/* * File Name: * defxx.c * * Copyright Information: * Copyright Digital Equipment Corporation 1996. * * This software may be used and distributed according to the terms of * the GNU General Public License, incorporated herein by reference. * * Abstract: * A Linux device driver supporting the Digital Equipment Corporation * FDDI TURBOchannel, EISA and PCI controller families. Supported * adapters include: * * DEC FDDIcontroller/TURBOchannel (DEFTA) * DEC FDDIcontroller/EISA (DEFEA) * DEC FDDIcontroller/PCI (DEFPA) * * The original author: * LVS Lawrence V. Stefani <lstefani@yahoo.com> * * Maintainers: * macro Maciej W. Rozycki <macro@linux-mips.org> * * Credits: * I'd like to thank Patricia Cross for helping me get started with * Linux, David Davies for a lot of help upgrading and configuring * my development system and for answering many OS and driver * development questions, and Alan Cox for recommendations and * integration help on getting FDDI support into Linux. LVS * * Driver Architecture: * The driver architecture is largely based on previous driver work * for other operating systems. The upper edge interface and * functions were largely taken from existing Linux device drivers * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C * driver. * * Adapter Probe - * The driver scans for supported EISA adapters by reading the * SLOT ID register for each EISA slot and making a match * against the expected value. * * Bus-Specific Initialization - * This driver currently supports both EISA and PCI controller * families. While the custom DMA chip and FDDI logic is similar * or identical, the bus logic is very different. After * initialization, the only bus-specific differences is in how the * driver enables and disables interrupts. Other than that, the * run-time critical code behaves the same on both families. * It's important to note that both adapter families are configured * to I/O map, rather than memory map, the adapter registers. * * Driver Open/Close - * In the driver open routine, the driver ISR (interrupt service * routine) is registered and the adapter is brought to an * operational state. In the driver close routine, the opposite * occurs; the driver ISR is deregistered and the adapter is * brought to a safe, but closed state. Users may use consecutive * commands to bring the adapter up and down as in the following * example: * ifconfig fddi0 up * ifconfig fddi0 down * ifconfig fddi0 up * * Driver Shutdown - * Apparently, there is no shutdown or halt routine support under * Linux. This routine would be called during "reboot" or * "shutdown" to allow the driver to place the adapter in a safe * state before a warm reboot occurs. To be really safe, the user * should close the adapter before shutdown (eg. ifconfig fddi0 down) * to ensure that the adapter DMA engine is taken off-line. However, * the current driver code anticipates this problem and always issues * a soft reset of the adapter at the beginning of driver initialization. * A future driver enhancement in this area may occur in 2.1.X where * Alan indicated that a shutdown handler may be implemented. * * Interrupt Service Routine - * The driver supports shared interrupts, so the ISR is registered for * each board with the appropriate flag and the pointer to that board's * device structure. This provides the context during interrupt * processing to support shared interrupts and multiple boards. * * Interrupt enabling/disabling can occur at many levels. At the host * end, you can disable system interrupts, or disable interrupts at the * PIC (on Intel systems). Across the bus, both EISA and PCI adapters * have a bus-logic chip interrupt enable/disable as well as a DMA * controller interrupt enable/disable. * * The driver currently enables and disables adapter interrupts at the * bus-logic chip and assumes that Linux will take care of clearing or * acknowledging any host-based interrupt chips. * * Control Functions - * Control functions are those used to support functions such as adding * or deleting multicast addresses, enabling or disabling packet * reception filters, or other custom/proprietary commands. Presently, * the driver supports the "get statistics", "set multicast list", and * "set mac address" functions defined by Linux. A list of possible * enhancements include: * * - Custom ioctl interface for executing port interface commands * - Custom ioctl interface for adding unicast addresses to * adapter CAM (to support bridge functions). * - Custom ioctl interface for supporting firmware upgrades. * * Hardware (port interface) Support Routines - * The driver function names that start with "dfx_hw_" represent * low-level port interface routines that are called frequently. They * include issuing a DMA or port control command to the adapter, * resetting the adapter, or reading the adapter state. Since the * driver initialization and run-time code must make calls into the * port interface, these routines were written to be as generic and * usable as possible. * * Receive Path - * The adapter DMA engine supports a 256 entry receive descriptor block * of which up to 255 entries can be used at any given time. The * architecture is a standard producer, consumer, completion model in * which the driver "produces" receive buffers to the adapter, the * adapter "consumes" the receive buffers by DMAing incoming packet data, * and the driver "completes" the receive buffers by servicing the * incoming packet, then "produces" a new buffer and starts the cycle * again. Receive buffers can be fragmented in up to 16 fragments * (descriptor entries). For simplicity, this driver posts * single-fragment receive buffers of 4608 bytes, then allocates a * sk_buff, copies the data, then reposts the buffer. To reduce CPU * utilization, a better approach would be to pass up the receive * buffer (no extra copy) then allocate and post a replacement buffer. * This is a performance enhancement that should be looked into at * some point. * * Transmit Path - * Like the receive path, the adapter DMA engine supports a 256 entry * transmit descriptor block of which up to 255 entries can be used at * any given time. Transmit buffers can be fragmented in up to 255 * fragments (descriptor entries). This driver always posts one * fragment per transmit packet request. * * The fragment contains the entire packet from FC to end of data. * Before posting the buffer to the adapter, the driver sets a three-byte * packet request header (PRH) which is required by the Motorola MAC chip * used on the adapters. The PRH tells the MAC the type of token to * receive/send, whether or not to generate and append the CRC, whether * synchronous or asynchronous framing is used, etc. Since the PRH * definition is not necessarily consistent across all FDDI chipsets, * the driver, rather than the common FDDI packet handler routines, * sets these bytes. * * To reduce the amount of descriptor fetches needed per transmit request, * the driver takes advantage of the fact that there are at least three * bytes available before the skb->data field on the outgoing transmit * request. This is guaranteed by having fddi_setup() in net_init.c set * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" * bytes which we'll use to store the PRH. * * There's a subtle advantage to adding these pad bytes to the * hard_header_len, it ensures that the data portion of the packet for * an 802.2 SNAP frame is longword aligned. Other FDDI driver * implementations may not need the extra padding and can start copying * or DMAing directly from the FC byte which starts at skb->data. Should * another driver implementation need ADDITIONAL padding, the net_init.c * module should be updated and dev->hard_header_len should be increased. * NOTE: To maintain the alignment on the data portion of the packet, * dev->hard_header_len should always be evenly divisible by 4 and at * least 24 bytes in size. * * Modification History: * Date Name Description * 16-Aug-96 LVS Created. * 20-Aug-96 LVS Updated dfx_probe so that version information * string is only displayed if 1 or more cards are * found. Changed dfx_rcv_queue_process to copy * 3 NULL bytes before FC to ensure that data is * longword aligned in receive buffer. * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable * LLC group promiscuous mode if multicast list * is too large. LLC individual/group promiscuous * mode is now disabled if IFF_PROMISC flag not set. * dfx_xmt_queue_pkt no longer checks for NULL skb * on Alan Cox recommendation. Added node address * override support. * 12-Sep-96 LVS Reset current address to factory address during * device open. Updated transmit path to post a * single fragment which includes PRH->end of data. * Mar 2000 AC Did various cleanups for 2.3.x * Jun 2000 jgarzik PCI and resource alloc cleanups * Jul 2000 tjeerd Much cleanup and some bug fixes * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup * Feb 2001 Skb allocation fixes * Feb 2001 davej PCI enable cleanups. * 04 Aug 2003 macro Converted to the DMA API. * 14 Aug 2004 macro Fix device names reported. * 14 Jun 2005 macro Use irqreturn_t. * 23 Oct 2006 macro Big-endian host support. * 14 Dec 2006 macro TURBOchannel support. */ /* Include files */ #include <linux/bitops.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/eisa.h> #include <linux/errno.h> #include <linux/fddidevice.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/tc.h> #include <asm/byteorder.h> #include <asm/io.h> #include "defxx.h" /* Version information string should be updated prior to each new release! */ #define DRV_NAME "defxx" #define DRV_VERSION "v1.10" #define DRV_RELDATE "2006/12/14" static char version[] __devinitdata = DRV_NAME ": " DRV_VERSION " " DRV_RELDATE " Lawrence V. Stefani and others\n"; #define DYNAMIC_BUFFERS 1 #define SKBUFF_RX_COPYBREAK 200 /* * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte * alignment for compatibility with old EISA boards. */ #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) #ifdef CONFIG_PCI #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type) #else #define DFX_BUS_PCI(dev) 0 #endif #ifdef CONFIG_EISA #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) #else #define DFX_BUS_EISA(dev) 0 #endif #ifdef CONFIG_TC #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) #else #define DFX_BUS_TC(dev) 0 #endif #ifdef CONFIG_DEFXX_MMIO #define DFX_MMIO 1 #else #define DFX_MMIO 0 #endif /* Define module-wide (static) routines */ static void dfx_bus_init(struct net_device *dev); static void dfx_bus_uninit(struct net_device *dev); static void dfx_bus_config_check(DFX_board_t *bp); static int dfx_driver_init(struct net_device *dev, const char *print_name, resource_size_t bar_start); static int dfx_adap_init(DFX_board_t *bp, int get_buffers); static int dfx_open(struct net_device *dev); static int dfx_close(struct net_device *dev); static void dfx_int_pr_halt_id(DFX_board_t *bp); static void dfx_int_type_0_process(DFX_board_t *bp); static void dfx_int_common(struct net_device *dev); static irqreturn_t dfx_interrupt(int irq, void *dev_id); static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); static void dfx_ctl_set_multicast_list(struct net_device *dev); static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); static int dfx_ctl_update_cam(DFX_board_t *bp); static int dfx_ctl_update_filters(DFX_board_t *bp); static int dfx_hw_dma_cmd_req(DFX_board_t *bp); static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); static int dfx_hw_adap_state_rd(DFX_board_t *bp); static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); static void dfx_rcv_queue_process(DFX_board_t *bp); static void