); static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); static int ibmveth_poll(struct napi_struct *napi, int budget); static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *dev); static void ibmveth_set_multicast_list(struct net_device *dev); static int ibmveth_change_mtu(struct net_device *dev, int new_mtu); static void ibmveth_proc_register_driver(void); static void ibmveth_proc_unregister_driver(void); static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter); static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter); static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance); static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter); static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev); static struct kobj_type ktype_veth_pool; #ifdef CONFIG_PROC_FS #define IBMVETH_PROC_DIR "ibmveth" static struct proc_dir_entry *ibmveth_proc_dir; #endif static const char ibmveth_driver_name[] = "ibmveth"; static const char ibmveth_driver_string[] = "IBM i/pSeries Virtual Ethernet Driver"; #define ibmveth_driver_version "1.03" MODULE_AUTHOR("Santiago Leon <santil@us.ibm.com>"); MODULE_DESCRIPTION("IBM i/pSeries Virtual Ethernet Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ibmveth_driver_version); struct ibmveth_stat { char name[ETH_GSTRING_LEN]; int offset; }; #define IBMVETH_STAT_OFF(stat) offsetof(struct ibmveth_adapter, stat) #define IBMVETH_GET_STAT(a, off) *((u64 *)(((unsigned long)(a)) + off)) struct ibmveth_stat ibmveth_stats[] = { { "replenish_task_cycles", IBMVETH_STAT_OFF(replenish_task_cycles) }, { "replenish_no_mem", IBMVETH_STAT_OFF(replenish_no_mem) }, { "replenish_add_buff_failure", IBMVETH_STAT_OFF(replenish_add_buff_failure) }, { "replenish_add_buff_success", IBMVETH_STAT_OFF(replenish_add_buff_success) }, { "rx_invalid_buffer", IBMVETH_STAT_OFF(rx_invalid_buffer) }, { "rx_no_buffer", IBMVETH_STAT_OFF(rx_no_buffer) }, { "tx_map_failed", IBMVETH_STAT_OFF(tx_map_failed) }, { "tx_send_failed", IBMVETH_STAT_OFF(tx_send_failed) }, }; /* simple methods of getting data from the current rxq entry */ static inline u32 ibmveth_rxq_flags(struct ibmveth_adapter *adapter) { return adapter->rx_queue.queue_addr[adapter->rx_queue.index].flags_off; } static inline int ibmveth_rxq_toggle(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_TOGGLE) >> IBMVETH_RXQ_TOGGLE_SHIFT; } static inline int ibmveth_rxq_pending_buffer(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_toggle(adapter) == adapter->rx_queue.toggle); } static inline int ibmveth_rxq_buffer_valid(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_VALID); } static inline int ibmveth_rxq_frame_offset(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_OFF_MASK); } static inline int ibmveth_rxq_frame_length(struct ibmveth_adapter *adapter) { return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].length); } static inline int ibmveth_rxq_csum_good(struct ibmveth_adapter *adapter) { return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_CSUM_GOOD); } /* setup the initial settings for a buffer pool */ static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size, u32 pool_active) { pool->size = pool_size; pool->index = pool_index; pool->buff_size = buff_size; pool->threshold = pool_size / 2; pool->active = pool_active; } /* allocate and setup an buffer pool - called during open */ static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool) { int i; pool->free_map = kmalloc(sizeof(u16) * pool->size, GFP_KERNEL); if(!pool->free_map) { return -1; } pool->dma_addr = kmalloc(sizeof(dma_addr_t) * pool->size, GFP_KERNEL); if(!pool->dma_addr) { kfree(pool->free_map); pool->free_map = NULL; return -1; } pool->skbuff = kmalloc(sizeof(void*) * pool->size, GFP_KERNEL); if(!pool->skbuff) { kfree(pool->dma_addr); pool->dma_addr = NULL; kfree(pool->free_map); pool->free_map = NULL; return -1; } memset(pool->skbuff, 0, sizeof(void*) * pool->size); memset(pool->dma_addr, 0, sizeof(dma_addr_t) * pool->size); for(i = 0; i < pool->size; ++i) { pool->free_map[i] = i; } atomic_set(&pool->available, 0); pool->producer_index = 0; pool->consumer_index = 0; return 0; } /* replenish the buffers for a pool. note that we don't need to * skb_reserve these since they are used for incoming... */ static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { u32 i; u32 count = pool->size - atomic_read(&pool->available); u32 buffers_added = 0; struct sk_buff *skb; unsigned int free_index, index; u64 correlator; unsigned long lpar_rc; dma_addr_t dma_addr; mb(); for(i = 0; i < count; ++i) { union ibmveth_buf_desc desc; skb = alloc_skb(pool->buff_size, GFP_ATOMIC); if(!skb) { ibmveth_debug_printk("replenish: unable to allocate skb\n"); adapter->replenish_no_mem++; break; } free_index = pool->consumer_index; pool->consumer_index = (pool->consumer_index + 1) % pool->size; index = pool->free_map[free_index]; ibmveth_assert(index != IBM_VETH_INVALID_MAP); ibmveth_assert(pool->skbuff[index] == NULL); dma_addr = dma_map_single(&adapter->vdev->dev, skb->data, pool->buff_size, DMA_FROM_DEVICE); if (dma_mapping_error(&adapter->vdev->dev, dma_addr)) goto failure; pool->free_map[free_index] = IBM_VETH_INVALID_MAP; pool->dma_addr[index] = dma_addr; pool->skbuff[index] = skb; correlator = ((u64)pool->index << 32) | index; *(u64*)skb->data = correlator; desc.fields.flags_len = IBMVETH_BUF_VALID | pool->buff_size; desc.fields.address = dma_addr; lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if (lpar_rc != H_SUCCESS) goto failure; else { buffers_added++; adapter->replenish_add_buff_success++; } } mb(); atomic_add(buffers_added, &(pool->available)); return; failure: pool->free_map[free_index] = index; pool->skbuff[index] = NULL; if (pool->consumer_index == 0) pool->consumer_index = pool->size - 1; else pool->consumer_index--; if (!dma_mapping_error(&adapter->vdev->dev, dma_addr)) dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[index], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); adapter->replenish_add_buff_failure++; mb(); atomic_add(buffers_added, &(pool->available)); } /* replenish routine */ static void ibmveth_replenish_task(struct ibmveth_adapter *adapter) { int i; adapter->replenish_task_cycles++; for (i = (IbmVethNumBufferPools - 1); i >= 0; i--) if(adapter->rx_buff_pool[i].active) ibmveth_replenish_buffer_pool(adapter, &adapter->rx_buff_pool[i]); adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8); } /* empty and free ana buffer pool - also used to do cleanup in error paths */ static void ibmveth_free_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool) { int i; kfree(pool->free_map); pool->free_map = NULL; if(pool->skbuff && pool->dma_addr) { for(i = 0; i < pool->size; ++i) { struct sk_buff *skb = pool->skbuff[i]; if(skb) { dma_unmap_single(&adapter->vdev->dev, pool->dma_addr[i], pool->buff_size, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); pool->skbuff[i] = NULL; } } } if(pool->dma_addr) { kfree(pool->dma_addr); pool->dma_addr = NULL; } if(pool->skbuff) { kfree(pool->skbuff); pool->skbuff = NULL; } } /* remove a buffer from a pool */ static void ibmveth_remove_buffer_from_pool(struct ibmveth_adapter *adapter, u64 correlator) { unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; unsigned int free_index; struct sk_buff *skb; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); skb = adapter->rx_buff_pool[pool].skbuff[index]; ibmveth_assert(skb != NULL); adapter->rx_buff_pool[pool].skbuff[index] = NULL; dma_unmap_single(&adapter->vdev->dev, adapter->rx_buff_pool[pool].dma_addr[index], adapter->rx_buff_pool[pool].buff_size, DMA_FROM_DEVICE); free_index = adapter->rx_buff_pool[pool].producer_index; adapter->rx_buff_pool[pool].producer_index = (adapter->rx_buff_pool[pool].producer_index + 1) % adapter->rx_buff_pool[pool].size; adapter->rx_buff_pool[pool].free_map[free_index] = index; mb(); atomic_dec(&(adapter->rx_buff_pool[pool].available)); } /* get the current buffer on the rx queue */ static inline struct sk_buff *ibmveth_rxq_get_buffer(struct ibmveth_adapter *adapter) { u64 correlator = adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); return adapter->rx_buff_pool[pool].skbuff[index]; } /* recycle the current buffer on the rx queue */ static void ibmveth_rxq_recycle_buffer(struct ibmveth_adapter *adapter) { u32 q_index = adapter->rx_queue.index; u64 correlator = adapter->rx_queue.queue_addr[q_index].correlator; unsigned int pool = correlator >> 32; unsigned int index = correlator & 0xffffffffUL; union ibmveth_buf_desc desc; unsigned long lpar_rc; ibmveth_assert(pool < IbmVethNumBufferPools); ibmveth_assert(index < adapter->rx_buff_pool[pool].size); if(!adapter->rx_buff_pool[pool].active) { ibmveth_rxq_harvest_buffer(adapter); ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[pool]); return; } desc.fields.flags_len = IBMVETH_BUF_VALID | adapter->rx_buff_pool[pool].buff_size; desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index]; lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc); if(lpar_rc != H_SUCCESS) { ibmveth_debug_printk("h_add_logical_lan_buffer failed during recycle rc=%ld", lpar_rc); ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); } if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } } static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter) { ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator); if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) { adapter->rx_queue.index = 0; adapter->rx_queue.toggle = !adapter->rx_queue.toggle; } } static void ibmveth_cleanup(struct ibmveth_adapter *adapter) { int i; struct device *dev = &adapter->vdev->dev; if(adapter->buffer_list_addr != NULL) { if (!dma_mapping_error(dev, adapter->buffer_list_dma)) { dma_unmap_single(dev, adapter->buffer_list_dma, 4096, DMA_BIDIRECTIONAL); adapter->buffer_list_dma = DMA_ERROR_CODE; } free_page((unsigned