/* * originally based on the dummy device. * * Copyright 1999, Thomas Davis, tadavis@lbl.gov. * Licensed under the GPL. Based on dummy.c, and eql.c devices. * * bonding.c: an Ethernet Bonding driver * * This is useful to talk to a Cisco EtherChannel compatible equipment: * Cisco 5500 * Sun Trunking (Solaris) * Alteon AceDirector Trunks * Linux Bonding * and probably many L2 switches ... * * How it works: * ifconfig bond0 ipaddress netmask up * will setup a network device, with an ip address. No mac address * will be assigned at this time. The hw mac address will come from * the first slave bonded to the channel. All slaves will then use * this hw mac address. * * ifconfig bond0 down * will release all slaves, marking them as down. * * ifenslave bond0 eth0 * will attach eth0 to bond0 as a slave. eth0 hw mac address will either * a: be used as initial mac address * b: if a hw mac address already is there, eth0's hw mac address * will then be set from bond0. * */ //#define BONDING_DEBUG 1 #include <linux/kernel.h> #include <linux/module.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/ptrace.h> #include <linux/ioport.h> #include <linux/in.h> #include <net/ip.h> #include <linux/ip.h> #include <linux/tcp.h> #include <linux/udp.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/init.h> #include <linux/timer.h> #include <linux/socket.h> #include <linux/ctype.h> #include <linux/inet.h> #include <linux/bitops.h> #include <asm/system.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/uaccess.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/igmp.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <net/sock.h> #include <linux/rtnetlink.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/smp.h> #include <linux/if_ether.h> #include <net/arp.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/if_vlan.h> #include <linux/if_bonding.h> #include <linux/jiffies.h> #include <net/route.h> #include <net/net_namespace.h> #include "bonding.h" #include "bond_3ad.h" #include "bond_alb.h" /*---------------------------- Module parameters ----------------------------*/ /* monitor all links that often (in milliseconds). <=0 disables monitoring */ #define BOND_LINK_MON_INTERV 0 #define BOND_LINK_ARP_INTERV 0 static int max_bonds = BOND_DEFAULT_MAX_BONDS; static int miimon = BOND_LINK_MON_INTERV; static int updelay = 0; static int downdelay = 0; static int use_carrier = 1; static char *mode = NULL; static char *primary = NULL; static char *lacp_rate = NULL; static char *xmit_hash_policy = NULL; static int arp_interval = BOND_LINK_ARP_INTERV; static char *arp_ip_target[BOND_MAX_ARP_TARGETS] = { NULL, }; static char *arp_validate = NULL; static int fail_over_mac = 0; struct bond_params bonding_defaults; module_param(max_bonds, int, 0); MODULE_PARM_DESC(max_bonds, "Max number of bonded devices"); module_param(miimon, int, 0); MODULE_PARM_DESC(miimon, "Link check interval in milliseconds"); module_param(updelay, int, 0); MODULE_PARM_DESC(updelay, "Delay before considering link up, in milliseconds"); module_param(downdelay, int, 0); MODULE_PARM_DESC(downdelay, "Delay before considering link down, " "in milliseconds"); module_param(use_carrier, int, 0); MODULE_PARM_DESC(use_carrier, "Use netif_carrier_ok (vs MII ioctls) in miimon; " "0 for off, 1 for on (default)"); module_param(mode, charp, 0); MODULE_PARM_DESC(mode, "Mode of operation : 0 for balance-rr, " "1 for active-backup, 2 for balance-xor, " "3 for broadcast, 4 for 802.3ad, 5 for balance-tlb, " "6 for balance-alb"); module_param(primary, charp, 0); MODULE_PARM_DESC(primary, "Primary network device to use"); module_param(lacp_rate, charp, 0); MODULE_PARM_DESC(lacp_rate, "LACPDU tx rate to request from 802.3ad partner " "(slow/fast)"); module_param(xmit_hash_policy, charp, 0); MODULE_PARM_DESC(xmit_hash_policy, "XOR hashing method: 0 for layer 2 (default)" ", 1 for layer 3+4"); module_param(arp_interval, int, 0); MODULE_PARM_DESC(arp_interval, "arp interval in milliseconds"); module_param_array(arp_ip_target, charp, NULL, 0); MODULE_PARM_DESC(arp_ip_target, "arp targets in n.n.n.n form"); module_param(arp_validate, charp, 0); MODULE_PARM_DESC(arp_validate, "validate src/dst of ARP probes: none (default), active, backup or all"); module_param(fail_over_mac, int, 0); MODULE_PARM_DESC(fail_over_mac, "For active-backup, do not set all slaves to the same MAC. 0 of off (default), 1 for on."); /*----------------------------- Global variables ----------------------------*/ static const char * const version = DRV_DESCRIPTION ": v" DRV_VERSION " (" DRV_RELDATE ")\n"; LIST_HEAD(bond_dev_list); #ifdef CONFIG_PROC_FS static struct proc_dir_entry *bond_proc_dir = NULL; #endif extern struct rw_semaphore bonding_rwsem; static __be32 arp_target[BOND_MAX_ARP_TARGETS] = { 0, } ; static int arp_ip_count = 0; static int bond_mode = BOND_MODE_ROUNDROBIN; static int xmit_hashtype= BOND_XMIT_POLICY_LAYER2; static int lacp_fast = 0; struct bond_parm_tbl bond_lacp_tbl[] = { { "slow", AD_LACP_SLOW}, { "fast", AD_LACP_FAST}, { NULL, -1}, }; struct bond_parm_tbl bond_mode_tbl[] = { { "balance-rr", BOND_MODE_ROUNDROBIN}, { "active-backup", BOND_MODE_ACTIVEBACKUP}, { "balance-xor", BOND_MODE_XOR}, { "broadcast", BOND_MODE_BROADCAST}, { "802.3ad", BOND_MODE_8023AD}, { "balance-tlb", BOND_MODE_TLB}, { "balance-alb", BOND_MODE_ALB}, { NULL, -1}, }; struct bond_parm_tbl xmit_hashtype_tbl[] = { { "layer2", BOND_XMIT_POLICY_LAYER2}, { "layer3+4", BOND_XMIT_POLICY_LAYER34}, { "layer2+3", BOND_XMIT_POLICY_LAYER23}, { NULL, -1}, }; struct bond_parm_tbl arp_validate_tbl[] = { { "none", BOND_ARP_VALIDATE_NONE}, { "active", BOND_ARP_VALIDATE_ACTIVE}, { "backup", BOND_ARP_VALIDATE_BACKUP}, { "all", BOND_ARP_VALIDATE_ALL}, { NULL, -1}, }; /*-------------------------- Forward declarations ---------------------------*/ static void bond_send_gratuitous_arp(struct bonding *bond); static void bond_deinit(struct net_device *bond_dev); /*---------------------------- General routines -----------------------------*/ static const char *bond_mode_name(int mode) { switch (mode) { case BOND_MODE_ROUNDROBIN : return "load balancing (round-robin)"; case BOND_MODE_ACTIVEBACKUP : return "fault-tolerance (active-backup)"; case BOND_MODE_XOR : return "load balancing (xor)"; case BOND_MODE_BROADCAST : return "fault-tolerance (broadcast)"; case BOND_MODE_8023AD: return "IEEE 802.3ad Dynamic link aggregation"; case BOND_MODE_TLB: return "transmit load balancing"; case BOND_MODE_ALB: return "adaptive load balancing"; default: return "unknown"; } } /*---------------------------------- VLAN -----------------------------------*/ /** * bond_add_vlan - add a new vlan id on bond * @bond: bond that got the notification * @vlan_id: the vlan id to add * * Returns -ENOMEM if allocation failed. */ static int bond_add_vlan(struct bonding *bond, unsigned short vlan_id) { struct vlan_entry *vlan; dprintk("bond: %s, vlan id %d\n", (bond ? bond->dev->name: "None"), vlan_id); vlan = kmalloc(sizeof(struct vlan_entry), GFP_KERNEL); if (!vlan) { return -ENOMEM; } INIT_LIST_HEAD(&vlan->vlan_list); vlan->vlan_id = vlan_id; vlan->vlan_ip = 0; write_lock_bh(&bond->lock); list_add_tail(&vlan->vlan_list, &bond->vlan_list); write_unlock_bh(&bond->lock); dprintk("added VLAN ID %d on bond %s\n", vlan_id, bond->dev->name); return 0; } /** * bond_del_vlan - delete a vlan id from bond * @bond: bond that got the notification * @vlan_id: the vlan id to delete * * returns -ENODEV if @vlan_id was not found in @bond. */ static int bond_del_vlan(struct bonding *bond, unsigned short vlan_id) { struct vlan_entry *vlan, *next; int res = -ENODEV; dprintk("bond: %s, vlan id %d\n", bond->dev->name, vlan_id); write_lock_bh(&bond->lock); list_for_each_entry_safe(vlan, next, &bond->vlan_list, vlan_list) { if (vlan->vlan_id == vlan_id) { list_del(&vlan->vlan_list); if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { bond_alb_clear_vlan(bond, vlan_id); } dprintk("removed VLAN ID %d from bond %s\n", vlan_id, bond->dev->name); kfree(vlan); if (list_empty(&bond->vlan_list) && (bond->slave_cnt == 0)) { /* Last VLAN removed and no slaves, so * restore block on adding VLANs. This will * be removed once new slaves that are not * VLAN challenged will be added. */ bond->dev->features |= NETIF_F_VLAN_CHALLENGED; } res = 0; goto out; } } dprintk("couldn't find VLAN ID %d in bond %s\n", vlan_id, bond->dev->name); out: write_unlock_bh(&bond->lock); return res; } /** * bond_has_challenged_slaves * @bond: the bond we're working on * * Searches the slave list. Returns 1 if a vlan challenged slave * was found, 0 otherwise. * * Assumes bond->lock is held. */ static int bond_has_challenged_slaves(struct bonding *bond) { struct slave *slave; int i; bond_for_each_slave(bond, slave, i) { if (slave->dev->features & NETIF_F_VLAN_CHALLENGED) { dprintk("found VLAN challenged slave - %s\n", slave->dev->name); return 1; } } dprintk("no VLAN challenged slaves found\n"); return 0; } /** * bond_next_vlan - safely skip to the next item in the vlans list. * @bond: the bond we're working on * @curr: item we're advancing from * * Returns %NULL if list is empty, bond->next_vlan if @curr is %NULL, * or @curr->next otherwise (even if it is @curr itself again). * * Caller must hold bond->lock */ struct vlan_entry *bond_next_vlan(struct bonding *bond, struct vlan_entry *curr) { struct vlan_entry *next, *last; if (list_empty(&bond->vlan_list)) { return NULL; } if (!curr) { next = list_entry(bond->vlan_list.next, struct vlan_entry, vlan_list); } else { last = list_entry(bond->vlan_list.prev, struct vlan_entry, vlan_list); if (last == curr) { next = list_entry(bond->vlan_list.next, struct vlan_entry, vlan_list); } else { next = list_entry(curr->vlan_list.next, struct vlan_entry, vlan_list); } } return next; } /** * bond_dev_queue_xmit - Prepare skb for xmit. * * @bond: bond device that got this skb for tx. * @skb: hw accel VLAN tagged skb to transmit * @slave_dev: slave that is supposed to xmit this skbuff * * When the bond gets an skb to transmit that is * already hardware accelerated VLAN tagged, and it * needs to relay this skb to a slave that is not * hw accel capable, the skb needs to be "unaccelerated", * i.e. strip the hwaccel tag and re-insert it as part * of the payload. */ int bond_dev_queue_xmit(struct bonding *bond, struct sk_buff *skb, struct net_device *slave_dev) { unsigned short uninitialized_var(vlan_id); if (!list_empty(&bond->vlan_list) && !(slave_dev->features & NETIF_F_HW_VLAN_TX) && vlan_get_tag(skb, &vlan_id) == 0) { skb->dev = slave_dev; skb = vlan_put_tag(skb, vlan_id); if (!skb) { /* vlan_put_tag() frees the skb in case of error, * so return success here so the calling functions * won't attempt to free is again. */ return 0; } } else { skb->dev = slave_dev; } skb->priority = 1; dev_queue_xmit(skb); return 0; } /* * In the following 3 functions, bond_vlan_rx_register(), bond_vlan_rx_add_vid * and bond_vlan_rx_kill_vid, We don't protect the slave list iteration with a * lock because: * a. This operation is performed in IOCTL context, * b. The operation is protected by the RTNL semaphore in the 8021q code, * c. Holding a lock with BH disabled while directly calling a base driver * entry point is generally a BAD idea. * * The design of synchronization/protection for this operation in the 8021q * module is good for one or more VLAN devices over a single physical device * and cannot be extended for a teaming solution like bonding, so there is a * potential race condition here where a net device from the vlan group might * be referenced (either by a base driver or the 8021q code) while it is being * removed from the system. However, it turns out we're not making matters * worse, and if it works for regular VLAN usage it will work here too. */ /** * bond_vlan_rx_register - Propagates registration to slaves * @bond_dev: bonding net device that got called * @grp: vlan group being registered */ static void bond_vlan_rx_register(struct net_device *bond_dev, struct vlan_group *grp) { struct bonding *bond = bond_dev->priv; struct slave *slave; int i; bond->vlgrp = grp; bond_for_each_slave(bond, slave, i) { struct net_device *slave_dev = slave->dev; if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && slave_dev->vlan_rx_register) { slave_dev->vlan_rx_register(slave_dev, grp); } } } /** * bond_vlan_rx_add_vid - Propagates adding an id to slaves * @bond_dev: bonding net device that got called * @vid: vlan id being added */ static void bond_vlan_rx_add_vid(struct net_device *bond_dev, uint16_t vid) { struct bonding *bond = bond_dev->priv; struct slave *slave; int i, res; bond_for_each_slave(bond, slave, i) { struct net_device *slave_dev = slave->dev; if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && slave_dev->vlan_rx_add_vid) { slave_dev->vlan_rx_add_vid(slave_dev, vid); } } res = bond_add_vlan(bond, vid); if (res) { printk(KERN_ERR DRV_NAME ": %s: Error: Failed to add vlan id %d\n", bond_dev->name, vid); } } /** * bond_vlan_rx_kill_vid - Propagates deleting an id to slaves * @bond_dev: bonding net device that got called * @vid: vlan id being removed */ static void bond_vlan_rx_kill_vid(struct net_device *bond_dev, uint16_t vid) { struct bonding *bond = bond_dev->priv; struct slave *slave; struct net_device *vlan_dev; int i, res; bond_for_each_slave(bond, slave, i) { struct net_device *slave_dev = slave->dev; if ((slave_dev->features & NETIF_F_HW_VLAN_FILTER) && slave_dev->vlan_rx_kill_vid) { /* Save and then restore vlan_dev in the grp array, * since the slave's driver might clear it. */ vlan_dev = vlan_group_get_device(bond->vlgrp, vid); slave_dev->vlan_rx_kill_vid(slave_dev, vid); vlan_group_set_device(bond->vlgrp, vid, vlan_dev); } } res = bond_del_vlan(bond, vid); if (res) { printk(KERN_ERR DRV_NAME ": %s: Error: Failed to remove vlan id %d\n", bond_dev->name, vid); } } static void bond_add_vlans_on_slave(struct bonding *bond, struct net_device *slave_dev) { struct vlan_entry *vlan; write_lock_bh(&bond->lock); if (list_empty(&bond->vlan_list)) { goto out; } if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && slave_dev->vlan_rx_register) { slave_dev->vlan_rx_register(slave_dev, bond->vlgrp); } if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || !(slave_dev->vlan_rx_add_vid)) { goto out; } list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { slave_dev->vlan_rx_add_vid(slave_dev, vlan->vlan_id); } out: write_unlock_bh(&bond->lock); } static void bond_del_vlans_from_slave(struct bonding *bond, struct net_device *slave_dev) { struct vlan_entry *vlan; struct net_device *vlan_dev; write_lock_bh(&bond->lock); if (list_empty(&bond->vlan_list)) { goto out; } if (!(slave_dev->features & NETIF_F_HW_VLAN_FILTER) || !(slave_dev->vlan_rx_kill_vid)) { goto unreg; } list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { /* Save and then restore vlan_dev in the grp array, * since the slave's driver might clear it. */ vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); slave_dev->vlan_rx_kill_vid(slave_dev, vlan->vlan_id); vlan_group_set_device(bond->vlgrp, vlan->vlan_id, vlan_dev); } unreg: if ((slave_dev->features & NETIF_F_HW_VLAN_RX) && slave_dev->vlan_rx_register) { slave_dev->vlan_rx_register(slave_dev, NULL); } out: write_unlock_bh(&bond->lock); } /*------------------------------- Link status -------------------------------*/ /* * Set the carrier state for the master according to the state of its * slaves. If any slaves are up, the master is up. In 802.3ad mode, * do special 802.3ad magic. * * Returns zero if carrier state does not change, nonzero if it does. */ static int bond_set_carrier(struct bonding *bond) { struct slave *slave; int i; if (bond->slave_cnt == 0) goto down; if (bond->params.mode == BOND_MODE_8023AD) return bond_3ad_set_carrier(bond); bond_for_each_slave(bond, slave, i) { if (slave->link == BOND_LINK_UP) { if (!netif_carrier_ok(bond->dev)) { netif_carrier_on(bond->dev); return 1; } return 0; } } down: if (netif_carrier_ok(bond->dev)) { netif_carrier_off(bond->dev); return 1; } return 0; } /* * Get link speed and duplex from the slave's base driver * using ethtool. If for some reason the call fails or the * values are invalid, fake speed and duplex to 100/Full * and return error. */ static int bond_update_speed_duplex(struct slave *slave) { struct net_device *slave_dev = slave->dev; struct ethtool_cmd etool; int res; /* Fake speed and duplex */ slave->speed = SPEED_100; slave->duplex = DUPLEX_FULL; if (!slave_dev->ethtool_ops || !slave_dev->ethtool_ops->get_settings) return -1; res = slave_dev->ethtool_ops->get_settings(slave_dev, &etool); if (res < 0) return -1; switch (etool.speed) { case SPEED_10: case SPEED_100: case SPEED_1000: case SPEED_10000: break; default: return -1; } switch (etool.duplex) { case DUPLEX_FULL: case DUPLEX_HALF: break; default: return -1; } slave->speed = etool.speed; slave->duplex = etool.duplex; return 0; } /* * if <dev> supports MII link status reporting, check its link status. * * We either do MII/ETHTOOL ioctls, or check netif_carrier_ok(), * depening upon the setting of the use_carrier parameter. * * Return either BMSR_LSTATUS, meaning that the link is up (or we * can't tell and just pretend it is), or 0, meaning that the link is * down. * * If reporting is non-zero, instead of faking link up, return -1 if * both ETHTOOL and MII ioctls fail (meaning the device does not * support them). If use_carrier is set, return whatever it says. * It'd be nice if there was a good way to tell if a driver supports * netif_carrier, but there really isn't. */ static int bond_check_dev_link(struct bonding *bond, struct net_device *slave_dev, int reporting) { static int (* ioctl)(struct net_device *, struct ifreq *, int); struct ifreq ifr; struct mii_ioctl_data *mii; if (bond->params.use_carrier) { return netif_carrier_ok(slave_dev) ? BMSR_LSTATUS : 0; } ioctl = slave_dev->do_ioctl; if (ioctl) { /* TODO: set pointer to correct ioctl on a per team member */ /* bases to make this more efficient. that is, once */ /* we determine the correct ioctl, we will always */ /* call it and not the others for that team */ /* member. */ /* * We cannot assume that SIOCGMIIPHY will also read a * register; not all network drivers (e.g., e100) * support that. */ /* Yes, the mii is overlaid on the ifreq.ifr_ifru */ strncpy(ifr.ifr_name, slave_dev->name, IFNAMSIZ); mii = if_mii(&ifr); if (IOCTL(slave_dev, &ifr, SIOCGMIIPHY) == 0) { mii->reg_num = MII_BMSR; if (IOCTL(slave_dev, &ifr, SIOCGMIIREG) == 0) { return (mii->val_out & BMSR_LSTATUS); } } } /* * Some drivers cache ETHTOOL_GLINK for a period of time so we only * attempt to get link status from it if the above MII ioctls fail. */ if (slave_dev->ethtool_ops) { if (slave_dev->ethtool_ops->get_link) { u32 link; link = slave_dev->ethtool_ops->get_link(slave_dev); return link ? BMSR_LSTATUS : 0; } } /* * If reporting, report that either there's no dev->do_ioctl, * or both SIOCGMIIREG and get_link failed (meaning that we * cannot report link status). If not reporting, pretend * we're ok. */ return (reporting ? -1 : BMSR_LSTATUS); } /*----------------------------- Multicast list ------------------------------*/ /* * Returns 0 if dmi1 and dmi2 are the same, non-0 otherwise */ static inline int bond_is_dmi_same(struct dev_mc_list *dmi1, struct dev_mc_list *dmi2) { return memcmp(dmi1->dmi_addr, dmi2->dmi_addr, dmi1->dmi_addrlen) == 0 && dmi1->dmi_addrlen == dmi2->dmi_addrlen; } /* * returns dmi entry if found, NULL otherwise */ static struct dev_mc_list *bond_mc_list_find_dmi(struct dev_mc_list *dmi, struct dev_mc_list *mc_list) { struct dev_mc_list *idmi; for (idmi = mc_list; idmi; idmi = idmi->next) { if (bond_is_dmi_same(dmi, idmi)) { return idmi; } } return NULL; } /* * Push the promiscuity flag down to appropriate slaves */ static void bond_set_promiscuity(struct bonding *bond, int inc) { if (USES_PRIMARY(bond->params.mode)) { /* write lock already acquired */ if (bond->curr_active_slave) { dev_set_promiscuity(bond->curr_active_slave->dev, inc); } } else { struct slave *slave; int i; bond_for_each_slave(bond, slave, i) { dev_set_promiscuity(slave->dev, inc); } } } /* * Push the allmulti flag down to all slaves */ static void bond_set_allmulti(struct bonding *bond, int inc) { if (USES_PRIMARY(bond->params.mode)) { /* write lock already acquired */ if (bond->curr_active_slave) { dev_set_allmulti(bond->curr_active_slave->dev, inc); } } else { struct slave *slave; int i; bond_for_each_slave(bond, slave, i) { dev_set_allmulti(slave->dev, inc); } } } /* * Add a Multicast address to slaves * according to mode */ static void bond_mc_add(struct bonding *bond, void *addr, int alen) { if (USES_PRIMARY(bond->params.mode)) { /* write lock already acquired */ if (bond->curr_active_slave) { dev_mc_add(bond->curr_active_slave->dev, addr, alen, 0); } } else { struct slave *slave; int i; bond_for_each_slave(bond, slave, i) { dev_mc_add(slave->dev, addr, alen, 0); } } } /* * Remove a multicast address from slave * according to mode */ static void bond_mc_delete(struct bonding *bond, void *addr, int alen) { if (USES_PRIMARY(bond->params.mode)) { /* write lock already acquired */ if (bond->curr_active_slave) { dev_mc_delete(bond->curr_active_slave->dev, addr, alen, 0); } } else { struct slave *slave; int i; bond_for_each_slave(bond, slave, i) { dev_mc_delete(slave->dev, addr, alen, 0); } } } /* * Retrieve the list of registered multicast addresses for the bonding * device and retransmit an IGMP JOIN request to the current active * slave. */ static void bond_resend_igmp_join_requests(struct bonding *bond) { struct in_device *in_dev; struct ip_mc_list *im; rcu_read_lock(); in_dev = __in_dev_get_rcu(bond->dev); if (in_dev) { for (im = in_dev->mc_list; im; im = im->next) { ip_mc_rejoin_group(im); } } rcu_read_unlock(); } /* * Totally destroys the mc_list in bond */ static void bond_mc_list_destroy(struct bonding *bond) { struct dev_mc_list *dmi; dmi = bond->mc_list; while (dmi) { bond->mc_list = dmi->next; kfree(dmi); dmi = bond->mc_list; } bond->mc_list = NULL; } /* * Copy all the Multicast addresses from src to the bonding device dst */ static int bond_mc_list_copy(struct dev_mc_list *mc_list, struct bonding *bond, gfp_t gfp_flag) { struct dev_mc_list *dmi, *new_dmi; for (dmi = mc_list; dmi; dmi = dmi->next) { new_dmi = kmalloc(sizeof(struct dev_mc_list), gfp_flag); if (!new_dmi) { /* FIXME: Potential memory leak !!! */ return -ENOMEM; } new_dmi->next = bond->mc_list; bond->mc_list = new_dmi; new_dmi->dmi_addrlen = dmi->dmi_addrlen; memcpy(new_dmi->dmi_addr, dmi->dmi_addr, dmi->dmi_addrlen); new_dmi->dmi_users = dmi->dmi_users; new_dmi->dmi_gusers = dmi->dmi_gusers; } return 0; } /* * flush all members of flush->mc_list from device dev->mc_list */ static void bond_mc_list_flush(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; struct dev_mc_list *dmi; for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { dev_mc_delete(slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); } if (bond->params.mode == BOND_MODE_8023AD) { /* del lacpdu mc addr from mc list */ u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; dev_mc_delete(slave_dev, lacpdu_multicast, ETH_ALEN, 0); } } /*--------------------------- Active slave change ---------------------------*/ /* * Update the mc list and multicast-related flags for the new and * old active slaves (if any) according to the multicast mode, and * promiscuous flags unconditionally. */ static void bond_mc_swap(struct bonding *bond, struct slave *new_active, struct slave *old_active) { struct dev_mc_list *dmi; if (!USES_PRIMARY(bond->params.mode)) { /* nothing to do - mc list is already up-to-date on * all slaves */ return; } if (old_active) { if (bond->dev->flags & IFF_PROMISC) { dev_set_promiscuity(old_active->dev, -1); } if (bond->dev->flags & IFF_ALLMULTI) { dev_set_allmulti(old_active->dev, -1); } for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { dev_mc_delete(old_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); } } if (new_active) { if (bond->dev->flags & IFF_PROMISC) { dev_set_promiscuity(new_active->dev, 1); } if (bond->dev->flags & IFF_ALLMULTI) { dev_set_allmulti(new_active->dev, 1); } for (dmi = bond->dev->mc_list; dmi; dmi = dmi->next) { dev_mc_add(new_active->dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); } bond_resend_igmp_join_requests(bond); } } /** * find_best_interface - select the best available slave to be the active one * @bond: our bonding struct * * Warning: Caller must hold curr_slave_lock for writing. */ static struct slave *bond_find_best_slave(struct bonding *bond) { struct slave *new_active, *old_active; struct slave *bestslave = NULL; int mintime = bond->params.updelay; int i; new_active = old_active = bond->curr_active_slave; if (!new_active) { /* there were no active slaves left */ if (bond->slave_cnt > 0) { /* found one slave */ new_active = bond->first_slave; } else { return NULL; /* still no slave, return NULL */ } } /* first try the primary link; if arping, a link must tx/rx traffic * before it can be considered the curr_active_slave - also, we would skip * slaves between the curr_active_slave and primary_slave that may be up * and able to arp */ if ((bond->primary_slave) && (!bond->params.arp_interval) && (IS_UP(bond->primary_slave->dev))) { new_active = bond->primary_slave; } /* remember where to stop iterating over the slaves */ old_active = new_active; bond_for_each_slave_from(bond, new_active, i, old_active) { if (IS_UP(new_active->dev)) { if (new_active->link == BOND_LINK_UP) { return new_active; } else if (new_active->link == BOND_LINK_BACK) { /* link up, but waiting for stabilization */ if (new_active->delay < mintime) { mintime = new_active->delay; bestslave = new_active; } } } } return bestslave; } /** * change_active_interface - change the active slave into the specified one * @bond: our bonding struct * @new: the new slave to make the active one * * Set the new slave to the bond's settings and unset them on the old * curr_active_slave. * Setting include flags, mc-list, promiscuity, allmulti, etc. * * If @new's link state is %BOND_LINK_BACK we'll set it to %BOND_LINK_UP, * because it is apparently the best available slave we have, even though its * updelay hasn't timed out yet. * * Warning: Caller must hold curr_slave_lock for writing. */ void bond_change_active_slave(struct bonding *bond, struct slave *new_active) { struct slave *old_active = bond->curr_active_slave; if (old_active == new_active) { return; } if (new_active) { if (new_active->link == BOND_LINK_BACK) { if (USES_PRIMARY(bond->params.mode)) { printk(KERN_INFO DRV_NAME ": %s: making interface %s the new " "active one %d ms earlier.