/* * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. * * Note: This driver is a cleanroom reimplementation based on reverse * engineered documentation written by Carl-Daniel Hailfinger * and Andrew de Quincey. * * NVIDIA, nForce and other NVIDIA marks are trademarks or registered * trademarks of NVIDIA Corporation in the United States and other * countries. * * Copyright (C) 2003,4,5 Manfred Spraul * Copyright (C) 2004 Andrew de Quincey (wol support) * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane * IRQ rate fixes, bigendian fixes, cleanups, verification) * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * Known bugs: * We suspect that on some hardware no TX done interrupts are generated. * This means recovery from netif_stop_queue only happens if the hw timer * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) * and the timer is active in the IRQMask, or if a rx packet arrives by chance. * If your hardware reliably generates tx done interrupts, then you can remove * DEV_NEED_TIMERIRQ from the driver_data flags. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few * superfluous timer interrupts from the nic. */ #define FORCEDETH_VERSION "0.63" #define DRV_NAME "forcedeth" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if 0 #define dprintk printk #else #define dprintk(x...) do { } while (0) #endif #define TX_WORK_PER_LOOP 64 #define RX_WORK_PER_LOOP 64 /* * Hardware access: */ #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */ #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */ #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */ #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */ #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */ #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */ #define DEV_HAS_MSI 0x000040 /* device supports MSI */ #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */ #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */ #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */ #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */ #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */ #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */ #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */ #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */ #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */ #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */ #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */ #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */ #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */ #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */ enum { NvRegIrqStatus = 0x000, #define NVREG_IRQSTAT_MIIEVENT 0x040 #define NVREG_IRQSTAT_MASK 0x83ff NvRegIrqMask = 0x004, #define NVREG_IRQ_RX_ERROR 0x0001 #define NVREG_IRQ_RX 0x0002 #define NVREG_IRQ_RX_NOBUF 0x0004 #define NVREG_IRQ_TX_ERR 0x0008 #define NVREG_IRQ_TX_OK 0x0010 #define NVREG_IRQ_TIMER 0x0020 #define NVREG_IRQ_LINK 0x0040 #define NVREG_IRQ_RX_FORCED 0x0080 #define NVREG_IRQ_TX_FORCED 0x0100 #define NVREG_IRQ_RECOVER_ERROR 0x8200 #define NVREG_IRQMASK_THROUGHPUT 0x00df #define NVREG_IRQMASK_CPU 0x0060 #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED) #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED) #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR) NvRegUnknownSetupReg6 = 0x008, #define NVREG_UNKSETUP6_VAL 3 /* * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms */ NvRegPollingInterval = 0x00c, #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */ #define NVREG_POLL_DEFAULT_CPU 13 NvRegMSIMap0 = 0x020, NvRegMSIMap1 = 0x024, NvRegMSIIrqMask = 0x030, #define NVREG_MSI_VECTOR_0_ENABLED 0x01 NvRegMisc1 = 0x080, #define NVREG_MISC1_PAUSE_TX 0x01 #define NVREG_MISC1_HD 0x02 #define NVREG_MISC1_FORCE 0x3b0f3c NvRegMacReset = 0x34, #define NVREG_MAC_RESET_ASSERT 0x0F3 NvRegTransmitterControl = 0x084, #define NVREG_XMITCTL_START 0x01 #define NVREG_XMITCTL_MGMT_ST 0x40000000 #define NVREG_XMITCTL_SYNC_MASK 0x000f0000 #define NVREG_XMITCTL_SYNC_NOT_READY 0x0 #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000 #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00 #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0 #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000 #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000 #define NVREG_XMITCTL_HOST_LOADED 0x00004000 #define NVREG_XMITCTL_TX_PATH_EN 0x01000000 #define NVREG_XMITCTL_DATA_START 0x00100000 #define NVREG_XMITCTL_DATA_READY 0x00010000 #define NVREG_XMITCTL_DATA_ERROR 0x00020000 NvRegTransmitterStatus = 0x088, #define NVREG_XMITSTAT_BUSY 0x01 NvRegPacketFilterFlags = 0x8c, #define NVREG_PFF_PAUSE_RX 0x08 #define NVREG_PFF_ALWAYS 0x7F0000 #define NVREG_PFF_PROMISC 0x80 #define NVREG_PFF_MYADDR 0x20 #define NVREG_PFF_LOOPBACK 0x10 NvRegOffloadConfig = 0x90, #define NVREG_OFFLOAD_HOMEPHY 0x601 #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE NvRegReceiverControl = 0x094, #define NVREG_RCVCTL_START 0x01 #define NVREG_RCVCTL_RX_PATH_EN 0x01000000 NvRegReceiverStatus = 0x98, #define NVREG_RCVSTAT_BUSY 0x01 NvRegSlotTime = 0x9c, #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000 #define NVREG_SLOTTIME_10_100_FULL 0x00007f00 #define NVREG_SLOTTIME_1000_FULL 0x0003ff00 #define NVREG_SLOTTIME_HALF 0x0000ff00 #define NVREG_SLOTTIME_DEFAULT 0x00007f00 #define NVREG_SLOTTIME_MASK 0x000000ff NvRegTxDeferral = 0xA0, #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000 NvRegRxDeferral = 0xA4, #define NVREG_RX_DEFERRAL_DEFAULT 0x16 NvRegMacAddrA = 0xA8, NvRegMacAddrB = 0xAC, NvRegMulticastAddrA = 0xB0, #define NVREG_MCASTADDRA_FORCE 0x01 NvRegMulticastAddrB = 0xB4, NvRegMulticastMaskA = 0xB8, #define NVREG_MCASTMASKA_NONE 0xffffffff NvRegMulticastMaskB = 0xBC, #define NVREG_MCASTMASKB_NONE 0xffff NvRegPhyInterface = 0xC0, #define PHY_RGMII 0x10000000 NvRegBackOffControl = 0xC4, #define NVREG_BKOFFCTRL_DEFAULT 0x70000000 #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff #define NVREG_BKOFFCTRL_SELECT 24 #define NVREG_BKOFFCTRL_GEAR 12 NvRegTxRingPhysAddr = 0x100, NvRegRxRingPhysAddr = 0x104, NvRegRingSizes = 0x108, #define NVREG_RINGSZ_TXSHIFT 0 #define NVREG_RINGSZ_RXSHIFT 16 NvRegTransmitPoll = 0x10c, #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000 NvRegLinkSpeed = 0x110, #define NVREG_LINKSPEED_FORCE 0x10000 #define NVREG_LINKSPEED_10 1000 #define NVREG_LINKSPEED_100 100 #define NVREG_LINKSPEED_1000 50 #define NVREG_LINKSPEED_MASK (0xFFF) NvRegUnknownSetupReg5 = 0x130, #define NVREG_UNKSETUP5_BIT31 (1<<31) NvRegTxWatermark = 0x13c, #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010 #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000 #define NVREG_TX_WM_DESC2_3_1000 0xfe08000 NvRegTxRxControl = 0x144, #define NVREG_TXRXCTL_KICK 0x0001 #define NVREG_TXRXCTL_BIT1 0x0002 #define NVREG_TXRXCTL_BIT2 0x0004 #define NVREG_TXRXCTL_IDLE 0x0008 #define NVREG_TXRXCTL_RESET 0x0010 #define NVREG_TXRXCTL_RXCHECK 0x0400 #define NVREG_TXRXCTL_DESC_1 0 #define NVREG_TXRXCTL_DESC_2 0x002100 #define NVREG_TXRXCTL_DESC_3 0xc02200 #define NVREG_TXRXCTL_VLANSTRIP 0x00040 #define NVREG_TXRXCTL_VLANINS 0x00080 NvRegTxRingPhysAddrHigh = 0x148, NvRegRxRingPhysAddrHigh = 0x14C, NvRegTxPauseFrame = 0x170, #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080 #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010 #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0 #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880 NvRegTxPauseFrameLimit = 0x174, #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000 NvRegMIIStatus = 0x180, #define NVREG_MIISTAT_ERROR 0x0001 #define NVREG_MIISTAT_LINKCHANGE 0x0008 #define NVREG_MIISTAT_MASK_RW 0x0007 #define NVREG_MIISTAT_MASK_ALL 0x000f NvRegMIIMask = 0x184, #define NVREG_MII_LINKCHANGE 0x0008 NvRegAdapterControl = 0x188, #define NVREG_ADAPTCTL_START 0x02 #define NVREG_ADAPTCTL_LINKUP 0x04 #define NVREG_ADAPTCTL_PHYVALID 0x40000 #define NVREG_ADAPTCTL_RUNNING 0x100000 #define NVREG_ADAPTCTL_PHYSHIFT 24 NvRegMIISpeed = 0x18c, #define NVREG_MIISPEED_BIT8 (1<<8) #define NVREG_MIIDELAY 5 NvRegMIIControl = 0x190, #define NVREG_MIICTL_INUSE 0x08000 #define NVREG_MIICTL_WRITE 0x00400 #define NVREG_MIICTL_ADDRSHIFT 5 NvRegMIIData = 0x194, NvRegTxUnicast = 0x1a0, NvRegTxMulticast = 0x1a4, NvRegTxBroadcast = 0x1a8, NvRegWakeUpFlags = 0x200, #define NVREG_WAKEUPFLAGS_VAL 0x7770 #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 #define NVREG_WAKEUPFLAGS_D3SHIFT 12 #define NVREG_WAKEUPFLAGS_D2SHIFT 8 #define NVREG_WAKEUPFLAGS_D1SHIFT 4 #define NVREG_WAKEUPFLAGS_D0SHIFT 0 #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 #define NVREG_WAKEUPFLAGS_ENABLE 0x1111 NvRegMgmtUnitGetVersion = 0x204, #define NVREG_MGMTUNITGETVERSION 0x01 NvRegMgmtUnitVersion = 0x208, #define NVREG_MGMTUNITVERSION 0x08 NvRegPowerCap = 0x268, #define NVREG_POWERCAP_D3SUPP (1<<30) #define NVREG_POWERCAP_D2SUPP (1<<26) #define NVREG_POWERCAP_D1SUPP (1<<25) NvRegPowerState = 0x26c, #define NVREG_POWERSTATE_POWEREDUP 0x8000 #define NVREG_POWERSTATE_VALID 0x0100 #define NVREG_POWERSTATE_MASK 0x0003 #define NVREG_POWERSTATE_D0 0x0000 #define NVREG_POWERSTATE_D1 0x0001 #define NVREG_POWERSTATE_D2 0x0002 #define NVREG_POWERSTATE_D3 0x0003 NvRegMgmtUnitControl = 0x278, #define NVREG_MGMTUNITCONTROL_INUSE 0x20000 NvRegTxCnt = 0x280, NvRegTxZeroReXmt = 0x284, NvRegTxOneReXmt = 0x288, NvRegTxManyReXmt = 0x28c, NvRegTxLateCol = 0x290, NvRegTxUnderflow = 0x294, NvRegTxLossCarrier = 0x298, NvRegTxExcessDef = 0x29c, NvRegTxRetryErr = 0x2a0, NvRegRxFrameErr = 0x2a4, NvRegRxExtraByte = 0x2a8, NvRegRxLateCol = 0x2ac, NvRegRxRunt = 0x2b0, NvRegRxFrameTooLong = 0x2b4, NvRegRxOverflow = 0x2b8, NvRegRxFCSErr = 0x2bc, NvRegRxFrameAlignErr = 0x2c0, NvRegRxLenErr = 0x2c4, NvRegRxUnicast = 0x2c8, NvRegRxMulticast = 0x2cc, NvRegRxBroadcast = 0x2d0, NvRegTxDef = 0x2d4, NvRegTxFrame = 0x2d8, NvRegRxCnt = 0x2dc, NvRegTxPause = 0x2e0, NvRegRxPause = 0x2e4, NvRegRxDropFrame = 0x2e8, NvRegVlanControl = 0x300, #define NVREG_VLANCONTROL_ENABLE 0x2000 NvRegMSIXMap0 = 0x3e0, NvRegMSIXMap1 = 0x3e4, NvRegMSIXIrqStatus = 0x3f0, NvRegPowerState2 = 0x600, #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15 #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001 #define NVREG_POWERSTATE2_PHY_RESET 0x0004 }; /* Big endian: should work, but is untested */ struct ring_desc { __le32 buf; __le32 flaglen; }; struct ring_desc_ex { __le32 bufhigh; __le32 buflow; __le32 txvlan; __le32 flaglen; }; union ring_type { struct ring_desc* orig; struct ring_desc_ex* ex; }; #define FLAG_MASK_V1 0xffff0000 #define FLAG_MASK_V2 0xffffc000 #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) #define NV_TX_LASTPACKET (1<<16) #define NV_TX_RETRYERROR (1<<19) #define NV_TX_RETRYCOUNT_MASK (0xF<<20) #define NV_TX_FORCED_INTERRUPT (1<<24) #define NV_TX_DEFERRED (1<<26) #define NV_TX_CARRIERLOST (1<<27) #define NV_TX_LATECOLLISION (1<<28) #define NV_TX_UNDERFLOW (1<<29) #define NV_TX_ERROR (1<<30) #define NV_TX_VALID (1<<31) #define NV_TX2_LASTPACKET (1<<29) #define NV_TX2_RETRYERROR (1<<18) #define NV_TX2_RETRYCOUNT_MASK (0xF<<19) #define NV_TX2_FORCED_INTERRUPT (1<<30) #define NV_TX2_DEFERRED (1<<25) #define NV_TX2_CARRIERLOST (1<<26) #define NV_TX2_LATECOLLISION (1<<27) #define NV_TX2_UNDERFLOW (1<<28) /* error and valid are the same for both */ #define NV_TX2_ERROR (1<<30) #define NV_TX2_VALID (1<<31) #define NV_TX2_TSO (1<<28) #define NV_TX2_TSO_SHIFT 14 #define NV_TX2_TSO_MAX_SHIFT 14 #define NV_TX2_TSO_MAX_SIZE (1<lock, except the performance * critical parts: * - rx is (pseudo-) lockless: it relies on the single-threading provided * by the arch code for interrupts. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission * needs netdev_priv(dev)->lock :-( * - set_multicast_list: preparation lockless, relies on netif_tx_lock. */ /* in dev: base, irq */ struct fe_priv { spinlock_t lock; struct net_device *dev; struct napi_struct napi; /* General data: * Locking: spin_lock(&np->lock); */ struct nv_ethtool_stats estats; int in_shutdown; u32 linkspeed; int duplex; int autoneg; int fixed_mode; int phyaddr; int wolenabled; unsigned int phy_oui; unsigned int phy_model; unsigned int phy_rev; u16 gigabit; int intr_test; int recover_error; /* General data: RO fields */ dma_addr_t ring_addr; struct pci_dev *pci_dev; u32 orig_mac[2]; u32 events; u32 irqmask; u32 desc_ver; u32 txrxctl_bits; u32 vlanctl_bits; u32 driver_data; u32 device_id; u32 register_size; int rx_csum; u32 mac_in_use; int mgmt_version; int mgmt_sema; void __iomem *base; /* rx specific fields. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); */ union ring_type get_rx, put_rx, first_rx, last_rx; struct nv_skb_map *get_rx_ctx, *put_rx_ctx; struct nv_skb_map *first_rx_ctx, *last_rx_ctx; struct nv_skb_map *rx_skb; union ring_type rx_ring; unsigned int rx_buf_sz; unsigned int pkt_limit; struct timer_list oom_kick; struct timer_list nic_poll; struct timer_list stats_poll; u32 nic_poll_irq; int rx_ring_size; /* media detection workaround. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); */ int need_linktimer; unsigned long link_timeout; /* * tx specific fields. */ union ring_type get_tx, put_tx, first_tx, last_tx; struct nv_skb_map *get_tx_ctx, *put_tx_ctx; struct nv_skb_map *first_tx_ctx, *last_tx_ctx; struct nv_skb_map *tx_skb; union ring_type tx_ring; u32 tx_flags; int tx_ring_size; int tx_limit; u32 tx_pkts_in_progress; struct nv_skb_map *tx_change_owner; struct nv_skb_map *tx_end_flip; int tx_stop; /* vlan fields */ struct vlan_group *vlangrp; /* msi/msi-x fields */ u32 msi_flags; struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS]; /* flow control */ u32 pause_flags; /* power saved state */ u32 saved_config_space[NV_PCI_REGSZ_MAX/4]; /* for different msi-x irq type */ char name_rx[IFNAMSIZ + 3]; /* -rx */ char name_tx[IFNAMSIZ + 3]; /* -tx */ char name_other[IFNAMSIZ + 6]; /* -other */ }; /* * Maximum number of loops until we assume that a bit in the irq mask * is stuck. Overridable with module param. */ static int max_interrupt_work = 15; /* * Optimization can be either throuput mode or cpu mode * * Throughput Mode: Every tx and rx packet will generate an interrupt. * CPU Mode: Interrupts are controlled by a timer. */ enum { NV_OPTIMIZATION_MODE_THROUGHPUT, NV_OPTIMIZATION_MODE_CPU, NV_OPTIMIZATION_MODE_DYNAMIC }; static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC; /* * Poll interval for timer irq * * This interval determines how frequent an interrupt is generated. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] * Min = 0, and Max = 65535 */ static int poll_interval = -1; /* * MSI interrupts */ enum { NV_MSI_INT_DISABLED, NV_MSI_INT_ENABLED }; static int msi = NV_MSI_INT_ENABLED; /* * MSIX interrupts */ enum { NV_MSIX_INT_DISABLED, NV_MSIX_INT_ENABLED }; static int msix = NV_MSIX_INT_ENABLED; /* * DMA 64bit */ enum { NV_DMA_64BIT_DISABLED, NV_DMA_64BIT_ENABLED }; static int dma_64bit = NV_DMA_64BIT_ENABLED; /* * Crossover Detection * Realtek 8201 phy + some OEM boards do not work properly. */ enum { NV_CROSSOVER_DETECTION_DISABLED, NV_CROSSOVER_DETECTION_ENABLED }; static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED; static inline struct fe_priv *get_nvpriv(struct net_device *dev) { return netdev_priv(dev); } static inline u8 __iomem *get_hwbase(struct net_device *dev) { return ((struct fe_priv *)netdev_priv(dev))->base; } static inline void pci_push(u8 __iomem *base) { /* force out pending posted writes */ readl(base); } static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) { return le32_to_cpu(prd->flaglen) & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); } static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) { return le32_to_cpu(prd->flaglen) & LEN_MASK_V2; } static bool nv_optimized(struct fe_priv *np) { if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) return false; return true; } static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, int delay, int delaymax, const char *msg) { u8 __iomem *base = get_hwbase(dev); pci_push(base); do { udelay(delay); delaymax -= delay; if (delaymax < 0) { if (msg) printk("%s", msg); return 1; } } while ((readl(base + offset) & mask) != target); return 0; } #define NV_SETUP_RX_RING 0x01 #define NV_SETUP_TX_RING 0x02 static inline u32 dma_low(dma_addr_t addr) { return addr; } static inline u32 dma_high(dma_addr_t addr) { return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */ } static void setup_hw_rings(struct net_device *dev, int rxtx_flags) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); if (!nv_optimized(np)) { if (rxtx_flags & NV_SETUP_RX_RING) { writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); } if (rxtx_flags & NV_SETUP_TX_RING) { writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); } } else { if (rxtx_flags & NV_SETUP_RX_RING) { writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr); writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh); } if (rxtx_flags & NV_SETUP_TX_RING) { writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh); } } } static void free_rings(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!nv_optimized(np)) { if (np->rx_ring.orig) pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), np->rx_ring.orig, np->ring_addr); } else { if (np->rx_ring.ex) pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), np->rx_ring.ex, np->ring_addr); } if (np->rx_skb) kfree(np->rx_skb); if (np->tx_skb) kfree(np->tx_skb); } static int using_multi_irqs(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!