/* * Copyright (C) 2006, 2007 Eugene Konev * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include <linux/module.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/types.h> #include <linux/delay.h> #include <linux/version.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/mii.h> #include <linux/phy.h> #include <linux/phy_fixed.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <asm/gpio.h> MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>"); MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:cpmac"); static int debug_level = 8; static int dumb_switch; /* Next 2 are only used in cpmac_probe, so it's pointless to change them */ module_param(debug_level, int, 0444); module_param(dumb_switch, int, 0444); MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable"); MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus"); #define CPMAC_VERSION "0.5.0" /* frame size + 802.1q tag */ #define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4) #define CPMAC_QUEUES 8 /* Ethernet registers */ #define CPMAC_TX_CONTROL 0x0004 #define CPMAC_TX_TEARDOWN 0x0008 #define CPMAC_RX_CONTROL 0x0014 #define CPMAC_RX_TEARDOWN 0x0018 #define CPMAC_MBP 0x0100 # define MBP_RXPASSCRC 0x40000000 # define MBP_RXQOS 0x20000000 # define MBP_RXNOCHAIN 0x10000000 # define MBP_RXCMF 0x01000000 # define MBP_RXSHORT 0x00800000 # define MBP_RXCEF 0x00400000 # define MBP_RXPROMISC 0x00200000 # define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16) # define MBP_RXBCAST 0x00002000 # define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8) # define MBP_RXMCAST 0x00000020 # define MBP_MCASTCHAN(channel) ((channel) & 0x7) #define CPMAC_UNICAST_ENABLE 0x0104 #define CPMAC_UNICAST_CLEAR 0x0108 #define CPMAC_MAX_LENGTH 0x010c #define CPMAC_BUFFER_OFFSET 0x0110 #define CPMAC_MAC_CONTROL 0x0160 # define MAC_TXPTYPE 0x00000200 # define MAC_TXPACE 0x00000040 # define MAC_MII 0x00000020 # define MAC_TXFLOW 0x00000010 # define MAC_RXFLOW 0x00000008 # define MAC_MTEST 0x00000004 # define MAC_LOOPBACK 0x00000002 # define MAC_FDX 0x00000001 #define CPMAC_MAC_STATUS 0x0164 # define MAC_STATUS_QOS 0x00000004 # define MAC_STATUS_RXFLOW 0x00000002 # define MAC_STATUS_TXFLOW 0x00000001 #define CPMAC_TX_INT_ENABLE 0x0178 #define CPMAC_TX_INT_CLEAR 0x017c #define CPMAC_MAC_INT_VECTOR 0x0180 # define MAC_INT_STATUS 0x00080000 # define MAC_INT_HOST 0x00040000 # define MAC_INT_RX 0x00020000 # define MAC_INT_TX 0x00010000 #define CPMAC_MAC_EOI_VECTOR 0x0184 #define CPMAC_RX_INT_ENABLE 0x0198 #define CPMAC_RX_INT_CLEAR 0x019c #define CPMAC_MAC_INT_ENABLE 0x01a8 #define CPMAC_MAC_INT_CLEAR 0x01ac #define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4) #define CPMAC_MAC_ADDR_MID 0x01d0 #define CPMAC_MAC_ADDR_HI 0x01d4 #define CPMAC_MAC_HASH_LO 0x01d8 #define CPMAC_MAC_HASH_HI 0x01dc #define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4) #define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4) #define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4) #define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4) #define CPMAC_REG_END 0x0680 /* * Rx/Tx statistics * TODO: use some of them to fill stats in cpmac_stats() */ #define CPMAC_STATS_RX_GOOD 0x0200 #define CPMAC_STATS_RX_BCAST 0x0204 #define CPMAC_STATS_RX_MCAST 0x0208 #define CPMAC_STATS_RX_PAUSE 0x020c #define CPMAC_STATS_RX_CRC 0x0210 #define CPMAC_STATS_RX_ALIGN 0x0214 #define CPMAC_STATS_RX_OVER 0x0218 #define CPMAC_STATS_RX_JABBER 0x021c #define CPMAC_STATS_RX_UNDER 0x0220 #define CPMAC_STATS_RX_FRAG 0x0224 #define CPMAC_STATS_RX_FILTER 0x0228 #define CPMAC_STATS_RX_QOSFILTER 0x022c #define CPMAC_STATS_RX_OCTETS 0x0230 #define CPMAC_STATS_TX_GOOD 0x0234 #define CPMAC_STATS_TX_BCAST 0x0238 #define CPMAC_STATS_TX_MCAST 0x023c #define CPMAC_STATS_TX_PAUSE 0x0240 #define CPMAC_STATS_TX_DEFER 0x0244 #define CPMAC_STATS_TX_COLLISION 0x0248 #define CPMAC_STATS_TX_SINGLECOLL 0x024c #define CPMAC_STATS_TX_MULTICOLL 0x0250 #define CPMAC_STATS_TX_EXCESSCOLL 0x0254 #define