\n", bond->dev->name, new_active->dev->name, (bond->params.updelay - new_active->delay) * bond->params.miimon); } new_active->delay = 0; new_active->link = BOND_LINK_UP; new_active->jiffies = jiffies; if (bond->params.mode == BOND_MODE_8023AD) { bond_3ad_handle_link_change(new_active, BOND_LINK_UP); } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { bond_alb_handle_link_change(bond, new_active, BOND_LINK_UP); } } else { if (USES_PRIMARY(bond->params.mode)) { printk(KERN_INFO DRV_NAME ": %s: making interface %s the new " "active one.\n", bond->dev->name, new_active->dev->name); } } } if (USES_PRIMARY(bond->params.mode)) { bond_mc_swap(bond, new_active, old_active); } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { bond_alb_handle_active_change(bond, new_active); if (old_active) bond_set_slave_inactive_flags(old_active); if (new_active) bond_set_slave_active_flags(new_active); } else { bond->curr_active_slave = new_active; } if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) { if (old_active) { bond_set_slave_inactive_flags(old_active); } if (new_active) { bond_set_slave_active_flags(new_active); } /* when bonding does not set the slave MAC address, the bond MAC * address is the one of the active slave. */ if (new_active && bond->params.fail_over_mac) memcpy(bond->dev->dev_addr, new_active->dev->dev_addr, new_active->dev->addr_len); if (bond->curr_active_slave && test_bit(__LINK_STATE_LINKWATCH_PENDING, &bond->curr_active_slave->dev->state)) { dprintk("delaying gratuitous arp on %s\n", bond->curr_active_slave->dev->name); bond->send_grat_arp = 1; } else bond_send_gratuitous_arp(bond); } } /** * bond_select_active_slave - select a new active slave, if needed * @bond: our bonding struct * * This functions shoud be called when one of the following occurs: * - The old curr_active_slave has been released or lost its link. * - The primary_slave has got its link back. * - A slave has got its link back and there's no old curr_active_slave. * * Warning: Caller must hold curr_slave_lock for writing. */ void bond_select_active_slave(struct bonding *bond) { struct slave *best_slave; int rv; best_slave = bond_find_best_slave(bond); if (best_slave != bond->curr_active_slave) { bond_change_active_slave(bond, best_slave); rv = bond_set_carrier(bond); if (!rv) return; if (netif_carrier_ok(bond->dev)) { printk(KERN_INFO DRV_NAME ": %s: first active interface up!\n", bond->dev->name); } else { printk(KERN_INFO DRV_NAME ": %s: " "now running without any active interface !\n", bond->dev->name); } } } /*--------------------------- slave list handling ---------------------------*/ /* * This function attaches the slave to the end of list. * * bond->lock held for writing by caller. */ static void bond_attach_slave(struct bonding *bond, struct slave *new_slave) { if (bond->first_slave == NULL) { /* attaching the first slave */ new_slave->next = new_slave; new_slave->prev = new_slave; bond->first_slave = new_slave; } else { new_slave->next = bond->first_slave; new_slave->prev = bond->first_slave->prev; new_slave->next->prev = new_slave; new_slave->prev->next = new_slave; } bond->slave_cnt++; } /* * This function detaches the slave from the list. * WARNING: no check is made to verify if the slave effectively * belongs to <bond>. * Nothing is freed on return, structures are just unchained. * If any slave pointer in bond was pointing to <slave>, * it should be changed by the calling function. * * bond->lock held for writing by caller. */ static void bond_detach_slave(struct bonding *bond, struct slave *slave) { if (slave->next) { slave->next->prev = slave->prev; } if (slave->prev) { slave->prev->next = slave->next; } if (bond->first_slave == slave) { /* slave is the first slave */ if (bond->slave_cnt > 1) { /* there are more slave */ bond->first_slave = slave->next; } else { bond->first_slave = NULL; /* slave was the last one */ } } slave->next = NULL; slave->prev = NULL; bond->slave_cnt--; } /*---------------------------------- IOCTL ----------------------------------*/ static int bond_sethwaddr(struct net_device *bond_dev, struct net_device *slave_dev) { dprintk("bond_dev=%p\n", bond_dev); dprintk("slave_dev=%p\n", slave_dev); dprintk("slave_dev->addr_len=%d\n", slave_dev->addr_len); memcpy(bond_dev->dev_addr, slave_dev->dev_addr, slave_dev->addr_len); return 0; } #define BOND_VLAN_FEATURES \ (NETIF_F_VLAN_CHALLENGED | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX | \ NETIF_F_HW_VLAN_FILTER) /* * Compute the common dev->feature set available to all slaves. Some * feature bits are managed elsewhere, so preserve those feature bits * on the master device. */ static int bond_compute_features(struct bonding *bond) { struct slave *slave; struct net_device *bond_dev = bond->dev; unsigned long features = bond_dev->features; unsigned short max_hard_header_len = max((u16)ETH_HLEN, bond_dev->hard_header_len); int i; features &= ~(NETIF_F_ALL_CSUM | BOND_VLAN_FEATURES); features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA | NETIF_F_GSO_MASK | NETIF_F_NO_CSUM; bond_for_each_slave(bond, slave, i) { features = netdev_compute_features(features, slave->dev->features); if (slave->dev->hard_header_len > max_hard_header_len) max_hard_header_len = slave->dev->hard_header_len; } features |= (bond_dev->features & BOND_VLAN_FEATURES); bond_dev->features = features; bond_dev->hard_header_len = max_hard_header_len; return 0; } static void bond_setup_by_slave(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; bond_dev->neigh_setup = slave_dev->neigh_setup; bond_dev->header_ops = slave_dev->header_ops; bond_dev->type = slave_dev->type; bond_dev->hard_header_len = slave_dev->hard_header_len; bond_dev->addr_len = slave_dev->addr_len; memcpy(bond_dev->broadcast, slave_dev->broadcast, slave_dev->addr_len); bond->setup_by_slave = 1; } /* enslave device <slave> to bond device <master> */ int bond_enslave(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; struct slave *new_slave = NULL; struct dev_mc_list *dmi; struct sockaddr addr; int link_reporting; int old_features = bond_dev->features; int res = 0; if (!bond->params.use_carrier && slave_dev->ethtool_ops == NULL && slave_dev->do_ioctl == NULL) { printk(KERN_WARNING DRV_NAME ": %s: Warning: no link monitoring support for %s\n", bond_dev->name, slave_dev->name); } /* bond must be initialized by bond_open() before enslaving */ if (!(bond_dev->flags & IFF_UP)) { printk(KERN_WARNING DRV_NAME " %s: master_dev is not up in bond_enslave\n", bond_dev->name); } /* already enslaved */ if (slave_dev->flags & IFF_SLAVE) { dprintk("Error, Device was already enslaved\n"); return -EBUSY; } /* vlan challenged mutual exclusion */ /* no need to lock since we're protected by rtnl_lock */ if (slave_dev->features & NETIF_F_VLAN_CHALLENGED) { dprintk("%s: NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); if (!list_empty(&bond->vlan_list)) { printk(KERN_ERR DRV_NAME ": %s: Error: cannot enslave VLAN " "challenged slave %s on VLAN enabled " "bond %s\n", bond_dev->name, slave_dev->name, bond_dev->name); return -EPERM; } else { printk(KERN_WARNING DRV_NAME ": %s: Warning: enslaved VLAN challenged " "slave %s. Adding VLANs will be blocked as " "long as %s is part of bond %s\n", bond_dev->name, slave_dev->name, slave_dev->name, bond_dev->name); bond_dev->features |= NETIF_F_VLAN_CHALLENGED; } } else { dprintk("%s: ! NETIF_F_VLAN_CHALLENGED\n", slave_dev->name); if (bond->slave_cnt == 0) { /* First slave, and it is not VLAN challenged, * so remove the block of adding VLANs over the bond. */ bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; } } /* * Old ifenslave binaries are no longer supported. These can * be identified with moderate accurary by the state of the slave: * the current ifenslave will set the interface down prior to * enslaving it; the old ifenslave will not. */ if ((slave_dev->flags & IFF_UP)) { printk(KERN_ERR DRV_NAME ": %s is up. " "This may be due to an out of date ifenslave.\n", slave_dev->name); res = -EPERM; goto err_undo_flags; } /* set bonding device ether type by slave - bonding netdevices are * created with ether_setup, so when the slave type is not ARPHRD_ETHER * there is a need to override some of the type dependent attribs/funcs. * * bond ether type mutual exclusion - don't allow slaves of dissimilar * ether type (eg ARPHRD_ETHER and ARPHRD_INFINIBAND) share the same bond */ if (bond->slave_cnt == 0) { if (slave_dev->type != ARPHRD_ETHER) bond_setup_by_slave(bond_dev, slave_dev); } else if (bond_dev->type != slave_dev->type) { printk(KERN_ERR DRV_NAME ": %s ether type (%d) is different " "from other slaves (%d), can not enslave it.\n", slave_dev->name, slave_dev->type, bond_dev->type); res = -EINVAL; goto err_undo_flags; } if (slave_dev->set_mac_address == NULL) { if (bond->slave_cnt == 0) { printk(KERN_WARNING DRV_NAME ": %s: Warning: The first slave device " "specified does not support setting the MAC " "address. Enabling the fail_over_mac option.", bond_dev->name); bond->params.fail_over_mac = 1; } else if (!bond->params.fail_over_mac) { printk(KERN_ERR DRV_NAME ": %s: Error: The slave device specified " "does not support setting the MAC address, " "but fail_over_mac is not enabled.\n" , bond_dev->name); res = -EOPNOTSUPP; goto err_undo_flags; } } new_slave = kzalloc(sizeof(struct slave), GFP_KERNEL); if (!new_slave) { res = -ENOMEM; goto err_undo_flags; } /* save slave's original flags before calling * netdev_set_master and dev_open */ new_slave->original_flags = slave_dev->flags; /* * Save slave's original ("permanent") mac address for modes * that need it, and for restoring it upon release, and then * set it to the master's address */ memcpy(new_slave->perm_hwaddr, slave_dev->dev_addr, ETH_ALEN); if (!bond->params.fail_over_mac) { /* * Set slave to master's mac address. The application already * set the master's mac address to that of the first slave */ memcpy(addr.sa_data, bond_dev->dev_addr, bond_dev->addr_len); addr.sa_family = slave_dev->type; res = dev_set_mac_address(slave_dev, &addr); if (res) { dprintk("Error %d calling set_mac_address\n", res); goto err_free; } } res = netdev_set_master(slave_dev, bond_dev); if (res) { dprintk("Error %d calling netdev_set_master\n", res); goto err_close; } /* open the slave since the application closed it */ res = dev_open(slave_dev); if (res) { dprintk("Openning slave %s failed\n", slave_dev->name); goto err_restore_mac; } new_slave->dev = slave_dev; slave_dev->priv_flags |= IFF_BONDING; if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { /* bond_alb_init_slave() must be called before all other stages since * it might fail and we do not want to have to undo everything */ res = bond_alb_init_slave(bond, new_slave); if (res) { goto err_unset_master; } } /* If the mode USES_PRIMARY, then the new slave gets the * master's promisc (and mc) settings only if it becomes the * curr_active_slave, and that is taken care of later when calling * bond_change_active() */ if (!USES_PRIMARY(bond->params.mode)) { /* set promiscuity level to new slave */ if (bond_dev->flags & IFF_PROMISC) { dev_set_promiscuity(slave_dev, 1); } /* set allmulti level to new slave */ if (bond_dev->flags & IFF_ALLMULTI) { dev_set_allmulti(slave_dev, 1); } netif_tx_lock_bh(bond_dev); /* upload master's mc_list to new slave */ for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { dev_mc_add (slave_dev, dmi->dmi_addr, dmi->dmi_addrlen, 0); } netif_tx_unlock_bh(bond_dev); } if (bond->params.mode == BOND_MODE_8023AD) { /* add lacpdu mc addr to mc list */ u8 lacpdu_multicast[ETH_ALEN] = MULTICAST_LACPDU_ADDR; dev_mc_add(slave_dev, lacpdu_multicast, ETH_ALEN, 0); } bond_add_vlans_on_slave(bond, slave_dev); write_lock_bh(&bond->lock); bond_attach_slave(bond, new_slave); new_slave->delay = 0; new_slave->link_failure_count = 0; bond_compute_features(bond); new_slave->last_arp_rx = jiffies; if (bond->params.miimon && !bond->params.use_carrier) { link_reporting = bond_check_dev_link(bond, slave_dev, 1); if ((link_reporting == -1) && !bond->params.arp_interval) { /* * miimon is set but a bonded network driver * does not support ETHTOOL/MII and * arp_interval is not set. Note: if * use_carrier is enabled, we will never go * here (because netif_carrier is always * supported); thus, we don't need to change * the messages for netif_carrier. */ printk(KERN_WARNING DRV_NAME ": %s: Warning: MII and ETHTOOL support not " "available for interface %s, and " "arp_interval/arp_ip_target module parameters " "not specified, thus bonding will not detect " "link failures! see bonding.txt for details.