(np->msi_flags & NV_MSI_X_ENABLED) || ((np->msi_flags & NV_MSI_X_ENABLED) && ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1))) return 0; else return 1; } static void nv_enable_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else enable_irq(np->pci_dev->irq); } else { enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); } } static void nv_disable_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else disable_irq(np->pci_dev->irq); } else { disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); } } /* In MSIX mode, a write to irqmask behaves as XOR */ static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask) { u8 __iomem *base = get_hwbase(dev); writel(mask, base + NvRegIrqMask); } static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); if (np->msi_flags & NV_MSI_X_ENABLED) { writel(mask, base + NvRegIrqMask); } else { if (np->msi_flags & NV_MSI_ENABLED) writel(0, base + NvRegMSIIrqMask); writel(0, base + NvRegIrqMask); } } static void nv_napi_enable(struct net_device *dev) { #ifdef CONFIG_FORCEDETH_NAPI struct fe_priv *np = get_nvpriv(dev); napi_enable(&np->napi); #endif } static void nv_napi_disable(struct net_device *dev) { #ifdef CONFIG_FORCEDETH_NAPI struct fe_priv *np = get_nvpriv(dev); napi_disable(&np->napi); #endif } #define MII_READ (-1) /* mii_rw: read/write a register on the PHY. * * Caller must guarantee serialization */ static int mii_rw(struct net_device *dev, int addr, int miireg, int value) { u8 __iomem *base = get_hwbase(dev); u32 reg; int retval; writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus); reg = readl(base + NvRegMIIControl); if (reg & NVREG_MIICTL_INUSE) { writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); udelay(NV_MIIBUSY_DELAY); } reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; if (value != MII_READ) { writel(value, base + NvRegMIIData); reg |= NVREG_MIICTL_WRITE; } writel(reg, base + NvRegMIIControl); if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) { dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n", dev->name, miireg, addr); retval = -1; } else if (value != MII_READ) { /* it was a write operation - fewer failures are detectable */ dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n", dev->name, value, miireg, addr); retval = 0; } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n", dev->name, miireg, addr); retval = -1; } else { retval = readl(base + NvRegMIIData); dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n", dev->name, miireg, addr, retval); } return retval; } static int phy_reset(struct net_device *dev, u32 bmcr_setup) { struct fe_priv *np = netdev_priv(dev); u32 miicontrol; unsigned int tries = 0; miicontrol = BMCR_RESET | bmcr_setup; if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) { return -1; } /* wait for 500ms */ msleep(500); /* must wait till reset is deasserted */ while (miicontrol & BMCR_RESET) { msleep(10); miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); /* FIXME: 100 tries seem excessive */ if (tries++ > 100) return -1; } return 0; } static int phy_init(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg; /* phy errata for E3016 phy */ if (np->phy_model == PHY_MODEL_MARVELL_E3016) { reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); reg &= ~PHY_MARVELL_E3016_INITMASK; if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) { printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_oui == PHY_OUI_REALTEK) { if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211B) { if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211C) { u32 powerstate = readl(base + NvRegPowerState2); /* need to perform hw phy reset */ powerstate |= NVREG_POWERSTATE2_PHY_RESET; writel(powerstate, base + NvRegPowerState2); msleep(25); powerstate &= ~NVREG_POWERSTATE2_PHY_RESET; writel(powerstate, base + NvRegPowerState2); msleep(25); reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); reg |= PHY_REALTEK_INIT9; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ); if (!(reg & PHY_REALTEK_INIT11)) { reg |= PHY_REALTEK_INIT11; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_model == PHY_MODEL_REALTEK_8201) { if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) { phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); phy_reserved |= PHY_REALTEK_INIT7; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } } } /* set advertise register */ reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP); if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } /* get phy interface type */ phyinterface = readl(base + NvRegPhyInterface); /* see if gigabit phy */ mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (mii_status & PHY_GIGABIT) { np->gigabit = PHY_GIGABIT; mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); mii_control_1000 &= ~ADVERTISE_1000HALF; if (phyinterface & PHY_RGMII) mii_control_1000 |= ADVERTISE_1000FULL; else mii_control_1000 &= ~ADVERTISE_1000FULL; if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else np->gigabit = 0; mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= BMCR_ANENABLE; if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211C) { /* start autoneg since we already performed hw reset above */ mii_control |= BMCR_ANRESTART; if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } else { /* reset the phy * (certain phys need bmcr to be setup with reset) */ if (phy_reset(dev, mii_control)) { printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev)); return PHY_ERROR; } } /* phy vendor specific configuration */ if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) { phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2); phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4); if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); phy_reserved |= PHY_CICADA_INIT5; if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_oui == PHY_OUI_CICADA) { phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); phy_reserved |= PHY_CICADA_INIT6; if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_oui == PHY_OUI_VITESSE) { if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK1; phy_reserved |= PHY_VITESSE_INIT3; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK1; phy_reserved |= PHY_VITESSE_INIT3; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ); if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ); phy_reserved &= ~PHY_VITESSE_INIT_MSK2; phy_reserved |= PHY_VITESSE_INIT8; if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_oui == PHY_OUI_REALTEK) { if (np->phy_model == PHY_MODEL_REALTEK_8211 && np->phy_rev == PHY_REV_REALTEK_8211B) { /* reset could have cleared these out, set them back */ if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (np->phy_model == PHY_MODEL_REALTEK_8201) { if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 || np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) { phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ); phy_reserved |= PHY_REALTEK_INIT7; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); phy_reserved &= ~PHY_REALTEK_INIT_MSK1; phy_reserved |= PHY_REALTEK_INIT3; if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) { printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); return PHY_ERROR; } } } } /* some phys clear out pause advertisment on reset, set it back */ mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg); /* restart auto negotiation, power down phy */ mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN); if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { return PHY_ERROR; } return 0; } static void nv_start_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 rx_ctrl = readl(base + NvRegReceiverControl); dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name); /* Already running? Stop it. */ if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) { rx_ctrl &= ~NVREG_RCVCTL_START; writel(rx_ctrl, base + NvRegReceiverControl); pci_push(base); } writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); rx_ctrl |= NVREG_RCVCTL_START; if (np->mac_in_use) rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN; writel(rx_ctrl, base + NvRegReceiverControl); dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n", dev->name, np->duplex, np->linkspeed); pci_push(base); } static void nv_stop_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 rx_ctrl = readl(base + NvRegReceiverControl); dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name); if (!np->mac_in_use) rx_ctrl &= ~NVREG_RCVCTL_START; else rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN; writel(rx_ctrl, base + NvRegReceiverControl); reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX, KERN_INFO "nv_stop_rx: ReceiverStatus remained busy"); udelay(NV_RXSTOP_DELAY2); if (!np->mac_in_use) writel(0, base + NvRegLinkSpeed); } static void nv_start_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl = readl(base + NvRegTransmitterControl); dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name); tx_ctrl |= NVREG_XMITCTL_START; if (np->mac_in_use) tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN; writel(tx_ctrl, base + NvRegTransmitterControl); pci_push(base); } static void nv_stop_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl = readl(base + NvRegTransmitterControl); dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name); if (!np->mac_in_use) tx_ctrl &= ~NVREG_XMITCTL_START; else tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN; writel(tx_ctrl, base + NvRegTransmitterControl); reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX, KERN_INFO "nv_stop_tx: TransmitterStatus remained busy"); udelay(NV_TXSTOP_DELAY2); if (!np->mac_in_use) writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); } static void nv_start_rxtx(struct net_device *dev) { nv_start_rx(dev); nv_start_tx(dev); } static void nv_stop_rxtx(struct net_device *dev) { nv_stop_rx(dev); nv_stop_tx(dev); } static void nv_txrx_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name); writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); udelay(NV_TXRX_RESET_DELAY); writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); } static void nv_mac_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 temp1, temp2, temp3; dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name); writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); /* save registers since they will be cleared on reset */ temp1 = readl(base + NvRegMacAddrA); temp2 = readl(base + NvRegMacAddrB); temp3 = readl(base + NvRegTransmitPoll); writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset); pci_push(base); udelay(NV_MAC_RESET_DELAY); writel(0, base + NvRegMacReset); pci_push(base); udelay(NV_MAC_RESET_DELAY); /* restore saved registers */ writel(temp1, base + NvRegMacAddrA); writel(temp2, base + NvRegMacAddrB); writel(temp3, base + NvRegTransmitPoll); writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); pci_push(base); } static void nv_get_hw_stats(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); np->estats.tx_bytes += readl(base + NvRegTxCnt); np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt); np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt); np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt); np->estats.tx_late_collision += readl(base + NvRegTxLateCol); np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow); np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier); np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef); np->estats.tx_retry_error += readl(base + NvRegTxRetryErr); np->estats.rx_frame_error += readl(base + NvRegRxFrameErr); np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte); np->estats.rx_late_collision += readl(base + NvRegRxLateCol); np->estats.rx_runt += readl(base + NvRegRxRunt); np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong); np->estats.rx_over_errors += readl(base + NvRegRxOverflow); np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr); np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr); np->estats.rx_length_error += readl(base + NvRegRxLenErr); np->estats.rx_unicast += readl(base + NvRegRxUnicast); np->estats.rx_multicast += readl(base + NvRegRxMulticast); np->estats.rx_broadcast += readl(base + NvRegRxBroadcast); np->estats.rx_packets = np->estats.rx_unicast + np->estats.rx_multicast + np->estats.rx_broadcast; np->estats.rx_errors_total = np->estats.rx_crc_errors + np->estats.rx_over_errors + np->estats.rx_frame_error + (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) + np->estats.rx_late_collision + np->estats.rx_runt + np->estats.rx_frame_too_long; np->estats.tx_errors_total = np->estats.tx_late_collision + np->estats.tx_fifo_errors + np->estats.tx_carrier_errors + np->estats.tx_excess_deferral + np->estats.tx_retry_error; if (np->driver_data & DEV_HAS_STATISTICS_V2) { np->estats.tx_deferral += readl(base + NvRegTxDef); np->estats.tx_packets += readl(base + NvRegTxFrame); np->estats.rx_bytes += readl(base + NvRegRxCnt); np->estats.tx_pause += readl(base + NvRegTxPause); np->estats.rx_pause += readl(base + NvRegRxPause); np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame); } if (np->driver_data & DEV_HAS_STATISTICS_V3) { np->estats.tx_unicast += readl(base + NvRegTxUnicast); np->estats.tx_multicast += readl(base + NvRegTxMulticast); np->estats.tx_broadcast += readl(base + NvRegTxBroadcast); } } /* * nv_get_stats: dev->get_stats function * Get latest stats value from the nic. * Called with read_lock(&dev_base_lock) held for read - * only synchronized against unregister_netdevice. */ static struct net_device_stats *nv_get_stats(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); /* If the nic supports hw counters then retrieve latest values */ if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) { nv_get_hw_stats(dev); /* copy to net_device stats */ dev->stats.tx_bytes = np->estats.tx_bytes; dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors; dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors; dev->stats.rx_crc_errors = np->estats.rx_crc_errors; dev->stats.rx_over_errors = np->estats.rx_over_errors; dev->stats.rx_errors = np->estats.rx_errors_total; dev->stats.tx_errors = np->estats.tx_errors_total; } return &dev->stats; } /* * nv_alloc_rx: fill rx ring entries. * Return 1 if the allocations for the skbs failed and the * rx engine is without Available descriptors */ static int nv_alloc_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); struct ring_desc* less_rx; less_rx = np->get_rx.orig; if (less_rx-- == np->first_rx.orig) less_rx = np->last_rx.orig; while (np->put_rx.orig != less_rx) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); if (skb) { np->put_rx_ctx->skb = skb; np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data, skb_tailroom(skb), PCI_DMA_FROMDEVICE); np->put_rx_ctx->dma_len = skb_tailroom(skb); np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma); wmb(); np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); if (unlikely(np->put_rx.orig++ == np->last_rx.orig)) np->put_rx.orig = np->first_rx.orig; if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) np->put_rx_ctx = np->first_rx_ctx; } else { return 1; } } return 0; } static int nv_alloc_rx_optimized(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); struct ring_desc_ex* less_rx; less_rx = np->get_rx.ex; if (less_rx-- == np->first_rx.ex) less_rx = np->last_rx.ex; while (np->put_rx.ex != less_rx) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); if (skb) { np->put_rx_ctx->skb = skb; np->put_rx_ctx->dma = pci_map_single(np->pci_dev, skb->data, skb_tailroom(skb), PCI_DMA_FROMDEVICE); np->put_rx_ctx->dma_len = skb_tailroom(skb); np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma)); np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma)); wmb(); np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); if (unlikely(np->put_rx.ex++ == np->last_rx.ex)) np->put_rx.ex = np->first_rx.ex; if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx)) np->put_rx_ctx = np->first_rx_ctx; } else { return 1; } } return 0; } /* If rx bufs are exhausted called after 50ms to attempt to refresh */ #ifdef CONFIG_FORCEDETH_NAPI static void nv_do_rx_refill(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); /* Just reschedule NAPI rx processing */ napi_schedule(&np->napi); } #else static void nv_do_rx_refill(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); int retcode; if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else disable_irq(np->pci_dev->irq); } else { disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); } if (!nv_optimized(np)) retcode = nv_alloc_rx(dev); else retcode = nv_alloc_rx_optimized(dev); if (retcode) { spin_lock_irq(&np->lock); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock_irq(&np->lock); } if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else enable_irq(np->pci_dev->irq); } else { enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); } } #endif static void nv_init_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; np->get_rx = np->put_rx = np->first_rx = np->rx_ring; if (!nv_optimized(np)) np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1]; else np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1]; np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb; np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1]; for (i = 0; i < np->rx_ring_size; i++) { if (!nv_optimized(np)) { np->rx_ring.orig[i].flaglen = 0; np->rx_ring.orig[i].buf = 0; } else { np->rx_ring.ex[i].flaglen = 0; np->rx_ring.ex[i].txvlan = 0; np->rx_ring.ex[i].bufhigh = 0; np->rx_ring.ex[i].buflow = 0; } np->rx_skb[i].skb = NULL; np->rx_skb[i].dma = 0; } } static void nv_init_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; np->get_tx = np->put_tx = np->first_tx = np->tx_ring; if (!nv_optimized(np)) np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1]; else np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1]; np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb; np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1]; np->tx_pkts_in_progress = 0; np->tx_change_owner = NULL; np->tx_end_flip = NULL; for (i = 0; i < np->tx_ring_size; i++) { if (!nv_optimized(np)) { np->tx_ring.orig[i].flaglen = 0; np->tx_ring.orig[i].buf = 0; } else { np->tx_ring.ex[i].flaglen = 0; np->tx_ring.ex[i].txvlan = 0; np->tx_ring.ex[i].bufhigh = 0; np->tx_ring.ex[i].buflow = 0; } np->tx_skb[i].skb = NULL; np->tx_skb[i].dma = 0; np->tx_skb[i].dma_len = 0; np->tx_skb[i].first_tx_desc = NULL; np->tx_skb[i].next_tx_ctx = NULL; } } static int nv_init_ring(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); nv_init_tx(dev); nv_init_rx(dev); if (!nv_optimized(np)) return nv_alloc_rx(dev); else return nv_alloc_rx_optimized(dev); } static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb) { struct fe_priv *np = netdev_priv(dev); if (tx_skb->dma) { pci_unmap_page(np->pci_dev, tx_skb->dma, tx_skb->dma_len, PCI_DMA_TODEVICE); tx_skb->dma = 0; } if (tx_skb->skb) { dev_kfree_skb_any(tx_skb->skb); tx_skb->skb = NULL; return 1; } else { return 0; } } static void nv_drain_tx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); unsigned int i; for (i = 0; i < np->tx_ring_size; i++) { if (!nv_optimized(np)) { np->tx_ring.orig[i].flaglen = 0; np->tx_ring.orig[i].buf = 0; } else { np->tx_ring.ex[i].flaglen = 0; np->tx_ring.ex[i].txvlan = 0; np->tx_ring.ex[i].bufhigh = 0; np->tx_ring.ex[i].buflow = 0; } if (nv_release_txskb(dev, &np->tx_skb[i])) dev->stats.tx_dropped++; np->tx_skb[i].dma = 0; np->tx_skb[i].dma_len = 0; np->tx_skb[i].first_tx_desc = NULL; np->tx_skb[i].next_tx_ctx = NULL; } np->tx_pkts_in_progress = 0; np->tx_change_owner = NULL; np->tx_end_flip = NULL; } static void nv_drain_rx(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int i; for (i = 0; i < np->rx_ring_size; i++) { if (!nv_optimized(np)) { np->rx_ring.orig[i].flaglen = 0; np->rx_ring.orig[i].buf = 0; } else { np->rx_ring.ex[i].flaglen = 0; np->rx_ring.ex[i].txvlan = 0; np->rx_ring.ex[i].bufhigh = 0; np->rx_ring.ex[i].buflow = 0; } wmb(); if (np->rx_skb[i].skb) { pci_unmap_single(np->pci_dev, np->rx_skb[i].dma, (skb_end_pointer(np->rx_skb[i].skb) - np->rx_skb[i].skb->data), PCI_DMA_FROMDEVICE); dev_kfree_skb(np->rx_skb[i].skb); np->rx_skb[i].skb = NULL; } } } static void nv_drain_rxtx(struct net_device *dev) { nv_drain_tx(dev); nv_drain_rx(dev); } static inline u32 nv_get_empty_tx_slots(struct fe_priv *np) { return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size)); } static void nv_legacybackoff_reseed(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 reg; u32 low; int tx_status = 0; reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK; get_random_bytes(&low, sizeof(low)); reg |= low & NVREG_SLOTTIME_MASK; /* Need to stop tx before change takes effect. * Caller has already gained np->lock. */ tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START; if (tx_status) nv_stop_tx(dev); nv_stop_rx(dev); writel(reg, base + NvRegSlotTime); if (tx_status) nv_start_tx(dev); nv_start_rx(dev); } /* Gear Backoff Seeds */ #define BACKOFF_SEEDSET_ROWS 8 #define BACKOFF_SEEDSET_LFSRS 15 /* Known Good seed sets */ static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974}, {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874}, {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974}, {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984}, {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984}, {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84}, {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}}; static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = { {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397}, {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}, {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}}; static void nv_gear_backoff_reseed(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed; u32 temp, seedset, combinedSeed; int i; /* Setup seed for free running LFSR */ /* We are going to read the time stamp counter 3 times and swizzle bits around to increase randomness */ get_random_bytes(&miniseed1, sizeof(miniseed1)); miniseed1 &= 0x0fff; if (miniseed1 == 0) miniseed1 = 0xabc; get_random_bytes(&miniseed2, sizeof(miniseed2)); miniseed2 &= 0x0fff; if (miniseed2 == 0) miniseed2 = 0xabc; miniseed2_reversed = ((miniseed2 & 0xF00) >> 8) | (miniseed2 & 0x0F0) | ((miniseed2 & 0x00F) << 8); get_random_bytes(&miniseed3, sizeof(miniseed3)); miniseed3 &= 0x0fff; if (miniseed3 == 0) miniseed3 = 0xabc; miniseed3_reversed = ((miniseed3 & 0xF00) >> 8) | (miniseed3 & 0x0F0) | ((miniseed3 & 0x00F) << 8); combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | (miniseed2 ^ miniseed3_reversed); /* Seeds can not be zero */ if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0) combinedSeed |= 0x08; if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0) combinedSeed |= 0x8000; /* No need to disable tx here */ temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT); temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK; temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR; writel(temp,base + NvRegBackOffControl); /* Setup seeds for all gear LFSRs. */ get_random_bytes(&seedset, sizeof(seedset)); seedset = seedset % BACKOFF_SEEDSET_ROWS; for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++) { temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT); temp |= main_seedset[seedset][i-1] & 0x3ff; temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR); writel(temp, base + NvRegBackOffControl); } } /* * nv_start_xmit: dev->hard_start_xmit function * Called with netif_tx_lock held. */ static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u32 tx_flags = 0; u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); unsigned int fragments = skb_shinfo(skb)->nr_frags; unsigned int i; u32 offset = 0; u32 bcnt; u32 size = skb->len-skb->data_len; u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); u32 empty_slots; struct ring_desc* put_tx; struct ring_desc* start_tx; struct ring_desc* prev_tx; struct nv_skb_map* prev_tx_ctx; unsigned long flags; /* add fragments to entries count */ for (i = 0; i < fragments; i++) { entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) + ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); } spin_lock_irqsave(&np->lock, flags); empty_slots = nv_get_empty_tx_slots(np); if (unlikely(empty_slots <= entries)) { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(&np->lock, flags); return NETDEV_TX_BUSY; } spin_unlock_irqrestore(&np->lock, flags); start_tx = put_tx = np->put_tx.orig; /* setup the header buffer */ do { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, PCI_DMA_TODEVICE); np->put_tx_ctx->dma_len = bcnt; put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); tx_flags = np->tx_flags; offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.orig)) put_tx = np->first_tx.orig; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->first_tx_ctx; } while (size); /* setup the fragments */ for (i = 0; i < fragments; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 size = frag->size; offset = 0; do { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt, PCI_DMA_TODEVICE); np->put_tx_ctx->dma_len = bcnt; put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.orig)) put_tx = np->first_tx.orig; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->first_tx_ctx; } while (size); } /* set last fragment flag */ prev_tx->flaglen |= cpu_to_le32(tx_flags_extra); /* save skb in this slot's context area */ prev_tx_ctx->skb = skb; if (skb_is_gso(skb)) tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); else tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; spin_lock_irqsave(&np->lock, flags); /* set tx flags */ start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); np->put_tx.orig = put_tx; spin_unlock_irqrestore(&np->lock, flags); dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n", dev->name, entries, tx_flags_extra); { int j; for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)skb->data)[j]); } dprintk("\n"); } dev->trans_start = jiffies; writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); return NETDEV_TX_OK; } static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u32 tx_flags = 0; u32 tx_flags_extra; unsigned int fragments = skb_shinfo(skb)->nr_frags; unsigned int i; u32 offset = 0; u32 bcnt; u32 size = skb->len-skb->data_len; u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); u32 empty_slots; struct ring_desc_ex* put_tx; struct ring_desc_ex* start_tx; struct ring_desc_ex* prev_tx; struct nv_skb_map* prev_tx_ctx; struct nv_skb_map* start_tx_ctx; unsigned long flags; /* add fragments to entries count */ for (i = 0; i < fragments; i++) { entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) + ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0); } spin_lock_irqsave(&np->lock, flags); empty_slots = nv_get_empty_tx_slots(np); if (unlikely(empty_slots <= entries)) { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(&np->lock, flags); return NETDEV_TX_BUSY; } spin_unlock_irqrestore(&np->lock, flags); start_tx = put_tx = np->put_tx.ex; start_tx_ctx = np->put_tx_ctx; /* setup the header buffer */ do { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt, PCI_DMA_TODEVICE); np->put_tx_ctx->dma_len = bcnt; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); tx_flags = NV_TX2_VALID; offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.ex)) put_tx = np->first_tx.ex; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->first_tx_ctx; } while (size); /* setup the fragments */ for (i = 0; i < fragments; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; u32 size = frag->size; offset = 0; do { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size; np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt, PCI_DMA_TODEVICE); np->put_tx_ctx->dma_len = bcnt; put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma)); put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma)); put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags); offset += bcnt; size -= bcnt; if (unlikely(put_tx++ == np->last_tx.ex)) put_tx = np->first_tx.ex; if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx)) np->put_tx_ctx = np->first_tx_ctx; } while (size); } /* set last fragment flag */ prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET); /* save skb in this slot's context area */ prev_tx_ctx->skb = skb; if (skb_is_gso(skb)) tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT); else tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ? NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0; /* vlan tag */ if (likely(!np->vlangrp)) { start_tx->txvlan = 0; } else { if (vlan_tx_tag_present(skb)) start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb)); else start_tx->txvlan = 0; } spin_lock_irqsave(&np->lock, flags); if (np->tx_limit) { /* Limit the number of outstanding tx. Setup all fragments, but * do not set the VALID bit on the first descriptor. Save a pointer * to that descriptor and also for next skb_map element. */ if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) { if (!np->tx_change_owner) np->tx_change_owner = start_tx_ctx; /* remove VALID bit */ tx_flags &= ~NV_TX2_VALID; start_tx_ctx->first_tx_desc = start_tx; start_tx_ctx->next_tx_ctx = np->put_tx_ctx; np->tx_end_flip = np->put_tx_ctx; } else { np->tx_pkts_in_progress++; } } /* set tx flags */ start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra); np->put_tx.ex = put_tx; spin_unlock_irqrestore(&np->lock, flags); dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n", dev->name, entries, tx_flags_extra); { int j; for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)skb->data)[j]); } dprintk("\n"); } dev->trans_start = jiffies; writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); return NETDEV_TX_OK; } static inline void nv_tx_flip_ownership(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); np->tx_pkts_in_progress--; if (np->tx_change_owner) { np->tx_change_owner->first_tx_desc->flaglen |= cpu_to_le32(NV_TX2_VALID); np->tx_pkts_in_progress++; np->tx_change_owner = np->tx_change_owner->next_tx_ctx; if (np->tx_change_owner == np->tx_end_flip) np->tx_change_owner = NULL; writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); } } /* * nv_tx_done: check for completed packets, release the skbs. * * Caller must own np->lock. */ static int nv_tx_done(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int tx_work = 0; struct ring_desc* orig_get_tx = np->get_tx.orig; while ((np->get_tx.orig != np->put_tx.orig) && !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) && (tx_work < limit)) { dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n", dev->name, flags); pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma, np->get_tx_ctx->dma_len, PCI_DMA_TODEVICE); np->get_tx_ctx->dma = 0; if (np->desc_ver == DESC_VER_1) { if (flags & NV_TX_LASTPACKET) { if (flags & NV_TX_ERROR) { if (flags & NV_TX_UNDERFLOW) dev->stats.tx_fifo_errors++; if (flags & NV_TX_CARRIERLOST) dev->stats.tx_carrier_errors++; if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK)) nv_legacybackoff_reseed(dev); dev->stats.tx_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += np->get_tx_ctx->skb->len; } dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; } } else { if (flags & NV_TX2_LASTPACKET) { if (flags & NV_TX2_ERROR) { if (flags & NV_TX2_UNDERFLOW) dev->stats.tx_fifo_errors++; if (flags & NV_TX2_CARRIERLOST) dev->stats.tx_carrier_errors++; if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) nv_legacybackoff_reseed(dev); dev->stats.tx_errors++; } else { dev->stats.tx_packets++; dev->stats.tx_bytes += np->get_tx_ctx->skb->len; } dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; } } if (unlikely(np->get_tx.orig++ == np->last_tx.orig)) np->get_tx.orig = np->first_tx.orig; if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) np->get_tx_ctx = np->first_tx_ctx; } if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) { np->tx_stop = 0; netif_wake_queue(dev); } return tx_work; } static int nv_tx_done_optimized(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int tx_work = 0; struct ring_desc_ex* orig_get_tx = np->get_tx.ex; while ((np->get_tx.ex != np->put_tx.ex) && !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) && (tx_work < limit)) { dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n", dev->name, flags); pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma, np->get_tx_ctx->dma_len, PCI_DMA_TODEVICE); np->get_tx_ctx->dma = 0; if (flags & NV_TX2_LASTPACKET) { if (!