CPMAC_STATS_TX_LATECOLL 0x0258 #define CPMAC_STATS_TX_UNDERRUN 0x025c #define CPMAC_STATS_TX_CARRIERSENSE 0x0260 #define CPMAC_STATS_TX_OCTETS 0x0264 #define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg))) #define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \ (reg))) /* MDIO bus */ #define CPMAC_MDIO_VERSION 0x0000 #define CPMAC_MDIO_CONTROL 0x0004 # define MDIOC_IDLE 0x80000000 # define MDIOC_ENABLE 0x40000000 # define MDIOC_PREAMBLE 0x00100000 # define MDIOC_FAULT 0x00080000 # define MDIOC_FAULTDETECT 0x00040000 # define MDIOC_INTTEST 0x00020000 # define MDIOC_CLKDIV(div) ((div) & 0xff) #define CPMAC_MDIO_ALIVE 0x0008 #define CPMAC_MDIO_LINK 0x000c #define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8) # define MDIO_BUSY 0x80000000 # define MDIO_WRITE 0x40000000 # define MDIO_REG(reg) (((reg) & 0x1f) << 21) # define MDIO_PHY(phy) (((phy) & 0x1f) << 16) # define MDIO_DATA(data) ((data) & 0xffff) #define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8) # define PHYSEL_LINKSEL 0x00000040 # define PHYSEL_LINKINT 0x00000020 struct cpmac_desc { u32 hw_next; u32 hw_data; u16 buflen; u16 bufflags; u16 datalen; u16 dataflags; #define CPMAC_SOP 0x8000 #define CPMAC_EOP 0x4000 #define CPMAC_OWN 0x2000 #define CPMAC_EOQ 0x1000 struct sk_buff *skb; struct cpmac_desc *next; dma_addr_t mapping; dma_addr_t data_mapping; }; struct cpmac_priv { spinlock_t lock; spinlock_t rx_lock; struct cpmac_desc *rx_head; int ring_size; struct cpmac_desc *desc_ring; dma_addr_t dma_ring; void __iomem *regs; struct mii_bus *mii_bus; struct phy_device *phy; char phy_name[BUS_ID_SIZE]; int oldlink, oldspeed, oldduplex; u32 msg_enable; struct net_device *dev; struct work_struct reset_work; struct platform_device *pdev; struct napi_struct napi; }; static irqreturn_t cpmac_irq(int, void *); static void cpmac_hw_start(struct net_device *dev); static void cpmac_hw_stop(struct net_device *dev); static int cpmac_stop(struct net_device *dev); static int cpmac_open(struct net_device *dev); static void cpmac_dump_regs(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); for (i = 0; i < CPMAC_REG_END; i += 4) { if (i % 16 == 0) { if (i) printk("\n"); printk(KERN_DEBUG "%s: reg[%p]:", dev->name, priv->regs + i); } printk(" %08x", cpmac_read(priv->regs, i)); } printk("\n"); } static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc) { int i; printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc); for (i = 0; i < sizeof(*desc) / 4; i++) printk(" %08x", ((u32 *)desc)[i]); printk("\n"); } static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb) { int i; printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len); for (i = 0; i < skb->len; i++) { if (i % 16 == 0) { if (i) printk("\n"); printk(KERN_DEBUG "%s: data[%p]:", dev->name, skb->data + i); } printk(" %02x", ((u8 *)skb->data)[i]); } printk("\n"); } static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg) { u32 val; while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) cpu_relax(); cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) | MDIO_PHY(phy_id)); while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY) cpu_relax(); return MDIO_DATA(val); } static int cpmac_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) { while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY) cpu_relax(); cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE | MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val)); return 0; } static int cpmac_mdio_reset(struct mii_bus *bus) { ar7_device_reset(AR7_RESET_BIT_MDIO); cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE | MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1)); return 0; } static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, }; static struct mii_bus cpmac_mii = { .name = "cpmac-mii", .read = cpmac_mdio_read, .write = cpmac_mdio_write, .reset = cpmac_mdio_reset, .irq = mii_irqs, }; static int cpmac_config(struct net_device *dev, struct ifmap *map) { if (dev->flags & IFF_UP) return -EBUSY; /* Don't allow