dfx_rcv_flush(DFX_board_t *bp); static int dfx_xmt_queue_pkt(struct sk_buff *skb, struct net_device *dev); static int dfx_xmt_done(DFX_board_t *bp); static void dfx_xmt_flush(DFX_board_t *bp); /* Define module-wide (static) variables */ static struct pci_driver dfx_pci_driver; static struct eisa_driver dfx_eisa_driver; static struct tc_driver dfx_tc_driver; /* * ======================= * = dfx_port_write_long = * = dfx_port_read_long = * ======================= * * Overview: * Routines for reading and writing values from/to adapter * * Returns: * None * * Arguments: * bp - pointer to board information * offset - register offset from base I/O address * data - for dfx_port_write_long, this is a value to write; * for dfx_port_read_long, this is a pointer to store * the read value * * Functional Description: * These routines perform the correct operation to read or write * the adapter register. * * EISA port block base addresses are based on the slot number in which the * controller is installed. For example, if the EISA controller is installed * in slot 4, the port block base address is 0x4000. If the controller is * installed in slot 2, the port block base address is 0x2000, and so on. * This port block can be used to access PDQ, ESIC, and DEFEA on-board * registers using the register offsets defined in DEFXX.H. * * PCI port block base addresses are assigned by the PCI BIOS or system * firmware. There is one 128 byte port block which can be accessed. It * allows for I/O mapping of both PDQ and PFI registers using the register * offsets defined in DEFXX.H. * * Return Codes: * None * * Assumptions: * bp->base is a valid base I/O address for this adapter. * offset is a valid register offset for this adapter. * * Side Effects: * Rather than produce macros for these functions, these routines * are defined using "inline" to ensure that the compiler will * generate inline code and not waste a procedure call and return. * This provides all the benefits of macros, but with the * advantage of strict data type checking. */ static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) { writel(data, bp->base.mem + offset); mb(); } static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) { outl(data, bp->base.port + offset); } static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) { struct device __maybe_unused *bdev = bp->bus_dev; int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; if (dfx_use_mmio) dfx_writel(bp, offset, data); else dfx_outl(bp, offset, data); } static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) { mb(); *data = readl(bp->base.mem + offset); } static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) { *data = inl(bp->base.port + offset); } static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) { struct device __maybe_unused *bdev = bp->bus_dev; int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; if (dfx_use_mmio) dfx_readl(bp, offset, data); else dfx_inl(bp, offset, data); } /* * ================ * = dfx_get_bars = * ================ * * Overview: * Retrieves the address range used to access control and status * registers. * * Returns: * None * * Arguments: * bdev - pointer to device information * bar_start - pointer to store the start address * bar_len - pointer to store the length of the area * * Assumptions: * I am sure there are some. * * Side Effects: * None */ static void dfx_get_bars(struct device *bdev, resource_size_t *bar_start, resource_size_t *bar_len) { int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_eisa = DFX_BUS_EISA(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; if (dfx_bus_pci) { int num = dfx_use_mmio ? 0 : 1; *bar_start = pci_resource_start(to_pci_dev(bdev), num); *bar_len = pci_resource_len(to_pci_dev(bdev), num); } if (dfx_bus_eisa) { unsigned long base_addr = to_eisa_device(bdev)->base_addr; resource_size_t bar; if (dfx_use_mmio) { bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2); bar <<= 8; bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1); bar <<= 8; bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0); bar <<= 16; *bar_start = bar; bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2); bar <<= 8; bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1); bar <<= 8; bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0); bar <<= 16; *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1; } else { *bar_start = base_addr; *bar_len = PI_ESIC_K_CSR_IO_LEN; } } if (dfx_bus_tc) { *bar_start = to_tc_dev(bdev)->resource.start + PI_TC_K_CSR_OFFSET; *bar_len = PI_TC_K_CSR_LEN; } } /* * ================ * = dfx_register = * ================ * * Overview: * Initializes a supported FDDI controller * * Returns: * Condition code * * Arguments: * bdev - pointer to device information * * Functional Description: * * Return Codes: * 0 - This device (fddi0, fddi1, etc) configured successfully * -EBUSY - Failed to get resources, or dfx_driver_init failed. * * Assumptions: * It compiles so it should work :-( (PCI cards do :-) * * Side Effects: * Device structures for FDDI adapters (fddi0, fddi1, etc) are * initialized and the board resources are read and stored in * the device structure. */ static int __devinit dfx_register(struct device *bdev) { static int version_disp; int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; char *print_name = bdev->bus_id; struct net_device *dev; DFX_board_t *bp; /* board pointer */ resource_size_t bar_start = 0; /* pointer to port */ resource_size_t bar_len = 0; /* resource length */ int alloc_size; /* total buffer size used */ struct resource *region; int err = 0; if (!version_disp) { /* display version info if adapter is found */ version_disp = 1; /* set display flag to TRUE so that */ printk(version); /* we only display this string ONCE */ } dev = alloc_fddidev(sizeof(*bp)); if (!dev) { printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", print_name); return -ENOMEM; } /* Enable PCI device. */ if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) { printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n", print_name); goto err_out; } SET_NETDEV_DEV(dev, bdev); bp = netdev_priv(dev); bp->bus_dev = bdev; dev_set_drvdata(bdev, dev); dfx_get_bars(bdev, &bar_start, &bar_len); if (dfx_use_mmio) region = request_mem_region(bar_start, bar_len, print_name); else region = request_region(bar_start, bar_len, print_name); if (!region) { printk(KERN_ERR "%s: Cannot reserve I/O resource " "0x%lx @ 0x%lx, aborting\n", print_name, (long)bar_len, (long)bar_start); err = -EBUSY; goto err_out_disable; } /* Set up I/O base address. */ if (dfx_use_mmio) { bp->base.mem = ioremap_nocache(bar_start, bar_len); if (!bp->base.mem) { printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); err = -ENOMEM; goto err_out_region; } } else { bp->base.port = bar_start; dev->base_addr = bar_start; } /* Initialize new device structure */ dev->get_stats = dfx_ctl_get_stats; dev->open = dfx_open; dev->stop = dfx_close; dev->hard_start_xmit = dfx_xmt_queue_pkt; dev->set_multicast_list = dfx_ctl_set_multicast_list; dev->set_mac_address = dfx_ctl_set_mac_address; if (dfx_bus_pci) pci_set_master(to_pci_dev(bdev)); if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) { err = -ENODEV; goto err_out_unmap; } err = register_netdev(dev); if (err) goto err_out_kfree; printk("%s: registered as %s\n", print_name, dev->name); return 0; err_out_kfree: alloc_size = sizeof(PI_DESCR_BLOCK) + PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + #ifndef DYNAMIC_BUFFERS (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + #endif sizeof(PI_CONSUMER_BLOCK) + (PI_ALIGN_K_DESC_BLK - 1); if (bp->kmalloced) dma_free_coherent(bdev, alloc_size, bp->kmalloced, bp->kmalloced_dma); err_out_unmap: if (dfx_use_mmio) iounmap(bp->base.mem); err_out_region: if (dfx_use_mmio) release_mem_region(bar_start, bar_len); else release_region(bar_start, bar_len); err_out_disable: if (dfx_bus_pci) pci_disable_device(to_pci_dev(bdev)); err_out: free_netdev(dev); return err; } /* * ================ * = dfx_bus_init = * ================ * * Overview: * Initializes the bus-specific controller logic. * * Returns: * None * * Arguments: * dev - pointer to device information * * Functional Description: * Determine and save adapter IRQ in device table, * then perform bus-specific logic initialization. * * Return Codes: * None * * Assumptions: * bp->base has already been set with the proper * base I/O address for this device. * * Side Effects: * Interrupts are enabled at the adapter bus-specific logic. * Note: Interrupts at the DMA engine (PDQ chip) are not * enabled yet. */ static void __devinit dfx_bus_init(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); struct device *bdev = bp->bus_dev; int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_eisa = DFX_BUS_EISA(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; u8 val; DBG_printk("In dfx_bus_init...\n"); /* Initialize a pointer back to the net_device struct */ bp->dev = dev; /* Initialize adapter based on bus type */ if (dfx_bus_tc) dev->irq = to_tc_dev(bdev)->interrupt; if (dfx_bus_eisa) { unsigned long base_addr = to_eisa_device(bdev)->base_addr; /* Get the interrupt level from the ESIC chip. */ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); val &= PI_CONFIG_STAT_0_M_IRQ; val >>= PI_CONFIG_STAT_0_V_IRQ; switch (val) { case PI_CONFIG_STAT_0_IRQ_K_9: dev->irq = 9; break; case PI_CONFIG_STAT_0_IRQ_K_10: dev->irq = 10; break; case PI_CONFIG_STAT_0_IRQ_K_11: dev->irq = 11; break; case PI_CONFIG_STAT_0_IRQ_K_15: dev->irq = 15; break; } /* * Enable memory decoding (MEMCS0) and/or port decoding * (IOCS1/IOCS0) as appropriate in Function Control * Register. One of the port chip selects seems to be * used for the Burst Holdoff register, but this bit of * documentation is missing and as yet it has not been * determined which of the two. This is also the reason * the size of the decoded port range is twice as large * as one required by the PDQ. */ /* Set the decode range of the board. */ val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT); outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val); outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0); outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val); outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0); val = PI_ESIC_K_CSR_IO_LEN - 1; outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff); outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff); outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff); outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff); /* Enable the decoders. */ val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0; if (dfx_use_mmio) val |= PI_FUNCTION_CNTRL_M_MEMCS0; outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val); /* * Enable access to the rest of the module * (including PDQ and packet memory). */ val = PI_SLOT_CNTRL_M_ENB; outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val); /* * Map PDQ registers into memory or port space. This is * done with a bit in the Burst Holdoff register. */ val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); if (dfx_use_mmio) val |= PI_BURST_HOLDOFF_V_MEM_MAP; else val &= ~PI_BURST_HOLDOFF_V_MEM_MAP; outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val); /* Enable interrupts at EISA bus interface chip (ESIC) */ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); val |= PI_CONFIG_STAT_0_M_INT_ENB; outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); } if (dfx_bus_pci) { struct pci_dev *pdev = to_pci_dev(bdev); /* Get the interrupt level from the PCI Configuration Table */ dev->irq = pdev->irq; /* Check Latency Timer and set if less than minimal */ pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); if (val < PFI_K_LAT_TIMER_MIN) { val = PFI_K_LAT_TIMER_DEF; pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); } /* Enable interrupts at PCI bus interface chip (PFI) */ val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); } } /* * ================== * = dfx_bus_uninit = * ================== * * Overview: * Uninitializes the bus-specific controller logic. * * Returns: * None * * Arguments: * dev - pointer to device information * * Functional Description: * Perform bus-specific logic uninitialization. * * Return Codes: * None * * Assumptions: * bp->base has already been set with the proper * base I/O address for this device. * * Side Effects: * Interrupts are disabled at the adapter bus-specific logic. */ static void __devexit dfx_bus_uninit(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); struct device *bdev = bp->bus_dev; int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_eisa = DFX_BUS_EISA(bdev); u8 val; DBG_printk("In dfx_bus_uninit...