\n", bond_dev->name, slave_dev->name); } else if (link_reporting == -1) { /* unable get link status using mii/ethtool */ printk(KERN_WARNING DRV_NAME ": %s: Warning: can't get link status from " "interface %s; the network driver associated " "with this interface does not support MII or " "ETHTOOL link status reporting, thus miimon " "has no effect on this interface.\n", bond_dev->name, slave_dev->name); } } /* check for initial state */ if (!bond->params.miimon || (bond_check_dev_link(bond, slave_dev, 0) == BMSR_LSTATUS)) { if (bond->params.updelay) { dprintk("Initial state of slave_dev is " "BOND_LINK_BACK\n"); new_slave->link = BOND_LINK_BACK; new_slave->delay = bond->params.updelay; } else { dprintk("Initial state of slave_dev is " "BOND_LINK_UP\n"); new_slave->link = BOND_LINK_UP; } new_slave->jiffies = jiffies; } else { dprintk("Initial state of slave_dev is " "BOND_LINK_DOWN\n"); new_slave->link = BOND_LINK_DOWN; } if (bond_update_speed_duplex(new_slave) && (new_slave->link != BOND_LINK_DOWN)) { printk(KERN_WARNING DRV_NAME ": %s: Warning: failed to get speed and duplex from %s, " "assumed to be 100Mb/sec and Full.\n", bond_dev->name, new_slave->dev->name); if (bond->params.mode == BOND_MODE_8023AD) { printk(KERN_WARNING DRV_NAME ": %s: Warning: Operation of 802.3ad mode requires ETHTOOL " "support in base driver for proper aggregator " "selection.\n", bond_dev->name); } } if (USES_PRIMARY(bond->params.mode) && bond->params.primary[0]) { /* if there is a primary slave, remember it */ if (strcmp(bond->params.primary, new_slave->dev->name) == 0) { bond->primary_slave = new_slave; } } switch (bond->params.mode) { case BOND_MODE_ACTIVEBACKUP: bond_set_slave_inactive_flags(new_slave); bond_select_active_slave(bond); break; case BOND_MODE_8023AD: /* in 802.3ad mode, the internal mechanism * will activate the slaves in the selected * aggregator */ bond_set_slave_inactive_flags(new_slave); /* if this is the first slave */ if (bond->slave_cnt == 1) { SLAVE_AD_INFO(new_slave).id = 1; /* Initialize AD with the number of times that the AD timer is called in 1 second * can be called only after the mac address of the bond is set */ bond_3ad_initialize(bond, 1000/AD_TIMER_INTERVAL, bond->params.lacp_fast); } else { SLAVE_AD_INFO(new_slave).id = SLAVE_AD_INFO(new_slave->prev).id + 1; } bond_3ad_bind_slave(new_slave); break; case BOND_MODE_TLB: case BOND_MODE_ALB: new_slave->state = BOND_STATE_ACTIVE; bond_set_slave_inactive_flags(new_slave); break; default: dprintk("This slave is always active in trunk mode\n"); /* always active in trunk mode */ new_slave->state = BOND_STATE_ACTIVE; /* In trunking mode there is little meaning to curr_active_slave * anyway (it holds no special properties of the bond device), * so we can change it without calling change_active_interface() */ if (!bond->curr_active_slave) { bond->curr_active_slave = new_slave; } break; } /* switch(bond_mode) */ bond_set_carrier(bond); write_unlock_bh(&bond->lock); res = bond_create_slave_symlinks(bond_dev, slave_dev); if (res) goto err_unset_master; printk(KERN_INFO DRV_NAME ": %s: enslaving %s as a%s interface with a%s link.\n", bond_dev->name, slave_dev->name, new_slave->state == BOND_STATE_ACTIVE ? "n active" : " backup", new_slave->link != BOND_LINK_DOWN ? "n up" : " down"); /* enslave is successful */ return 0; /* Undo stages on error */ err_unset_master: netdev_set_master(slave_dev, NULL); err_close: dev_close(slave_dev); err_restore_mac: if (!bond->params.fail_over_mac) { memcpy(addr.sa_data, new_slave->perm_hwaddr, ETH_ALEN); addr.sa_family = slave_dev->type; dev_set_mac_address(slave_dev, &addr); } err_free: kfree(new_slave); err_undo_flags: bond_dev->features = old_features; return res; } /* * Try to release the slave device <slave> from the bond device <master> * It is legal to access curr_active_slave without a lock because all the function * is write-locked. * * The rules for slave state should be: * for Active/Backup: * Active stays on all backups go down * for Bonded connections: * The first up interface should be left on and all others downed. */ int bond_release(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; struct slave *slave, *oldcurrent; struct sockaddr addr; int mac_addr_differ; DECLARE_MAC_BUF(mac); /* slave is not a slave or master is not master of this slave */ if (!(slave_dev->flags & IFF_SLAVE) || (slave_dev->master != bond_dev)) { printk(KERN_ERR DRV_NAME ": %s: Error: cannot release %s.\n", bond_dev->name, slave_dev->name); return -EINVAL; } write_lock_bh(&bond->lock); slave = bond_get_slave_by_dev(bond, slave_dev); if (!slave) { /* not a slave of this bond */ printk(KERN_INFO DRV_NAME ": %s: %s not enslaved\n", bond_dev->name, slave_dev->name); write_unlock_bh(&bond->lock); return -EINVAL; } mac_addr_differ = memcmp(bond_dev->dev_addr, slave->perm_hwaddr, ETH_ALEN); if (!mac_addr_differ && (bond->slave_cnt > 1)) { printk(KERN_WARNING DRV_NAME ": %s: Warning: the permanent HWaddr of %s - " "%s - is still in use by %s. " "Set the HWaddr of %s to a different address " "to avoid conflicts.\n", bond_dev->name, slave_dev->name, print_mac(mac, slave->perm_hwaddr), bond_dev->name, slave_dev->name); } /* Inform AD package of unbinding of slave. */ if (bond->params.mode == BOND_MODE_8023AD) { /* must be called before the slave is * detached from the list */ bond_3ad_unbind_slave(slave); } printk(KERN_INFO DRV_NAME ": %s: releasing %s interface %s\n", bond_dev->name, (slave->state == BOND_STATE_ACTIVE) ? "active" : "backup", slave_dev->name); oldcurrent = bond->curr_active_slave; bond->current_arp_slave = NULL; /* release the slave from its bond */ bond_detach_slave(bond, slave); bond_compute_features(bond); if (bond->primary_slave == slave) { bond->primary_slave = NULL; } if (oldcurrent == slave) { bond_change_active_slave(bond, NULL); } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { /* Must be called only after the slave has been * detached from the list and the curr_active_slave * has been cleared (if our_slave == old_current), * but before a new active slave is selected. */ write_unlock_bh(&bond->lock); bond_alb_deinit_slave(bond, slave); write_lock_bh(&bond->lock); } if (oldcurrent == slave) { /* * Note that we hold RTNL over this sequence, so there * is no concern that another slave add/remove event * will interfere. */ write_unlock_bh(&bond->lock); read_lock(&bond->lock); write_lock_bh(&bond->curr_slave_lock); bond_select_active_slave(bond); write_unlock_bh(&bond->curr_slave_lock); read_unlock(&bond->lock); write_lock_bh(&bond->lock); } if (bond->slave_cnt == 0) { bond_set_carrier(bond); /* if the last slave was removed, zero the mac address * of the master so it will be set by the application * to the mac address of the first slave */ memset(bond_dev->dev_addr, 0, bond_dev->addr_len); if (list_empty(&bond->vlan_list)) { bond_dev->features |= NETIF_F_VLAN_CHALLENGED; } else { printk(KERN_WARNING DRV_NAME ": %s: Warning: clearing HW address of %s while it " "still has VLANs.\n", bond_dev->name, bond_dev->name); printk(KERN_WARNING DRV_NAME ": %s: When re-adding slaves, make sure the bond's " "HW address matches its VLANs'.\n", bond_dev->name); } } else if ((bond_dev->features & NETIF_F_VLAN_CHALLENGED) && !bond_has_challenged_slaves(bond)) { printk(KERN_INFO DRV_NAME ": %s: last VLAN challenged slave %s " "left bond %s. VLAN blocking is removed\n", bond_dev->name, slave_dev->name, bond_dev->name); bond_dev->features &= ~NETIF_F_VLAN_CHALLENGED; } write_unlock_bh(&bond->lock); /* must do this from outside any spinlocks */ bond_destroy_slave_symlinks(bond_dev, slave_dev); bond_del_vlans_from_slave(bond, slave_dev); /* If the mode USES_PRIMARY, then we should only remove its * promisc and mc settings if it was the curr_active_slave, but that was * already taken care of above when we detached the slave */ if (!USES_PRIMARY(bond->params.mode)) { /* unset promiscuity level from slave */ if (bond_dev->flags & IFF_PROMISC) { dev_set_promiscuity(slave_dev, -1); } /* unset allmulti level from slave */ if (bond_dev->flags & IFF_ALLMULTI) { dev_set_allmulti(slave_dev, -1); } /* flush master's mc_list from slave */ netif_tx_lock_bh(bond_dev); bond_mc_list_flush(bond_dev, slave_dev); netif_tx_unlock_bh(bond_dev); } netdev_set_master(slave_dev, NULL); /* close slave before restoring its mac address */ dev_close(slave_dev); if (!bond->params.fail_over_mac) { /* restore original ("permanent") mac address */ memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); addr.sa_family = slave_dev->type; dev_set_mac_address(slave_dev, &addr); } slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | IFF_SLAVE_INACTIVE | IFF_BONDING | IFF_SLAVE_NEEDARP); kfree(slave); return 0; /* deletion OK */ } /* * Destroy a bonding device. * Must be under rtnl_lock when this function is called. */ void bond_destroy(struct bonding *bond) { bond_deinit(bond->dev); bond_destroy_sysfs_entry(bond); unregister_netdevice(bond->dev); } /* * First release a slave and than destroy the bond if no more slaves iare left. * Must be under rtnl_lock when this function is called. */ int bond_release_and_destroy(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; int ret; ret = bond_release(bond_dev, slave_dev); if ((ret == 0) && (bond->slave_cnt == 0)) { printk(KERN_INFO DRV_NAME ": %s: destroying bond %s.\n", bond_dev->name, bond_dev->name); bond_destroy(bond); } return ret; } /* * This function releases all slaves. */ static int bond_release_all(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct slave *slave; struct net_device *slave_dev; struct sockaddr addr; write_lock_bh(&bond->lock); netif_carrier_off(bond_dev); if (bond->slave_cnt == 0) { goto out; } bond->current_arp_slave = NULL; bond->primary_slave = NULL; bond_change_active_slave(bond, NULL); while ((slave = bond->first_slave) != NULL) { /* Inform AD package of unbinding of slave * before slave is detached from the list. */ if (bond->params.mode == BOND_MODE_8023AD) { bond_3ad_unbind_slave(slave); } slave_dev = slave->dev; bond_detach_slave(bond, slave); /* now that the slave is detached, unlock and perform * all the undo steps that should not be called from * within a lock. */ write_unlock_bh(&bond->lock); if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { /* must be called only after the slave * has been detached from the list */ bond_alb_deinit_slave(bond, slave); } bond_compute_features(bond); bond_destroy_slave_symlinks(bond_dev, slave_dev); bond_del_vlans_from_slave(bond, slave_dev); /* If the mode USES_PRIMARY, then we should only remove its * promisc and mc settings if it was the curr_active_slave, but that was * already taken care of above when we detached the slave */ if (!USES_PRIMARY(bond->params.mode)) { /* unset promiscuity level from slave */ if (bond_dev->flags & IFF_PROMISC) { dev_set_promiscuity(slave_dev, -1); } /* unset allmulti level from slave */ if (bond_dev->flags & IFF_ALLMULTI) { dev_set_allmulti(slave_dev, -1); } /* flush master's mc_list from slave */ netif_tx_lock_bh(bond_dev); bond_mc_list_flush(bond_dev, slave_dev); netif_tx_unlock_bh(bond_dev); } netdev_set_master(slave_dev, NULL); /* close slave before restoring its mac address */ dev_close(slave_dev); if (!bond->params.fail_over_mac) { /* restore original ("permanent") mac address*/ memcpy(addr.sa_data, slave->perm_hwaddr, ETH_ALEN); addr.sa_family = slave_dev->type; dev_set_mac_address(slave_dev, &addr); } slave_dev->priv_flags &= ~(IFF_MASTER_8023AD | IFF_MASTER_ALB | IFF_SLAVE_INACTIVE); kfree(slave); /* re-acquire the lock before getting the next slave */ write_lock_bh(&bond->lock); } /* zero the mac address of the master so it will be * set by the application to the mac address of the * first slave */ memset(bond_dev->dev_addr, 0, bond_dev->addr_len); if (list_empty(&bond->vlan_list)) { bond_dev->features |= NETIF_F_VLAN_CHALLENGED; } else { printk(KERN_WARNING DRV_NAME ": %s: Warning: clearing HW address of %s while it " "still has VLANs.\n", bond_dev->name, bond_dev->name); printk(KERN_WARNING DRV_NAME ": %s: When re-adding slaves, make sure the bond's " "HW address matches its VLANs'.\n", bond_dev->name); } printk(KERN_INFO DRV_NAME ": %s: released all slaves\n", bond_dev->name); out: write_unlock_bh(&bond->lock); return 0; } /* * This function changes the active slave to slave <slave_dev>. * It returns -EINVAL in the following cases. * - <slave_dev> is not found in the list. * - There is not active slave now. * - <slave_dev> is already active. * - The link state of <slave_dev> is not BOND_LINK_UP. * - <slave_dev> is not running. * In these cases, this fuction does nothing. * In the other cases, currnt_slave pointer is changed and 0 is returned. */ static int bond_ioctl_change_active(struct net_device *bond_dev, struct net_device *slave_dev) { struct bonding *bond = bond_dev->priv; struct slave *old_active = NULL; struct slave *new_active = NULL; int res = 0; if (!USES_PRIMARY(bond->params.mode)) { return -EINVAL; } /* Verify that master_dev is indeed the master of slave_dev */ if (!