(flags & NV_TX2_ERROR)) dev->stats.tx_packets++; else { if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) { if (np->driver_data & DEV_HAS_GEAR_MODE) nv_gear_backoff_reseed(dev); else nv_legacybackoff_reseed(dev); } } dev_kfree_skb_any(np->get_tx_ctx->skb); np->get_tx_ctx->skb = NULL; tx_work++; if (np->tx_limit) { nv_tx_flip_ownership(dev); } } if (unlikely(np->get_tx.ex++ == np->last_tx.ex)) np->get_tx.ex = np->first_tx.ex; if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx)) np->get_tx_ctx = np->first_tx_ctx; } if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) { np->tx_stop = 0; netif_wake_queue(dev); } return tx_work; } /* * nv_tx_timeout: dev->tx_timeout function * Called with netif_tx_lock held. */ static void nv_tx_timeout(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 status; if (np->msi_flags & NV_MSI_X_ENABLED) status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; else status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status); { int i; printk(KERN_INFO "%s: Ring at %lx\n", dev->name, (unsigned long)np->ring_addr); printk(KERN_INFO "%s: Dumping tx registers\n", dev->name); for (i=0;i<=np->register_size;i+= 32) { printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n", i, readl(base + i + 0), readl(base + i + 4), readl(base + i + 8), readl(base + i + 12), readl(base + i + 16), readl(base + i + 20), readl(base + i + 24), readl(base + i + 28)); } printk(KERN_INFO "%s: Dumping tx ring\n", dev->name); for (i=0;itx_ring_size;i+= 4) { if (!nv_optimized(np)) { printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n", i, le32_to_cpu(np->tx_ring.orig[i].buf), le32_to_cpu(np->tx_ring.orig[i].flaglen), le32_to_cpu(np->tx_ring.orig[i+1].buf), le32_to_cpu(np->tx_ring.orig[i+1].flaglen), le32_to_cpu(np->tx_ring.orig[i+2].buf), le32_to_cpu(np->tx_ring.orig[i+2].flaglen), le32_to_cpu(np->tx_ring.orig[i+3].buf), le32_to_cpu(np->tx_ring.orig[i+3].flaglen)); } else { printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n", i, le32_to_cpu(np->tx_ring.ex[i].bufhigh), le32_to_cpu(np->tx_ring.ex[i].buflow), le32_to_cpu(np->tx_ring.ex[i].flaglen), le32_to_cpu(np->tx_ring.ex[i+1].bufhigh), le32_to_cpu(np->tx_ring.ex[i+1].buflow), le32_to_cpu(np->tx_ring.ex[i+1].flaglen), le32_to_cpu(np->tx_ring.ex[i+2].bufhigh), le32_to_cpu(np->tx_ring.ex[i+2].buflow), le32_to_cpu(np->tx_ring.ex[i+2].flaglen), le32_to_cpu(np->tx_ring.ex[i+3].bufhigh), le32_to_cpu(np->tx_ring.ex[i+3].buflow), le32_to_cpu(np->tx_ring.ex[i+3].flaglen)); } } } spin_lock_irq(&np->lock); /* 1) stop tx engine */ nv_stop_tx(dev); /* 2) check that the packets were not sent already: */ if (!nv_optimized(np)) nv_tx_done(dev, np->tx_ring_size); else nv_tx_done_optimized(dev, np->tx_ring_size); /* 3) if there are dead entries: clear everything */ if (np->get_tx_ctx != np->put_tx_ctx) { printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name); nv_drain_tx(dev); nv_init_tx(dev); setup_hw_rings(dev, NV_SETUP_TX_RING); } netif_wake_queue(dev); /* 4) restart tx engine */ nv_start_tx(dev); spin_unlock_irq(&np->lock); } /* * Called when the nic notices a mismatch between the actual data len on the * wire and the len indicated in the 802 header */ static int nv_getlen(struct net_device *dev, void *packet, int datalen) { int hdrlen; /* length of the 802 header */ int protolen; /* length as stored in the proto field */ /* 1) calculate len according to header */ if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) { protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto ); hdrlen = VLAN_HLEN; } else { protolen = ntohs( ((struct ethhdr *)packet)->h_proto); hdrlen = ETH_HLEN; } dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n", dev->name, datalen, protolen, hdrlen); if (protolen > ETH_DATA_LEN) return datalen; /* Value in proto field not a len, no checks possible */ protolen += hdrlen; /* consistency checks: */ if (datalen > ETH_ZLEN) { if (datalen >= protolen) { /* more data on wire than in 802 header, trim of * additional data. */ dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", dev->name, protolen); return protolen; } else { /* less data on wire than mentioned in header. * Discard the packet. */ dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n", dev->name); return -1; } } else { /* short packet. Accept only if 802 values are also short */ if (protolen > ETH_ZLEN) { dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n", dev->name); return -1; } dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", dev->name, datalen); return datalen; } } static int nv_rx_process(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; int rx_work = 0; struct sk_buff *skb; int len; while((np->get_rx.orig != np->put_rx.orig) && !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) && (rx_work < limit)) { dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n", dev->name, flags); /* * the packet is for us - immediately tear down the pci mapping. * TODO: check if a prefetch of the first cacheline improves * the performance. */ pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, np->get_rx_ctx->dma_len, PCI_DMA_FROMDEVICE); skb = np->get_rx_ctx->skb; np->get_rx_ctx->skb = NULL; { int j; dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags); for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)skb->data)[j]); } dprintk("\n"); } /* look at what we actually got: */ if (np->desc_ver == DESC_VER_1) { if (likely(flags & NV_RX_DESCRIPTORVALID)) { len = flags & LEN_MASK_V1; if (unlikely(flags & NV_RX_ERROR)) { if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev->stats.rx_errors++; dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) { if (flags & NV_RX_SUBSTRACT1) { len--; } } /* the rest are hard errors */ else { if (flags & NV_RX_MISSEDFRAME) dev->stats.rx_missed_errors++; if (flags & NV_RX_CRCERR) dev->stats.rx_crc_errors++; if (flags & NV_RX_OVERFLOW) dev->stats.rx_over_errors++; dev->stats.rx_errors++; dev_kfree_skb(skb); goto next_pkt; } } } else { dev_kfree_skb(skb); goto next_pkt; } } else { if (likely(flags & NV_RX2_DESCRIPTORVALID)) { len = flags & LEN_MASK_V2; if (unlikely(flags & NV_RX2_ERROR)) { if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev->stats.rx_errors++; dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { if (flags & NV_RX2_SUBSTRACT1) { len--; } } /* the rest are hard errors */ else { if (flags & NV_RX2_CRCERR) dev->stats.rx_crc_errors++; if (flags & NV_RX2_OVERFLOW) dev->stats.rx_over_errors++; dev->stats.rx_errors++; dev_kfree_skb(skb); goto next_pkt; } } if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ skb->ip_summed = CHECKSUM_UNNECESSARY; } else { dev_kfree_skb(skb); goto next_pkt; } } /* got a valid packet - forward it to the network core */ skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n", dev->name, len, skb->protocol); #ifdef CONFIG_FORCEDETH_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif dev->stats.rx_packets++; dev->stats.rx_bytes += len; next_pkt: if (unlikely(np->get_rx.orig++ == np->last_rx.orig)) np->get_rx.orig = np->first_rx.orig; if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) np->get_rx_ctx = np->first_rx_ctx; rx_work++; } return rx_work; } static int nv_rx_process_optimized(struct net_device *dev, int limit) { struct fe_priv *np = netdev_priv(dev); u32 flags; u32 vlanflags = 0; int rx_work = 0; struct sk_buff *skb; int len; while((np->get_rx.ex != np->put_rx.ex) && !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) && (rx_work < limit)) { dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n", dev->name, flags); /* * the packet is for us - immediately tear down the pci mapping. * TODO: check if a prefetch of the first cacheline improves * the performance. */ pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma, np->get_rx_ctx->dma_len, PCI_DMA_FROMDEVICE); skb = np->get_rx_ctx->skb; np->get_rx_ctx->skb = NULL; { int j; dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags); for (j=0; j<64; j++) { if ((j%16) == 0) dprintk("\n%03x:", j); dprintk(" %02x", ((unsigned char*)skb->data)[j]); } dprintk("\n"); } /* look at what we actually got: */ if (likely(flags & NV_RX2_DESCRIPTORVALID)) { len = flags & LEN_MASK_V2; if (unlikely(flags & NV_RX2_ERROR)) { if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) { len = nv_getlen(dev, skb->data, len); if (len < 0) { dev_kfree_skb(skb); goto next_pkt; } } /* framing errors are soft errors */ else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) { if (flags & NV_RX2_SUBSTRACT1) { len--; } } /* the rest are hard errors */ else { dev_kfree_skb(skb); goto next_pkt; } } if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */ ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */ skb->ip_summed = CHECKSUM_UNNECESSARY; /* got a valid packet - forward it to the network core */ skb_put(skb, len); skb->protocol = eth_type_trans(skb, dev); prefetch(skb->data); dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n", dev->name, len, skb->protocol); if (likely(!np->vlangrp)) { #ifdef CONFIG_FORCEDETH_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif } else { vlanflags = le32_to_cpu(np->get_rx.ex->buflow); if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) { #ifdef CONFIG_FORCEDETH_NAPI vlan_hwaccel_receive_skb(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK); #else vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK); #endif } else { #ifdef CONFIG_FORCEDETH_NAPI netif_receive_skb(skb); #else netif_rx(skb); #endif } } dev->stats.rx_packets++; dev->stats.rx_bytes += len; } else { dev_kfree_skb(skb); } next_pkt: if (unlikely(np->get_rx.ex++ == np->last_rx.ex)) np->get_rx.ex = np->first_rx.ex; if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx)) np->get_rx_ctx = np->first_rx_ctx; rx_work++; } return rx_work; } static void set_bufsize(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); if (dev->mtu <= ETH_DATA_LEN) np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; else np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; } /* * nv_change_mtu: dev->change_mtu function * Called with dev_base_lock held for read. */ static int nv_change_mtu(struct net_device *dev, int new_mtu) { struct fe_priv *np = netdev_priv(dev); int old_mtu; if (new_mtu < 64 || new_mtu > np->pkt_limit) return -EINVAL; old_mtu = dev->mtu; dev->mtu = new_mtu; /* return early if the buffer sizes will not change */ if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) return 0; if (old_mtu == new_mtu) return 0; /* synchronized against open : rtnl_lock() held by caller */ if (netif_running(dev)) { u8 __iomem *base = get_hwbase(dev); /* * It seems that the nic preloads valid ring entries into an * internal buffer. The procedure for flushing everything is * guessed, there is probably a simpler approach. * Changing the MTU is a rare event, it shouldn't matter. */ nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } return 0; } static void nv_copy_mac_to_hw(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 mac[2]; mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); writel(mac[0], base + NvRegMacAddrA); writel(mac[1], base + NvRegMacAddrB); } /* * nv_set_mac_address: dev->set_mac_address function * Called with rtnl_lock() held. */ static int nv_set_mac_address(struct net_device *dev, void *addr) { struct fe_priv *np = netdev_priv(dev); struct sockaddr *macaddr = (struct sockaddr*)addr; if (!is_valid_ether_addr(macaddr->sa_data)) return -EADDRNOTAVAIL; /* synchronized against open : rtnl_lock() held by caller */ memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); if (netif_running(dev)) { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(&np->lock); /* stop rx engine */ nv_stop_rx(dev); /* set mac address */ nv_copy_mac_to_hw(dev); /* restart rx engine */ nv_start_rx(dev); spin_unlock_irq(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } else { nv_copy_mac_to_hw(dev); } return 0; } /* * nv_set_multicast: dev->set_multicast function * Called with netif_tx_lock held. */ static void nv_set_multicast(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 addr[2]; u32 mask[2]; u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX; memset(addr, 0, sizeof(addr)); memset(mask, 0, sizeof(mask)); if (dev->flags & IFF_PROMISC) { pff |= NVREG_PFF_PROMISC; } else { pff |= NVREG_PFF_MYADDR; if (dev->flags & IFF_ALLMULTI || dev->mc_list) { u32 alwaysOff[2]; u32 alwaysOn[2]; alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; if (dev->flags & IFF_ALLMULTI) { alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; } else { struct dev_mc_list *walk; walk = dev->mc_list; while (walk != NULL) { u32 a, b; a = le32_to_cpu(*(__le32 *) walk->dmi_addr); b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4])); alwaysOn[0] &= a; alwaysOff[0] &= ~a; alwaysOn[1] &= b; alwaysOff[1] &= ~b; walk = walk->next; } } addr[0] = alwaysOn[0]; addr[1] = alwaysOn[1]; mask[0] = alwaysOn[0] | alwaysOff[0]; mask[1] = alwaysOn[1] | alwaysOff[1]; } else { mask[0] = NVREG_MCASTMASKA_NONE; mask[1] = NVREG_MCASTMASKB_NONE; } } addr[0] |= NVREG_MCASTADDRA_FORCE; pff |= NVREG_PFF_ALWAYS; spin_lock_irq(&np->lock); nv_stop_rx(dev); writel(addr[0], base + NvRegMulticastAddrA); writel(addr[1], base + NvRegMulticastAddrB); writel(mask[0], base + NvRegMulticastMaskA); writel(mask[1], base + NvRegMulticastMaskB); writel(pff, base + NvRegPacketFilterFlags); dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n", dev->name); nv_start_rx(dev); spin_unlock_irq(&np->lock); } static void nv_update_pause(struct net_device *dev, u32 pause_flags) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE); if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) { u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX; if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) { writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags); np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; } else { writel(pff, base + NvRegPacketFilterFlags); } } if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) { u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX; if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) { u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1; if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2; if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) { pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3; /* limit the number of tx pause frames to a default of 8 */ writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit); } writel(pause_enable, base + NvRegTxPauseFrame); writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1); np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } else { writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); writel(regmisc, base + NvRegMisc1); } } } /** * nv_update_linkspeed: Setup the MAC according to the link partner * @dev: Network device to be configured * * The function queries the PHY and checks if there is a link partner. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is * set to 10 MBit HD. * * The function returns 0 if there is no link partner and 1 if there is * a good link partner. */ static int nv_update_linkspeed(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int adv = 0; int lpa = 0; int adv_lpa, adv_pause, lpa_pause; int newls = np->linkspeed; int newdup = np->duplex; int mii_status; int retval = 0; u32 control_1000, status_1000, phyreg, pause_flags, txreg; u32 txrxFlags = 0; u32 phy_exp; /* BMSR_LSTATUS is latched, read it twice: * we want the current value. */ mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (!(mii_status & BMSR_LSTATUS)) { dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n", dev->name); newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; retval = 0; goto set_speed; } if (np->autoneg == 0) { dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n", dev->name, np->fixed_mode); if (np->fixed_mode & LPA_100FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 1; } else if (np->fixed_mode & LPA_100HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 0; } else if (np->fixed_mode & LPA_10FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 1; } else { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } retval = 1; goto set_speed; } /* check auto negotiation is complete */ if (!