\n"); /* Uninitialize adapter based on bus type */ if (dfx_bus_eisa) { unsigned long base_addr = to_eisa_device(bdev)->base_addr; /* Disable interrupts at EISA bus interface chip (ESIC) */ val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); val &= ~PI_CONFIG_STAT_0_M_INT_ENB; outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); } if (dfx_bus_pci) { /* Disable interrupts at PCI bus interface chip (PFI) */ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); } } /* * ======================== * = dfx_bus_config_check = * ======================== * * Overview: * Checks the configuration (burst size, full-duplex, etc.) If any parameters * are illegal, then this routine will set new defaults. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later * PDQ, and all FDDI PCI controllers, all values are legal. * * Return Codes: * None * * Assumptions: * dfx_adap_init has NOT been called yet so burst size and other items have * not been set. * * Side Effects: * None */ static void __devinit dfx_bus_config_check(DFX_board_t *bp) { struct device __maybe_unused *bdev = bp->bus_dev; int dfx_bus_eisa = DFX_BUS_EISA(bdev); int status; /* return code from adapter port control call */ u32 host_data; /* LW data returned from port control call */ DBG_printk("In dfx_bus_config_check...\n"); /* Configuration check only valid for EISA adapter */ if (dfx_bus_eisa) { /* * First check if revision 2 EISA controller. Rev. 1 cards used * PDQ revision B, so no workaround needed in this case. Rev. 3 * cards used PDQ revision E, so no workaround needed in this * case, either. Only Rev. 2 cards used either Rev. D or E * chips, so we must verify the chip revision on Rev. 2 cards. */ if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { /* * Revision 2 FDDI EISA controller found, * so let's check PDQ revision of adapter. */ status = dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_SUB_CMD, PI_SUB_CMD_K_PDQ_REV_GET, 0, &host_data); if ((status != DFX_K_SUCCESS) || (host_data == 2)) { /* * Either we couldn't determine the PDQ revision, or * we determined that it is at revision D. In either case, * we need to implement the workaround. */ /* Ensure that the burst size is set to 8 longwords or less */ switch (bp->burst_size) { case PI_PDATA_B_DMA_BURST_SIZE_32: case PI_PDATA_B_DMA_BURST_SIZE_16: bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; break; default: break; } /* Ensure that full-duplex mode is not enabled */ bp->full_duplex_enb = PI_SNMP_K_FALSE; } } } } /* * =================== * = dfx_driver_init = * =================== * * Overview: * Initializes remaining adapter board structure information * and makes sure adapter is in a safe state prior to dfx_open(). * * Returns: * Condition code * * Arguments: * dev - pointer to device information * print_name - printable device name * * Functional Description: * This function allocates additional resources such as the host memory * blocks needed by the adapter (eg. descriptor and consumer blocks). * Remaining bus initialization steps are also completed. The adapter * is also reset so that it is in the DMA_UNAVAILABLE state. The OS * must call dfx_open() to open the adapter and bring it on-line. * * Return Codes: * DFX_K_SUCCESS - initialization succeeded * DFX_K_FAILURE - initialization failed - could not allocate memory * or read adapter MAC address * * Assumptions: * Memory allocated from pci_alloc_consistent() call is physically * contiguous, locked memory. * * Side Effects: * Adapter is reset and should be in DMA_UNAVAILABLE state before * returning from this routine. */ static int __devinit dfx_driver_init(struct net_device *dev, const char *print_name, resource_size_t bar_start) { DFX_board_t *bp = netdev_priv(dev); struct device *bdev = bp->bus_dev; int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_eisa = DFX_BUS_EISA(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; int alloc_size; /* total buffer size needed */ char *top_v, *curr_v; /* virtual addrs into memory block */ dma_addr_t top_p, curr_p; /* physical addrs into memory block */ u32 data; /* host data register value */ __le32 le32; char *board_name = NULL; DBG_printk("In dfx_driver_init...\n"); /* Initialize bus-specific hardware registers */ dfx_bus_init(dev); /* * Initialize default values for configurable parameters * * Note: All of these parameters are ones that a user may * want to customize. It'd be nice to break these * out into Space.c or someplace else that's more * accessible/understandable than this file. */ bp->full_duplex_enb = PI_SNMP_K_FALSE; bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; bp->rcv_bufs_to_post = RCV_BUFS_DEF; /* * Ensure that HW configuration is OK * * Note: Depending on the hardware revision, we may need to modify * some of the configurable parameters to workaround hardware * limitations. We'll perform this configuration check AFTER * setting the parameters to their default values. */ dfx_bus_config_check(bp); /* Disable PDQ interrupts first */ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); /* Read the factory MAC address from the adapter then save it */ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, &data) != DFX_K_SUCCESS) { printk("%s: Could not read adapter factory MAC address!\n", print_name); return(DFX_K_FAILURE); } le32 = cpu_to_le32(data); memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, &data) != DFX_K_SUCCESS) { printk("%s: Could not read adapter factory MAC address!\n", print_name); return(DFX_K_FAILURE); } le32 = cpu_to_le32(data); memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); /* * Set current address to factory address * * Note: Node address override support is handled through * dfx_ctl_set_mac_address. */ memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); if (dfx_bus_tc) board_name = "DEFTA"; if (dfx_bus_eisa) board_name = "DEFEA"; if (dfx_bus_pci) board_name = "DEFPA"; pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, " "Hardware addr = %02X-%02X-%02X-%02X-%02X-%02X\n", print_name, board_name, dfx_use_mmio ? "" : "I/O ", (long long)bar_start, dev->irq, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); /* * Get memory for descriptor block, consumer block, and other buffers * that need to be DMA read or written to by the adapter. */ alloc_size = sizeof(PI_DESCR_BLOCK) + PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + #ifndef DYNAMIC_BUFFERS (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + #endif sizeof(PI_CONSUMER_BLOCK) + (PI_ALIGN_K_DESC_BLK - 1); bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, &bp->kmalloced_dma, GFP_ATOMIC); if (top_v == NULL) { printk("%s: Could not allocate memory for host buffers " "and structures!\n", print_name); return(DFX_K_FAILURE); } memset(top_v, 0, alloc_size); /* zero out memory before continuing */ top_p = bp->kmalloced_dma; /* get physical address of buffer */ /* * To guarantee the 8K alignment required for the descriptor block, 8K - 1 * plus the amount of memory needed was allocated. The physical address * is now 8K aligned. By carving up the memory in a specific order, * we'll guarantee the alignment requirements for all other structures. * * Note: If the assumptions change regarding the non-paged, non-cached, * physically contiguous nature of the memory block or the address * alignments, then we'll need to implement a different algorithm * for allocating the needed memory. */ curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); curr_v = top_v + (curr_p - top_p); /* Reserve space for descriptor block */ bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; bp->descr_block_phys = curr_p; curr_v += sizeof(PI_DESCR_BLOCK); curr_p += sizeof(PI_DESCR_BLOCK); /* Reserve space for command request buffer */ bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; bp->cmd_req_phys = curr_p; curr_v += PI_CMD_REQ_K_SIZE_MAX; curr_p += PI_CMD_REQ_K_SIZE_MAX; /* Reserve space for command response buffer */ bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; bp->cmd_rsp_phys = curr_p; curr_v += PI_CMD_RSP_K_SIZE_MAX; curr_p += PI_CMD_RSP_K_SIZE_MAX; /* Reserve space for the LLC host receive queue buffers */ bp->rcv_block_virt = curr_v; bp->rcv_block_phys = curr_p; #ifndef DYNAMIC_BUFFERS curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); #endif /* Reserve space for the consumer block */ bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; bp->cons_block_phys = curr_p; /* Display virtual and physical addresses if debug driver */ DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", print_name, (long)bp->descr_block_virt, bp->descr_block_phys); DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", print_name, (long)bp->cons_block_virt, bp->cons_block_phys); return(DFX_K_SUCCESS); } /* * ================= * = dfx_adap_init = * ================= * * Overview: * Brings the adapter to the link avail/link unavailable state. * * Returns: * Condition code * * Arguments: * bp - pointer to board information * get_buffers - non-zero if buffers to be allocated * * Functional Description: * Issues the low-level firmware/hardware calls necessary to bring * the adapter up, or to properly reset and restore adapter during * run-time. * * Return Codes: * DFX_K_SUCCESS - Adapter brought up successfully * DFX_K_FAILURE - Adapter initialization failed * * Assumptions: * bp->reset_type should be set to a valid reset type value before * calling this routine. * * Side Effects: * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state * upon a successful return of this routine. */ static int dfx_adap_init(DFX_board_t *bp, int get_buffers) { DBG_printk("In dfx_adap_init...\n"); /* Disable PDQ interrupts first */ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) { printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); return(DFX_K_FAILURE); } /* * When the PDQ is reset, some false Type 0 interrupts may be pending, * so we'll acknowledge all Type 0 interrupts now before continuing. */ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); /* * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state * * Note: We only need to clear host copies of these registers. The PDQ reset * takes care of the on-board register values. */ bp->cmd_req_reg.lword = 0; bp->cmd_rsp_reg.lword = 0; bp->rcv_xmt_reg.lword = 0; /* Clear consumer block before going to DMA_AVAILABLE state */ memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); /* Initialize the DMA Burst Size */ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_SUB_CMD, PI_SUB_CMD_K_BURST_SIZE_SET, bp->burst_size, NULL) != DFX_K_SUCCESS) { printk("%s: Could not set adapter burst size!