(slave_dev->flags & IFF_SLAVE) || (slave_dev->master != bond_dev)) { return -EINVAL; } read_lock(&bond->lock); read_lock(&bond->curr_slave_lock); old_active = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); new_active = bond_get_slave_by_dev(bond, slave_dev); /* * Changing to the current active: do nothing; return success. */ if (new_active && (new_active == old_active)) { read_unlock(&bond->lock); return 0; } if ((new_active) && (old_active) && (new_active->link == BOND_LINK_UP) && IS_UP(new_active->dev)) { write_lock_bh(&bond->curr_slave_lock); bond_change_active_slave(bond, new_active); write_unlock_bh(&bond->curr_slave_lock); } else { res = -EINVAL; } read_unlock(&bond->lock); return res; } static int bond_info_query(struct net_device *bond_dev, struct ifbond *info) { struct bonding *bond = bond_dev->priv; info->bond_mode = bond->params.mode; info->miimon = bond->params.miimon; read_lock(&bond->lock); info->num_slaves = bond->slave_cnt; read_unlock(&bond->lock); return 0; } static int bond_slave_info_query(struct net_device *bond_dev, struct ifslave *info) { struct bonding *bond = bond_dev->priv; struct slave *slave; int i, found = 0; if (info->slave_id < 0) { return -ENODEV; } read_lock(&bond->lock); bond_for_each_slave(bond, slave, i) { if (i == (int)info->slave_id) { found = 1; break; } } read_unlock(&bond->lock); if (found) { strcpy(info->slave_name, slave->dev->name); info->link = slave->link; info->state = slave->state; info->link_failure_count = slave->link_failure_count; } else { return -ENODEV; } return 0; } /*-------------------------------- Monitoring -------------------------------*/ /* * if !have_locks, return nonzero if a failover is necessary. if * have_locks, do whatever failover activities are needed. * * This is to separate the inspection and failover steps for locking * purposes; failover requires rtnl, but acquiring it for every * inspection is undesirable, so a wrapper first does inspection, and * the acquires the necessary locks and calls again to perform * failover if needed. Since all locks are dropped, a complete * restart is needed between calls. */ static int __bond_mii_monitor(struct bonding *bond, int have_locks) { struct slave *slave, *oldcurrent; int do_failover = 0; int i; if (bond->slave_cnt == 0) goto out; /* we will try to read the link status of each of our slaves, and * set their IFF_RUNNING flag appropriately. For each slave not * supporting MII status, we won't do anything so that a user-space * program could monitor the link itself if needed. */ if (bond->send_grat_arp) { if (bond->curr_active_slave && test_bit(__LINK_STATE_LINKWATCH_PENDING, &bond->curr_active_slave->dev->state)) dprintk("Needs to send gratuitous arp but not yet\n"); else { dprintk("sending delayed gratuitous arp on on %s\n", bond->curr_active_slave->dev->name); bond_send_gratuitous_arp(bond); bond->send_grat_arp = 0; } } read_lock(&bond->curr_slave_lock); oldcurrent = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); bond_for_each_slave(bond, slave, i) { struct net_device *slave_dev = slave->dev; int link_state; u16 old_speed = slave->speed; u8 old_duplex = slave->duplex; link_state = bond_check_dev_link(bond, slave_dev, 0); switch (slave->link) { case BOND_LINK_UP: /* the link was up */ if (link_state == BMSR_LSTATUS) { if (!oldcurrent) { if (!have_locks) return 1; do_failover = 1; } break; } else { /* link going down */ slave->link = BOND_LINK_FAIL; slave->delay = bond->params.downdelay; if (slave->link_failure_count < UINT_MAX) { slave->link_failure_count++; } if (bond->params.downdelay) { printk(KERN_INFO DRV_NAME ": %s: link status down for %s " "interface %s, disabling it in " "%d ms.\n", bond->dev->name, IS_UP(slave_dev) ? ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) ? ((slave == oldcurrent) ? "active " : "backup ") : "") : "idle ", slave_dev->name, bond->params.downdelay * bond->params.miimon); } } /* no break ! fall through the BOND_LINK_FAIL test to ensure proper action to be taken */ case BOND_LINK_FAIL: /* the link has just gone down */ if (link_state != BMSR_LSTATUS) { /* link stays down */ if (slave->delay <= 0) { if (!have_locks) return 1; /* link down for too long time */ slave->link = BOND_LINK_DOWN; /* in active/backup mode, we must * completely disable this interface */ if ((bond->params.mode == BOND_MODE_ACTIVEBACKUP) || (bond->params.mode == BOND_MODE_8023AD)) { bond_set_slave_inactive_flags(slave); } printk(KERN_INFO DRV_NAME ": %s: link status definitely " "down for interface %s, " "disabling it\n", bond->dev->name, slave_dev->name); /* notify ad that the link status has changed */ if (bond->params.mode == BOND_MODE_8023AD) { bond_3ad_handle_link_change(slave, BOND_LINK_DOWN); } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { bond_alb_handle_link_change(bond, slave, BOND_LINK_DOWN); } if (slave == oldcurrent) { do_failover = 1; } } else { slave->delay--; } } else { /* link up again */ slave->link = BOND_LINK_UP; slave->jiffies = jiffies; printk(KERN_INFO DRV_NAME ": %s: link status up again after %d " "ms for interface %s.\n", bond->dev->name, (bond->params.downdelay - slave->delay) * bond->params.miimon, slave_dev->name); } break; case BOND_LINK_DOWN: /* the link was down */ if (link_state != BMSR_LSTATUS) { /* the link stays down, nothing more to do */ break; } else { /* link going up */ slave->link = BOND_LINK_BACK; slave->delay = bond->params.updelay; if (bond->params.updelay) { /* if updelay == 0, no need to advertise about a 0 ms delay */ printk(KERN_INFO DRV_NAME ": %s: link status up for " "interface %s, enabling it " "in %d ms.\n", bond->dev->name, slave_dev->name, bond->params.updelay * bond->params.miimon); } } /* no break ! fall through the BOND_LINK_BACK state in case there's something to do. */ case BOND_LINK_BACK: /* the link has just come back */ if (link_state != BMSR_LSTATUS) { /* link down again */ slave->link = BOND_LINK_DOWN; printk(KERN_INFO DRV_NAME ": %s: link status down again after %d " "ms for interface %s.\n", bond->dev->name, (bond->params.updelay - slave->delay) * bond->params.miimon, slave_dev->name); } else { /* link stays up */ if (slave->delay == 0) { if (!have_locks) return 1; /* now the link has been up for long time enough */ slave->link = BOND_LINK_UP; slave->jiffies = jiffies; if (bond->params.mode == BOND_MODE_8023AD) { /* prevent it from being the active one */ slave->state = BOND_STATE_BACKUP; } else if (bond->params.mode != BOND_MODE_ACTIVEBACKUP) { /* make it immediately active */ slave->state = BOND_STATE_ACTIVE; } else if (slave != bond->primary_slave) { /* prevent it from being the active one */ slave->state = BOND_STATE_BACKUP; } printk(KERN_INFO DRV_NAME ": %s: link status definitely " "up for interface %s.\n", bond->dev->name, slave_dev->name); /* notify ad that the link status has changed */ if (bond->params.mode == BOND_MODE_8023AD) { bond_3ad_handle_link_change(slave, BOND_LINK_UP); } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { bond_alb_handle_link_change(bond, slave, BOND_LINK_UP); } if ((!oldcurrent) || (slave == bond->primary_slave)) { do_failover = 1; } } else { slave->delay--; } } break; default: /* Should not happen */ printk(KERN_ERR DRV_NAME ": %s: Error: %s Illegal value (link=%d)\n", bond->dev->name, slave->dev->name, slave->link); goto out; } /* end of switch (slave->link) */ bond_update_speed_duplex(slave); if (bond->params.mode == BOND_MODE_8023AD) { if (old_speed != slave->speed) { bond_3ad_adapter_speed_changed(slave); } if (old_duplex != slave->duplex) { bond_3ad_adapter_duplex_changed(slave); } } } /* end of for */ if (do_failover) { ASSERT_RTNL(); write_lock_bh(&bond->curr_slave_lock); bond_select_active_slave(bond); write_unlock_bh(&bond->curr_slave_lock); } else bond_set_carrier(bond); out: return 0; } /* * bond_mii_monitor * * Really a wrapper that splits the mii monitor into two phases: an * inspection, then (if inspection indicates something needs to be * done) an acquisition of appropriate locks followed by another pass * to implement whatever link state changes are indicated. */ void bond_mii_monitor(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, mii_work.work); unsigned long delay; read_lock(&bond->lock); if (bond->kill_timers) { read_unlock(&bond->lock); return; } if (__bond_mii_monitor(bond, 0)) { read_unlock(&bond->lock); rtnl_lock(); read_lock(&bond->lock); __bond_mii_monitor(bond, 1); read_unlock(&bond->lock); rtnl_unlock(); /* might sleep, hold no other locks */ read_lock(&bond->lock); } delay = ((bond->params.miimon * HZ) / 1000) ? : 1; read_unlock(&bond->lock); queue_delayed_work(bond->wq, &bond->mii_work, delay); } static __be32 bond_glean_dev_ip(struct net_device *dev) { struct in_device *idev; struct in_ifaddr *ifa; __be32 addr = 0; if (!dev) return 0; rcu_read_lock(); idev = __in_dev_get_rcu(dev); if (!idev) goto out; ifa = idev->ifa_list; if (!ifa) goto out; addr = ifa->ifa_local; out: rcu_read_unlock(); return addr; } static int bond_has_ip(struct bonding *bond) { struct vlan_entry *vlan, *vlan_next; if (bond->master_ip) return 1; if (list_empty(&bond->vlan_list)) return 0; list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, vlan_list) { if (vlan->vlan_ip) return 1; } return 0; } static int bond_has_this_ip(struct bonding *bond, __be32 ip) { struct vlan_entry *vlan, *vlan_next; if (ip == bond->master_ip) return 1; if (list_empty(&bond->vlan_list)) return 0; list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, vlan_list) { if (ip == vlan->vlan_ip) return 1; } return 0; } /* * We go to the (large) trouble of VLAN tagging ARP frames because * switches in VLAN mode (especially if ports are configured as * "native" to a VLAN) might not pass non-tagged frames. */ static void bond_arp_send(struct net_device *slave_dev, int arp_op, __be32 dest_ip, __be32 src_ip, unsigned short vlan_id) { struct sk_buff *skb; dprintk("arp %d on slave %s: dst %x src %x vid %d\n", arp_op, slave_dev->name, dest_ip, src_ip, vlan_id); skb = arp_create(arp_op, ETH_P_ARP, dest_ip, slave_dev, src_ip, NULL, slave_dev->dev_addr, NULL); if (!skb) { printk(KERN_ERR DRV_NAME ": ARP packet allocation failed\n"); return; } if (vlan_id) { skb = vlan_put_tag(skb, vlan_id); if (!skb) { printk(KERN_ERR DRV_NAME ": failed to insert VLAN tag\n"); return; } } arp_xmit(skb); } static void bond_arp_send_all(struct bonding *bond, struct slave *slave) { int i, vlan_id, rv; __be32 *targets = bond->params.arp_targets; struct vlan_entry *vlan, *vlan_next; struct net_device *vlan_dev; struct flowi fl; struct rtable *rt; for (i = 0; (i < BOND_MAX_ARP_TARGETS); i++) { if (!targets[i]) continue; dprintk("basa: target %x\n", targets[i]); if (list_empty(&bond->vlan_list)) { dprintk("basa: empty vlan: arp_send\n"); bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], bond->master_ip, 0); continue; } /* * If VLANs are configured, we do a route lookup to * determine which VLAN interface would be used, so we * can tag the ARP with the proper VLAN tag. */ memset(&fl, 0, sizeof(fl)); fl.fl4_dst = targets[i]; fl.fl4_tos = RTO_ONLINK; rv = ip_route_output_key(&init_net, &rt, &fl); if (rv) { if (net_ratelimit()) { printk(KERN_WARNING DRV_NAME ": %s: no route to arp_ip_target %u.%u.%u.%u\n", bond->dev->name, NIPQUAD(fl.fl4_dst)); } continue; } /* * This target is not on a VLAN */ if (rt->u.dst.dev == bond->dev) { ip_rt_put(rt); dprintk("basa: rtdev == bond->dev: arp_send\n"); bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], bond->master_ip, 0); continue; } vlan_id = 0; list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, vlan_list) { vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); if (vlan_dev == rt->u.dst.dev) { vlan_id = vlan->vlan_id; dprintk("basa: vlan match on %s %d\n", vlan_dev->name, vlan_id); break; } } if (vlan_id) { ip_rt_put(rt); bond_arp_send(slave->dev, ARPOP_REQUEST, targets[i], vlan->vlan_ip, vlan_id); continue; } if (net_ratelimit()) { printk(KERN_WARNING DRV_NAME ": %s: no path to arp_ip_target %u.%u.%u.%u via rt.dev %s\n", bond->dev->name, NIPQUAD(fl.fl4_dst), rt->u.dst.dev ? rt->u.dst.dev->name : "NULL"); } ip_rt_put(rt); } } /* * Kick out a gratuitous ARP for an IP on the bonding master plus one * for each VLAN above us. */ static void bond_send_gratuitous_arp(struct bonding *bond) { struct slave *slave = bond->curr_active_slave; struct vlan_entry *vlan; struct net_device *vlan_dev; dprintk("bond_send_grat_arp: bond %s slave %s\n", bond->dev->name, slave ? slave->dev->name : "NULL"); if (!slave) return; if (bond->master_ip) { bond_arp_send(slave->dev, ARPOP_REPLY, bond->master_ip, bond->master_ip, 0); } list_for_each_entry(vlan, &bond->vlan_list, vlan_list) { vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); if (vlan->vlan_ip) { bond_arp_send(slave->dev, ARPOP_REPLY, vlan->vlan_ip, vlan->vlan_ip, vlan->vlan_id); } } } static void bond_validate_arp(struct bonding *bond, struct slave *slave, __be32 sip, __be32 tip) { int i; __be32 *targets = bond->params.arp_targets; targets = bond->params.arp_targets; for (i = 0; (i < BOND_MAX_ARP_TARGETS) && targets[i]; i++) { dprintk("bva: sip %u.