(mii_status & BMSR_ANEGCOMPLETE)) { /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; retval = 0; dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name); goto set_speed; } adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n", dev->name, adv, lpa); retval = 1; if (np->gigabit == PHY_GIGABIT) { control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ); if ((control_1000 & ADVERTISE_1000FULL) && (status_1000 & LPA_1000FULL)) { dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n", dev->name); newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; newdup = 1; goto set_speed; } } /* FIXME: handle parallel detection properly */ adv_lpa = lpa & adv; if (adv_lpa & LPA_100FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 1; } else if (adv_lpa & LPA_100HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; newdup = 0; } else if (adv_lpa & LPA_10FULL) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 1; } else if (adv_lpa & LPA_10HALF) { newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } else { dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa); newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; newdup = 0; } set_speed: if (np->duplex == newdup && np->linkspeed == newls) return retval; dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n", dev->name, np->linkspeed, np->duplex, newls, newdup); np->duplex = newdup; np->linkspeed = newls; /* The transmitter and receiver must be restarted for safe update */ if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) { txrxFlags |= NV_RESTART_TX; nv_stop_tx(dev); } if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { txrxFlags |= NV_RESTART_RX; nv_stop_rx(dev); } if (np->gigabit == PHY_GIGABIT) { phyreg = readl(base + NvRegSlotTime); phyreg &= ~(0x3FF00); if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) || ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)) phyreg |= NVREG_SLOTTIME_10_100_FULL; else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) phyreg |= NVREG_SLOTTIME_1000_FULL; writel(phyreg, base + NvRegSlotTime); } phyreg = readl(base + NvRegPhyInterface); phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); if (np->duplex == 0) phyreg |= PHY_HALF; if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) phyreg |= PHY_100; else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) phyreg |= PHY_1000; writel(phyreg, base + NvRegPhyInterface); phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */ if (phyreg & PHY_RGMII) { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) { txreg = NVREG_TX_DEFERRAL_RGMII_1000; } else { if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10) txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10; else txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100; } else { txreg = NVREG_TX_DEFERRAL_RGMII_10_100; } } } else { if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) txreg = NVREG_TX_DEFERRAL_MII_STRETCH; else txreg = NVREG_TX_DEFERRAL_DEFAULT; } writel(txreg, base + NvRegTxDeferral); if (np->desc_ver == DESC_VER_1) { txreg = NVREG_TX_WM_DESC1_DEFAULT; } else { if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) txreg = NVREG_TX_WM_DESC2_3_1000; else txreg = NVREG_TX_WM_DESC2_3_DEFAULT; } writel(txreg, base + NvRegTxWatermark); writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD), base + NvRegMisc1); pci_push(base); writel(np->linkspeed, base + NvRegLinkSpeed); pci_push(base); pause_flags = 0; /* setup pause frame */ if (np->duplex != 0) { if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) { adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM); lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM); switch (adv_pause) { case ADVERTISE_PAUSE_CAP: if (lpa_pause & LPA_PAUSE_CAP) { pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } break; case ADVERTISE_PAUSE_ASYM: if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM)) { pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } break; case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM: if (lpa_pause & LPA_PAUSE_CAP) { pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } if (lpa_pause == LPA_PAUSE_ASYM) { pause_flags |= NV_PAUSEFRAME_RX_ENABLE; } break; } } else { pause_flags = np->pause_flags; } } nv_update_pause(dev, pause_flags); if (txrxFlags & NV_RESTART_TX) nv_start_tx(dev); if (txrxFlags & NV_RESTART_RX) nv_start_rx(dev); return retval; } static void nv_linkchange(struct net_device *dev) { if (nv_update_linkspeed(dev)) { if (!netif_carrier_ok(dev)) { netif_carrier_on(dev); printk(KERN_INFO "%s: link up.\n", dev->name); nv_start_rx(dev); } } else { if (netif_carrier_ok(dev)) { netif_carrier_off(dev); printk(KERN_INFO "%s: link down.\n", dev->name); nv_stop_rx(dev); } } } static void nv_link_irq(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); u32 miistat; miistat = readl(base + NvRegMIIStatus); writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus); dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat); if (miistat & (NVREG_MIISTAT_LINKCHANGE)) nv_linkchange(dev); dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name); } static void nv_msi_workaround(struct fe_priv *np) { /* Need to toggle the msi irq mask within the ethernet device, * otherwise, future interrupts will not be detected. */ if (np->msi_flags & NV_MSI_ENABLED) { u8 __iomem *base = np->base; writel(0, base + NvRegMSIIrqMask); writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); } } static irqreturn_t nv_nic_irq(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name); for (i=0; ; i++) { if (!(np->msi_flags & NV_MSI_X_ENABLED)) { np->events = readl(base + NvRegIrqStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); } else { np->events = readl(base + NvRegMSIXIrqStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); } dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events); if (!(np->events & np->irqmask)) break; nv_msi_workaround(np); #ifdef CONFIG_FORCEDETH_NAPI spin_lock(&np->lock); napi_schedule(&np->napi); /* Disable furthur irq's (msix not enabled with napi) */ writel(0, base + NvRegIrqMask); spin_unlock(&np->lock); return IRQ_HANDLED; #else spin_lock(&np->lock); nv_tx_done(dev, np->tx_ring_size); spin_unlock(&np->lock); if (nv_rx_process(dev, RX_WORK_PER_LOOP)) { if (unlikely(nv_alloc_rx(dev))) { spin_lock(&np->lock); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock(&np->lock); } } if (unlikely(np->events & NVREG_IRQ_LINK)) { spin_lock(&np->lock); nv_link_irq(dev); spin_unlock(&np->lock); } if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { spin_lock(&np->lock); nv_linkchange(dev); spin_unlock(&np->lock); np->link_timeout = jiffies + LINK_TIMEOUT; } if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { spin_lock(&np->lock); /* disable interrupts on the nic */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(0, base + NvRegIrqMask); else writel(np->irqmask, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock(&np->lock); break; } if (unlikely(i > max_interrupt_work)) { spin_lock(&np->lock); /* disable interrupts on the nic */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(0, base + NvRegIrqMask); else writel(np->irqmask, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock(&np->lock); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i); break; } #endif } dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name); return IRQ_RETVAL(i); } /** * All _optimized functions are used to help increase performance * (reduce CPU and increase throughput). They use descripter version 3, * compiler directives, and reduce memory accesses. */ static irqreturn_t nv_nic_irq_optimized(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name); for (i=0; ; i++) { if (!(np->msi_flags & NV_MSI_X_ENABLED)) { np->events = readl(base + NvRegIrqStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); } else { np->events = readl(base + NvRegMSIXIrqStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); } dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events); if (!(np->events & np->irqmask)) break; nv_msi_workaround(np); #ifdef CONFIG_FORCEDETH_NAPI spin_lock(&np->lock); napi_schedule(&np->napi); /* Disable furthur irq's (msix not enabled with napi) */ writel(0, base + NvRegIrqMask); spin_unlock(&np->lock); return IRQ_HANDLED; #else spin_lock(&np->lock); nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); spin_unlock(&np->lock); if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { if (unlikely(nv_alloc_rx_optimized(dev))) { spin_lock(&np->lock); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock(&np->lock); } } if (unlikely(np->events & NVREG_IRQ_LINK)) { spin_lock(&np->lock); nv_link_irq(dev); spin_unlock(&np->lock); } if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { spin_lock(&np->lock); nv_linkchange(dev); spin_unlock(&np->lock); np->link_timeout = jiffies + LINK_TIMEOUT; } if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { spin_lock(&np->lock); /* disable interrupts on the nic */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(0, base + NvRegIrqMask); else writel(np->irqmask, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock(&np->lock); break; } if (unlikely(i > max_interrupt_work)) { spin_lock(&np->lock); /* disable interrupts on the nic */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(0, base + NvRegIrqMask); else writel(np->irqmask, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock(&np->lock); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i); break; } #endif } dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name); return IRQ_RETVAL(i); } static irqreturn_t nv_nic_irq_tx(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name); for (i=0; ; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL; writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus); dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events); if (!(events & np->irqmask)) break; spin_lock_irqsave(&np->lock, flags); nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); spin_unlock_irqrestore(&np->lock, flags); if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_TX_ALL; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i); break; } } dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name); return IRQ_RETVAL(i); } #ifdef CONFIG_FORCEDETH_NAPI static int nv_napi_poll(struct napi_struct *napi, int budget) { struct fe_priv *np = container_of(napi, struct fe_priv, napi); struct net_device *dev = np->dev; u8 __iomem *base = get_hwbase(dev); unsigned long flags; int pkts, retcode; if (!nv_optimized(np)) { spin_lock_irqsave(&np->lock, flags); nv_tx_done(dev, np->tx_ring_size); spin_unlock_irqrestore(&np->lock, flags); pkts = nv_rx_process(dev, budget); retcode = nv_alloc_rx(dev); } else { spin_lock_irqsave(&np->lock, flags); nv_tx_done_optimized(dev, np->tx_ring_size); spin_unlock_irqrestore(&np->lock, flags); pkts = nv_rx_process_optimized(dev, budget); retcode = nv_alloc_rx_optimized(dev); } if (retcode) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock_irqrestore(&np->lock, flags); } if (unlikely(np->events & NVREG_IRQ_LINK)) { spin_lock_irqsave(&np->lock, flags); nv_link_irq(dev); spin_unlock_irqrestore(&np->lock, flags); } if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) { spin_lock_irqsave(&np->lock, flags); nv_linkchange(dev); spin_unlock_irqrestore(&np->lock, flags); np->link_timeout = jiffies + LINK_TIMEOUT; } if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) { np->nic_poll_irq = np->irqmask; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); __napi_complete(napi); return pkts; } if (pkts < budget) { /* re-enable interrupts (msix not enabled in napi) */ spin_lock_irqsave(&np->lock, flags); __napi_complete(napi); writel(np->irqmask, base + NvRegIrqMask); spin_unlock_irqrestore(&np->lock, flags); } return pkts; } #endif static irqreturn_t nv_nic_irq_rx(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name); for (i=0; ; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL; writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus); dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events); if (!(events & np->irqmask)) break; if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) { if (unlikely(nv_alloc_rx_optimized(dev))) { spin_lock_irqsave(&np->lock, flags); if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); spin_unlock_irqrestore(&np->lock, flags); } } if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_RX_ALL; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i); break; } } dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name); return IRQ_RETVAL(i); } static irqreturn_t nv_nic_irq_other(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; int i; unsigned long flags; dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name); for (i=0; ; i++) { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER; writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus); dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); if (!(events & np->irqmask)) break; /* check tx in case we reached max loop limit in tx isr */ spin_lock_irqsave(&np->lock, flags); nv_tx_done_optimized(dev, TX_WORK_PER_LOOP); spin_unlock_irqrestore(&np->lock, flags); if (events & NVREG_IRQ_LINK) { spin_lock_irqsave(&np->lock, flags); nv_link_irq(dev); spin_unlock_irqrestore(&np->lock, flags); } if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { spin_lock_irqsave(&np->lock, flags); nv_linkchange(dev); spin_unlock_irqrestore(&np->lock, flags); np->link_timeout = jiffies + LINK_TIMEOUT; } if (events & NVREG_IRQ_RECOVER_ERROR) { spin_lock_irq(&np->lock); /* disable interrupts on the nic */ writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_OTHER; np->recover_error = 1; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irq(&np->lock); break; } if (unlikely(i > max_interrupt_work)) { spin_lock_irqsave(&np->lock, flags); /* disable interrupts on the nic */ writel(NVREG_IRQ_OTHER, base + NvRegIrqMask); pci_push(base); if (!np->in_shutdown) { np->nic_poll_irq |= NVREG_IRQ_OTHER; mod_timer(&np->nic_poll, jiffies + POLL_WAIT); } spin_unlock_irqrestore(&np->lock, flags); printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i); break; } } dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name); return IRQ_RETVAL(i); } static irqreturn_t nv_nic_irq_test(int foo, void *data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 events; dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name); if (!(np->msi_flags & NV_MSI_X_ENABLED)) { events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus); } else { events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK; writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus); } pci_push(base); dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); if (!(events & NVREG_IRQ_TIMER)) return IRQ_RETVAL(0); nv_msi_workaround(np); spin_lock(&np->lock); np->intr_test = 1; spin_unlock(&np->lock); dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name); return IRQ_RETVAL(1); } static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask) { u8 __iomem *base = get_hwbase(dev); int i; u32 msixmap = 0; /* Each interrupt bit can be mapped to a MSIX vector (4 bits). * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents * the remaining 8 interrupts. */ for (i = 0; i < 8; i++) { if ((irqmask >> i) & 0x1) { msixmap |= vector << (i << 2); } } writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0); msixmap = 0; for (i = 0; i < 8; i++) { if ((irqmask >> (i + 8)) & 0x1) { msixmap |= vector << (i << 2); } } writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1); } static int nv_request_irq(struct net_device *dev, int intr_test) { struct fe_priv *np = get_nvpriv(dev); u8 __iomem *base = get_hwbase(dev); int ret = 1; int i; irqreturn_t (*handler)(int foo, void *data); if (intr_test) { handler = nv_nic_irq_test; } else { if (nv_optimized(np)) handler = nv_nic_irq_optimized; else handler = nv_nic_irq; } if (np->msi_flags & NV_MSI_X_CAPABLE) { for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) { np->msi_x_entry[i].entry = i; } if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) { np->msi_flags |= NV_MSI_X_ENABLED; if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) { /* Request irq for rx handling */ sprintf(np->name_rx, "%s-rx", dev->name); if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) { printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_err; } /* Request irq for tx handling */ sprintf(np->name_tx, "%s-tx", dev->name); if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) { printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_free_rx; } /* Request irq for link and timer handling */ sprintf(np->name_other, "%s-other", dev->name); if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) { printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_free_tx; } /* map interrupts to their respective vector */ writel(0, base + NvRegMSIXMap0); writel(0, base + NvRegMSIXMap1); set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL); set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL); set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER); } else { /* Request irq for all interrupts */ if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) { printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; goto out_err; } /* map interrupts to vector 0 */ writel(0, base + NvRegMSIXMap0); writel(0, base + NvRegMSIXMap1); } } } if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) { if ((ret = pci_enable_msi(np->pci_dev)) == 0) { np->msi_flags |= NV_MSI_ENABLED; dev->irq = np->pci_dev->irq; if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) { printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret); pci_disable_msi(np->pci_dev); np->msi_flags &= ~NV_MSI_ENABLED; dev->irq = np->pci_dev->irq; goto out_err; } /* map interrupts to vector 0 */ writel(0, base + NvRegMSIMap0); writel(0, base + NvRegMSIMap1); /* enable msi vector 0 */ writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask); } } if (ret != 0) { if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) goto out_err; } return 0; out_free_tx: free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev); out_free_rx: free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev); out_err: return 1; } static void nv_free_irq(struct net_device *dev) { struct fe_priv *np = get_nvpriv(dev); int i; if (np->msi_flags & NV_MSI_X_ENABLED) { for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) { free_irq(np->msi_x_entry[i].vector, dev); } pci_disable_msix(np->pci_dev); np->msi_flags &= ~NV_MSI_X_ENABLED; } else { free_irq(np->pci_dev->irq, dev); if (np->msi_flags & NV_MSI_ENABLED) { pci_disable_msi(np->pci_dev); np->msi_flags &= ~NV_MSI_ENABLED; } } } static void nv_do_nic_poll(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 mask = 0; /* * First disable irq(s) and then * reenable interrupts on the nic, we have to do this before calling * nv_nic_irq because that may decide to do otherwise */ if (!using_multi_irqs(dev)) { if (np->msi_flags & NV_MSI_X_ENABLED) disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else disable_irq_lockdep(np->pci_dev->irq); mask = np->irqmask; } else { if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); mask |= NVREG_IRQ_RX_ALL; } if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); mask |= NVREG_IRQ_TX_ALL; } if (np->nic_poll_irq & NVREG_IRQ_OTHER) { disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); mask |= NVREG_IRQ_OTHER; } } /* disable_irq() contains synchronize_irq, thus no irq handler can run now */ if (np->recover_error) { np->recover_error = 0; printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name); if (netif_running(dev)) { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); if (np->driver_data & DEV_HAS_POWER_CNTRL) nv_mac_reset(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* clear interrupts */ if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); else writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); /* restart rx engine */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } writel(mask, base + NvRegIrqMask); pci_push(base); if (!using_multi_irqs(dev)) { np->nic_poll_irq = 0; if (nv_optimized(np)) nv_nic_irq_optimized(0, dev); else nv_nic_irq(0, dev); if (np->msi_flags & NV_MSI_X_ENABLED) enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector); else enable_irq_lockdep(np->pci_dev->irq); } else { if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) { np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL; nv_nic_irq_rx(0, dev); enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector); } if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) { np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL; nv_nic_irq_tx(0, dev); enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector); } if (np->nic_poll_irq & NVREG_IRQ_OTHER) { np->nic_poll_irq &= ~NVREG_IRQ_OTHER; nv_nic_irq_other(0, dev); enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector); } } } #ifdef CONFIG_NET_POLL_CONTROLLER static void nv_poll_controller(struct net_device *dev) { nv_do_nic_poll((unsigned long) dev); } #endif static void nv_do_stats_poll(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct fe_priv *np = netdev_priv(dev); nv_get_hw_stats(dev); if (!np->in_shutdown) mod_timer(&np->stats_poll, round_jiffies(jiffies + STATS_INTERVAL)); } static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct fe_priv *np = netdev_priv(dev); strcpy(info->driver, DRV_NAME); strcpy(info->version, FORCEDETH_VERSION); strcpy(info->bus_info, pci_name(np->pci_dev)); } static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct fe_priv *np = netdev_priv(dev); wolinfo->supported = WAKE_MAGIC; spin_lock_irq(&np->lock); if (np->wolenabled) wolinfo->wolopts = WAKE_MAGIC; spin_unlock_irq(&np->lock); } static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 flags = 0; if (wolinfo->wolopts == 0) { np->wolenabled = 0; } else if (wolinfo->wolopts & WAKE_MAGIC) { np->wolenabled = 1; flags = NVREG_WAKEUPFLAGS_ENABLE; } if (netif_running(dev)) { spin_lock_irq(&np->lock); writel(flags, base + NvRegWakeUpFlags); spin_unlock_irq(&np->lock); } return 0; } static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct fe_priv *np = netdev_priv(dev); int adv; spin_lock_irq(&np->lock); ecmd->port = PORT_MII; if (!netif_running(dev)) { /* We do not track link speed / duplex setting if the * interface is disabled. Force a link check */ if (nv_update_linkspeed(dev)) { if (!netif_carrier_ok(dev)) netif_carrier_on(dev); } else { if (netif_carrier_ok(dev)) netif_carrier_off(dev); } } if (netif_carrier_ok(dev)) { switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) { case NVREG_LINKSPEED_10: ecmd->speed = SPEED_10; break; case NVREG_LINKSPEED_100: ecmd->speed = SPEED_100; break; case NVREG_LINKSPEED_1000: ecmd->speed = SPEED_1000; break; } ecmd->duplex = DUPLEX_HALF; if (np->duplex) ecmd->duplex = DUPLEX_FULL; } else { ecmd->speed = -1; ecmd->duplex = -1; } ecmd->autoneg = np->autoneg; ecmd->advertising = ADVERTISED_MII; if (np->autoneg) { ecmd->advertising |= ADVERTISED_Autoneg; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); if (adv & ADVERTISE_10HALF) ecmd->advertising |= ADVERTISED_10baseT_Half; if (adv & ADVERTISE_10FULL) ecmd->advertising |= ADVERTISED_10baseT_Full; if (adv & ADVERTISE_100HALF) ecmd->advertising |= ADVERTISED_100baseT_Half; if (adv & ADVERTISE_100FULL) ecmd->advertising |= ADVERTISED_100baseT_Full; if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); if (adv & ADVERTISE_1000FULL) ecmd->advertising |= ADVERTISED_1000baseT_Full; } } ecmd->supported = (SUPPORTED_Autoneg | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_MII); if (np->gigabit == PHY_GIGABIT) ecmd->supported |= SUPPORTED_1000baseT_Full; ecmd->phy_address = np->phyaddr; ecmd->transceiver = XCVR_EXTERNAL; /* ignore maxtxpkt, maxrxpkt for now */ spin_unlock_irq(&np->lock); return 0; } static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct fe_priv *np = netdev_priv(dev); if (ecmd->port != PORT_MII) return -EINVAL; if (ecmd->transceiver != XCVR_EXTERNAL) return -EINVAL; if (ecmd->phy_address != np->phyaddr) { /* TODO: support switching between multiple phys. Should be * trivial, but not enabled due to lack of test hardware. */ return -EINVAL; } if (ecmd->autoneg == AUTONEG_ENABLE) { u32 mask; mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; if (np->gigabit == PHY_GIGABIT) mask |= ADVERTISED_1000baseT_Full; if ((ecmd->advertising & mask) == 0) return -EINVAL; } else if (ecmd->autoneg == AUTONEG_DISABLE) { /* Note: autonegotiation disable, speed 1000 intentionally * forbidden - noone should need that. */ if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100) return -EINVAL; if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) return -EINVAL; } else { return -EINVAL; } netif_carrier_off(dev); if (netif_running(dev)) { unsigned long flags; nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); /* with plain spinlock lockdep complains */ spin_lock_irqsave(&np->lock, flags); /* stop engines */ /* FIXME: * this can take some time, and interrupts are disabled * due to spin_lock_irqsave, but let's hope no daemon * is going to change the settings very often... * Worst case: * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX * + some minor delays, which is up to a second approximately */ nv_stop_rxtx(dev); spin_unlock_irqrestore(&np->lock, flags); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } if (ecmd->autoneg == AUTONEG_ENABLE) { int adv, bmcr; np->autoneg = 1; /* advertise only what has been requested */ adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (ecmd->advertising & ADVERTISED_10baseT_Half) adv |= ADVERTISE_10HALF; if (ecmd->advertising & ADVERTISED_10baseT_Full) adv |= ADVERTISE_10FULL; if (ecmd->advertising & ADVERTISED_100baseT_Half) adv |= ADVERTISE_100HALF; if (ecmd->advertising & ADVERTISED_100baseT_Full) adv |= ADVERTISE_100FULL; if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) adv |= ADVERTISE_PAUSE_ASYM; mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); adv &= ~ADVERTISE_1000FULL; if (ecmd->advertising & ADVERTISED_1000baseT_Full) adv |= ADVERTISE_1000FULL; mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); } if (netif_running(dev)) printk(KERN_INFO "%s: link down.\n", dev->name); bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (np->phy_model == PHY_MODEL_MARVELL_E3016) { bmcr |= BMCR_ANENABLE; /* reset the phy in order for settings to stick, * and cause autoneg to start */ if (phy_reset(dev, bmcr)) { printk(KERN_INFO "%s: phy reset failed\n", dev->name); return -EINVAL; } } else { bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } } else { int adv, bmcr; np->autoneg = 0; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) adv |= ADVERTISE_10HALF; if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) adv |= ADVERTISE_10FULL; if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) adv |= ADVERTISE_100HALF; if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) adv |= ADVERTISE_100FULL; np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; } if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) { adv |= ADVERTISE_PAUSE_ASYM; np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; } mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); np->fixed_mode = adv; if (np->gigabit == PHY_GIGABIT) { adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ); adv &= ~ADVERTISE_1000FULL; mii_rw(dev, np->phyaddr, MII_CTRL1000, adv); } bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX); if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL)) bmcr |= BMCR_FULLDPLX; if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL)) bmcr |= BMCR_SPEED100; if (np->phy_oui == PHY_OUI_MARVELL) { /* reset the phy in order for forced mode settings to stick */ if (phy_reset(dev, bmcr)) { printk(KERN_INFO "%s: phy reset failed\n", dev->name); return -EINVAL; } } else { mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); if (netif_running(dev)) { /* Wait a bit and then reconfigure the nic. */ udelay(10); nv_linkchange(dev); } } } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } return 0; } #define FORCEDETH_REGS_VER 1 static int nv_get_regs_len(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); return np->register_size; } static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 *rbuf = buf; int i; regs->version = FORCEDETH_REGS_VER; spin_lock_irq(&np->lock); for (i = 0;i <= np->register_size/sizeof(u32); i++) rbuf[i] = readl(base + i*sizeof(u32)); spin_unlock_irq(&np->lock); } static int nv_nway_reset(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int ret; if (np->autoneg) { int bmcr; netif_carrier_off(dev); if (netif_running(dev)) { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); printk(KERN_INFO "%s: link down.\n", dev->name); } bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); if (np->phy_model == PHY_MODEL_MARVELL_E3016) { bmcr |= BMCR_ANENABLE; /* reset the phy in order for settings to stick*/ if (phy_reset(dev, bmcr)) { printk(KERN_INFO "%s: phy reset failed\n", dev->name); return -EINVAL; } } else { bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } ret = 0; } else { ret = -EINVAL; } return ret; } static int nv_set_tso(struct net_device *dev, u32 value) { struct fe_priv *np = netdev_priv(dev); if ((np->driver_data & DEV_HAS_CHECKSUM)) return ethtool_op_set_tso(dev, value); else return -EOPNOTSUPP; } static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) { struct fe_priv *np = netdev_priv(dev); ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; ring->rx_mini_max_pending = 0; ring->rx_jumbo_max_pending = 0; ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3; ring->rx_pending = np->rx_ring_size; ring->rx_mini_pending = 0; ring->rx_jumbo_pending = 0; ring->tx_pending = np->tx_ring_size; } static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u8 *rxtx_ring, *rx_skbuff, *tx_skbuff; dma_addr_t ring_addr; if (ring->rx_pending < RX_RING_MIN || ring->tx_pending < TX_RING_MIN || ring->rx_mini_pending != 0 || ring->rx_jumbo_pending != 0 || (np->desc_ver == DESC_VER_1 && (ring->rx_pending > RING_MAX_DESC_VER_1 || ring->tx_pending > RING_MAX_DESC_VER_1)) || (np->desc_ver != DESC_VER_1 && (ring->rx_pending > RING_MAX_DESC_VER_2_3 || ring->tx_pending > RING_MAX_DESC_VER_2_3))) { return -EINVAL; } /* allocate new rings */ if (!nv_optimized(np)) { rxtx_ring = pci_alloc_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), &ring_addr); } else { rxtx_ring = pci_alloc_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), &ring_addr); } rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL); tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL); if (!rxtx_ring || !rx_skbuff || !tx_skbuff) { /* fall back to old rings */ if (!nv_optimized(np)) { if (rxtx_ring) pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending), rxtx_ring, ring_addr); } else { if (rxtx_ring) pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending), rxtx_ring, ring_addr); } if (rx_skbuff) kfree(rx_skbuff); if (tx_skbuff) kfree(tx_skbuff); goto exit; } if (netif_running(dev)) { nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain queues */ nv_drain_rxtx(dev); /* delete queues */ free_rings(dev); } /* set new values */ np->rx_ring_size = ring->rx_pending; np->tx_ring_size = ring->tx_pending; if (!nv_optimized(np)) { np->rx_ring.orig = (struct ring_desc*)rxtx_ring; np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; } else { np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring; np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; } np->rx_skb = (struct nv_skb_map*)rx_skbuff; np->tx_skb = (struct nv_skb_map*)tx_skbuff; np->ring_addr = ring_addr; memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size); memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size); if (netif_running(dev)) { /* reinit driver view of the queues */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the queues */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart engines */ nv_start_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } return 0; exit: return -ENOMEM; } static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) { struct fe_priv *np = netdev_priv(dev); pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0; pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0; pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0; } static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause) { struct fe_priv *np = netdev_priv(dev); int adv, bmcr; if ((!np->autoneg && np->duplex == 0) || (np->autoneg && !pause->autoneg && np->duplex == 0)) { printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n", dev->name); return -EINVAL; } if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) { printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name); return -EINVAL; } netif_carrier_off(dev); if (netif_running(dev)) { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(&np->lock); /* stop engines */ nv_stop_rxtx(dev); spin_unlock(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ); if (pause->rx_pause) np->pause_flags |= NV_PAUSEFRAME_RX_REQ; if (pause->tx_pause) np->pause_flags |= NV_PAUSEFRAME_TX_REQ; if (np->autoneg && pause->autoneg) { np->pause_flags |= NV_PAUSEFRAME_AUTONEG; adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */ adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) adv |= ADVERTISE_PAUSE_ASYM; mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); if (netif_running(dev)) printk(KERN_INFO "%s: link down.\n", dev->name); bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); } else { np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE); if (pause->rx_pause) np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE; if (pause->tx_pause) np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE; if (!netif_running(dev)) nv_update_linkspeed(dev); else nv_update_pause(dev, np->pause_flags); } if (netif_running(dev)) { nv_start_rxtx(dev); nv_enable_irq(dev); } return 0; } static u32 nv_get_rx_csum(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); return (np->rx_csum) != 0; } static int nv_set_rx_csum(struct net_device *dev, u32 data) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int retcode = 0; if (np->driver_data & DEV_HAS_CHECKSUM) { if (data) { np->rx_csum = 1; np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; } else { np->rx_csum = 0; /* vlan is dependent on rx checksum offload */ if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE)) np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK; } if (netif_running(dev)) { spin_lock_irq(&np->lock); writel(np->txrxctl_bits, base + NvRegTxRxControl); spin_unlock_irq(&np->lock); } } else { return -EINVAL; } return retcode; } static int nv_set_tx_csum(struct net_device *dev, u32 data) { struct fe_priv *np = netdev_priv(dev); if (np->driver_data & DEV_HAS_CHECKSUM) return ethtool_op_set_tx_csum(dev, data); else return -EOPNOTSUPP; } static int nv_set_sg(struct net_device *dev, u32 data) { struct fe_priv *np = netdev_priv(dev); if (np->driver_data & DEV_HAS_CHECKSUM) return ethtool_op_set_sg(dev, data); else return -EOPNOTSUPP; } static int nv_get_sset_count(struct net_device *dev, int sset) { struct fe_priv *np = netdev_priv(dev); switch (sset) { case ETH_SS_TEST: if (np->driver_data & DEV_HAS_TEST_EXTENDED) return NV_TEST_COUNT_EXTENDED; else return NV_TEST_COUNT_BASE; case ETH_SS_STATS: if (np->driver_data & DEV_HAS_STATISTICS_V3) return NV_DEV_STATISTICS_V3_COUNT; else if (np->driver_data & DEV_HAS_STATISTICS_V2) return NV_DEV_STATISTICS_V2_COUNT; else if (np->driver_data & DEV_HAS_STATISTICS_V1) return NV_DEV_STATISTICS_V1_COUNT; else return 0; default: return -EOPNOTSUPP; } } static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer) { struct fe_priv *np = netdev_priv(dev); /* update stats */ nv_do_stats_poll((unsigned long)dev); memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64)); } static int nv_link_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); int mii_status; mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); /* check phy link status */ if (!