\n", bp->dev->name); return(DFX_K_FAILURE); } /* * Set base address of Consumer Block * * Assumption: 32-bit physical address of consumer block is 64 byte * aligned. That is, bits 0-5 of the address must be zero. */ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_CONS_BLOCK, bp->cons_block_phys, 0, NULL) != DFX_K_SUCCESS) { printk("%s: Could not set consumer block address!\n", bp->dev->name); return(DFX_K_FAILURE); } /* * Set the base address of Descriptor Block and bring adapter * to DMA_AVAILABLE state. * * Note: We also set the literal and data swapping requirements * in this command. * * Assumption: 32-bit physical address of descriptor block * is 8Kbyte aligned. */ if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, (u32)(bp->descr_block_phys | PI_PDATA_A_INIT_M_BSWAP_INIT), 0, NULL) != DFX_K_SUCCESS) { printk("%s: Could not set descriptor block address!\n", bp->dev->name); return DFX_K_FAILURE; } /* Set transmit flush timeout value */ bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ bp->cmd_req_virt->char_set.item[0].item_index = 0; bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) { printk("%s: DMA command request failed!\n", bp->dev->name); return(DFX_K_FAILURE); } /* Set the initial values for eFDXEnable and MACTReq MIB objects */ bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; bp->cmd_req_virt->snmp_set.item[0].item_index = 0; bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; bp->cmd_req_virt->snmp_set.item[1].item_index = 0; bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) { printk("%s: DMA command request failed!\n", bp->dev->name); return(DFX_K_FAILURE); } /* Initialize adapter CAM */ if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) { printk("%s: Adapter CAM update failed!\n", bp->dev->name); return(DFX_K_FAILURE); } /* Initialize adapter filters */ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) { printk("%s: Adapter filters update failed!\n", bp->dev->name); return(DFX_K_FAILURE); } /* * Remove any existing dynamic buffers (i.e. if the adapter is being * reinitialized) */ if (get_buffers) dfx_rcv_flush(bp); /* Initialize receive descriptor block and produce buffers */ if (dfx_rcv_init(bp, get_buffers)) { printk("%s: Receive buffer allocation failed\n", bp->dev->name); if (get_buffers) dfx_rcv_flush(bp); return(DFX_K_FAILURE); } /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ bp->cmd_req_virt->cmd_type = PI_CMD_K_START; if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) { printk("%s: Start command failed\n", bp->dev->name); if (get_buffers) dfx_rcv_flush(bp); return(DFX_K_FAILURE); } /* Initialization succeeded, reenable PDQ interrupts */ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); return(DFX_K_SUCCESS); } /* * ============ * = dfx_open = * ============ * * Overview: * Opens the adapter * * Returns: * Condition code * * Arguments: * dev - pointer to device information * * Functional Description: * This function brings the adapter to an operational state. * * Return Codes: * 0 - Adapter was successfully opened * -EAGAIN - Could not register IRQ or adapter initialization failed * * Assumptions: * This routine should only be called for a device that was * initialized successfully. * * Side Effects: * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state * if the open is successful. */ static int dfx_open(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); int ret; DBG_printk("In dfx_open...\n"); /* Register IRQ - support shared interrupts by passing device ptr */ ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, dev); if (ret) { printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); return ret; } /* * Set current address to factory MAC address * * Note: We've already done this step in dfx_driver_init. * However, it's possible that a user has set a node * address override, then closed and reopened the * adapter. Unless we reset the device address field * now, we'll continue to use the existing modified * address. */ memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); /* Clear local unicast/multicast address tables and counts */ memset(bp->uc_table, 0, sizeof(bp->uc_table)); memset(bp->mc_table, 0, sizeof(bp->mc_table)); bp->uc_count = 0; bp->mc_count = 0; /* Disable promiscuous filter settings */ bp->ind_group_prom = PI_FSTATE_K_BLOCK; bp->group_prom = PI_FSTATE_K_BLOCK; spin_lock_init(&bp->lock); /* Reset and initialize adapter */ bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) { printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); free_irq(dev->irq, dev); return -EAGAIN; } /* Set device structure info */ netif_start_queue(dev); return(0); } /* * ============= * = dfx_close = * ============= * * Overview: * Closes the device/module. * * Returns: * Condition code * * Arguments: * dev - pointer to device information * * Functional Description: * This routine closes the adapter and brings it to a safe state. * The interrupt service routine is deregistered with the OS. * The adapter can be opened again with another call to dfx_open(). * * Return Codes: * Always return 0. * * Assumptions: * No further requests for this adapter are made after this routine is * called. dfx_open() can be called to reset and reinitialize the * adapter. * * Side Effects: * Adapter should be in DMA_UNAVAILABLE state upon completion of this * routine. */ static int dfx_close(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); DBG_printk("In dfx_close...\n"); /* Disable PDQ interrupts first */ dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); /* * Flush any pending transmit buffers * * Note: It's important that we flush the transmit buffers * BEFORE we clear our copy of the Type 2 register. * Otherwise, we'll have no idea how many buffers * we need to free. */ dfx_xmt_flush(bp); /* * Clear Type 1 and Type 2 registers after adapter reset * * Note: Even though we're closing the adapter, it's * possible that an interrupt will occur after * dfx_close is called. Without some assurance to * the contrary we want to make sure that we don't * process receive and transmit LLC frames and update * the Type 2 register with bad information. */ bp->cmd_req_reg.lword = 0; bp->cmd_rsp_reg.lword = 0; bp->rcv_xmt_reg.lword = 0; /* Clear consumer block for the same reason given above */ memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); /* Release all dynamically allocate skb in the receive ring. */ dfx_rcv_flush(bp); /* Clear device structure flags */ netif_stop_queue(dev); /* Deregister (free) IRQ */ free_irq(dev->irq, dev); return(0); } /* * ====================== * = dfx_int_pr_halt_id = * ====================== * * Overview: * Displays halt id's in string form. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * Determine current halt id and display appropriate string. * * Return Codes: * None * * Assumptions: * None * * Side Effects: * None */ static void dfx_int_pr_halt_id(DFX_board_t *bp) { PI_UINT32 port_status; /* PDQ port status register value */ PI_UINT32 halt_id; /* PDQ port status halt ID */ /* Read the latest port status */ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); /* Display halt state transition information */ halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; switch (halt_id) { case PI_HALT_ID_K_SELFTEST_TIMEOUT: printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); break; case PI_HALT_ID_K_PARITY_ERROR: printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); break; case PI_HALT_ID_K_HOST_DIR_HALT: printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); break; case PI_HALT_ID_K_SW_FAULT: printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); break; case PI_HALT_ID_K_HW_FAULT: printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); break; case PI_HALT_ID_K_PC_TRACE: printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); break; case PI_HALT_ID_K_DMA_ERROR: printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); break; case PI_HALT_ID_K_IMAGE_CRC_ERROR: printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); break; case PI_HALT_ID_K_BUS_EXCEPTION: printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); break; default: printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); break; } } /* * ========================== * = dfx_int_type_0_process = * ========================== * * Overview: * Processes Type 0 interrupts. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * Processes all enabled Type 0 interrupts. If the reason for the interrupt * is a serious fault on the adapter, then an error message is displayed * and the adapter is reset. * * One tricky potential timing window is the rapid succession of "link avail" * "link unavail" state change interrupts. The acknowledgement of the Type 0 * interrupt must be done before reading the state from the Port Status * register. This is true because a state change could occur after reading * the data, but before acknowledging the interrupt. If this state change * does happen, it would be lost because the driver is using the old state, * and it will never know about the new state because it subsequently * acknowledges the state change interrupt. * * INCORRECT CORRECT * read type 0 int reasons read type 0 int reasons * read adapter state ack type 0 interrupts * ack type 0 interrupts read adapter state * ... process interrupt ... ... process interrupt ... * * Return Codes: * None * * Assumptions: * None * * Side Effects: * An adapter reset may occur if the adapter has any Type 0 error interrupts * or if the port status indicates that the adapter is halted. The driver * is responsible for reinitializing the adapter with the current CAM * contents and adapter filter settings. */ static void dfx_int_type_0_process(DFX_board_t *bp) { PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ PI_UINT32 state; /* current adap state (from port status) */ /* * Read host interrupt Type 0 register to determine which Type 0 * interrupts are pending. Immediately write it back out to clear * those interrupts. */ dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); /* Check for Type 0 error interrupts */ if (type_0_status & (PI_TYPE_0_STAT_M_NXM | PI_TYPE_0_STAT_M_PM_PAR_ERR | PI_TYPE_0_STAT_M_BUS_PAR_ERR)) { /* Check for Non-Existent Memory error */ if (type_0_status & PI_TYPE_0_STAT_M_NXM) printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); /* Check for Packet Memory Parity error */ if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) printk("%s: Packet Memory Parity Error\n", bp->dev->name); /* Check for Host Bus Parity error */ if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) printk("%s: Host Bus Parity Error\n", bp->dev->name); /* Reset adapter and bring it back on-line */ bp->link_available = PI_K_FALSE; /* link is no longer available */ bp->reset_type = 0; /* rerun on-board diagnostics */ printk("%s: Resetting adapter...\n", bp->dev->name); if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) { printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); return; } printk("%s: Adapter reset successful!\n", bp->dev->name); return; } /* Check for transmit flush interrupt */ if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) { /* Flush any pending xmt's and acknowledge the flush interrupt */ bp->link_available = PI_K_FALSE; /* link is no longer available */ dfx_xmt_flush(bp); /* flush any outstanding packets */ (void) dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_XMT_DATA_FLUSH_DONE, 0, 0, NULL); } /* Check for adapter state change */ if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) { /* Get latest adapter state */ state = dfx_hw_adap_state_rd(bp); /* get adapter state */ if (state == PI_STATE_K_HALTED) { /* * Adapter has transitioned to HALTED state, try to reset * adapter to bring it back on-line. If reset fails, * leave the adapter in the broken state. */ printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); dfx_int_pr_halt_id(bp); /* display halt id as string */ /* Reset adapter and bring it back on-line */ bp->link_available = PI_K_FALSE; /* link is no longer available */ bp->reset_type = 0; /* rerun on-board diagnostics */ printk("%s: Resetting adapter...