%u.%u.%u tip %u.%u.%u.%u t[%d] " "%u.%u.%u.%u bhti(tip) %d\n", NIPQUAD(sip), NIPQUAD(tip), i, NIPQUAD(targets[i]), bond_has_this_ip(bond, tip)); if (sip == targets[i]) { if (bond_has_this_ip(bond, tip)) slave->last_arp_rx = jiffies; return; } } } static int bond_arp_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct arphdr *arp; struct slave *slave; struct bonding *bond; unsigned char *arp_ptr; __be32 sip, tip; if (dev_net(dev) != &init_net) goto out; if (!(dev->priv_flags & IFF_BONDING) || !(dev->flags & IFF_MASTER)) goto out; bond = dev->priv; read_lock(&bond->lock); dprintk("bond_arp_rcv: bond %s skb->dev %s orig_dev %s\n", bond->dev->name, skb->dev ? skb->dev->name : "NULL", orig_dev ? orig_dev->name : "NULL"); slave = bond_get_slave_by_dev(bond, orig_dev); if (!slave || !slave_do_arp_validate(bond, slave)) goto out_unlock; if (!pskb_may_pull(skb, arp_hdr_len(dev))) goto out_unlock; arp = arp_hdr(skb); if (arp->ar_hln != dev->addr_len || skb->pkt_type == PACKET_OTHERHOST || skb->pkt_type == PACKET_LOOPBACK || arp->ar_hrd != htons(ARPHRD_ETHER) || arp->ar_pro != htons(ETH_P_IP) || arp->ar_pln != 4) goto out_unlock; arp_ptr = (unsigned char *)(arp + 1); arp_ptr += dev->addr_len; memcpy(&sip, arp_ptr, 4); arp_ptr += 4 + dev->addr_len; memcpy(&tip, arp_ptr, 4); dprintk("bond_arp_rcv: %s %s/%d av %d sv %d sip %u.%u.%u.%u" " tip %u.%u.%u.%u\n", bond->dev->name, slave->dev->name, slave->state, bond->params.arp_validate, slave_do_arp_validate(bond, slave), NIPQUAD(sip), NIPQUAD(tip)); /* * Backup slaves won't see the ARP reply, but do come through * here for each ARP probe (so we swap the sip/tip to validate * the probe). In a "redundant switch, common router" type of * configuration, the ARP probe will (hopefully) travel from * the active, through one switch, the router, then the other * switch before reaching the backup. */ if (slave->state == BOND_STATE_ACTIVE) bond_validate_arp(bond, slave, sip, tip); else bond_validate_arp(bond, slave, tip, sip); out_unlock: read_unlock(&bond->lock); out: dev_kfree_skb(skb); return NET_RX_SUCCESS; } /* * this function is called regularly to monitor each slave's link * ensuring that traffic is being sent and received when arp monitoring * is used in load-balancing mode. if the adapter has been dormant, then an * arp is transmitted to generate traffic. see activebackup_arp_monitor for * arp monitoring in active backup mode. */ void bond_loadbalance_arp_mon(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, arp_work.work); struct slave *slave, *oldcurrent; int do_failover = 0; int delta_in_ticks; int i; read_lock(&bond->lock); delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; if (bond->kill_timers) { goto out; } if (bond->slave_cnt == 0) { goto re_arm; } read_lock(&bond->curr_slave_lock); oldcurrent = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); /* see if any of the previous devices are up now (i.e. they have * xmt and rcv traffic). the curr_active_slave does not come into * the picture unless it is null. also, slave->jiffies is not needed * here because we send an arp on each slave and give a slave as * long as it needs to get the tx/rx within the delta. * TODO: what about up/down delay in arp mode? it wasn't here before * so it can wait */ bond_for_each_slave(bond, slave, i) { if (slave->link != BOND_LINK_UP) { if (time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks) && time_before_eq(jiffies, slave->dev->last_rx + delta_in_ticks)) { slave->link = BOND_LINK_UP; slave->state = BOND_STATE_ACTIVE; /* primary_slave has no meaning in round-robin * mode. the window of a slave being up and * curr_active_slave being null after enslaving * is closed. */ if (!oldcurrent) { printk(KERN_INFO DRV_NAME ": %s: link status definitely " "up for interface %s, ", bond->dev->name, slave->dev->name); do_failover = 1; } else { printk(KERN_INFO DRV_NAME ": %s: interface %s is now up\n", bond->dev->name, slave->dev->name); } } } else { /* slave->link == BOND_LINK_UP */ /* not all switches will respond to an arp request * when the source ip is 0, so don't take the link down * if we don't know our ip yet */ if (time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || (time_after_eq(jiffies, slave->dev->last_rx + 2*delta_in_ticks) && bond_has_ip(bond))) { slave->link = BOND_LINK_DOWN; slave->state = BOND_STATE_BACKUP; if (slave->link_failure_count < UINT_MAX) { slave->link_failure_count++; } printk(KERN_INFO DRV_NAME ": %s: interface %s is now down.\n", bond->dev->name, slave->dev->name); if (slave == oldcurrent) { do_failover = 1; } } } /* note: if switch is in round-robin mode, all links * must tx arp to ensure all links rx an arp - otherwise * links may oscillate or not come up at all; if switch is * in something like xor mode, there is nothing we can * do - all replies will be rx'ed on same link causing slaves * to be unstable during low/no traffic periods */ if (IS_UP(slave->dev)) { bond_arp_send_all(bond, slave); } } if (do_failover) { write_lock_bh(&bond->curr_slave_lock); bond_select_active_slave(bond); write_unlock_bh(&bond->curr_slave_lock); } re_arm: if (bond->params.arp_interval) queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); out: read_unlock(&bond->lock); } /* * When using arp monitoring in active-backup mode, this function is * called to determine if any backup slaves have went down or a new * current slave needs to be found. * The backup slaves never generate traffic, they are considered up by merely * receiving traffic. If the current slave goes down, each backup slave will * be given the opportunity to tx/rx an arp before being taken down - this * prevents all slaves from being taken down due to the current slave not * sending any traffic for the backups to receive. The arps are not necessarily * necessary, any tx and rx traffic will keep the current slave up. While any * rx traffic will keep the backup slaves up, the current slave is responsible * for generating traffic to keep them up regardless of any other traffic they * may have received. * see loadbalance_arp_monitor for arp monitoring in load balancing mode */ void bond_activebackup_arp_mon(struct work_struct *work) { struct bonding *bond = container_of(work, struct bonding, arp_work.work); struct slave *slave; int delta_in_ticks; int i; read_lock(&bond->lock); delta_in_ticks = (bond->params.arp_interval * HZ) / 1000; if (bond->kill_timers) { goto out; } if (bond->slave_cnt == 0) { goto re_arm; } /* determine if any slave has come up or any backup slave has * gone down * TODO: what about up/down delay in arp mode? it wasn't here before * so it can wait */ bond_for_each_slave(bond, slave, i) { if (slave->link != BOND_LINK_UP) { if (time_before_eq(jiffies, slave_last_rx(bond, slave) + delta_in_ticks)) { slave->link = BOND_LINK_UP; write_lock_bh(&bond->curr_slave_lock); if ((!bond->curr_active_slave) && time_before_eq(jiffies, slave->dev->trans_start + delta_in_ticks)) { bond_change_active_slave(bond, slave); bond->current_arp_slave = NULL; } else if (bond->curr_active_slave != slave) { /* this slave has just come up but we * already have a current slave; this * can also happen if bond_enslave adds * a new slave that is up while we are * searching for a new slave */ bond_set_slave_inactive_flags(slave); bond->current_arp_slave = NULL; } bond_set_carrier(bond); if (slave == bond->curr_active_slave) { printk(KERN_INFO DRV_NAME ": %s: %s is up and now the " "active interface\n", bond->dev->name, slave->dev->name); netif_carrier_on(bond->dev); } else { printk(KERN_INFO DRV_NAME ": %s: backup interface %s is " "now up\n", bond->dev->name, slave->dev->name); } write_unlock_bh(&bond->curr_slave_lock); } } else { read_lock(&bond->curr_slave_lock); if ((slave != bond->curr_active_slave) && (!bond->current_arp_slave) && (time_after_eq(jiffies, slave_last_rx(bond, slave) + 3*delta_in_ticks) && bond_has_ip(bond))) { /* a backup slave has gone down; three times * the delta allows the current slave to be * taken out before the backup slave. * note: a non-null current_arp_slave indicates * the curr_active_slave went down and we are * searching for a new one; under this * condition we only take the curr_active_slave * down - this gives each slave a chance to * tx/rx traffic before being taken out */ read_unlock(&bond->curr_slave_lock); slave->link = BOND_LINK_DOWN; if (slave->link_failure_count < UINT_MAX) { slave->link_failure_count++; } bond_set_slave_inactive_flags(slave); printk(KERN_INFO DRV_NAME ": %s: backup interface %s is now down\n", bond->dev->name, slave->dev->name); } else { read_unlock(&bond->curr_slave_lock); } } } read_lock(&bond->curr_slave_lock); slave = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); if (slave) { /* if we have sent traffic in the past 2*arp_intervals but * haven't xmit and rx traffic in that time interval, select * a different slave. slave->jiffies is only updated when * a slave first becomes the curr_active_slave - not necessarily * after every arp; this ensures the slave has a full 2*delta * before being taken out. if a primary is being used, check * if it is up and needs to take over as the curr_active_slave */ if ((time_after_eq(jiffies, slave->dev->trans_start + 2*delta_in_ticks) || (time_after_eq(jiffies, slave_last_rx(bond, slave) + 2*delta_in_ticks) && bond_has_ip(bond))) && time_after_eq(jiffies, slave->jiffies + 2*delta_in_ticks)) { slave->link = BOND_LINK_DOWN; if (slave->link_failure_count < UINT_MAX) { slave->link_failure_count++; } printk(KERN_INFO DRV_NAME ": %s: link status down for active interface " "%s, disabling it\n", bond->dev->name, slave->dev->name); write_lock_bh(&bond->curr_slave_lock); bond_select_active_slave(bond); slave = bond->curr_active_slave; write_unlock_bh(&bond->curr_slave_lock); bond->current_arp_slave = slave; if (slave) { slave->jiffies = jiffies; } } else if ((bond->primary_slave) && (bond->primary_slave != slave) && (bond->primary_slave->link == BOND_LINK_UP)) { /* at this point, slave is the curr_active_slave */ printk(KERN_INFO DRV_NAME ": %s: changing from interface %s to primary " "interface %s\n", bond->dev->name, slave->dev->name, bond->primary_slave->dev->name); /* primary is up so switch to it */ write_lock_bh(&bond->curr_slave_lock); bond_change_active_slave(bond, bond->primary_slave); write_unlock_bh(&bond->curr_slave_lock); slave = bond->primary_slave; slave->jiffies = jiffies; } else { bond->current_arp_slave = NULL; } /* the current slave must tx an arp to ensure backup slaves * rx traffic */ if (slave && bond_has_ip(bond)) { bond_arp_send_all(bond, slave); } } /* if we don't have a curr_active_slave, search for the next available * backup slave from the current_arp_slave and make it the candidate * for becoming the curr_active_slave */ if (!slave) { if (!bond->current_arp_slave) { bond->current_arp_slave = bond->first_slave; } if (bond->current_arp_slave) { bond_set_slave_inactive_flags(bond->current_arp_slave); /* search for next candidate */ bond_for_each_slave_from(bond, slave, i, bond->current_arp_slave->next) { if (IS_UP(slave->dev)) { slave->link = BOND_LINK_BACK; bond_set_slave_active_flags(slave); bond_arp_send_all(bond, slave); slave->jiffies = jiffies; bond->current_arp_slave = slave; break; } /* if the link state is up at this point, we * mark it down - this can happen if we have * simultaneous link failures and * reselect_active_interface doesn't make this * one the current slave so it is still marked * up when it is actually down */ if (slave->link == BOND_LINK_UP) { slave->link = BOND_LINK_DOWN; if (slave->link_failure_count < UINT_MAX) { slave->link_failure_count++; } bond_set_slave_inactive_flags(slave); printk(KERN_INFO DRV_NAME ": %s: backup interface %s is " "now down.