changing the I/O address */ if (map->base_addr != dev->base_addr) return -EOPNOTSUPP; /* ignore other fields */ return 0; } static void cpmac_set_multicast_list(struct net_device *dev) { struct dev_mc_list *iter; int i; u8 tmp; u32 mbp, bit, hash[2] = { 0, }; struct cpmac_priv *priv = netdev_priv(dev); mbp = cpmac_read(priv->regs, CPMAC_MBP); if (dev->flags & IFF_PROMISC) { cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) | MBP_RXPROMISC); } else { cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC); if (dev->flags & IFF_ALLMULTI) { /* enable all multicast mode */ cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff); cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff); } else { /* * cpmac uses some strange mac address hashing * (not crc32) */ for (i = 0, iter = dev->mc_list; i < dev->mc_count; i++, iter = iter->next) { bit = 0; tmp = iter->dmi_addr[0]; bit ^= (tmp >> 2) ^ (tmp << 4); tmp = iter->dmi_addr[1]; bit ^= (tmp >> 4) ^ (tmp << 2); tmp = iter->dmi_addr[2]; bit ^= (tmp >> 6) ^ tmp; tmp = iter->dmi_addr[3]; bit ^= (tmp >> 2) ^ (tmp << 4); tmp = iter->dmi_addr[4]; bit ^= (tmp >> 4) ^ (tmp << 2); tmp = iter->dmi_addr[5]; bit ^= (tmp >> 6) ^ tmp; bit &= 0x3f; hash[bit / 32] |= 1 << (bit % 32); } cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]); cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]); } } } static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv, struct cpmac_desc *desc) { struct sk_buff *skb, *result = NULL; if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(priv->dev, desc); cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping); if (unlikely(!desc->datalen)) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: rx: spurious interrupt\n", priv->dev->name); return NULL; } skb = netdev_alloc_skb(priv->dev, CPMAC_SKB_SIZE); if (likely(skb)) { skb_reserve(skb, 2); skb_put(desc->skb, desc->datalen); desc->skb->protocol = eth_type_trans(desc->skb, priv->dev); desc->skb->ip_summed = CHECKSUM_NONE; priv->dev->stats.rx_packets++; priv->dev->stats.rx_bytes += desc->datalen; result = desc->skb; dma_unmap_single(&priv->dev->dev, desc->data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->skb = skb; desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->hw_data = (u32)desc->data_mapping; if (unlikely(netif_msg_pktdata(priv))) { printk(KERN_DEBUG "%s: received packet:\n", priv->dev->name); cpmac_dump_skb(priv->dev, result); } } else { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: low on skbs, dropping packet\n", priv->dev->name); priv->dev->stats.rx_dropped++; } desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; return result; } static int cpmac_poll(struct napi_struct *napi, int budget) { struct sk_buff *skb; struct cpmac_desc *desc; int received = 0; struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi); spin_lock(&priv->rx_lock); if (unlikely(!priv->rx_head)) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: rx: polling, but no queue\n", priv->dev->name); netif_rx_complete(priv->dev, napi); return 0; } desc = priv->rx_head; while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) { skb = cpmac_rx_one(priv, desc); if (likely(skb)) { netif_receive_skb(skb); received++; } desc = desc->next; } priv->rx_head = desc; spin_unlock(&priv->rx_lock); if (unlikely(netif_msg_rx_status(priv))) printk(KERN_DEBUG "%s: poll processed %d packets\n", priv->dev->name, received); if (desc->dataflags & CPMAC_OWN) { netif_rx_complete(priv->dev, napi); cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping); cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); return 0; } return 1; } static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev) { int queue, len; struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); if (unlikely(skb_padto(skb, ETH_ZLEN))) return NETDEV_TX_OK; len = max(skb->len, ETH_ZLEN); queue = skb_get_queue_mapping(skb); #ifdef CONFIG_NETDEVICES_MULTIQUEUE netif_stop_subqueue(dev, queue); #else netif_stop_queue(dev); #endif desc = &priv->desc_ring[queue]; if (unlikely(desc->dataflags & CPMAC_OWN)) { if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: tx dma ring full\n", dev->name); return NETDEV_TX_BUSY; } spin_lock(&priv->lock); dev->trans_start = jiffies; spin_unlock(&priv->lock); desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN; desc->skb = skb; desc->data_mapping = dma_map_single(&dev->dev, skb->data, len, DMA_TO_DEVICE); desc->hw_data = (u32)desc->data_mapping; desc->datalen = len; desc->buflen = len; if (unlikely(netif_msg_tx_queued(priv))) printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb, skb->len); if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(dev, desc); if (unlikely(netif_msg_pktdata(priv))) cpmac_dump_skb(dev, skb); cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping); return NETDEV_TX_OK; } static void cpmac_end_xmit(struct net_device *dev, int queue) { struct cpmac_desc *desc; struct cpmac_priv *priv = netdev_priv(dev); desc = &priv->desc_ring[queue]; cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping); if (likely(desc->skb)) { spin_lock(&priv->lock); dev->stats.tx_packets++; dev->stats.tx_bytes += desc->skb->len; spin_unlock(&priv->lock); dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len, DMA_TO_DEVICE); if (unlikely(netif_msg_tx_done(priv))) printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name, desc->skb, desc->skb->len); dev_kfree_skb_irq(desc->skb); desc->skb = NULL; #ifdef CONFIG_NETDEVICES_MULTIQUEUE if (netif_subqueue_stopped(dev, queue)) netif_wake_subqueue(dev, queue); #else if (netif_queue_stopped(dev)) netif_wake_queue(dev); #endif } else { if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: end_xmit: spurious interrupt\n", dev->name); #ifdef CONFIG_NETDEVICES_MULTIQUEUE if (netif_subqueue_stopped(dev, queue)) netif_wake_subqueue(dev, queue); #else if (netif_queue_stopped(dev)) netif_wake_queue(dev); #endif } } static void cpmac_hw_stop(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data; ar7_device_reset(pdata->reset_bit); cpmac_write(priv->regs, CPMAC_RX_CONTROL, cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1); cpmac_write(priv->regs, CPMAC_TX_CONTROL, cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1); for (i = 0; i < 8; i++) { cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); } cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_CONTROL, cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII); } static void cpmac_hw_start(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data; ar7_device_reset(pdata->reset_bit); for (i = 0; i < 8; i++) { cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0); } cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping); cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST | MBP_RXMCAST); cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0); for (i = 0; i < 8; i++) cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]); cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]); cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] | (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24)); cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE); cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff); cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1); cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1); cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff); cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3); cpmac_write(priv->regs, CPMAC_RX_CONTROL, cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1); cpmac_write(priv->regs, CPMAC_TX_CONTROL, cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1); cpmac_write(priv->regs, CPMAC_MAC_CONTROL, cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII | MAC_FDX); } static void cpmac_clear_rx(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); struct cpmac_desc *desc; int i; if (unlikely(!priv->rx_head)) return; desc = priv->rx_head; for (i = 0; i < priv->ring_size; i++) { if ((desc->dataflags & CPMAC_OWN) == 0) { if (netif_msg_rx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: packet dropped\n", dev->name); if (unlikely(netif_msg_hw(priv))) cpmac_dump_desc(dev, desc); desc->dataflags = CPMAC_OWN; dev->stats.rx_dropped++; } desc = desc->next; } } static void cpmac_clear_tx(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); int i; if (unlikely(!priv->desc_ring)) return; for (i = 0; i < CPMAC_QUEUES; i++) { priv->desc_ring[i].dataflags = 0; if (priv->desc_ring[i].skb) { dev_kfree_skb_any(priv->desc_ring[i].skb); if (netif_subqueue_stopped(dev, i)) netif_wake_subqueue(dev, i); } } } static void cpmac_hw_error(struct work_struct *work) { struct cpmac_priv *priv = container_of(work, struct cpmac_priv, reset_work); spin_lock(&priv->rx_lock); cpmac_clear_rx(priv->dev); spin_unlock(&priv->rx_lock); cpmac_clear_tx(priv->dev); cpmac_hw_start(priv->dev); napi_enable(&priv->napi); netif_start_queue(priv->dev); } static irqreturn_t cpmac_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct cpmac_priv *priv; int queue; u32 status; priv = netdev_priv(dev); status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR); if (unlikely(netif_msg_intr(priv))) printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name, status); if (status & MAC_INT_TX) cpmac_end_xmit(dev, (status & 7)); if (status & MAC_INT_RX) { queue = (status >> 8) & 7; if (netif_rx_schedule_prep(dev, &priv->napi)) { cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue); __netif_rx_schedule(dev, &priv->napi); } } cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0); if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) { if (netif_msg_drv(priv) && net_ratelimit()) printk(KERN_ERR "%s: hw error, resetting...\n", dev->name); netif_stop_queue(dev); napi_disable(&priv->napi); cpmac_hw_stop(dev); schedule_work(&priv->reset_work); if (unlikely(netif_msg_hw(priv))) cpmac_dump_regs(dev); } return IRQ_HANDLED; } static void cpmac_tx_timeout(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); int i; spin_lock(&priv->lock); dev->stats.tx_errors++; spin_unlock(&priv->lock); if (netif_msg_tx_err(priv) && net_ratelimit()) printk(KERN_WARNING "%s: transmit timeout\n", dev->name); /* * FIXME: waking up random queue is not the best thing to * do... on the other hand why we got here at all? */ #ifdef CONFIG_NETDEVICES_MULTIQUEUE for (i = 0; i < CPMAC_QUEUES; i++) if (priv->desc_ring[i].skb) { priv->desc_ring[i].dataflags = 0; dev_kfree_skb_any(priv->desc_ring[i].skb); netif_wake_subqueue(dev, i); break; } #else priv->desc_ring[0].dataflags = 0; if (priv->desc_ring[0].skb) dev_kfree_skb_any(priv->desc_ring[0].skb); netif_wake_queue(dev); #endif } static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!(netif_running(dev))) return -EINVAL; if (!priv->phy) return -EINVAL; if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) || (cmd == SIOCSMIIREG)) return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd); return -EOPNOTSUPP; } static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (priv->phy) return phy_ethtool_gset(priv->phy, cmd); return -EINVAL; } static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct cpmac_priv *priv = netdev_priv(dev); if (!capable(CAP_NET_ADMIN)) return -EPERM; if (priv->phy) return phy_ethtool_sset(priv->phy, cmd); return -EINVAL; } static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) { struct cpmac_priv *priv = netdev_priv(dev); ring->rx_max_pending = 1024; ring->rx_mini_max_pending = 1; ring->rx_jumbo_max_pending = 1; ring->tx_max_pending = 1; ring->rx_pending = priv->ring_size; ring->rx_mini_pending = 1; ring->rx_jumbo_pending = 1; ring->tx_pending = 1; } static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring) { struct cpmac_priv *priv = netdev_priv(dev); if (netif_running(dev)) return -EBUSY; priv->ring_size = ring->rx_pending; return 0; } static void cpmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, "cpmac"); strcpy(info->version, CPMAC_VERSION); info->fw_version[0] = '\0'; sprintf(info->bus_info, "%s", "cpmac"); info->regdump_len = 0; } static const struct ethtool_ops cpmac_ethtool_ops = { .get_settings = cpmac_get_settings, .set_settings = cpmac_set_settings, .get_drvinfo = cpmac_get_drvinfo, .get_link = ethtool_op_get_link, .get_ringparam = cpmac_get_ringparam, .set_ringparam = cpmac_set_ringparam, }; static void cpmac_adjust_link(struct net_device *dev) { struct cpmac_priv *priv = netdev_priv(dev); int new_state = 0; spin_lock(&priv->lock); if (priv->phy->link) { netif_start_queue(dev); if (priv->phy->duplex != priv->oldduplex) { new_state = 1; priv->oldduplex = priv->phy->duplex; } if (priv->phy->speed != priv->oldspeed) { new_state = 1; priv->oldspeed = priv->phy->speed; } if (!priv->oldlink) { new_state = 1; priv->oldlink = 1; netif_schedule(dev); } } else if (priv->oldlink) { netif_stop_queue(dev); new_state = 1; priv->oldlink = 0; priv->oldspeed = 0; priv->oldduplex = -1; } if (new_state && netif_msg_link(priv) && net_ratelimit()) phy_print_status(priv->phy); spin_unlock(&priv->lock); } static int cpmac_open(struct net_device *dev) { int i, size, res; struct cpmac_priv *priv = netdev_priv(dev); struct resource *mem; struct cpmac_desc *desc; struct sk_buff *skb; mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to request registers\n", dev->name); res = -ENXIO; goto fail_reserve; } priv->regs = ioremap(mem->start, mem->end - mem->start); if (!priv->regs) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to remap registers\n", dev->name); res = -ENXIO; goto fail_remap; } size = priv->ring_size + CPMAC_QUEUES; priv->desc_ring = dma_alloc_coherent(&dev->dev, sizeof(struct cpmac_desc) * size, &priv->dma_ring, GFP_KERNEL); if (!priv->desc_ring) { res = -ENOMEM; goto fail_alloc; } for (i = 0; i < size; i++) priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i; priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) { skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE); if (unlikely(!skb)) { res = -ENOMEM; goto fail_desc; } skb_reserve(skb, 2); desc->skb = skb; desc->data_mapping = dma_map_single(&dev->dev, skb->data, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); desc->hw_data = (u32)desc->data_mapping; desc->buflen = CPMAC_SKB_SIZE; desc->dataflags = CPMAC_OWN; desc->next = &priv->rx_head[(i + 1) % priv->ring_size]; desc->hw_next = (u32)desc->next->mapping; } if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED, dev->name, dev))) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: failed to obtain irq\n", dev->name); goto fail_irq; } INIT_WORK(&priv->reset_work, cpmac_hw_error); cpmac_hw_start(dev); napi_enable(&priv->napi); priv->phy->state = PHY_CHANGELINK; phy_start(priv->phy); return 0; fail_irq: fail_desc: for (i = 0; i < priv->ring_size; i++) { if (priv->rx_head[i].skb) { dma_unmap_single(&dev->dev, priv->rx_head[i].data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); kfree_skb(priv->rx_head[i].skb); } } fail_alloc: kfree(priv->desc_ring); iounmap(priv->regs); fail_remap: release_mem_region(mem->start, mem->end - mem->start); fail_reserve: return res; } static int cpmac_stop(struct net_device *dev) { int i; struct cpmac_priv *priv = netdev_priv(dev); struct resource *mem; netif_stop_queue(dev); cancel_work_sync(&priv->reset_work); napi_disable(&priv->napi); phy_stop(priv->phy); cpmac_hw_stop(dev); for (i = 0; i < 8; i++) cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0); cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0); cpmac_write(priv->regs, CPMAC_MBP, 0); free_irq(dev->irq, dev); iounmap(priv->regs); mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs"); release_mem_region(mem->start, mem->end - mem->start); priv->rx_head = &priv->desc_ring[CPMAC_QUEUES]; for (i = 0; i < priv->ring_size; i++) { if (priv->rx_head[i].skb) { dma_unmap_single(&dev->dev, priv->rx_head[i].data_mapping, CPMAC_SKB_SIZE, DMA_FROM_DEVICE); kfree_skb(priv->rx_head[i].skb); } } dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) * (CPMAC_QUEUES + priv->ring_size), priv->desc_ring, priv->dma_ring); return 0; } static int external_switch; static int __devinit cpmac_probe(struct platform_device *pdev) { int rc, phy_id, i; char *mdio_bus_id = "0"; struct resource *mem; struct cpmac_priv *priv; struct net_device *dev; struct plat_cpmac_data *pdata; DECLARE_MAC_BUF(mac); pdata = pdev->dev.platform_data; for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) { if (!