\n", bp->dev->name); if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) { printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); return; } printk("%s: Adapter reset successful!\n", bp->dev->name); } else if (state == PI_STATE_K_LINK_AVAIL) { bp->link_available = PI_K_TRUE; /* set link available flag */ } } } /* * ================== * = dfx_int_common = * ================== * * Overview: * Interrupt service routine (ISR) * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * This is the ISR which processes incoming adapter interrupts. * * Return Codes: * None * * Assumptions: * This routine assumes PDQ interrupts have not been disabled. * When interrupts are disabled at the PDQ, the Port Status register * is automatically cleared. This routine uses the Port Status * register value to determine whether a Type 0 interrupt occurred, * so it's important that adapter interrupts are not normally * enabled/disabled at the PDQ. * * It's vital that this routine is NOT reentered for the * same board and that the OS is not in another section of * code (eg. dfx_xmt_queue_pkt) for the same board on a * different thread. * * Side Effects: * Pending interrupts are serviced. Depending on the type of * interrupt, acknowledging and clearing the interrupt at the * PDQ involves writing a register to clear the interrupt bit * or updating completion indices. */ static void dfx_int_common(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); PI_UINT32 port_status; /* Port Status register */ /* Process xmt interrupts - frequent case, so always call this routine */ if(dfx_xmt_done(bp)) /* free consumed xmt packets */ netif_wake_queue(dev); /* Process rcv interrupts - frequent case, so always call this routine */ dfx_rcv_queue_process(bp); /* service received LLC frames */ /* * Transmit and receive producer and completion indices are updated on the * adapter by writing to the Type 2 Producer register. Since the frequent * case is that we'll be processing either LLC transmit or receive buffers, * we'll optimize I/O writes by doing a single register write here. */ dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); /* Read PDQ Port Status register to find out which interrupts need processing */ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) dfx_int_type_0_process(bp); /* process Type 0 interrupts */ } /* * ================= * = dfx_interrupt = * ================= * * Overview: * Interrupt processing routine * * Returns: * Whether a valid interrupt was seen. * * Arguments: * irq - interrupt vector * dev_id - pointer to device information * * Functional Description: * This routine calls the interrupt processing routine for this adapter. It * disables and reenables adapter interrupts, as appropriate. We can support * shared interrupts since the incoming dev_id pointer provides our device * structure context. * * Return Codes: * IRQ_HANDLED - an IRQ was handled. * IRQ_NONE - no IRQ was handled. * * Assumptions: * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC * on Intel-based systems) is done by the operating system outside this * routine. * * System interrupts are enabled through this call. * * Side Effects: * Interrupts are disabled, then reenabled at the adapter. */ static irqreturn_t dfx_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; DFX_board_t *bp = netdev_priv(dev); struct device *bdev = bp->bus_dev; int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_eisa = DFX_BUS_EISA(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); /* Service adapter interrupts */ if (dfx_bus_pci) { u32 status; dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); if (!(status & PFI_STATUS_M_PDQ_INT)) return IRQ_NONE; spin_lock(&bp->lock); /* Disable PDQ-PFI interrupts at PFI */ dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, PFI_MODE_M_DMA_ENB); /* Call interrupt service routine for this adapter */ dfx_int_common(dev); /* Clear PDQ interrupt status bit and reenable interrupts */ dfx_port_write_long(bp, PFI_K_REG_STATUS, PFI_STATUS_M_PDQ_INT); dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, (PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB)); spin_unlock(&bp->lock); } if (dfx_bus_eisa) { unsigned long base_addr = to_eisa_device(bdev)->base_addr; u8 status; status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); if (!(status & PI_CONFIG_STAT_0_M_PEND)) return IRQ_NONE; spin_lock(&bp->lock); /* Disable interrupts at the ESIC */ status &= ~PI_CONFIG_STAT_0_M_INT_ENB; outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); /* Call interrupt service routine for this adapter */ dfx_int_common(dev); /* Reenable interrupts at the ESIC */ status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); status |= PI_CONFIG_STAT_0_M_INT_ENB; outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); spin_unlock(&bp->lock); } if (dfx_bus_tc) { u32 status; dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | PI_PSTATUS_M_XMT_DATA_PENDING | PI_PSTATUS_M_SMT_HOST_PENDING | PI_PSTATUS_M_UNSOL_PENDING | PI_PSTATUS_M_CMD_RSP_PENDING | PI_PSTATUS_M_CMD_REQ_PENDING | PI_PSTATUS_M_TYPE_0_PENDING))) return IRQ_NONE; spin_lock(&bp->lock); /* Call interrupt service routine for this adapter */ dfx_int_common(dev); spin_unlock(&bp->lock); } return IRQ_HANDLED; } /* * ===================== * = dfx_ctl_get_stats = * ===================== * * Overview: * Get statistics for FDDI adapter * * Returns: * Pointer to FDDI statistics structure * * Arguments: * dev - pointer to device information * * Functional Description: * Gets current MIB objects from adapter, then * returns FDDI statistics structure as defined * in if_fddi.h. * * Note: Since the FDDI statistics structure is * still new and the device structure doesn't * have an FDDI-specific get statistics handler, * we'll return the FDDI statistics structure as * a pointer to an Ethernet statistics structure. * That way, at least the first part of the statistics * structure can be decoded properly, and it allows * "smart" applications to perform a second cast to * decode the FDDI-specific statistics. * * We'll have to pay attention to this routine as the * device structure becomes more mature and LAN media * independent. * * Return Codes: * None * * Assumptions: * None * * Side Effects: * None */ static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); /* Fill the bp->stats structure with driver-maintained counters */ bp->stats.gen.rx_packets = bp->rcv_total_frames; bp->stats.gen.tx_packets = bp->xmt_total_frames; bp->stats.gen.rx_bytes = bp->rcv_total_bytes; bp->stats.gen.tx_bytes = bp->xmt_total_bytes; bp->stats.gen.rx_errors = bp->rcv_crc_errors + bp->rcv_frame_status_errors + bp->rcv_length_errors; bp->stats.gen.tx_errors = bp->xmt_length_errors; bp->stats.gen.rx_dropped = bp->rcv_discards; bp->stats.gen.tx_dropped = bp->xmt_discards; bp->stats.gen.multicast = bp->rcv_multicast_frames; bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ /* Get FDDI SMT MIB objects */ bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) return((struct net_device_stats *) &bp->stats); /* Fill the bp->stats structure with the SMT MIB object values */ memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; /* Get FDDI counters */ bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) return((struct net_device_stats *) &bp->stats); /* Fill the bp->stats structure with the FDDI counter values */ bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; return((struct net_device_stats *) &bp->stats); } /* * ============================== * = dfx_ctl_set_multicast_list = * ============================== * * Overview: * Enable/Disable LLC frame promiscuous mode reception * on the adapter and/or update multicast address table. * * Returns: * None * * Arguments: * dev - pointer to device information * * Functional Description: * This routine follows a fairly simple algorithm for setting the * adapter filters and CAM: * * if IFF_PROMISC flag is set * enable LLC individual/group promiscuous mode * else * disable LLC individual/group promiscuous mode * if number of incoming multicast addresses > * (CAM max size - number of unicast addresses in CAM) * enable LLC group promiscuous mode * set driver-maintained multicast address count to zero * else * disable LLC group promiscuous mode * set driver-maintained multicast address count to incoming count * update adapter CAM * update adapter filters * * Return Codes: * None * * Assumptions: * Multicast addresses are presented in canonical (LSB) format. * * Side Effects: * On-board adapter CAM and filters are updated. */ static void dfx_ctl_set_multicast_list(struct net_device *dev) { DFX_board_t *bp = netdev_priv(dev); int i; /* used as index in for loop */ struct dev_mc_list *dmi; /* ptr to multicast addr entry */ /* Enable LLC frame promiscuous mode, if necessary */ if (dev->flags & IFF_PROMISC) bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ /* Else, update multicast address table */ else { bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ /* * Check whether incoming multicast address count exceeds table size * * Note: The adapters utilize an on-board 64 entry CAM for * supporting perfect filtering of multicast packets * and bridge functions when adding unicast addresses. * There is no hash function available. To support * additional multicast addresses, the all multicast * filter (LLC group promiscuous mode) must be enabled. * * The firmware reserves two CAM entries for SMT-related * multicast addresses, which leaves 62 entries available. * The following code ensures that we're not being asked * to add more than 62 addresses to the CAM. If we are, * the driver will enable the all multicast filter. * Should the number of multicast addresses drop below * the high water mark, the filter will be disabled and * perfect filtering will be used. */ if (dev->mc_count > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) { bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ bp->mc_count = 0; /* Don't add mc addrs to CAM */ } else { bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ bp->mc_count = dev->mc_count; /* Add mc addrs to CAM */ } /* Copy addresses to multicast address table, then update adapter CAM */ dmi = dev->mc_list; /* point to first multicast addr */ for (i=0; i < bp->mc_count; i++) { memcpy(&bp->mc_table[i*FDDI_K_ALEN], dmi->dmi_addr, FDDI_K_ALEN); dmi = dmi->next; /* point to next multicast addr */ } if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) { DBG_printk("%s: Could not update multicast address table!\n", dev->name); } else { DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); } } /* Update adapter filters */ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) { DBG_printk("%s: Could not update adapter filters!\n", dev->name); } else { DBG_printk("%s: Adapter filters updated!