\n", bond->dev->name, slave->dev->name); } } } } re_arm: if (bond->params.arp_interval) { queue_delayed_work(bond->wq, &bond->arp_work, delta_in_ticks); } out: read_unlock(&bond->lock); } /*------------------------------ proc/seq_file-------------------------------*/ #ifdef CONFIG_PROC_FS static void *bond_info_seq_start(struct seq_file *seq, loff_t *pos) { struct bonding *bond = seq->private; loff_t off = 0; struct slave *slave; int i; /* make sure the bond won't be taken away */ read_lock(&dev_base_lock); read_lock(&bond->lock); if (*pos == 0) { return SEQ_START_TOKEN; } bond_for_each_slave(bond, slave, i) { if (++off == *pos) { return slave; } } return NULL; } static void *bond_info_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct bonding *bond = seq->private; struct slave *slave = v; ++*pos; if (v == SEQ_START_TOKEN) { return bond->first_slave; } slave = slave->next; return (slave == bond->first_slave) ? NULL : slave; } static void bond_info_seq_stop(struct seq_file *seq, void *v) { struct bonding *bond = seq->private; read_unlock(&bond->lock); read_unlock(&dev_base_lock); } static void bond_info_show_master(struct seq_file *seq) { struct bonding *bond = seq->private; struct slave *curr; int i; u32 target; read_lock(&bond->curr_slave_lock); curr = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); seq_printf(seq, "Bonding Mode: %s", bond_mode_name(bond->params.mode)); if (bond->params.mode == BOND_MODE_ACTIVEBACKUP && bond->params.fail_over_mac) seq_printf(seq, " (fail_over_mac)"); seq_printf(seq, "\n"); if (bond->params.mode == BOND_MODE_XOR || bond->params.mode == BOND_MODE_8023AD) { seq_printf(seq, "Transmit Hash Policy: %s (%d)\n", xmit_hashtype_tbl[bond->params.xmit_policy].modename, bond->params.xmit_policy); } if (USES_PRIMARY(bond->params.mode)) { seq_printf(seq, "Primary Slave: %s\n", (bond->primary_slave) ? bond->primary_slave->dev->name : "None"); seq_printf(seq, "Currently Active Slave: %s\n", (curr) ? curr->dev->name : "None"); } seq_printf(seq, "MII Status: %s\n", netif_carrier_ok(bond->dev) ? "up" : "down"); seq_printf(seq, "MII Polling Interval (ms): %d\n", bond->params.miimon); seq_printf(seq, "Up Delay (ms): %d\n", bond->params.updelay * bond->params.miimon); seq_printf(seq, "Down Delay (ms): %d\n", bond->params.downdelay * bond->params.miimon); /* ARP information */ if(bond->params.arp_interval > 0) { int printed=0; seq_printf(seq, "ARP Polling Interval (ms): %d\n", bond->params.arp_interval); seq_printf(seq, "ARP IP target/s (n.n.n.n form):"); for(i = 0; (i < BOND_MAX_ARP_TARGETS) ;i++) { if (!bond->params.arp_targets[i]) continue; if (printed) seq_printf(seq, ","); target = ntohl(bond->params.arp_targets[i]); seq_printf(seq, " %d.%d.%d.%d", HIPQUAD(target)); printed = 1; } seq_printf(seq, "\n"); } if (bond->params.mode == BOND_MODE_8023AD) { struct ad_info ad_info; DECLARE_MAC_BUF(mac); seq_puts(seq, "\n802.3ad info\n"); seq_printf(seq, "LACP rate: %s\n", (bond->params.lacp_fast) ? "fast" : "slow"); if (bond_3ad_get_active_agg_info(bond, &ad_info)) { seq_printf(seq, "bond %s has no active aggregator\n", bond->dev->name); } else { seq_printf(seq, "Active Aggregator Info:\n"); seq_printf(seq, "\tAggregator ID: %d\n", ad_info.aggregator_id); seq_printf(seq, "\tNumber of ports: %d\n", ad_info.ports); seq_printf(seq, "\tActor Key: %d\n", ad_info.actor_key); seq_printf(seq, "\tPartner Key: %d\n", ad_info.partner_key); seq_printf(seq, "\tPartner Mac Address: %s\n", print_mac(mac, ad_info.partner_system)); } } } static void bond_info_show_slave(struct seq_file *seq, const struct slave *slave) { struct bonding *bond = seq->private; DECLARE_MAC_BUF(mac); seq_printf(seq, "\nSlave Interface: %s\n", slave->dev->name); seq_printf(seq, "MII Status: %s\n", (slave->link == BOND_LINK_UP) ? "up" : "down"); seq_printf(seq, "Link Failure Count: %u\n", slave->link_failure_count); seq_printf(seq, "Permanent HW addr: %s\n", print_mac(mac, slave->perm_hwaddr)); if (bond->params.mode == BOND_MODE_8023AD) { const struct aggregator *agg = SLAVE_AD_INFO(slave).port.aggregator; if (agg) { seq_printf(seq, "Aggregator ID: %d\n", agg->aggregator_identifier); } else { seq_puts(seq, "Aggregator ID: N/A\n"); } } } static int bond_info_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_printf(seq, "%s\n", version); bond_info_show_master(seq); } else { bond_info_show_slave(seq, v); } return 0; } static struct seq_operations bond_info_seq_ops = { .start = bond_info_seq_start, .next = bond_info_seq_next, .stop = bond_info_seq_stop, .show = bond_info_seq_show, }; static int bond_info_open(struct inode *inode, struct file *file) { struct seq_file *seq; struct proc_dir_entry *proc; int res; res = seq_open(file, &bond_info_seq_ops); if (!res) { /* recover the pointer buried in proc_dir_entry data */ seq = file->private_data; proc = PDE(inode); seq->private = proc->data; } return res; } static const struct file_operations bond_info_fops = { .owner = THIS_MODULE, .open = bond_info_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, }; static int bond_create_proc_entry(struct bonding *bond) { struct net_device *bond_dev = bond->dev; if (bond_proc_dir) { bond->proc_entry = create_proc_entry(bond_dev->name, S_IRUGO, bond_proc_dir); if (bond->proc_entry == NULL) { printk(KERN_WARNING DRV_NAME ": Warning: Cannot create /proc/net/%s/%s\n", DRV_NAME, bond_dev->name); } else { bond->proc_entry->data = bond; bond->proc_entry->proc_fops = &bond_info_fops; bond->proc_entry->owner = THIS_MODULE; memcpy(bond->proc_file_name, bond_dev->name, IFNAMSIZ); } } return 0; } static void bond_remove_proc_entry(struct bonding *bond) { if (bond_proc_dir && bond->proc_entry) { remove_proc_entry(bond->proc_file_name, bond_proc_dir); memset(bond->proc_file_name, 0, IFNAMSIZ); bond->proc_entry = NULL; } } /* Create the bonding directory under /proc/net, if doesn't exist yet. * Caller must hold rtnl_lock. */ static void bond_create_proc_dir(void) { int len = strlen(DRV_NAME); for (bond_proc_dir = init_net.proc_net->subdir; bond_proc_dir; bond_proc_dir = bond_proc_dir->next) { if ((bond_proc_dir->namelen == len) && !memcmp(bond_proc_dir->name, DRV_NAME, len)) { break; } } if (!bond_proc_dir) { bond_proc_dir = proc_mkdir(DRV_NAME, init_net.proc_net); if (bond_proc_dir) { bond_proc_dir->owner = THIS_MODULE; } else { printk(KERN_WARNING DRV_NAME ": Warning: cannot create /proc/net/%s\n", DRV_NAME); } } } /* Destroy the bonding directory under /proc/net, if empty. * Caller must hold rtnl_lock. */ static void bond_destroy_proc_dir(void) { struct proc_dir_entry *de; if (!bond_proc_dir) { return; } /* verify that the /proc dir is empty */ for (de = bond_proc_dir->subdir; de; de = de->next) { /* ignore . and .. */ if (*(de->name) != '.') { break; } } if (de) { if (bond_proc_dir->owner == THIS_MODULE) { bond_proc_dir->owner = NULL; } } else { remove_proc_entry(DRV_NAME, init_net.proc_net); bond_proc_dir = NULL; } } #endif /* CONFIG_PROC_FS */ /*-------------------------- netdev event handling --------------------------*/ /* * Change device name */ static int bond_event_changename(struct bonding *bond) { #ifdef CONFIG_PROC_FS bond_remove_proc_entry(bond); bond_create_proc_entry(bond); #endif down_write(&(bonding_rwsem)); bond_destroy_sysfs_entry(bond); bond_create_sysfs_entry(bond); up_write(&(bonding_rwsem)); return NOTIFY_DONE; } static int bond_master_netdev_event(unsigned long event, struct net_device *bond_dev) { struct bonding *event_bond = bond_dev->priv; switch (event) { case NETDEV_CHANGENAME: return bond_event_changename(event_bond); case NETDEV_UNREGISTER: bond_release_all(event_bond->dev); break; default: break; } return NOTIFY_DONE; } static int bond_slave_netdev_event(unsigned long event, struct net_device *slave_dev) { struct net_device *bond_dev = slave_dev->master; struct bonding *bond = bond_dev->priv; switch (event) { case NETDEV_UNREGISTER: if (bond_dev) { if (bond->setup_by_slave) bond_release_and_destroy(bond_dev, slave_dev); else bond_release(bond_dev, slave_dev); } break; case NETDEV_CHANGE: /* * TODO: is this what we get if somebody * sets up a hierarchical bond, then rmmod's * one of the slave bonding devices? */ break; case NETDEV_DOWN: /* * ... Or is it this? */ break; case NETDEV_CHANGEMTU: /* * TODO: Should slaves be allowed to * independently alter their MTU? For * an active-backup bond, slaves need * not be the same type of device, so * MTUs may vary. For other modes, * slaves arguably should have the * same MTUs. To do this, we'd need to * take over the slave's change_mtu * function for the duration of their * servitude. */ break; case NETDEV_CHANGENAME: /* * TODO: handle changing the primary's name */ break; case NETDEV_FEAT_CHANGE: bond_compute_features(bond); break; default: break; } return NOTIFY_DONE; } /* * bond_netdev_event: handle netdev notifier chain events. * * This function receives events for the netdev chain. The caller (an * ioctl handler calling blocking_notifier_call_chain) holds the necessary * locks for us to safely manipulate the slave devices (RTNL lock, * dev_probe_lock). */ static int bond_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *event_dev = (struct net_device *)ptr; if (dev_net(event_dev) != &init_net) return NOTIFY_DONE; dprintk("event_dev: %s, event: %lx\n", (event_dev ? event_dev->name : "None"), event); if (!(event_dev->priv_flags & IFF_BONDING)) return NOTIFY_DONE; if (event_dev->flags & IFF_MASTER) { dprintk("IFF_MASTER\n"); return bond_master_netdev_event(event, event_dev); } if (event_dev->flags & IFF_SLAVE) { dprintk("IFF_SLAVE\n"); return bond_slave_netdev_event(event, event_dev); } return NOTIFY_DONE; } /* * bond_inetaddr_event: handle inetaddr notifier chain events. * * We keep track of device IPs primarily to use as source addresses in * ARP monitor probes (rather than spewing out broadcasts all the time). * * We track one IP for the main device (if it has one), plus one per VLAN. */ static int bond_inetaddr_event(struct notifier_block *this, unsigned long event, void *ptr) { struct in_ifaddr *ifa = ptr; struct net_device *vlan_dev, *event_dev = ifa->ifa_dev->dev; struct bonding *bond, *bond_next; struct vlan_entry *vlan, *vlan_next; if (dev_net(ifa->ifa_dev->dev) != &init_net) return NOTIFY_DONE; list_for_each_entry_safe(bond, bond_next, &bond_dev_list, bond_list) { if (bond->dev == event_dev) { switch (event) { case NETDEV_UP: bond->master_ip = ifa->ifa_local; return NOTIFY_OK; case NETDEV_DOWN: bond->master_ip = bond_glean_dev_ip(bond->dev); return NOTIFY_OK; default: return NOTIFY_DONE; } } if (list_empty(&bond->vlan_list)) continue; list_for_each_entry_safe(vlan, vlan_next, &bond->vlan_list, vlan_list) { vlan_dev = vlan_group_get_device(bond->vlgrp, vlan->vlan_id); if (vlan_dev == event_dev) { switch (event) { case NETDEV_UP: vlan->vlan_ip = ifa->ifa_local; return NOTIFY_OK; case NETDEV_DOWN: vlan->vlan_ip = bond_glean_dev_ip(vlan_dev); return NOTIFY_OK; default: return NOTIFY_DONE; } } } } return NOTIFY_DONE; } static struct notifier_block bond_netdev_notifier = { .notifier_call = bond_netdev_event, }; static struct notifier_block bond_inetaddr_notifier = { .notifier_call = bond_inetaddr_event, }; /*-------------------------- Packet type handling ---------------------------*/ /* register to receive lacpdus on a bond */ static void bond_register_lacpdu(struct bonding *bond) { struct packet_type *pk_type = &(BOND_AD_INFO(bond).ad_pkt_type); /* initialize packet type */ pk_type->type = PKT_TYPE_LACPDU; pk_type->dev = bond->dev; pk_type->func = bond_3ad_lacpdu_recv; dev_add_pack(pk_type); } /* unregister to receive lacpdus on a bond */ static void bond_unregister_lacpdu(struct bonding *bond) { dev_remove_pack(&(BOND_AD_INFO(bond).ad_pkt_type)); } void bond_register_arp(struct bonding *bond) { struct packet_type *pt = &bond->arp_mon_pt; if (pt->type) return; pt->type = htons(ETH_P_ARP); pt->dev = bond->dev; pt->func = bond_arp_rcv; dev_add_pack(pt); } void bond_unregister_arp(struct bonding *bond) { struct packet_type *pt = &bond->arp_mon_pt; dev_remove_pack(pt); pt->type = 0; } /*---------------------------- Hashing Policies -----------------------------*/ /* * Hash for the output device based upon layer 2 and layer 3 data. If * the packet is not IP mimic bond_xmit_hash_policy_l2() */ static int bond_xmit_hash_policy_l23(struct sk_buff *skb, struct net_device *bond_dev, int count) { struct ethhdr *data = (struct ethhdr *)skb->data; struct iphdr *iph = ip_hdr(skb); if (skb->protocol == __constant_htons(ETH_P_IP)) { return ((ntohl(iph->saddr ^ iph->daddr) & 0xffff) ^ (data->h_dest[5] ^ bond_dev->dev_addr[5])) % count; } return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; } /* * Hash for the output device based upon layer 3 and layer 4 data. If * the packet is a frag or not TCP or UDP, just use layer 3 data. If it is * altogether not IP, mimic bond_xmit_hash_policy_l2() */ static int bond_xmit_hash_policy_l34(struct sk_buff *skb, struct net_device *bond_dev, int count) { struct ethhdr *data = (struct ethhdr *)skb->data; struct iphdr *iph = ip_hdr(skb); __be16 *layer4hdr = (__be16 *)((u32 *)iph + iph->ihl); int layer4_xor = 0; if (skb->protocol == __constant_htons(ETH_P_IP)) { if (!