(pdata->phy_mask & (1 << phy_id))) continue; if (!cpmac_mii.phy_map[phy_id]) continue; break; } if (phy_id == PHY_MAX_ADDR) { if (external_switch || dumb_switch) { struct fixed_phy_status status = {}; /* * FIXME: this should be in the platform code! * Since there is not platform code at all (that is, * no mainline users of that driver), place it here * for now. */ phy_id = 0; status.link = 1; status.duplex = 1; status.speed = 100; fixed_phy_add(PHY_POLL, phy_id, &status); } else { printk(KERN_ERR "cpmac: no PHY present\n"); return -ENODEV; } } dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES); if (!dev) { printk(KERN_ERR "cpmac: Unable to allocate net_device\n"); return -ENOMEM; } platform_set_drvdata(pdev, dev); priv = netdev_priv(dev); priv->pdev = pdev; mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); if (!mem) { rc = -ENODEV; goto fail; } dev->irq = platform_get_irq_byname(pdev, "irq"); dev->open = cpmac_open; dev->stop = cpmac_stop; dev->set_config = cpmac_config; dev->hard_start_xmit = cpmac_start_xmit; dev->do_ioctl = cpmac_ioctl; dev->set_multicast_list = cpmac_set_multicast_list; dev->tx_timeout = cpmac_tx_timeout; dev->ethtool_ops = &cpmac_ethtool_ops; dev->features |= NETIF_F_MULTI_QUEUE; netif_napi_add(dev, &priv->napi, cpmac_poll, 64); spin_lock_init(&priv->lock); spin_lock_init(&priv->rx_lock); priv->dev = dev; priv->ring_size = 64; priv->msg_enable = netif_msg_init(debug_level, 0xff); memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr)); snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id); priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0, PHY_INTERFACE_MODE_MII); if (IS_ERR(priv->phy)) { if (netif_msg_drv(priv)) printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name); return PTR_ERR(priv->phy); } if ((rc = register_netdev(dev))) { printk(KERN_ERR "cpmac: error %i registering device %s\n", rc, dev->name); goto fail; } if (netif_msg_probe(priv)) { printk(KERN_INFO "cpmac: device %s (regs: %p, irq: %d, phy: %s, " "mac: %s)\n", dev->name, (void *)mem->start, dev->irq, priv->phy_name, print_mac(mac, dev->dev_addr)); } return 0; fail: free_netdev(dev); return rc; } static int __devexit cpmac_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); unregister_netdev(dev); free_netdev(dev); return 0; } static struct platform_driver cpmac_driver = { .driver.name = "cpmac", .driver.owner = THIS_MODULE, .probe = cpmac_probe, .remove = __devexit_p(cpmac_remove), }; int __devinit cpmac_init(void) { u32 mask; int i, res; cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256); if (!cpmac_mii.priv) { printk(KERN_ERR "Can't ioremap mdio registers\n"); return -ENXIO; } #warning FIXME: unhardcode gpio&reset bits ar7_gpio_disable(26); ar7_gpio_disable(27); ar7_device_reset(AR7_RESET_BIT_CPMAC_LO); ar7_device_reset(AR7_RESET_BIT_CPMAC_HI); ar7_device_reset(AR7_RESET_BIT_EPHY); cpmac_mii.reset(&cpmac_mii); for (i = 0; i < 300000; i++) if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE))) break; else cpu_relax(); mask &= 0x7fffffff; if (mask & (mask - 1)) { external_switch = 1; mask = 0; } cpmac_mii.phy_mask = ~(mask | 0x80000000); snprintf(cpmac_mii.id, MII_BUS_ID_SIZE, "0"); res = mdiobus_register(&cpmac_mii); if (res) goto fail_mii; res = platform_driver_register(&cpmac_driver); if (res) goto fail_cpmac; return 0; fail_cpmac: mdiobus_unregister(&cpmac_mii); fail_mii: iounmap(cpmac_mii.priv); return res; } void __devexit cpmac_exit(void) { platform_driver_unregister(&cpmac_driver); mdiobus_unregister(&cpmac_mii); iounmap(cpmac_mii.priv); } module_init(cpmac_init); module_exit(cpmac_exit);