\n", dev->name); } } /* * =========================== * = dfx_ctl_set_mac_address = * =========================== * * Overview: * Add node address override (unicast address) to adapter * CAM and update dev_addr field in device table. * * Returns: * None * * Arguments: * dev - pointer to device information * addr - pointer to sockaddr structure containing unicast address to add * * Functional Description: * The adapter supports node address overrides by adding one or more * unicast addresses to the adapter CAM. This is similar to adding * multicast addresses. In this routine we'll update the driver and * device structures with the new address, then update the adapter CAM * to ensure that the adapter will copy and strip frames destined and * sourced by that address. * * Return Codes: * Always returns zero. * * Assumptions: * The address pointed to by addr->sa_data is a valid unicast * address and is presented in canonical (LSB) format. * * Side Effects: * On-board adapter CAM is updated. On-board adapter filters * may be updated. */ static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *p_sockaddr = (struct sockaddr *)addr; DFX_board_t *bp = netdev_priv(dev); /* Copy unicast address to driver-maintained structs and update count */ memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ bp->uc_count = 1; /* * Verify we're not exceeding the CAM size by adding unicast address * * Note: It's possible that before entering this routine we've * already filled the CAM with 62 multicast addresses. * Since we need to place the node address override into * the CAM, we have to check to see that we're not * exceeding the CAM size. If we are, we have to enable * the LLC group (multicast) promiscuous mode filter as * in dfx_ctl_set_multicast_list. */ if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) { bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ bp->mc_count = 0; /* Don't add mc addrs to CAM */ /* Update adapter filters */ if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) { DBG_printk("%s: Could not update adapter filters!\n", dev->name); } else { DBG_printk("%s: Adapter filters updated!\n", dev->name); } } /* Update adapter CAM with new unicast address */ if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) { DBG_printk("%s: Could not set new MAC address!\n", dev->name); } else { DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); } return(0); /* always return zero */ } /* * ====================== * = dfx_ctl_update_cam = * ====================== * * Overview: * Procedure to update adapter CAM (Content Addressable Memory) * with desired unicast and multicast address entries. * * Returns: * Condition code * * Arguments: * bp - pointer to board information * * Functional Description: * Updates adapter CAM with current contents of board structure * unicast and multicast address tables. Since there are only 62 * free entries in CAM, this routine ensures that the command * request buffer is not overrun. * * Return Codes: * DFX_K_SUCCESS - Request succeeded * DFX_K_FAILURE - Request failed * * Assumptions: * All addresses being added (unicast and multicast) are in canonical * order. * * Side Effects: * On-board adapter CAM is updated. */ static int dfx_ctl_update_cam(DFX_board_t *bp) { int i; /* used as index */ PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ /* * Fill in command request information * * Note: Even though both the unicast and multicast address * table entries are stored as contiguous 6 byte entries, * the firmware address filter set command expects each * entry to be two longwords (8 bytes total). We must be * careful to only copy the six bytes of each unicast and * multicast table entry into each command entry. This * is also why we must first clear the entire command * request buffer. */ memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; /* Now add unicast addresses to command request buffer, if any */ for (i=0; i < (int)bp->uc_count; i++) { if (i < PI_CMD_ADDR_FILTER_K_SIZE) { memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); p_addr++; /* point to next command entry */ } } /* Now add multicast addresses to command request buffer, if any */ for (i=0; i < (int)bp->mc_count; i++) { if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) { memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); p_addr++; /* point to next command entry */ } } /* Issue command to update adapter CAM, then return */ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) return(DFX_K_FAILURE); return(DFX_K_SUCCESS); } /* * ========================== * = dfx_ctl_update_filters = * ========================== * * Overview: * Procedure to update adapter filters with desired * filter settings. * * Returns: * Condition code * * Arguments: * bp - pointer to board information * * Functional Description: * Enables or disables filter using current filter settings. * * Return Codes: * DFX_K_SUCCESS - Request succeeded. * DFX_K_FAILURE - Request failed. * * Assumptions: * We must always pass up packets destined to the broadcast * address (FF-FF-FF-FF-FF-FF), so we'll always keep the * broadcast filter enabled. * * Side Effects: * On-board adapter filters are updated. */ static int dfx_ctl_update_filters(DFX_board_t *bp) { int i = 0; /* used as index */ /* Fill in command request information */ bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; /* Initialize Broadcast filter - * ALWAYS ENABLED * */ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; /* Initialize LLC Individual/Group Promiscuous filter */ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; /* Initialize LLC Group Promiscuous filter */ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; /* Terminate the item code list */ bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; /* Issue command to update adapter filters, then return */ if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) return(DFX_K_FAILURE); return(DFX_K_SUCCESS); } /* * ====================== * = dfx_hw_dma_cmd_req = * ====================== * * Overview: * Sends PDQ DMA command to adapter firmware * * Returns: * Condition code * * Arguments: * bp - pointer to board information * * Functional Description: * The command request and response buffers are posted to the adapter in the manner * described in the PDQ Port Specification: * * 1. Command Response Buffer is posted to adapter. * 2. Command Request Buffer is posted to adapter. * 3. Command Request consumer index is polled until it indicates that request * buffer has been DMA'd to adapter. * 4. Command Response consumer index is polled until it indicates that response * buffer has been DMA'd from adapter. * * This ordering ensures that a response buffer is already available for the firmware * to use once it's done processing the request buffer. * * Return Codes: * DFX_K_SUCCESS - DMA command succeeded * DFX_K_OUTSTATE - Adapter is NOT in proper state * DFX_K_HW_TIMEOUT - DMA command timed out * * Assumptions: * Command request buffer has already been filled with desired DMA command. * * Side Effects: * None */ static int dfx_hw_dma_cmd_req(DFX_board_t *bp) { int status; /* adapter status */ int timeout_cnt; /* used in for loops */ /* Make sure the adapter is in a state that we can issue the DMA command in */ status = dfx_hw_adap_state_rd(bp); if ((status == PI_STATE_K_RESET) || (status == PI_STATE_K_HALTED) || (status == PI_STATE_K_DMA_UNAVAIL) || (status == PI_STATE_K_UPGRADE)) return(DFX_K_OUTSTATE); /* Put response buffer on the command response queue */ bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; /* Bump (and wrap) the producer index and write out to register */ bp->cmd_rsp_reg.index.prod += 1; bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); /* Put request buffer on the command request queue */ bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; /* Bump (and wrap) the producer index and write out to register */ bp->cmd_req_reg.index.prod += 1; bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); /* * Here we wait for the command request consumer index to be equal * to the producer, indicating that the adapter has DMAed the request. */ for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) { if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) break; udelay(100); /* wait for 100 microseconds */ } if (timeout_cnt == 0) return(DFX_K_HW_TIMEOUT); /* Bump (and wrap) the completion index and write out to register */ bp->cmd_req_reg.index.comp += 1; bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); /* * Here we wait for the command response consumer index to be equal * to the producer, indicating that the adapter has DMAed the response. */ for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) { if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) break; udelay(100); /* wait for 100 microseconds */ } if (timeout_cnt == 0) return(DFX_K_HW_TIMEOUT); /* Bump (and wrap) the completion index and write out to register */ bp->cmd_rsp_reg.index.comp += 1; bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); return(DFX_K_SUCCESS); } /* * ======================== * = dfx_hw_port_ctrl_req = * ======================== * * Overview: * Sends PDQ port control command to adapter firmware * * Returns: * Host data register value in host_data if ptr is not NULL * * Arguments: * bp - pointer to board information * command - port control command * data_a - port data A register value * data_b - port data B register value * host_data - ptr to host data register value * * Functional Description: * Send generic port control command to adapter by writing * to various PDQ port registers, then polling for completion. * * Return Codes: * DFX_K_SUCCESS - port control command succeeded * DFX_K_HW_TIMEOUT - port control command timed out * * Assumptions: * None * * Side Effects: * None */ static int dfx_hw_port_ctrl_req( DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data ) { PI_UINT32 port_cmd; /* Port Control command register value */ int timeout_cnt; /* used in for loops */ /* Set Command Error bit in command longword */ port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); /* Issue port command to the adapter */ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); /* Now wait for command to complete */ if (command == PI_PCTRL_M_BLAST_FLASH) timeout_cnt = 600000; /* set command timeout count to 60 seconds */ else timeout_cnt = 20000; /* set command timeout count to 2 seconds */ for (; timeout_cnt > 0; timeout_cnt--) { dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) break; udelay(100); /* wait for 100 microseconds */ } if (timeout_cnt == 0) return(DFX_K_HW_TIMEOUT); /* * If the address of host_data is non-zero, assume caller has supplied a * non NULL pointer, and return the contents of the HOST_DATA register in * it. */ if (host_data != NULL) dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); return(DFX_K_SUCCESS); } /* * ===================== * = dfx_hw_adap_reset = * ===================== * * Overview: * Resets adapter * * Returns: * None * * Arguments: * bp - pointer to board information * type - type of reset to perform * * Functional Description: * Issue soft reset to adapter by writing to PDQ Port Reset * register. Use incoming reset type to tell adapter what * kind of reset operation to perform. * * Return Codes: * None * * Assumptions: * This routine merely issues a soft reset to the adapter. * It is expected that after this routine returns, the caller * will appropriately poll the Port Status register for the * adapter to enter the proper state. * * Side Effects: * Internal adapter registers are cleared. */ static void dfx_hw_adap_reset( DFX_board_t *bp, PI_UINT32 type ) { /* Set Reset type and assert reset */ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ udelay(20); /* Deassert reset */ dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); } /* * ======================== * = dfx_hw_adap_state_rd = * ======================== * * Overview: * Returns current adapter state * * Returns: * Adapter state per PDQ Port Specification * * Arguments: * bp - pointer to