long)adapter->buffer_list_addr); adapter->buffer_list_addr = NULL; } if(adapter->filter_list_addr != NULL) { if (!dma_mapping_error(dev, adapter->filter_list_dma)) { dma_unmap_single(dev, adapter->filter_list_dma, 4096, DMA_BIDIRECTIONAL); adapter->filter_list_dma = DMA_ERROR_CODE; } free_page((unsigned long)adapter->filter_list_addr); adapter->filter_list_addr = NULL; } if(adapter->rx_queue.queue_addr != NULL) { if (!dma_mapping_error(dev, adapter->rx_queue.queue_dma)) { dma_unmap_single(dev, adapter->rx_queue.queue_dma, adapter->rx_queue.queue_len, DMA_BIDIRECTIONAL); adapter->rx_queue.queue_dma = DMA_ERROR_CODE; } kfree(adapter->rx_queue.queue_addr); adapter->rx_queue.queue_addr = NULL; } for(i = 0; i<IbmVethNumBufferPools; i++) if (adapter->rx_buff_pool[i].active) ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); if (adapter->bounce_buffer != NULL) { if (!dma_mapping_error(dev, adapter->bounce_buffer_dma)) { dma_unmap_single(&adapter->vdev->dev, adapter->bounce_buffer_dma, adapter->netdev->mtu + IBMVETH_BUFF_OH, DMA_BIDIRECTIONAL); adapter->bounce_buffer_dma = DMA_ERROR_CODE; } kfree(adapter->bounce_buffer); adapter->bounce_buffer = NULL; } } static int ibmveth_register_logical_lan(struct ibmveth_adapter *adapter, union ibmveth_buf_desc rxq_desc, u64 mac_address) { int rc, try_again = 1; /* After a kexec the adapter will still be open, so our attempt to * open it will fail. So if we get a failure we free the adapter and * try again, but only once. */ retry: rc = h_register_logical_lan(adapter->vdev->unit_address, adapter->buffer_list_dma, rxq_desc.desc, adapter->filter_list_dma, mac_address); if (rc != H_SUCCESS && try_again) { do { rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY)); try_again = 0; goto retry; } return rc; } static int ibmveth_open(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); u64 mac_address = 0; int rxq_entries = 1; unsigned long lpar_rc; int rc; union ibmveth_buf_desc rxq_desc; int i; struct device *dev; ibmveth_debug_printk("open starting\n"); napi_enable(&adapter->napi); for(i = 0; i<IbmVethNumBufferPools; i++) rxq_entries += adapter->rx_buff_pool[i].size; adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL); adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL); if(!adapter->buffer_list_addr || !adapter->filter_list_addr) { ibmveth_error_printk("unable to allocate filter or buffer list pages\n"); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM; } adapter->rx_queue.queue_len = sizeof(struct ibmveth_rx_q_entry) * rxq_entries; adapter->rx_queue.queue_addr = kmalloc(adapter->rx_queue.queue_len, GFP_KERNEL); if(!adapter->rx_queue.queue_addr) { ibmveth_error_printk("unable to allocate rx queue pages\n"); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM; } dev = &adapter->vdev->dev; adapter->buffer_list_dma = dma_map_single(dev, adapter->buffer_list_addr, 4096, DMA_BIDIRECTIONAL); adapter->filter_list_dma = dma_map_single(dev, adapter->filter_list_addr, 4096, DMA_BIDIRECTIONAL); adapter->rx_queue.queue_dma = dma_map_single(dev, adapter->rx_queue.queue_addr, adapter->rx_queue.queue_len, DMA_BIDIRECTIONAL); if ((dma_mapping_error(dev, adapter->buffer_list_dma)) || (dma_mapping_error(dev, adapter->filter_list_dma)) || (dma_mapping_error(dev, adapter->rx_queue.queue_dma))) { ibmveth_error_printk("unable to map filter or buffer list pages\n"); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM; } adapter->rx_queue.index = 0; adapter->rx_queue.num_slots = rxq_entries; adapter->rx_queue.toggle = 1; memcpy(&mac_address, netdev->dev_addr, netdev->addr_len); mac_address = mac_address >> 16; rxq_desc.fields.flags_len = IBMVETH_BUF_VALID | adapter->rx_queue.queue_len; rxq_desc.fields.address = adapter->rx_queue.queue_dma; ibmveth_debug_printk("buffer list @ 0x%p\n", adapter->buffer_list_addr); ibmveth_debug_printk("filter list @ 0x%p\n", adapter->filter_list_addr); ibmveth_debug_printk("receive q @ 0x%p\n", adapter->rx_queue.queue_addr); h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); lpar_rc = ibmveth_register_logical_lan(adapter, rxq_desc, mac_address); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_register_logical_lan failed with %ld\n", lpar_rc); ibmveth_error_printk("buffer TCE:0x%llx filter TCE:0x%llx rxq desc:0x%llx MAC:0x%llx\n", adapter->buffer_list_dma, adapter->filter_list_dma, rxq_desc.desc, mac_address); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENONET; } for(i = 0; i<IbmVethNumBufferPools; i++) { if(!adapter->rx_buff_pool[i].active) continue; if (ibmveth_alloc_buffer_pool(&adapter->rx_buff_pool[i])) { ibmveth_error_printk("unable to alloc pool\n"); adapter->rx_buff_pool[i].active = 0; ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM ; } } ibmveth_debug_printk("registering irq 0x%x\n", netdev->irq); if((rc = request_irq(netdev->irq, ibmveth_interrupt, 0, netdev->name, netdev)) != 0) { ibmveth_error_printk("unable to request irq 0x%x, rc %d\n", netdev->irq, rc); do { rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY)); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return rc; } adapter->bounce_buffer = kmalloc(netdev->mtu + IBMVETH_BUFF_OH, GFP_KERNEL); if (!adapter->bounce_buffer) { ibmveth_error_printk("unable to allocate bounce buffer\n"); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM; } adapter->bounce_buffer_dma = dma_map_single(&adapter->vdev->dev, adapter->bounce_buffer, netdev->mtu + IBMVETH_BUFF_OH, DMA_BIDIRECTIONAL); if (dma_mapping_error(dev, adapter->bounce_buffer_dma)) { ibmveth_error_printk("unable to map bounce buffer\n"); ibmveth_cleanup(adapter); napi_disable(&adapter->napi); return -ENOMEM; } ibmveth_debug_printk("initial replenish cycle\n"); ibmveth_interrupt(netdev->irq, netdev); netif_start_queue(netdev); ibmveth_debug_printk("open complete\n"); return 0; } static int ibmveth_close(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); long lpar_rc; ibmveth_debug_printk("close starting\n"); napi_disable(&adapter->napi); if (!adapter->pool_config) netif_stop_queue(netdev); free_irq(netdev->irq, netdev); do { lpar_rc = h_free_logical_lan(adapter->vdev->unit_address); } while (H_IS_LONG_BUSY(lpar_rc) || (lpar_rc == H_BUSY)); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_free_logical_lan failed with %lx, continuing with close\n", lpar_rc); } adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8); ibmveth_cleanup(adapter); ibmveth_debug_printk("close complete\n"); return 0; } static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { cmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE); cmd->advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_Autoneg | ADVERTISED_FIBRE); cmd->speed = SPEED_1000; cmd->duplex = DUPLEX_FULL; cmd->port = PORT_FIBRE; cmd->phy_address = 0; cmd->transceiver = XCVR_INTERNAL; cmd->autoneg = AUTONEG_ENABLE; cmd->maxtxpkt = 0; cmd->maxrxpkt = 1; return 0; } static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) { strncpy(info->driver, ibmveth_driver_name, sizeof(info->driver) - 1); strncpy(info->version, ibmveth_driver_version, sizeof(info->version) - 1); } static u32 netdev_get_link(struct net_device *dev) { return 1; } static void ibmveth_set_rx_csum_flags(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); if (data) adapter->rx_csum = 1; else { /* * Since the ibmveth firmware interface does not have the concept of * separate tx/rx checksum offload enable, if rx checksum is disabled * we also have to disable tx checksum offload. Once we disable rx * checksum offload, we are no longer allowed to send tx buffers that * are not properly checksummed. */ adapter->rx_csum = 0; dev->features &= ~NETIF_F_IP_CSUM; } } static void ibmveth_set_tx_csum_flags(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); if (data) { dev->features |= NETIF_F_IP_CSUM; adapter->rx_csum = 1; } else dev->features &= ~NETIF_F_IP_CSUM; } static int ibmveth_set_csum_offload(struct net_device *dev, u32 data, void (*done) (struct net_device *, u32)) { struct ibmveth_adapter *adapter = netdev_priv(dev); unsigned long set_attr, clr_attr, ret_attr; long ret; int rc1 = 0, rc2 = 0; int restart = 0; if (netif_running(dev)) { restart = 1; adapter->pool_config = 1; ibmveth_close(dev); adapter->pool_config = 0; } set_attr = 0; clr_attr = 0; if (data) set_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM; else clr_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM; ret = h_illan_attributes(adapter->vdev->unit_address, 0, 0, &ret_attr); if (ret == H_SUCCESS && !(ret_attr & IBMVETH_ILLAN_ACTIVE_TRUNK) && !(ret_attr & IBMVETH_ILLAN_TRUNK_PRI_MASK) && (ret_attr & IBMVETH_ILLAN_PADDED_PKT_CSUM)) { ret = h_illan_attributes(adapter->vdev->unit_address, clr_attr, set_attr, &ret_attr); if (ret != H_SUCCESS) { rc1 = -EIO; ibmveth_error_printk("unable to change checksum offload settings." " %d rc=%ld\n", data, ret); ret = h_illan_attributes(adapter->vdev->unit_address, set_attr, clr_attr, &ret_attr); } else done(dev, data); } else { rc1 = -EIO; ibmveth_error_printk("unable to change checksum offload settings." " %d rc=%ld ret_attr=%lx\n", data, ret, ret_attr); } if (restart) rc2 = ibmveth_open(dev); return rc1 ? rc1 : rc2; } static int ibmveth_set_rx_csum(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); if ((data && adapter->rx_csum) || (!data && !adapter->rx_csum)) return 0; return ibmveth_set_csum_offload(dev, data, ibmveth_set_rx_csum_flags); } static int ibmveth_set_tx_csum(struct net_device *dev, u32 data) { struct ibmveth_adapter *adapter = netdev_priv(dev); int rc = 0; if (data && (dev->features & NETIF_F_IP_CSUM)) return 0; if (!data && !