(mii_status & BMSR_LSTATUS)) return 0; else return 1; } static int nv_register_test(struct net_device *dev) { u8 __iomem *base = get_hwbase(dev); int i = 0; u32 orig_read, new_read; do { orig_read = readl(base + nv_registers_test[i].reg); /* xor with mask to toggle bits */ orig_read ^= nv_registers_test[i].mask; writel(orig_read, base + nv_registers_test[i].reg); new_read = readl(base + nv_registers_test[i].reg); if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask)) return 0; /* restore original value */ orig_read ^= nv_registers_test[i].mask; writel(orig_read, base + nv_registers_test[i].reg); } while (nv_registers_test[++i].reg != 0); return 1; } static int nv_interrupt_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int ret = 1; int testcnt; u32 save_msi_flags, save_poll_interval = 0; if (netif_running(dev)) { /* free current irq */ nv_free_irq(dev); save_poll_interval = readl(base+NvRegPollingInterval); } /* flag to test interrupt handler */ np->intr_test = 0; /* setup test irq */ save_msi_flags = np->msi_flags; np->msi_flags &= ~NV_MSI_X_VECTORS_MASK; np->msi_flags |= 0x001; /* setup 1 vector */ if (nv_request_irq(dev, 1)) return 0; /* setup timer interrupt */ writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER); /* wait for at least one interrupt */ msleep(100); spin_lock_irq(&np->lock); /* flag should be set within ISR */ testcnt = np->intr_test; if (!testcnt) ret = 2; nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER); if (!(np->msi_flags & NV_MSI_X_ENABLED)) writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); else writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); spin_unlock_irq(&np->lock); nv_free_irq(dev); np->msi_flags = save_msi_flags; if (netif_running(dev)) { writel(save_poll_interval, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); /* restore original irq */ if (nv_request_irq(dev, 0)) return 0; } return ret; } static int nv_loopback_test(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); struct sk_buff *tx_skb, *rx_skb; dma_addr_t test_dma_addr; u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); u32 flags; int len, i, pkt_len; u8 *pkt_data; u32 filter_flags = 0; u32 misc1_flags = 0; int ret = 1; if (netif_running(dev)) { nv_disable_irq(dev); filter_flags = readl(base + NvRegPacketFilterFlags); misc1_flags = readl(base + NvRegMisc1); } else { nv_txrx_reset(dev); } /* reinit driver view of the rx queue */ set_bufsize(dev); nv_init_ring(dev); /* setup hardware for loopback */ writel(NVREG_MISC1_FORCE, base + NvRegMisc1); writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags); /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); /* setup packet for tx */ pkt_len = ETH_DATA_LEN; tx_skb = dev_alloc_skb(pkt_len); if (!tx_skb) { printk(KERN_ERR "dev_alloc_skb() failed during loopback test" " of %s\n", dev->name); ret = 0; goto out; } test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data, skb_tailroom(tx_skb), PCI_DMA_FROMDEVICE); pkt_data = skb_put(tx_skb, pkt_len); for (i = 0; i < pkt_len; i++) pkt_data[i] = (u8)(i & 0xff); if (!nv_optimized(np)) { np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr); np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); } else { np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr)); np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr)); np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra); } writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(get_hwbase(dev)); msleep(500); /* check for rx of the packet */ if (!nv_optimized(np)) { flags = le32_to_cpu(np->rx_ring.orig[0].flaglen); len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver); } else { flags = le32_to_cpu(np->rx_ring.ex[0].flaglen); len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver); } if (flags & NV_RX_AVAIL) { ret = 0; } else if (np->desc_ver == DESC_VER_1) { if (flags & NV_RX_ERROR) ret = 0; } else { if (flags & NV_RX2_ERROR) { ret = 0; } } if (ret) { if (len != pkt_len) { ret = 0; dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n", dev->name, len, pkt_len); } else { rx_skb = np->rx_skb[0].skb; for (i = 0; i < pkt_len; i++) { if (rx_skb->data[i] != (u8)(i & 0xff)) { ret = 0; dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n", dev->name, i); break; } } } } else { dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name); } pci_unmap_page(np->pci_dev, test_dma_addr, (skb_end_pointer(tx_skb) - tx_skb->data), PCI_DMA_TODEVICE); dev_kfree_skb_any(tx_skb); out: /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); if (netif_running(dev)) { writel(misc1_flags, base + NvRegMisc1); writel(filter_flags, base + NvRegPacketFilterFlags); nv_enable_irq(dev); } return ret; } static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int result; memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64)); if (!nv_link_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[0] = 1; } if (test->flags & ETH_TEST_FL_OFFLINE) { if (netif_running(dev)) { netif_stop_queue(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(&np->lock); nv_disable_hw_interrupts(dev, np->irqmask); if (!(np->msi_flags & NV_MSI_X_ENABLED)) { writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); } else { writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus); } /* stop engines */ nv_stop_rxtx(dev); nv_txrx_reset(dev); /* drain rx queue */ nv_drain_rxtx(dev); spin_unlock_irq(&np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } if (!nv_register_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[1] = 1; } result = nv_interrupt_test(dev); if (result != 1) { test->flags |= ETH_TEST_FL_FAILED; buffer[2] = 1; } if (result == 0) { /* bail out */ return; } if (!nv_loopback_test(dev)) { test->flags |= ETH_TEST_FL_FAILED; buffer[3] = 1; } if (netif_running(dev)) { /* reinit driver view of the rx queue */ set_bufsize(dev); if (nv_init_ring(dev)) { if (!np->in_shutdown) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); } /* reinit nic view of the rx queue */ writel(np->rx_buf_sz, base + NvRegOffloadConfig); setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); pci_push(base); writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); pci_push(base); /* restart rx engine */ nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); nv_enable_hw_interrupts(dev, np->irqmask); } } } static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer) { switch (stringset) { case ETH_SS_STATS: memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str)); break; case ETH_SS_TEST: memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str)); break; } } static const struct ethtool_ops ops = { .get_drvinfo = nv_get_drvinfo, .get_link = ethtool_op_get_link, .get_wol = nv_get_wol, .set_wol = nv_set_wol, .get_settings = nv_get_settings, .set_settings = nv_set_settings, .get_regs_len = nv_get_regs_len, .get_regs = nv_get_regs, .nway_reset = nv_nway_reset, .set_tso = nv_set_tso, .get_ringparam = nv_get_ringparam, .set_ringparam = nv_set_ringparam, .get_pauseparam = nv_get_pauseparam, .set_pauseparam = nv_set_pauseparam, .get_rx_csum = nv_get_rx_csum, .set_rx_csum = nv_set_rx_csum, .set_tx_csum = nv_set_tx_csum, .set_sg = nv_set_sg, .get_strings = nv_get_strings, .get_ethtool_stats = nv_get_ethtool_stats, .get_sset_count = nv_get_sset_count, .self_test = nv_self_test, }; static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) { struct fe_priv *np = get_nvpriv(dev); spin_lock_irq(&np->lock); /* save vlan group */ np->vlangrp = grp; if (grp) { /* enable vlan on MAC */ np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS; } else { /* disable vlan on MAC */ np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP; np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS; } writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); spin_unlock_irq(&np->lock); } /* The mgmt unit and driver use a semaphore to access the phy during init */ static int nv_mgmt_acquire_sema(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; u32 tx_ctrl, mgmt_sema; for (i = 0; i < 10; i++) { mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK; if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE) break; msleep(500); } if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE) return 0; for (i = 0; i < 2; i++) { tx_ctrl = readl(base + NvRegTransmitterControl); tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ; writel(tx_ctrl, base + NvRegTransmitterControl); /* verify that semaphore was acquired */ tx_ctrl = readl(base + NvRegTransmitterControl); if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) && ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) { np->mgmt_sema = 1; return 1; } else udelay(50); } return 0; } static void nv_mgmt_release_sema(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 tx_ctrl; if (np->driver_data & DEV_HAS_MGMT_UNIT) { if (np->mgmt_sema) { tx_ctrl = readl(base + NvRegTransmitterControl); tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ; writel(tx_ctrl, base + NvRegTransmitterControl); } } } static int nv_mgmt_get_version(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); u32 data_ready = readl(base + NvRegTransmitterControl); u32 data_ready2 = 0; unsigned long start; int ready = 0; writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion); writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl); start = jiffies; while (time_before(jiffies, start + 5*HZ)) { data_ready2 = readl(base + NvRegTransmitterControl); if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) { ready = 1; break; } schedule_timeout_uninterruptible(1); } if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR)) return 0; np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION; return 1; } static int nv_open(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int ret = 1; int oom, i; u32 low; dprintk(KERN_DEBUG "nv_open: begin\n"); /* power up phy */ mii_rw(dev, np->phyaddr, MII_BMCR, mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN); /* erase previous misconfiguration */ if (np->driver_data & DEV_HAS_POWER_CNTRL) nv_mac_reset(dev); writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); writel(0, base + NvRegPacketFilterFlags); writel(0, base + NvRegTransmitterControl); writel(0, base + NvRegReceiverControl); writel(0, base + NvRegAdapterControl); if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame); /* initialize descriptor rings */ set_bufsize(dev); oom = nv_init_ring(dev); writel(0, base + NvRegLinkSpeed); writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); nv_txrx_reset(dev); writel(0, base + NvRegUnknownSetupReg6); np->in_shutdown = 0; /* give hw rings */ setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING); writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT), base + NvRegRingSizes); writel(np->linkspeed, base + NvRegLinkSpeed); if (np->desc_ver == DESC_VER_1) writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark); else writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark); writel(np->txrxctl_bits, base + NvRegTxRxControl); writel(np->vlanctl_bits, base + NvRegVlanControl); pci_push(base); writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX, KERN_INFO "open: SetupReg5, Bit 31 remained off\n"); writel(0, base + NvRegMIIMask); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); writel(np->rx_buf_sz, base + NvRegOffloadConfig); writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); get_random_bytes(&low, sizeof(low)); low &= NVREG_SLOTTIME_MASK; if (np->desc_ver == DESC_VER_1) { writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime); } else { if (!(np->driver_data & DEV_HAS_GEAR_MODE)) { /* setup legacy backoff */ writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime); } else { writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime); nv_gear_backoff_reseed(dev); } } writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral); writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral); if (poll_interval == -1) { if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); else writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); } else writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask); if (np->wolenabled) writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags); i = readl(base + NvRegPowerState); if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0) writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); pci_push(base); udelay(10); writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); pci_push(base); if (nv_request_irq(dev, 0)) { goto out_drain; } /* ask for interrupts */ nv_enable_hw_interrupts(dev, np->irqmask); spin_lock_irq(&np->lock); writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); writel(0, base + NvRegMulticastAddrB); writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA); writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB); writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); /* One manual link speed update: Interrupts are enabled, future link * speed changes cause interrupts and are handled by nv_link_irq(). */ { u32 miistat; miistat = readl(base + NvRegMIIStatus); writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat); } /* set linkspeed to invalid value, thus force nv_update_linkspeed * to init hw */ np->linkspeed = 0; ret = nv_update_linkspeed(dev); nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); if (ret) { netif_carrier_on(dev); } else { printk(KERN_INFO "%s: no link during initialization.\n", dev->name); netif_carrier_off(dev); } if (oom) mod_timer(&np->oom_kick, jiffies + OOM_REFILL); /* start statistics timer */ if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) mod_timer(&np->stats_poll, round_jiffies(jiffies + STATS_INTERVAL)); spin_unlock_irq(&np->lock); return 0; out_drain: nv_drain_rxtx(dev); return ret; } static int nv_close(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u8 __iomem *base; spin_lock_irq(&np->lock); np->in_shutdown = 1; spin_unlock_irq(&np->lock); nv_napi_disable(dev); synchronize_irq(np->pci_dev->irq); del_timer_sync(&np->oom_kick); del_timer_sync(&np->nic_poll); del_timer_sync(&np->stats_poll); netif_stop_queue(dev); spin_lock_irq(&np->lock); nv_stop_rxtx(dev); nv_txrx_reset(dev); /* disable interrupts on the nic or we will lock up */ base = get_hwbase(dev); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name); spin_unlock_irq(&np->lock); nv_free_irq(dev); nv_drain_rxtx(dev); if (np->wolenabled) { writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); nv_start_rx(dev); } else { /* power down phy */ mii_rw(dev, np->phyaddr, MII_BMCR, mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN); } /* FIXME: power down nic */ return 0; } static const struct net_device_ops nv_netdev_ops = { .ndo_open = nv_open, .ndo_stop = nv_close, .ndo_get_stats = nv_get_stats, .ndo_start_xmit = nv_start_xmit, .ndo_tx_timeout = nv_tx_timeout, .ndo_change_mtu = nv_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = nv_set_mac_address, .ndo_set_multicast_list = nv_set_multicast, .ndo_vlan_rx_register = nv_vlan_rx_register, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = nv_poll_controller, #endif }; static const struct net_device_ops nv_netdev_ops_optimized = { .ndo_open = nv_open, .ndo_stop = nv_close, .ndo_get_stats = nv_get_stats, .ndo_start_xmit = nv_start_xmit_optimized, .ndo_tx_timeout = nv_tx_timeout, .ndo_change_mtu = nv_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = nv_set_mac_address, .ndo_set_multicast_list = nv_set_multicast, .ndo_vlan_rx_register = nv_vlan_rx_register, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = nv_poll_controller, #endif }; static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct net_device *dev; struct fe_priv *np; unsigned long addr; u8 __iomem *base; int err, i; u32 powerstate, txreg; u32 phystate_orig = 0, phystate; int phyinitialized = 0; static int printed_version; if (!printed_version++) printk(KERN_INFO "%s: Reverse Engineered nForce ethernet" " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION); dev = alloc_etherdev(sizeof(struct fe_priv)); err = -ENOMEM; if (!dev) goto out; np = netdev_priv(dev); np->dev = dev; np->pci_dev = pci_dev; spin_lock_init(&np->lock); SET_NETDEV_DEV(dev, &pci_dev->dev); init_timer(&np->oom_kick); np->oom_kick.data = (unsigned long) dev; np->oom_kick.function = &nv_do_rx_refill; /* timer handler */ init_timer(&np->nic_poll); np->nic_poll.data = (unsigned long) dev; np->nic_poll.function = &nv_do_nic_poll; /* timer handler */ init_timer(&np->stats_poll); np->stats_poll.data = (unsigned long) dev; np->stats_poll.function = &nv_do_stats_poll; /* timer handler */ err = pci_enable_device(pci_dev); if (err) goto out_free; pci_set_master(pci_dev); err = pci_request_regions(pci_dev, DRV_NAME); if (err < 0) goto out_disable; if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) np->register_size = NV_PCI_REGSZ_VER3; else if (id->driver_data & DEV_HAS_STATISTICS_V1) np->register_size = NV_PCI_REGSZ_VER2; else np->register_size = NV_PCI_REGSZ_VER1; err = -EINVAL; addr = 0; for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n", pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i), pci_resource_len(pci_dev, i), pci_resource_flags(pci_dev, i)); if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && pci_resource_len(pci_dev, i) >= np->register_size) { addr = pci_resource_start(pci_dev, i); break; } } if (i == DEVICE_COUNT_RESOURCE) { dev_printk(KERN_INFO, &pci_dev->dev, "Couldn't find register window\n"); goto out_relreg; } /* copy of driver data */ np->driver_data = id->driver_data; /* copy of device id */ np->device_id = id->device; /* handle different descriptor versions */ if (id->driver_data & DEV_HAS_HIGH_DMA) { /* packet format 3: supports 40-bit addressing */ np->desc_ver = DESC_VER_3; np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; if (dma_64bit) { if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) dev_printk(KERN_INFO, &pci_dev->dev, "64-bit DMA failed, using 32-bit addressing\n"); else dev->features |= NETIF_F_HIGHDMA; if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) { dev_printk(KERN_INFO, &pci_dev->dev, "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); } } } else if (id->driver_data & DEV_HAS_LARGEDESC) { /* packet format 2: supports jumbo frames */ np->desc_ver = DESC_VER_2; np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; } else { /* original packet format */ np->desc_ver = DESC_VER_1; np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; } np->pkt_limit = NV_PKTLIMIT_1; if (id->driver_data & DEV_HAS_LARGEDESC) np->pkt_limit = NV_PKTLIMIT_2; if (id->driver_data & DEV_HAS_CHECKSUM) { np->rx_csum = 1; np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; dev->features |= NETIF_F_TSO; } np->vlanctl_bits = 0; if (id->driver_data & DEV_HAS_VLAN) { np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE; dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX; } np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG; if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) || (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) || (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) { np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ; } err = -ENOMEM; np->base = ioremap(addr, np->register_size); if (!np->base) goto out_relreg; dev->base_addr = (unsigned long)np->base; dev->irq = pci_dev->irq; np->rx_ring_size = RX_RING_DEFAULT; np->tx_ring_size = TX_RING_DEFAULT; if (!nv_optimized(np)) { np->rx_ring.orig = pci_alloc_consistent(pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size), &np->ring_addr); if (!np->rx_ring.orig) goto out_unmap; np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size]; } else { np->rx_ring.ex = pci_alloc_consistent(pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size), &np->ring_addr); if (!np->rx_ring.ex) goto out_unmap; np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size]; } np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL); if (!np->rx_skb || !np->tx_skb) goto out_freering; if (!nv_optimized(np)) dev->netdev_ops = &nv_netdev_ops; else dev->netdev_ops = &nv_netdev_ops_optimized; #ifdef CONFIG_FORCEDETH_NAPI netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP); #endif SET_ETHTOOL_OPS(dev, &ops); dev->watchdog_timeo = NV_WATCHDOG_TIMEO; pci_set_drvdata(pci_dev, dev); /* read the mac address */ base = get_hwbase(dev); np->orig_mac[0] = readl(base + NvRegMacAddrA); np->orig_mac[1] = readl(base + NvRegMacAddrB); /* check the workaround bit for correct mac address order */ txreg = readl(base + NvRegTransmitPoll); if (id->driver_data & DEV_HAS_CORRECT_MACADDR) { /* mac address is already in correct order */ dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) { /* mac address is already in correct order */ dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff; dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff; dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff; dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff; dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff; dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff; /* * Set orig mac address back to the reversed version. * This flag will be cleared during low power transition. * Therefore, we should always put back the reversed address. */ np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) + (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24); np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8); } else { /* need to reverse mac address to correct order */ dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n"); } memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); if (!is_valid_ether_addr(dev->perm_addr)) { /* * Bad mac address. At least one bios sets the mac address * to 01:23:45:67:89:ab */ dev_printk(KERN_ERR, &pci_dev->dev, "Invalid Mac address detected: %pM\n", dev->dev_addr); dev_printk(KERN_ERR, &pci_dev->dev, "Please complain to your hardware vendor. Switching to a random MAC.\n"); dev->dev_addr[0] = 0x00; dev->dev_addr[1] = 0x00; dev->dev_addr[2] = 0x6c; get_random_bytes(&dev->dev_addr[3], 3); } dprintk(KERN_DEBUG "%s: MAC Address %pM\n", pci_name(pci_dev), dev->dev_addr); /* set mac address */ nv_copy_mac_to_hw(dev); /* Workaround current PCI init glitch: wakeup bits aren't * being set from PCI PM capability. */ device_init_wakeup(&pci_dev->dev, 1); /* disable WOL */ writel(0, base + NvRegWakeUpFlags); np->wolenabled = 0; if (id->driver_data & DEV_HAS_POWER_CNTRL) { /* take phy and nic out of low power mode */ powerstate = readl(base + NvRegPowerState2); powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK; if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) && pci_dev->revision >= 0xA3) powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3; writel(powerstate, base + NvRegPowerState2); } if (np->desc_ver == DESC_VER_1) { np->tx_flags = NV_TX_VALID; } else { np->tx_flags = NV_TX2_VALID; } np->msi_flags = 0; if ((id->driver_data & DEV_HAS_MSI) && msi) { np->msi_flags |= NV_MSI_CAPABLE; } if ((id->driver_data & DEV_HAS_MSI_X) && msix) { /* msix has had reported issues when modifying irqmask as in the case of napi, therefore, disable for now */ #ifndef CONFIG_FORCEDETH_NAPI np->msi_flags |= NV_MSI_X_CAPABLE; #endif } if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) { np->irqmask = NVREG_IRQMASK_CPU; if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ np->msi_flags |= 0x0001; } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC && !(id->driver_data & DEV_NEED_TIMERIRQ)) { /* start off in throughput mode */ np->irqmask = NVREG_IRQMASK_THROUGHPUT; /* remove support for msix mode */ np->msi_flags &= ~NV_MSI_X_CAPABLE; } else { optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; np->irqmask = NVREG_IRQMASK_THROUGHPUT; if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */ np->msi_flags |= 0x0003; } if (id->driver_data & DEV_NEED_TIMERIRQ) np->irqmask |= NVREG_IRQ_TIMER; if (id->driver_data & DEV_NEED_LINKTIMER) { dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev)); np->need_linktimer = 1; np->link_timeout = jiffies + LINK_TIMEOUT; } else { dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev)); np->need_linktimer = 0; } /* Limit the number of tx's outstanding for hw bug */ if (id->driver_data & DEV_NEED_TX_LIMIT) { np->tx_limit = 1; if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 || id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) && pci_dev->revision >= 0xA2) np->tx_limit = 0; } /* clear phy state and temporarily halt phy interrupts */ writel(0, base + NvRegMIIMask); phystate = readl(base + NvRegAdapterControl); if (phystate & NVREG_ADAPTCTL_RUNNING) { phystate_orig = 1; phystate &= ~NVREG_ADAPTCTL_RUNNING; writel(phystate, base + NvRegAdapterControl); } writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus); if (id->driver_data & DEV_HAS_MGMT_UNIT) { /* management unit running on the mac? */ if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) && (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) && nv_mgmt_acquire_sema(dev) && nv_mgmt_get_version(dev)) { np->mac_in_use = 1; if (np->mgmt_version > 0) { np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE; } dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use); /* management unit setup the phy already? */ if (np->mac_in_use && ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) == NVREG_XMITCTL_SYNC_PHY_INIT)) { /* phy is inited by mgmt unit */ phyinitialized = 1; dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev)); } else { /* we need to init the phy */ } } } /* find a suitable phy */ for (i = 1; i <= 32; i++) { int id1, id2; int phyaddr = i & 0x1F; spin_lock_irq(&np->lock); id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); spin_unlock_irq(&np->lock); if (id1 < 0 || id1 == 0xffff) continue; spin_lock_irq(&np->lock); id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); spin_unlock_irq(&np->lock); if (id2 < 0 || id2 == 0xffff) continue; np->phy_model = id2 & PHYID2_MODEL_MASK; id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n", pci_name(pci_dev), id1, id2, phyaddr); np->phyaddr = phyaddr; np->phy_oui = id1 | id2; /* Realtek hardcoded phy id1 to all zero's on certain phys */ if (np->phy_oui == PHY_OUI_REALTEK2) np->phy_oui = PHY_OUI_REALTEK; /* Setup phy revision for Realtek */ if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211) np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK; break; } if (i == 33) { dev_printk(KERN_INFO, &pci_dev->dev, "open: Could not find a valid PHY.\n"); goto out_error; } if (!phyinitialized) { /* reset it */ phy_init(dev); } else { /* see if it is a gigabit phy */ u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); if (mii_status & PHY_GIGABIT) { np->gigabit = PHY_GIGABIT; } } /* set default link speed settings */ np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; np->duplex = 0; np->autoneg = 1; err = register_netdev(dev); if (err) { dev_printk(KERN_INFO, &pci_dev->dev, "unable to register netdev: %d\n", err); goto out_error; } dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, " "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n", dev->name, np->phy_oui, np->phyaddr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", dev->features & NETIF_F_HIGHDMA ? "highdma " : "", dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ? "csum " : "", dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ? "vlan " : "", id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "", id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "", id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "", np->gigabit == PHY_GIGABIT ? "gbit " : "", np->need_linktimer ? "lnktim " : "", np->msi_flags & NV_MSI_CAPABLE ? "msi " : "", np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "", np->desc_ver); return 0; out_error: if (phystate_orig) writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl); pci_set_drvdata(pci_dev, NULL); out_freering: free_rings(dev); out_unmap: iounmap(get_hwbase(dev)); out_relreg: pci_release_regions(pci_dev); out_disable: pci_disable_device(pci_dev); out_free: free_netdev(dev); out: return err; } static void nv_restore_phy(struct net_device *dev) { struct fe_priv *np = netdev_priv(dev); u16 phy_reserved, mii_control; if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8201 && phy_cross == NV_CROSSOVER_DETECTION_DISABLED) { mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3); phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ); phy_reserved &= ~PHY_REALTEK_INIT_MSK1; phy_reserved |= PHY_REALTEK_INIT8; mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved); mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1); /* restart auto negotiation */ mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); mii_rw(dev, np->phyaddr, MII_BMCR, mii_control); } } static void nv_restore_mac_addr(struct pci_dev *pci_dev) { struct net_device *dev = pci_get_drvdata(pci_dev); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); /* special op: write back the misordered MAC address - otherwise * the next nv_probe would see a wrong address. */ writel(np->orig_mac[0], base + NvRegMacAddrA); writel(np->orig_mac[1], base + NvRegMacAddrB); writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll); } static void __devexit nv_remove(struct pci_dev *pci_dev) { struct net_device *dev = pci_get_drvdata(pci_dev); unregister_netdev(dev); nv_restore_mac_addr(pci_dev); /* restore any phy related changes */ nv_restore_phy(dev); nv_mgmt_release_sema(dev); /* free all structures */ free_rings(dev); iounmap(get_hwbase(dev)); pci_release_regions(pci_dev); pci_disable_device(pci_dev); free_netdev(dev); pci_set_drvdata(pci_dev, NULL); } #ifdef CONFIG_PM static int nv_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata(pdev); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i; if (netif_running(dev)) { // Gross. nv_close(dev); } netif_device_detach(dev); /* save non-pci configuration space */ for (i = 0;i <= np->register_size/sizeof(u32); i++) np->saved_config_space[i] = readl(base + i*sizeof(u32)); pci_save_state(pdev); pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } static int nv_resume(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct fe_priv *np = netdev_priv(dev); u8 __iomem *base = get_hwbase(dev); int i, rc = 0; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* ack any pending wake events, disable PME */ pci_enable_wake(pdev, PCI_D0, 0); /* restore non-pci configuration space */ for (i = 0;i <= np->register_size/sizeof(u32); i++) writel(np->saved_config_space[i], base+i*sizeof(u32)); pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE); netif_device_attach(dev); if (netif_running(dev)) { rc = nv_open(dev); nv_set_multicast(dev); } return rc; } static void nv_shutdown(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct fe_priv *np = netdev_priv(dev); if (netif_running(dev)) nv_close(dev); /* * Restore the MAC so a kernel started by kexec won't get confused. * If we really go for poweroff, we must not restore the MAC, * otherwise the MAC for WOL will be reversed at least on some boards. */ if (system_state != SYSTEM_POWER_OFF) { nv_restore_mac_addr(pdev); } pci_disable_device(pdev); /* * Apparently it is not possible to reinitialise from D3 hot, * only put the device into D3 if we really go for poweroff. */ if (system_state == SYSTEM_POWER_OFF) { if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled)) pci_enable_wake(pdev, PCI_D3hot, np->wolenabled); pci_set_power_state(pdev, PCI_D3hot); } } #else #define nv_suspend NULL #define nv_shutdown NULL #define nv_resume NULL #endif /* CONFIG_PM */ static struct pci_device_id pci_tbl[] = { { /* nForce Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce2 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* nForce3 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7), .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, }, { /* CK804 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* CK804 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP04 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP04 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT, }, { /* MCP51 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1, }, { /* MCP51 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1, }, { /* MCP55 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT, }, { /* MCP55 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR, }, { /* MCP61 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP65 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE, }, { /* MCP67 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE, }, { /* MCP73 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP77 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, { /* MCP79 Ethernet Controller */ PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39), .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE, }, {0,}, }; static struct pci_driver driver = { .name = DRV_NAME, .id_table = pci_tbl, .probe = nv_probe, .remove = __devexit_p(nv_remove), .suspend = nv_suspend, .resume = nv_resume, .shutdown = nv_shutdown, }; static int __init init_nic(void) { return pci_register_driver(&driver); } static void __exit exit_nic(void) { pci_unregister_driver(&driver); } module_param(max_interrupt_work, int, 0); MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); module_param(optimization_mode, int, 0); MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load."); module_param(poll_interval, int, 0); MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); module_param(msi, int, 0); MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0."); module_param(msix, int, 0); MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0."); module_param(dma_64bit, int, 0); MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0."); module_param(phy_cross, int, 0); MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0."); MODULE_AUTHOR("Manfred Spraul "); MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, pci_tbl); module_init(init_nic); module_exit(exit_nic);