board information * * Functional Description: * Reads PDQ Port Status register and returns adapter state. * * Return Codes: * None * * Assumptions: * None * * Side Effects: * None */ static int dfx_hw_adap_state_rd(DFX_board_t *bp) { PI_UINT32 port_status; /* Port Status register value */ dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); return((port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE); } /* * ===================== * = dfx_hw_dma_uninit = * ===================== * * Overview: * Brings adapter to DMA_UNAVAILABLE state * * Returns: * Condition code * * Arguments: * bp - pointer to board information * type - type of reset to perform * * Functional Description: * Bring adapter to DMA_UNAVAILABLE state by performing the following: * 1. Set reset type bit in Port Data A Register then reset adapter. * 2. Check that adapter is in DMA_UNAVAILABLE state. * * Return Codes: * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state * DFX_K_HW_TIMEOUT - adapter did not reset properly * * Assumptions: * None * * Side Effects: * Internal adapter registers are cleared. */ static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) { int timeout_cnt; /* used in for loops */ /* Set reset type bit and reset adapter */ dfx_hw_adap_reset(bp, type); /* Now wait for adapter to enter DMA_UNAVAILABLE state */ for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) { if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) break; udelay(100); /* wait for 100 microseconds */ } if (timeout_cnt == 0) return(DFX_K_HW_TIMEOUT); return(DFX_K_SUCCESS); } /* * Align an sk_buff to a boundary power of 2 * */ static void my_skb_align(struct sk_buff *skb, int n) { unsigned long x = (unsigned long)skb->data; unsigned long v; v = ALIGN(x, n); /* Where we want to be */ skb_reserve(skb, v - x); } /* * ================ * = dfx_rcv_init = * ================ * * Overview: * Produces buffers to adapter LLC Host receive descriptor block * * Returns: * None * * Arguments: * bp - pointer to board information * get_buffers - non-zero if buffers to be allocated * * Functional Description: * This routine can be called during dfx_adap_init() or during an adapter * reset. It initializes the descriptor block and produces all allocated * LLC Host queue receive buffers. * * Return Codes: * Return 0 on success or -ENOMEM if buffer allocation failed (when using * dynamic buffer allocation). If the buffer allocation failed, the * already allocated buffers will not be released and the caller should do * this. * * Assumptions: * The PDQ has been reset and the adapter and driver maintained Type 2 * register indices are cleared. * * Side Effects: * Receive buffers are posted to the adapter LLC queue and the adapter * is notified. */ static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) { int i, j; /* used in for loop */ /* * Since each receive buffer is a single fragment of same length, initialize * first longword in each receive descriptor for entire LLC Host descriptor * block. Also initialize second longword in each receive descriptor with * physical address of receive buffer. We'll always allocate receive * buffers in powers of 2 so that we can easily fill the 256 entry descriptor * block and produce new receive buffers by simply updating the receive * producer index. * * Assumptions: * To support all shipping versions of PDQ, the receive buffer size * must be mod 128 in length and the physical address must be 128 byte * aligned. In other words, bits 0-6 of the length and address must * be zero for the following descriptor field entries to be correct on * all PDQ-based boards. We guaranteed both requirements during * driver initialization when we allocated memory for the receive buffers. */ if (get_buffers) { #ifdef DYNAMIC_BUFFERS for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) { struct sk_buff *newskb = __dev_alloc_skb(NEW_SKB_SIZE, GFP_NOIO); if (!newskb) return -ENOMEM; bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); /* * align to 128 bytes for compatibility with * the old EISA boards. */ my_skb_align(newskb, 128); bp->descr_block_virt->rcv_data[i + j].long_1 = (u32)dma_map_single(bp->bus_dev, newskb->data, NEW_SKB_SIZE, DMA_FROM_DEVICE); /* * p_rcv_buff_va is only used inside the * kernel so we put the skb pointer here. */ bp->p_rcv_buff_va[i+j] = (char *) newskb; } #else for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) { bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); } #endif } /* Update receive producer and Type 2 register */ bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); return 0; } /* * ========================= * = dfx_rcv_queue_process = * ========================= * * Overview: * Process received LLC frames. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * Received LLC frames are processed until there are no more consumed frames. * Once all frames are processed, the receive buffers are returned to the * adapter. Note that this algorithm fixes the length of time that can be spent * in this routine, because there are a fixed number of receive buffers to * process and buffers are not produced until this routine exits and returns * to the ISR. * * Return Codes: * None * * Assumptions: * None * * Side Effects: * None */ static void dfx_rcv_queue_process( DFX_board_t *bp ) { PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ u32 descr, pkt_len; /* FMC descriptor field and packet length */ struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ /* Service all consumed LLC receive frames */ p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) { /* Process any errors */ int entry; entry = bp->rcv_xmt_reg.index.rcv_comp; #ifdef DYNAMIC_BUFFERS p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); #else p_buff = (char *) bp->p_rcv_buff_va[entry]; #endif memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); if (descr & PI_FMC_DESCR_M_RCC_FLUSH) { if (descr & PI_FMC_DESCR_M_RCC_CRC) bp->rcv_crc_errors++; else bp->rcv_frame_status_errors++; } else { int rx_in_place = 0; /* The frame was received without errors - verify packet length */ pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); pkt_len -= 4; /* subtract 4 byte CRC */ if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) bp->rcv_length_errors++; else{ #ifdef DYNAMIC_BUFFERS if (pkt_len > SKBUFF_RX_COPYBREAK) { struct sk_buff *newskb; newskb = dev_alloc_skb(NEW_SKB_SIZE); if (newskb){ rx_in_place = 1; my_skb_align(newskb, 128); skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; dma_unmap_single(bp->bus_dev, bp->descr_block_virt->rcv_data[entry].long_1, NEW_SKB_SIZE, DMA_FROM_DEVICE); skb_reserve(skb, RCV_BUFF_K_PADDING); bp->p_rcv_buff_va[entry] = (char *)newskb; bp->descr_block_virt->rcv_data[entry].long_1 = (u32)dma_map_single(bp->bus_dev, newskb->data, NEW_SKB_SIZE, DMA_FROM_DEVICE); } else skb = NULL; } else #endif skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ if (skb == NULL) { printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); bp->rcv_discards++; break; } else { #ifndef DYNAMIC_BUFFERS if (! rx_in_place) #endif { /* Receive buffer allocated, pass receive packet up */ skb_copy_to_linear_data(skb, p_buff + RCV_BUFF_K_PADDING, pkt_len + 3); } skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ skb->protocol = fddi_type_trans(skb, bp->dev); bp->rcv_total_bytes += skb->len; netif_rx(skb); /* Update the rcv counters */ bp->rcv_total_frames++; if (*(p_buff + RCV_BUFF_K_DA) & 0x01) bp->rcv_multicast_frames++; } } } /* * Advance the producer (for recycling) and advance the completion * (for servicing received frames). Note that it is okay to * advance the producer without checking that it passes the * completion index because they are both advanced at the same * rate. */ bp->rcv_xmt_reg.index.rcv_prod += 1; bp->rcv_xmt_reg.index.rcv_comp += 1; } } /* * ===================== * = dfx_xmt_queue_pkt = * ===================== * * Overview: * Queues packets for transmission * * Returns: * Condition code * * Arguments: * skb - pointer to sk_buff to queue for transmission * dev - pointer to device information * * Functional Description: * Here we assume that an incoming skb transmit request * is contained in a single physically contiguous buffer * in which the virtual address of the start of packet * (skb->data) can be converted to a physical address * by using pci_map_single(). * * Since the adapter architecture requires a three byte * packet request header to prepend the start of packet, * we'll write the three byte field immediately prior to * the FC byte. This assumption is valid because we've * ensured that dev->hard_header_len includes three pad * bytes. By posting a single fragment to the adapter, * we'll reduce the number of descriptor fetches and * bus traffic needed to send the request. * * Also, we can't free the skb until after it's been DMA'd * out by the adapter, so we'll queue it in the driver and * return it in dfx_xmt_done. * * Return Codes: * 0 - driver queued packet, link is unavailable, or skbuff was bad * 1 - caller should requeue the sk_buff for later transmission * * Assumptions: * First and foremost, we assume the incoming skb pointer * is NOT NULL and is pointing to a valid sk_buff structure. * * The outgoing packet is complete, starting with the * frame control byte including the last byte of data, * but NOT including the 4 byte CRC. We'll let the * adapter hardware generate and append the CRC. * * The entire packet is stored in one physically * contiguous buffer which is not cached and whose * 32-bit physical address can be determined. * * It's vital that this routine is NOT reentered for the * same board and that the OS is not in another section of * code (eg. dfx_int_common) for the same board on a * different thread. * * Side Effects: * None */ static int dfx_xmt_queue_pkt( struct sk_buff *skb, struct net_device *dev ) { DFX_board_t *bp = netdev_priv(dev); u8 prod; /* local transmit producer index */ PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ unsigned long flags; netif_stop_queue(dev); /* * Verify that incoming transmit request is OK * * Note: The packet size check is consistent with other * Linux device drivers, although the correct packet * size should be verified before calling the * transmit routine. */ if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) { printk("%s: Invalid packet length - %u bytes\n", dev->name, skb->len); bp->xmt_length_errors++; /* bump error counter */ netif_wake_queue(dev); dev_kfree_skb(skb); return(0); /* return "success" */ } /* * See if adapter link is available, if not, free buffer * * Note: If the link isn't available, free buffer and return 0 * rather than tell the upper layer to requeue the packet. * The methodology here is that by the time the link * becomes available, the packet to be sent will be * fairly stale. By simply dropping the packet, the * higher layer protocols will eventually time out * waiting for response packets which it won't receive. */ if (bp->link_available == PI_K_FALSE) { if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ else { bp->xmt_discards++; /* bump error counter */ dev_kfree_skb(skb); /* free sk_buff now */ netif_wake_queue(dev); return(0); /* return "success" */ } } spin_lock_irqsave(&bp->lock, flags); /* Get the current producer and the next free xmt data descriptor */ prod = bp->rcv_xmt_reg.index.xmt_prod; p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); /* * Get pointer to auxiliary queue entry to contain information * for this packet. * * Note: The current xmt producer index will become the * current xmt completion index when we complete this * packet later on. So, we'll get the pointer to the * next