(dev->features & NETIF_F_IP_CSUM)) return 0; if (data && !adapter->rx_csum) rc = ibmveth_set_csum_offload(dev, data, ibmveth_set_tx_csum_flags); else ibmveth_set_tx_csum_flags(dev, data); return rc; } static u32 ibmveth_get_rx_csum(struct net_device *dev) { struct ibmveth_adapter *adapter = netdev_priv(dev); return adapter->rx_csum; } static void ibmveth_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++, data += ETH_GSTRING_LEN) memcpy(data, ibmveth_stats[i].name, ETH_GSTRING_LEN); } static int ibmveth_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(ibmveth_stats); default: return -EOPNOTSUPP; } } static void ibmveth_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { int i; struct ibmveth_adapter *adapter = netdev_priv(dev); for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++) data[i] = IBMVETH_GET_STAT(adapter, ibmveth_stats[i].offset); } static const struct ethtool_ops netdev_ethtool_ops = { .get_drvinfo = netdev_get_drvinfo, .get_settings = netdev_get_settings, .get_link = netdev_get_link, .set_tx_csum = ibmveth_set_tx_csum, .get_rx_csum = ibmveth_get_rx_csum, .set_rx_csum = ibmveth_set_rx_csum, .get_strings = ibmveth_get_strings, .get_sset_count = ibmveth_get_sset_count, .get_ethtool_stats = ibmveth_get_ethtool_stats, }; static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { return -EOPNOTSUPP; } #define page_offset(v) ((unsigned long)(v) & ((1 << 12) - 1)) static netdev_tx_t ibmveth_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); union ibmveth_buf_desc desc; unsigned long lpar_rc; unsigned long correlator; unsigned long flags; unsigned int retry_count; unsigned int tx_dropped = 0; unsigned int tx_bytes = 0; unsigned int tx_packets = 0; unsigned int tx_send_failed = 0; unsigned int tx_map_failed = 0; int used_bounce = 0; unsigned long data_dma_addr; desc.fields.flags_len = IBMVETH_BUF_VALID | skb->len; if (skb->ip_summed == CHECKSUM_PARTIAL && ip_hdr(skb)->protocol != IPPROTO_TCP && skb_checksum_help(skb)) { ibmveth_error_printk("tx: failed to checksum packet\n"); tx_dropped++; goto out; } if (skb->ip_summed == CHECKSUM_PARTIAL) { unsigned char *buf = skb_transport_header(skb) + skb->csum_offset; desc.fields.flags_len |= (IBMVETH_BUF_NO_CSUM | IBMVETH_BUF_CSUM_GOOD); /* Need to zero out the checksum */ buf[0] = 0; buf[1] = 0; } data_dma_addr = dma_map_single(&adapter->vdev->dev, skb->data, skb->len, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->vdev->dev, data_dma_addr)) { if (!firmware_has_feature(FW_FEATURE_CMO)) ibmveth_error_printk("tx: unable to map xmit buffer\n"); skb_copy_from_linear_data(skb, adapter->bounce_buffer, skb->len); desc.fields.address = adapter->bounce_buffer_dma; tx_map_failed++; used_bounce = 1; wmb(); } else desc.fields.address = data_dma_addr; /* send the frame. Arbitrarily set retrycount to 1024 */ correlator = 0; retry_count = 1024; do { lpar_rc = h_send_logical_lan(adapter->vdev->unit_address, desc.desc, 0, 0, 0, 0, 0, correlator, &correlator); } while ((lpar_rc == H_BUSY) && (retry_count--)); if(lpar_rc != H_SUCCESS && lpar_rc != H_DROPPED) { ibmveth_error_printk("tx: h_send_logical_lan failed with rc=%ld\n", lpar_rc); ibmveth_error_printk("tx: valid=%d, len=%d, address=0x%08x\n", (desc.fields.flags_len & IBMVETH_BUF_VALID) ? 1 : 0, skb->len, desc.fields.address); tx_send_failed++; tx_dropped++; } else { tx_packets++; tx_bytes += skb->len; netdev->trans_start = jiffies; } if (!used_bounce) dma_unmap_single(&adapter->vdev->dev, data_dma_addr, skb->len, DMA_TO_DEVICE); out: spin_lock_irqsave(&adapter->stats_lock, flags); netdev->stats.tx_dropped += tx_dropped; netdev->stats.tx_bytes += tx_bytes; netdev->stats.tx_packets += tx_packets; adapter->tx_send_failed += tx_send_failed; adapter->tx_map_failed += tx_map_failed; spin_unlock_irqrestore(&adapter->stats_lock, flags); dev_kfree_skb(skb); return NETDEV_TX_OK; } static int ibmveth_poll(struct napi_struct *napi, int budget) { struct ibmveth_adapter *adapter = container_of(napi, struct ibmveth_adapter, napi); struct net_device *netdev = adapter->netdev; int frames_processed = 0; unsigned long lpar_rc; restart_poll: do { struct sk_buff *skb; if (!ibmveth_rxq_pending_buffer(adapter)) break; rmb(); if (!ibmveth_rxq_buffer_valid(adapter)) { wmb(); /* suggested by larson1 */ adapter->rx_invalid_buffer++; ibmveth_debug_printk("recycling invalid buffer\n"); ibmveth_rxq_recycle_buffer(adapter); } else { int length = ibmveth_rxq_frame_length(adapter); int offset = ibmveth_rxq_frame_offset(adapter); int csum_good = ibmveth_rxq_csum_good(adapter); skb = ibmveth_rxq_get_buffer(adapter); if (csum_good) skb->ip_summed = CHECKSUM_UNNECESSARY; ibmveth_rxq_harvest_buffer(adapter); skb_reserve(skb, offset); skb_put(skb, length); skb->protocol = eth_type_trans(skb, netdev); netif_receive_skb(skb); /* send it up */ netdev->stats.rx_packets++; netdev->stats.rx_bytes += length; frames_processed++; } } while (frames_processed < budget); ibmveth_replenish_task(adapter); if (frames_processed < budget) { /* We think we are done - reenable interrupts, * then check once more to make sure we are done. */ lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_ENABLE); ibmveth_assert(lpar_rc == H_SUCCESS); napi_complete(napi); if (ibmveth_rxq_pending_buffer(adapter) && napi_reschedule(napi)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); goto restart_poll; } } return frames_processed; } static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance) { struct net_device *netdev = dev_instance; struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned long lpar_rc; if (napi_schedule_prep(&adapter->napi)) { lpar_rc = h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE); ibmveth_assert(lpar_rc == H_SUCCESS); __napi_schedule(&adapter->napi); } return IRQ_HANDLED; } static void ibmveth_set_multicast_list(struct net_device *netdev) { struct ibmveth_adapter *adapter = netdev_priv(netdev); unsigned long lpar_rc; if((netdev->flags & IFF_PROMISC) || (netdev->mc_count > adapter->mcastFilterSize)) { lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when entering promisc mode\n", lpar_rc); } } else { struct dev_mc_list *mclist = netdev->mc_list; int i; /* clear the filter table & disable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableRecv | IbmVethMcastDisableFiltering | IbmVethMcastClearFilterTable, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when attempting to clear filter table\n", lpar_rc); } /* add the addresses to the filter table */ for(i = 0; i < netdev->mc_count; ++i, mclist = mclist->next) { // add the multicast address to the filter table unsigned long mcast_addr = 0; memcpy(((char *)&mcast_addr)+2, mclist->dmi_addr, 6); lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastAddFilter, mcast_addr); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when adding an entry to the filter table\n", lpar_rc); } } /* re-enable filtering */ lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address, IbmVethMcastEnableFiltering, 0); if(lpar_rc != H_SUCCESS) { ibmveth_error_printk("h_multicast_ctrl rc=%ld when enabling filtering\n", lpar_rc); } } } static int ibmveth_change_mtu(struct net_device *dev, int new_mtu) { struct ibmveth_adapter *adapter = netdev_priv(dev); struct vio_dev *viodev = adapter->vdev; int new_mtu_oh = new_mtu + IBMVETH_BUFF_OH; int i; if (new_mtu < IBMVETH_MAX_MTU) return -EINVAL; for (i = 0; i < IbmVethNumBufferPools; i++) if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size) break; if (i == IbmVethNumBufferPools) return -EINVAL; /* Deactivate all the buffer pools so that the next loop can activate only the buffer pools necessary to hold the new MTU */ for (i = 0; i < IbmVethNumBufferPools; i++) if (adapter->rx_buff_pool[i].active) { ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[i]); adapter->rx_buff_pool[i].active = 0; } /* Look for an active buffer pool that can hold the new MTU */ for(i = 0; i<IbmVethNumBufferPools; i++) { adapter->rx_buff_pool[i].active = 1; if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size) { if (netif_running(adapter->netdev)) { adapter->pool_config = 1; ibmveth_close(adapter->netdev); adapter->pool_config = 0; dev->mtu = new_mtu; vio_cmo_set_dev_desired(viodev, ibmveth_get_desired_dma (viodev)); return ibmveth_open(adapter->netdev); } dev->mtu = new_mtu; vio_cmo_set_dev_desired(viodev, ibmveth_get_desired_dma (viodev)); return 0; } } return -EINVAL; } #ifdef CONFIG_NET_POLL_CONTROLLER static void ibmveth_poll_controller(struct net_device *dev) { ibmveth_replenish_task(netdev_priv(dev)); ibmveth_interrupt(dev->irq, dev); } #endif /** * ibmveth_get_desired_dma - Calculate IO memory desired by the driver * * @vdev: struct vio_dev for the device whose desired IO mem is to be returned * * Return value: * Number of bytes of IO data the driver will need to perform well. */ static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev) { struct net_device *netdev = dev_get_drvdata(&vdev->dev); struct ibmveth_adapter *adapter; unsigned long ret; int i; int rxqentries = 1; /* netdev inits at probe time along with the structures we need below*/ if (netdev == NULL) return IOMMU_PAGE_ALIGN(IBMVETH_IO_ENTITLEMENT_DEFAULT); adapter = netdev_priv(netdev); ret = IBMVETH_BUFF_LIST_SIZE + IBMVETH_FILT_LIST_SIZE; ret += IOMMU_PAGE_ALIGN(netdev->mtu); for (i = 0; i < IbmVethNumBufferPools; i++) { /* add the size of the active receive buffers */ if (adapter->rx_buff_pool[i].active) ret += adapter->rx_buff_pool[i].size * IOMMU_PAGE_ALIGN(adapter->rx_buff_pool[i]. buff_size); rxqentries += adapter->rx_buff_pool[i].size; } /* add the size of the receive queue entries */ ret += IOMMU_PAGE_ALIGN(rxqentries * sizeof(struct ibmveth_rx_q_entry)); return ret; } static const struct net_device_ops ibmveth_netdev_ops = { .ndo_open = ibmveth_open, .ndo_stop = ibmveth_close, .ndo_start_xmit = ibmveth_start_xmit, .ndo_set_multicast_list = ibmveth_set_multicast_list, .ndo_do_ioctl = ibmveth_ioctl, .ndo_change_mtu = ibmveth_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = ibmveth_poll_controller, #endif }; static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id) { int rc, i; long ret; struct net_device *netdev; struct ibmveth_adapter *adapter; unsigned