auxiliary queue entry now before we bump the * producer index. */ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ /* Write the three PRH bytes immediately before the FC byte */ skb_push(skb,3); skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ skb->data[2] = DFX_PRH2_BYTE; /* specification */ /* * Write the descriptor with buffer info and bump producer * * Note: Since we need to start DMA from the packet request * header, we'll add 3 bytes to the DMA buffer length, * and we'll determine the physical address of the * buffer from the PRH, not skb->data. * * Assumptions: * 1. Packet starts with the frame control (FC) byte * at skb->data. * 2. The 4-byte CRC is not appended to the buffer or * included in the length. * 3. Packet length (skb->len) is from FC to end of * data, inclusive. * 4. The packet length does not exceed the maximum * FDDI LLC frame length of 4491 bytes. * 5. The entire packet is contained in a physically * contiguous, non-cached, locked memory space * comprised of a single buffer pointed to by * skb->data. * 6. The physical address of the start of packet * can be determined from the virtual address * by using pci_map_single() and is only 32-bits * wide. */ p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data, skb->len, DMA_TO_DEVICE); /* * Verify that descriptor is actually available * * Note: If descriptor isn't available, return 1 which tells * the upper layer to requeue the packet for later * transmission. * * We need to ensure that the producer never reaches the * completion, except to indicate that the queue is empty. */ if (prod == bp->rcv_xmt_reg.index.xmt_comp) { skb_pull(skb,3); spin_unlock_irqrestore(&bp->lock, flags); return(1); /* requeue packet for later */ } /* * Save info for this packet for xmt done indication routine * * Normally, we'd save the producer index in the p_xmt_drv_descr * structure so that we'd have it handy when we complete this * packet later (in dfx_xmt_done). However, since the current * transmit architecture guarantees a single fragment for the * entire packet, we can simply bump the completion index by * one (1) for each completed packet. * * Note: If this assumption changes and we're presented with * an inconsistent number of transmit fragments for packet * data, we'll need to modify this code to save the current * transmit producer index. */ p_xmt_drv_descr->p_skb = skb; /* Update Type 2 register */ bp->rcv_xmt_reg.index.xmt_prod = prod; dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); spin_unlock_irqrestore(&bp->lock, flags); netif_wake_queue(dev); return(0); /* packet queued to adapter */ } /* * ================ * = dfx_xmt_done = * ================ * * Overview: * Processes all frames that have been transmitted. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * For all consumed transmit descriptors that have not * yet been completed, we'll free the skb we were holding * onto using dev_kfree_skb and bump the appropriate * counters. * * Return Codes: * None * * Assumptions: * The Type 2 register is not updated in this routine. It is * assumed that it will be updated in the ISR when dfx_xmt_done * returns. * * Side Effects: * None */ static int dfx_xmt_done(DFX_board_t *bp) { XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ u8 comp; /* local transmit completion index */ int freed = 0; /* buffers freed */ /* Service all consumed transmit frames */ p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) { /* Get pointer to the transmit driver descriptor block information */ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); /* Increment transmit counters */ bp->xmt_total_frames++; bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; /* Return skb to operating system */ comp = bp->rcv_xmt_reg.index.xmt_comp; dma_unmap_single(bp->bus_dev, bp->descr_block_virt->xmt_data[comp].long_1, p_xmt_drv_descr->p_skb->len, DMA_TO_DEVICE); dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); /* * Move to start of next packet by updating completion index * * Here we assume that a transmit packet request is always * serviced by posting one fragment. We can therefore * simplify the completion code by incrementing the * completion index by one. This code will need to be * modified if this assumption changes. See comments * in dfx_xmt_queue_pkt for more details. */ bp->rcv_xmt_reg.index.xmt_comp += 1; freed++; } return freed; } /* * ================= * = dfx_rcv_flush = * ================= * * Overview: * Remove all skb's in the receive ring. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * Free's all the dynamically allocated skb's that are * currently attached to the device receive ring. This * function is typically only used when the device is * initialized or reinitialized. * * Return Codes: * None * * Side Effects: * None */ #ifdef DYNAMIC_BUFFERS static void dfx_rcv_flush( DFX_board_t *bp ) { int i, j; for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) { struct sk_buff *skb; skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; if (skb) dev_kfree_skb(skb); bp->p_rcv_buff_va[i+j] = NULL; } } #else static inline void dfx_rcv_flush( DFX_board_t *bp ) { } #endif /* DYNAMIC_BUFFERS */ /* * ================= * = dfx_xmt_flush = * ================= * * Overview: * Processes all frames whether they've been transmitted * or not. * * Returns: * None * * Arguments: * bp - pointer to board information * * Functional Description: * For all produced transmit descriptors that have not * yet been completed, we'll free the skb we were holding * onto using dev_kfree_skb and bump the appropriate * counters. Of course, it's possible that some of * these transmit requests actually did go out, but we * won't make that distinction here. Finally, we'll * update the consumer index to match the producer. * * Return Codes: * None * * Assumptions: * This routine does NOT update the Type 2 register. It * is assumed that this routine is being called during a * transmit flush interrupt, or a shutdown or close routine. * * Side Effects: * None */ static void dfx_xmt_flush( DFX_board_t *bp ) { u32 prod_cons; /* rcv/xmt consumer block longword */ XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ u8 comp; /* local transmit completion index */ /* Flush all outstanding transmit frames */ while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) { /* Get pointer to the transmit driver descriptor block information */ p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); /* Return skb to operating system */ comp = bp->rcv_xmt_reg.index.xmt_comp; dma_unmap_single(bp->bus_dev, bp->descr_block_virt->xmt_data[comp].long_1, p_xmt_drv_descr->p_skb->len, DMA_TO_DEVICE); dev_kfree_skb(p_xmt_drv_descr->p_skb); /* Increment transmit error counter */ bp->xmt_discards++; /* * Move to start of next packet by updating completion index * * Here we assume that a transmit packet request is always * serviced by posting one fragment. We can therefore * simplify the completion code by incrementing the * completion index by one. This code will need to be * modified if this assumption changes. See comments * in dfx_xmt_queue_pkt for more details. */ bp->rcv_xmt_reg.index.xmt_comp += 1; } /* Update the transmit consumer index in the consumer block */ prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); bp->cons_block_virt->xmt_rcv_data = prod_cons; } /* * ================== * = dfx_unregister = * ================== * * Overview: * Shuts down an FDDI controller * * Returns: * Condition code * * Arguments: * bdev - pointer to device information * * Functional Description: * * Return Codes: * None * * Assumptions: * It compiles so it should work :-( (PCI cards do :-) * * Side Effects: * Device structures for FDDI adapters (fddi0, fddi1, etc) are * freed. */ static void __devexit dfx_unregister(struct device *bdev) { struct net_device *dev = dev_get_drvdata(bdev); DFX_board_t *bp = netdev_priv(dev); int dfx_bus_pci = DFX_BUS_PCI(bdev); int dfx_bus_tc = DFX_BUS_TC(bdev); int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; resource_size_t bar_start = 0; /* pointer to port */ resource_size_t bar_len = 0; /* resource length */ int alloc_size; /* total buffer size used */ unregister_netdev(dev); alloc_size = sizeof(PI_DESCR_BLOCK) + PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + #ifndef DYNAMIC_BUFFERS (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + #endif sizeof(PI_CONSUMER_BLOCK) + (PI_ALIGN_K_DESC_BLK - 1); if (bp->kmalloced) dma_free_coherent(bdev, alloc_size, bp->kmalloced, bp->kmalloced_dma); dfx_bus_uninit(dev); dfx_get_bars(bdev, &bar_start, &bar_len); if (dfx_use_mmio) { iounmap(bp->base.mem); release_mem_region(bar_start, bar_len); } else release_region(bar_start, bar_len); if (dfx_bus_pci) pci_disable_device(to_pci_dev(bdev)); free_netdev(dev); } static int __devinit __maybe_unused dfx_dev_register(struct device *); static int __devexit __maybe_unused dfx_dev_unregister(struct device *); #ifdef CONFIG_PCI static int __devinit dfx_pci_register(struct pci_dev *, const struct pci_device_id *); static void __devexit dfx_pci_unregister(struct pci_dev *); static struct pci_device_id dfx_pci_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, { } }; MODULE_DEVICE_TABLE(pci, dfx_pci_table); static struct pci_driver dfx_pci_driver = { .name = "defxx", .id_table = dfx_pci_table, .probe = dfx_pci_register, .remove = __devexit_p(dfx_pci_unregister), }; static __devinit int dfx_pci_register(struct pci_dev *pdev, const struct pci_device_id *ent) { return dfx_register(&pdev->dev); } static void __devexit dfx_pci_unregister(struct pci_dev *pdev) { dfx_unregister(&pdev->dev); } #endif /* CONFIG_PCI */ #ifdef CONFIG_EISA static struct eisa_device_id dfx_eisa_table[] = { { "DEC3001", DEFEA_PROD_ID_1 }, { "DEC3002", DEFEA_PROD_ID_2 }, { "DEC3003", DEFEA_PROD_ID_3 }, { "DEC3004", DEFEA_PROD_ID_4 }, { } }; MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); static struct eisa_driver dfx_eisa_driver = { .id_table = dfx_eisa_table, .driver = { .name = "defxx", .bus = &eisa_bus_type, .probe = dfx_dev_register, .remove = __devexit_p(dfx_dev_unregister), }, }; #endif /* CONFIG_EISA */ #ifdef CONFIG_TC static struct tc_device_id const dfx_tc_table[] = { { "DEC ", "PMAF-FA " }, { "DEC ", "PMAF-FD " }, { "DEC ", "PMAF-FS " }, { "DEC ", "PMAF-FU " }, { } }; MODULE_DEVICE_TABLE(tc, dfx_tc_table); static struct tc_driver dfx_tc_driver = { .id_table = dfx_tc_table, .driver = { .name = "defxx", .bus = &tc_bus_type, .probe = dfx_dev_register, .remove = __devexit_p(dfx_dev_unregister), }, }; #endif /* CONFIG_TC */ static int __devinit __maybe_unused dfx_dev_register(struct device *dev) { int status; status = dfx_register(dev); if (!status) get_device(dev); return status; } static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev) { put_device(dev); dfx_unregister(dev); return 0; } static int __devinit dfx_init(void) { int status; status = pci_register_driver(&dfx_pci_driver); if (!status) status = eisa_driver_register(&dfx_eisa_driver); if (!status) status = tc_register_driver(&dfx_tc_driver); return status; } static void __devexit dfx_cleanup(void) { tc_unregister_driver(&dfx_tc_driver); eisa_driver_unregister(&dfx_eisa_driver); pci_unregister_driver(&dfx_pci_driver); } module_init(dfx_init); module_exit(dfx_cleanup); MODULE_AUTHOR("Lawrence V. Stefani"); MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " DRV_VERSION " " DRV_RELDATE); MODULE_LICENSE("GPL"); /* * Local variables: * kernel-compile-command: "gcc -D__KERNEL__ -I/root/linux/include -Wall -Wstrict-prototypes -O2 -pipe -fomit-frame-pointer -fno-strength-reduce -m486 -malign-loops=2 -malign-jumps=2 -malign-functions=2 -c defxx.c" * End: */