long set_attr, ret_attr; unsigned char *mac_addr_p; unsigned int *mcastFilterSize_p; ibmveth_debug_printk_no_adapter("entering ibmveth_probe for UA 0x%x\n", dev->unit_address); mac_addr_p = (unsigned char *) vio_get_attribute(dev, VETH_MAC_ADDR, NULL); if(!mac_addr_p) { printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find VETH_MAC_ADDR " "attribute\n", __FILE__, __LINE__); return 0; } mcastFilterSize_p = (unsigned int *) vio_get_attribute(dev, VETH_MCAST_FILTER_SIZE, NULL); if(!mcastFilterSize_p) { printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find " "VETH_MCAST_FILTER_SIZE attribute\n", __FILE__, __LINE__); return 0; } netdev = alloc_etherdev(sizeof(struct ibmveth_adapter)); if(!netdev) return -ENOMEM; adapter = netdev_priv(netdev); dev_set_drvdata(&dev->dev, netdev); adapter->vdev = dev; adapter->netdev = netdev; adapter->mcastFilterSize= *mcastFilterSize_p; adapter->pool_config = 0; netif_napi_add(netdev, &adapter->napi, ibmveth_poll, 16); /* Some older boxes running PHYP non-natively have an OF that returns a 8-byte local-mac-address field (and the first 2 bytes have to be ignored) while newer boxes' OF return a 6-byte field. Note that IEEE 1275 specifies that local-mac-address must be a 6-byte field. The RPA doc specifies that the first byte must be 10b, so we'll just look for it to solve this 8 vs. 6 byte field issue */ if ((*mac_addr_p & 0x3) != 0x02) mac_addr_p += 2; adapter->mac_addr = 0; memcpy(&adapter->mac_addr, mac_addr_p, 6); netdev->irq = dev->irq; netdev->netdev_ops = &ibmveth_netdev_ops; netdev->ethtool_ops = &netdev_ethtool_ops; SET_NETDEV_DEV(netdev, &dev->dev); netdev->features |= NETIF_F_LLTX; spin_lock_init(&adapter->stats_lock); memcpy(netdev->dev_addr, &adapter->mac_addr, netdev->addr_len); for(i = 0; i<IbmVethNumBufferPools; i++) { struct kobject *kobj = &adapter->rx_buff_pool[i].kobj; int error; ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i, pool_count[i], pool_size[i], pool_active[i]); error = kobject_init_and_add(kobj, &ktype_veth_pool, &dev->dev.kobj, "pool%d", i); if (!error) kobject_uevent(kobj, KOBJ_ADD); } ibmveth_debug_printk("adapter @ 0x%p\n", adapter); adapter->buffer_list_dma = DMA_ERROR_CODE; adapter->filter_list_dma = DMA_ERROR_CODE; adapter->rx_queue.queue_dma = DMA_ERROR_CODE; ibmveth_debug_printk("registering netdev...\n"); ret = h_illan_attributes(dev->unit_address, 0, 0, &ret_attr); if (ret == H_SUCCESS && !(ret_attr & IBMVETH_ILLAN_ACTIVE_TRUNK) && !(ret_attr & IBMVETH_ILLAN_TRUNK_PRI_MASK) && (ret_attr & IBMVETH_ILLAN_PADDED_PKT_CSUM)) { set_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM; ret = h_illan_attributes(dev->unit_address, 0, set_attr, &ret_attr); if (ret == H_SUCCESS) { adapter->rx_csum = 1; netdev->features |= NETIF_F_IP_CSUM; } else ret = h_illan_attributes(dev->unit_address, set_attr, 0, &ret_attr); } rc = register_netdev(netdev); if(rc) { ibmveth_debug_printk("failed to register netdev rc=%d\n", rc); free_netdev(netdev); return rc; } ibmveth_debug_printk("registered\n"); ibmveth_proc_register_adapter(adapter); return 0; } static int __devexit ibmveth_remove(struct vio_dev *dev) { struct net_device *netdev = dev_get_drvdata(&dev->dev); struct ibmveth_adapter *adapter = netdev_priv(netdev); int i; for(i = 0; i<IbmVethNumBufferPools; i++) kobject_put(&adapter->rx_buff_pool[i].kobj); unregister_netdev(netdev); ibmveth_proc_unregister_adapter(adapter); free_netdev(netdev); dev_set_drvdata(&dev->dev, NULL); return 0; } #ifdef CONFIG_PROC_FS static void ibmveth_proc_register_driver(void) { ibmveth_proc_dir = proc_mkdir(IBMVETH_PROC_DIR, init_net.proc_net); if (ibmveth_proc_dir) { } } static void ibmveth_proc_unregister_driver(void) { remove_proc_entry(IBMVETH_PROC_DIR, init_net.proc_net); } static int ibmveth_show(struct seq_file *seq, void *v) { struct ibmveth_adapter *adapter = seq->private; char *current_mac = (char *) adapter->netdev->dev_addr; char *firmware_mac = (char *) &adapter->mac_addr; seq_printf(seq, "%s %s\n\n", ibmveth_driver_string, ibmveth_driver_version); seq_printf(seq, "Unit Address: 0x%x\n", adapter->vdev->unit_address); seq_printf(seq, "Current MAC: %pM\n", current_mac); seq_printf(seq, "Firmware MAC: %pM\n", firmware_mac); seq_printf(seq, "\nAdapter Statistics:\n"); seq_printf(seq, " TX: vio_map_single failres: %lld\n", adapter->tx_map_failed); seq_printf(seq, " send failures: %lld\n", adapter->tx_send_failed); seq_printf(seq, " RX: replenish task cycles: %lld\n", adapter->replenish_task_cycles); seq_printf(seq, " alloc_skb_failures: %lld\n", adapter->replenish_no_mem); seq_printf(seq, " add buffer failures: %lld\n", adapter->replenish_add_buff_failure); seq_printf(seq, " invalid buffers: %lld\n", adapter->rx_invalid_buffer); seq_printf(seq, " no buffers: %lld\n", adapter->rx_no_buffer); return 0; } static int ibmveth_proc_open(struct inode *inode, struct file *file) { return single_open(file, ibmveth_show, PDE(inode)->data); } static const struct file_operations ibmveth_proc_fops = { .owner = THIS_MODULE, .open = ibmveth_proc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter) { struct proc_dir_entry *entry; if (ibmveth_proc_dir) { char u_addr[10]; sprintf(u_addr, "%x", adapter->vdev->unit_address); entry = proc_create_data(u_addr, S_IFREG, ibmveth_proc_dir, &ibmveth_proc_fops, adapter); if (!entry) ibmveth_error_printk("Cannot create adapter proc entry"); } return; } static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter) { if (ibmveth_proc_dir) { char u_addr[10]; sprintf(u_addr, "%x", adapter->vdev->unit_address); remove_proc_entry(u_addr, ibmveth_proc_dir); } } #else /* CONFIG_PROC_FS */ static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter) { } static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter) { } static void ibmveth_proc_register_driver(void) { } static void ibmveth_proc_unregister_driver(void) { } #endif /* CONFIG_PROC_FS */ static struct attribute veth_active_attr; static struct attribute veth_num_attr; static struct attribute veth_size_attr; static ssize_t veth_pool_show(struct kobject * kobj, struct attribute * attr, char * buf) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); if (attr == &veth_active_attr) return sprintf(buf, "%d\n", pool->active); else if (attr == &veth_num_attr) return sprintf(buf, "%d\n", pool->size); else if (attr == &veth_size_attr) return sprintf(buf, "%d\n", pool->buff_size); return 0; } static ssize_t veth_pool_store(struct kobject * kobj, struct attribute * attr, const char * buf, size_t count) { struct ibmveth_buff_pool *pool = container_of(kobj, struct ibmveth_buff_pool, kobj); struct net_device *netdev = dev_get_drvdata( container_of(kobj->parent, struct device, kobj)); struct ibmveth_adapter *adapter = netdev_priv(netdev); long value = simple_strtol(buf, NULL, 10); long rc; if (attr == &veth_active_attr) { if (value && !pool->active) { if (netif_running(netdev)) { if(ibmveth_alloc_buffer_pool(pool)) { ibmveth_error_printk("unable to alloc pool\n"); return -ENOMEM; } pool->active = 1; adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; if ((rc = ibmveth_open(netdev))) return rc; } else pool->active = 1; } else if (!value && pool->active) { int mtu = netdev->mtu + IBMVETH_BUFF_OH; int i; /* Make sure there is a buffer pool with buffers that can hold a packet of the size of the MTU */ for (i = 0; i < IbmVethNumBufferPools; i++) { if (pool == &adapter->rx_buff_pool[i]) continue; if (!adapter->rx_buff_pool[i].active) continue; if (mtu <= adapter->rx_buff_pool[i].buff_size) break; } if (i == IbmVethNumBufferPools) { ibmveth_error_printk("no active pool >= MTU\n"); return -EPERM; } if (netif_running(netdev)) { adapter->pool_config = 1; ibmveth_close(netdev); pool->active = 0; adapter->pool_config = 0; if ((rc = ibmveth_open(netdev))) return rc; } pool->active = 0; } } else if (attr == &veth_num_attr) { if (value <= 0 || value > IBMVETH_MAX_POOL_COUNT) return -EINVAL; else { if (netif_running(netdev)) { adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; pool->size = value; if ((rc = ibmveth_open(netdev))) return rc; } else pool->size = value; } } else if (attr == &veth_size_attr) { if (value <= IBMVETH_BUFF_OH || value > IBMVETH_MAX_BUF_SIZE) return -EINVAL; else { if (netif_running(netdev)) { adapter->pool_config = 1; ibmveth_close(netdev); adapter->pool_config = 0; pool->buff_size = value; if ((rc = ibmveth_open(netdev))) return rc; } else pool->buff_size = value; } } /* kick the interrupt handler to allocate/deallocate pools */ ibmveth_interrupt(netdev->irq, netdev); return count; } #define ATTR(_name, _mode) \ struct attribute veth_##_name##_attr = { \ .name = __stringify(_name), .mode = _mode, \ }; static ATTR(active, 0644); static ATTR(num, 0644); static ATTR(size, 0644); static struct attribute * veth_pool_attrs[] = { &veth_active_attr, &veth_num_attr, &veth_size_attr, NULL, }; static struct sysfs_ops veth_pool_ops = { .show = veth_pool_show, .store = veth_pool_store, }; static struct kobj_type ktype_veth_pool = { .release = NULL, .sysfs_ops = &veth_pool_ops, .default_attrs = veth_pool_attrs, }; static struct vio_device_id ibmveth_device_table[] __devinitdata= { { "network", "IBM,l-lan"}, { "", "" } }; MODULE_DEVICE_TABLE(vio, ibmveth_device_table); static struct vio_driver ibmveth_driver = { .id_table = ibmveth_device_table, .probe = ibmveth_probe, .remove = ibmveth_remove, .get_desired_dma = ibmveth_get_desired_dma, .driver = { .name = ibmveth_driver_name, .owner = THIS_MODULE, } }; static int __init ibmveth_module_init(void) { ibmveth_printk("%s: %s %s\n", ibmveth_driver_name, ibmveth_driver_string, ibmveth_driver_version); ibmveth_proc_register_driver(); return vio_register_driver(&ibmveth_driver); } static void __exit ibmveth_module_exit(void) { vio_unregister_driver(&ibmveth_driver); ibmveth_proc_unregister_driver(); } module_init(ibmveth_module_init); module_exit(ibmveth_module_exit);