(iph->frag_off & __constant_htons(IP_MF|IP_OFFSET)) && (iph->protocol == IPPROTO_TCP || iph->protocol == IPPROTO_UDP)) { layer4_xor = ntohs((*layer4hdr ^ *(layer4hdr + 1))); } return (layer4_xor ^ ((ntohl(iph->saddr ^ iph->daddr)) & 0xffff)) % count; } return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; } /* * Hash for the output device based upon layer 2 data */ static int bond_xmit_hash_policy_l2(struct sk_buff *skb, struct net_device *bond_dev, int count) { struct ethhdr *data = (struct ethhdr *)skb->data; return (data->h_dest[5] ^ bond_dev->dev_addr[5]) % count; } /*-------------------------- Device entry points ----------------------------*/ static int bond_open(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; bond->kill_timers = 0; if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { /* bond_alb_initialize must be called before the timer * is started. */ if (bond_alb_initialize(bond, (bond->params.mode == BOND_MODE_ALB))) { /* something went wrong - fail the open operation */ return -1; } INIT_DELAYED_WORK(&bond->alb_work, bond_alb_monitor); queue_delayed_work(bond->wq, &bond->alb_work, 0); } if (bond->params.miimon) { /* link check interval, in milliseconds. */ INIT_DELAYED_WORK(&bond->mii_work, bond_mii_monitor); queue_delayed_work(bond->wq, &bond->mii_work, 0); } if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ if (bond->params.mode == BOND_MODE_ACTIVEBACKUP) INIT_DELAYED_WORK(&bond->arp_work, bond_activebackup_arp_mon); else INIT_DELAYED_WORK(&bond->arp_work, bond_loadbalance_arp_mon); queue_delayed_work(bond->wq, &bond->arp_work, 0); if (bond->params.arp_validate) bond_register_arp(bond); } if (bond->params.mode == BOND_MODE_8023AD) { INIT_DELAYED_WORK(&bond->ad_work, bond_3ad_state_machine_handler); queue_delayed_work(bond->wq, &bond->ad_work, 0); /* register to receive LACPDUs */ bond_register_lacpdu(bond); } return 0; } static int bond_close(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; if (bond->params.mode == BOND_MODE_8023AD) { /* Unregister the receive of LACPDUs */ bond_unregister_lacpdu(bond); } if (bond->params.arp_validate) bond_unregister_arp(bond); write_lock_bh(&bond->lock); /* signal timers not to re-arm */ bond->kill_timers = 1; write_unlock_bh(&bond->lock); if (bond->params.miimon) { /* link check interval, in milliseconds. */ cancel_delayed_work(&bond->mii_work); } if (bond->params.arp_interval) { /* arp interval, in milliseconds. */ cancel_delayed_work(&bond->arp_work); } switch (bond->params.mode) { case BOND_MODE_8023AD: cancel_delayed_work(&bond->ad_work); break; case BOND_MODE_TLB: case BOND_MODE_ALB: cancel_delayed_work(&bond->alb_work); break; default: break; } if ((bond->params.mode == BOND_MODE_TLB) || (bond->params.mode == BOND_MODE_ALB)) { /* Must be called only after all * slaves have been released */ bond_alb_deinitialize(bond); } return 0; } static struct net_device_stats *bond_get_stats(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct net_device_stats *stats = &(bond->stats), *sstats; struct net_device_stats local_stats; struct slave *slave; int i; memset(&local_stats, 0, sizeof(struct net_device_stats)); read_lock_bh(&bond->lock); bond_for_each_slave(bond, slave, i) { sstats = slave->dev->get_stats(slave->dev); local_stats.rx_packets += sstats->rx_packets; local_stats.rx_bytes += sstats->rx_bytes; local_stats.rx_errors += sstats->rx_errors; local_stats.rx_dropped += sstats->rx_dropped; local_stats.tx_packets += sstats->tx_packets; local_stats.tx_bytes += sstats->tx_bytes; local_stats.tx_errors += sstats->tx_errors; local_stats.tx_dropped += sstats->tx_dropped; local_stats.multicast += sstats->multicast; local_stats.collisions += sstats->collisions; local_stats.rx_length_errors += sstats->rx_length_errors; local_stats.rx_over_errors += sstats->rx_over_errors; local_stats.rx_crc_errors += sstats->rx_crc_errors; local_stats.rx_frame_errors += sstats->rx_frame_errors; local_stats.rx_fifo_errors += sstats->rx_fifo_errors; local_stats.rx_missed_errors += sstats->rx_missed_errors; local_stats.tx_aborted_errors += sstats->tx_aborted_errors; local_stats.tx_carrier_errors += sstats->tx_carrier_errors; local_stats.tx_fifo_errors += sstats->tx_fifo_errors; local_stats.tx_heartbeat_errors += sstats->tx_heartbeat_errors; local_stats.tx_window_errors += sstats->tx_window_errors; } memcpy(stats, &local_stats, sizeof(struct net_device_stats)); read_unlock_bh(&bond->lock); return stats; } static int bond_do_ioctl(struct net_device *bond_dev, struct ifreq *ifr, int cmd) { struct net_device *slave_dev = NULL; struct ifbond k_binfo; struct ifbond __user *u_binfo = NULL; struct ifslave k_sinfo; struct ifslave __user *u_sinfo = NULL; struct mii_ioctl_data *mii = NULL; int res = 0; dprintk("bond_ioctl: master=%s, cmd=%d\n", bond_dev->name, cmd); switch (cmd) { case SIOCGMIIPHY: mii = if_mii(ifr); if (!mii) { return -EINVAL; } mii->phy_id = 0; /* Fall Through */ case SIOCGMIIREG: /* * We do this again just in case we were called by SIOCGMIIREG * instead of SIOCGMIIPHY. */ mii = if_mii(ifr); if (!mii) { return -EINVAL; } if (mii->reg_num == 1) { struct bonding *bond = bond_dev->priv; mii->val_out = 0; read_lock(&bond->lock); read_lock(&bond->curr_slave_lock); if (netif_carrier_ok(bond->dev)) { mii->val_out = BMSR_LSTATUS; } read_unlock(&bond->curr_slave_lock); read_unlock(&bond->lock); } return 0; case BOND_INFO_QUERY_OLD: case SIOCBONDINFOQUERY: u_binfo = (struct ifbond __user *)ifr->ifr_data; if (copy_from_user(&k_binfo, u_binfo, sizeof(ifbond))) { return -EFAULT; } res = bond_info_query(bond_dev, &k_binfo); if (res == 0) { if (copy_to_user(u_binfo, &k_binfo, sizeof(ifbond))) { return -EFAULT; } } return res; case BOND_SLAVE_INFO_QUERY_OLD: case SIOCBONDSLAVEINFOQUERY: u_sinfo = (struct ifslave __user *)ifr->ifr_data; if (copy_from_user(&k_sinfo, u_sinfo, sizeof(ifslave))) { return -EFAULT; } res = bond_slave_info_query(bond_dev, &k_sinfo); if (res == 0) { if (copy_to_user(u_sinfo, &k_sinfo, sizeof(ifslave))) { return -EFAULT; } } return res; default: /* Go on */ break; } if (!capable(CAP_NET_ADMIN)) { return -EPERM; } down_write(&(bonding_rwsem)); slave_dev = dev_get_by_name(&init_net, ifr->ifr_slave); dprintk("slave_dev=%p: \n", slave_dev); if (!slave_dev) { res = -ENODEV; } else { dprintk("slave_dev->name=%s: \n", slave_dev->name); switch (cmd) { case BOND_ENSLAVE_OLD: case SIOCBONDENSLAVE: res = bond_enslave(bond_dev, slave_dev); break; case BOND_RELEASE_OLD: case SIOCBONDRELEASE: res = bond_release(bond_dev, slave_dev); break; case BOND_SETHWADDR_OLD: case SIOCBONDSETHWADDR: res = bond_sethwaddr(bond_dev, slave_dev); break; case BOND_CHANGE_ACTIVE_OLD: case SIOCBONDCHANGEACTIVE: res = bond_ioctl_change_active(bond_dev, slave_dev); break; default: res = -EOPNOTSUPP; } dev_put(slave_dev); } up_write(&(bonding_rwsem)); return res; } static void bond_set_multicast_list(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct dev_mc_list *dmi; /* * Do promisc before checking multicast_mode */ if ((bond_dev->flags & IFF_PROMISC) && !(bond->flags & IFF_PROMISC)) { bond_set_promiscuity(bond, 1); } if (!(bond_dev->flags & IFF_PROMISC) && (bond->flags & IFF_PROMISC)) { bond_set_promiscuity(bond, -1); } /* set allmulti flag to slaves */ if ((bond_dev->flags & IFF_ALLMULTI) && !(bond->flags & IFF_ALLMULTI)) { bond_set_allmulti(bond, 1); } if (!(bond_dev->flags & IFF_ALLMULTI) && (bond->flags & IFF_ALLMULTI)) { bond_set_allmulti(bond, -1); } read_lock(&bond->lock); bond->flags = bond_dev->flags; /* looking for addresses to add to slaves' mc list */ for (dmi = bond_dev->mc_list; dmi; dmi = dmi->next) { if (!bond_mc_list_find_dmi(dmi, bond->mc_list)) { bond_mc_add(bond, dmi->dmi_addr, dmi->dmi_addrlen); } } /* looking for addresses to delete from slaves' list */ for (dmi = bond->mc_list; dmi; dmi = dmi->next) { if (!bond_mc_list_find_dmi(dmi, bond_dev->mc_list)) { bond_mc_delete(bond, dmi->dmi_addr, dmi->dmi_addrlen); } } /* save master's multicast list */ bond_mc_list_destroy(bond); bond_mc_list_copy(bond_dev->mc_list, bond, GFP_ATOMIC); read_unlock(&bond->lock); } /* * Change the MTU of all of a master's slaves to match the master */ static int bond_change_mtu(struct net_device *bond_dev, int new_mtu) { struct bonding *bond = bond_dev->priv; struct slave *slave, *stop_at; int res = 0; int i; dprintk("bond=%p, name=%s, new_mtu=%d\n", bond, (bond_dev ? bond_dev->name : "None"), new_mtu); /* Can't hold bond->lock with bh disabled here since * some base drivers panic. On the other hand we can't * hold bond->lock without bh disabled because we'll * deadlock. The only solution is to rely on the fact * that we're under rtnl_lock here, and the slaves * list won't change. This doesn't solve the problem * of setting the slave's MTU while it is * transmitting, but the assumption is that the base * driver can handle that. * * TODO: figure out a way to safely iterate the slaves * list, but without holding a lock around the actual * call to the base driver. */ bond_for_each_slave(bond, slave, i) { dprintk("s %p s->p %p c_m %p\n", slave, slave->prev, slave->dev->change_mtu); res = dev_set_mtu(slave->dev, new_mtu); if (res) { /* If we failed to set the slave's mtu to the new value * we must abort the operation even in ACTIVE_BACKUP * mode, because if we allow the backup slaves to have * different mtu values than the active slave we'll * need to change their mtu when doing a failover. That * means changing their mtu from timer context, which * is probably not a good idea. */ dprintk("err %d %s\n", res, slave->dev->name); goto unwind; } } bond_dev->mtu = new_mtu; return 0; unwind: /* unwind from head to the slave that failed */ stop_at = slave; bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { int tmp_res; tmp_res = dev_set_mtu(slave->dev, bond_dev->mtu); if (tmp_res) { dprintk("unwind err %d dev %s\n", tmp_res, slave->dev->name); } } return res; } /* * Change HW address * * Note that many devices must be down to change the HW address, and * downing the master releases all slaves. We can make bonds full of * bonding devices to test this, however. */ static int bond_set_mac_address(struct net_device *bond_dev, void *addr) { struct bonding *bond = bond_dev->priv; struct sockaddr *sa = addr, tmp_sa; struct slave *slave, *stop_at; int res = 0; int i; dprintk("bond=%p, name=%s\n", bond, (bond_dev ? bond_dev->name : "None")); /* * If fail_over_mac is enabled, do nothing and return success. * Returning an error causes ifenslave to fail. */ if (bond->params.fail_over_mac) return 0; if (!is_valid_ether_addr(sa->sa_data)) { return -EADDRNOTAVAIL; } /* Can't hold bond->lock with bh disabled here since * some base drivers panic. On the other hand we can't * hold bond->lock without bh disabled because we'll * deadlock. The only solution is to rely on the fact * that we're under rtnl_lock here, and the slaves * list won't change. This doesn't solve the problem * of setting the slave's hw address while it is * transmitting, but the assumption is that the base * driver can handle that. * * TODO: figure out a way to safely iterate the slaves * list, but without holding a lock around the actual * call to the base driver. */ bond_for_each_slave(bond, slave, i) { dprintk("slave %p %s\n", slave, slave->dev->name); if (slave->dev->set_mac_address == NULL) { res = -EOPNOTSUPP; dprintk("EOPNOTSUPP %s\n", slave->dev->name); goto unwind; } res = dev_set_mac_address(slave->dev, addr); if (res) { /* TODO: consider downing the slave * and retry ? * User should expect communications * breakage anyway until ARP finish * updating, so... */ dprintk("err %d %s\n", res, slave->dev->name); goto unwind; } } /* success */ memcpy(bond_dev->dev_addr, sa->sa_data, bond_dev->addr_len); return 0; unwind: memcpy(tmp_sa.sa_data, bond_dev->dev_addr, bond_dev->addr_len); tmp_sa.sa_family = bond_dev->type; /* unwind from head to the slave that failed */ stop_at = slave; bond_for_each_slave_from_to(bond, slave, i, bond->first_slave, stop_at) { int tmp_res; tmp_res = dev_set_mac_address(slave->dev, &tmp_sa); if (tmp_res) { dprintk("unwind err %d dev %s\n", tmp_res, slave->dev->name); } } return res; } static int bond_xmit_roundrobin(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct slave *slave, *start_at; int i, slave_no, res = 1; read_lock(&bond->lock); if (!BOND_IS_OK(bond)) { goto out; } /* * Concurrent TX may collide on rr_tx_counter; we accept that * as being rare enough not to justify using an atomic op here */ slave_no = bond->rr_tx_counter++ % bond->slave_cnt; bond_for_each_slave(bond, slave, i) { slave_no--; if (slave_no < 0) { break; } } start_at = slave; bond_for_each_slave_from(bond, slave, i, start_at) { if (IS_UP(slave->dev) && (slave->link == BOND_LINK_UP) && (slave->state == BOND_STATE_ACTIVE)) { res = bond_dev_queue_xmit(bond, skb, slave->dev); break; } } out: if (res) { /* no suitable interface, frame not sent */ dev_kfree_skb(skb); } read_unlock(&bond->lock); return 0; } /* * in active-backup mode, we know that bond->curr_active_slave is always valid if * the bond has a usable interface. */ static int bond_xmit_activebackup(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; int res = 1; read_lock(&bond->lock); read_lock(&bond->curr_slave_lock); if (!BOND_IS_OK(bond)) { goto out; } if (!bond->curr_active_slave) goto out; res = bond_dev_queue_xmit(bond, skb, bond->curr_active_slave->dev); out: if (res) { /* no suitable interface, frame not sent */ dev_kfree_skb(skb); } read_unlock(&bond->curr_slave_lock); read_unlock(&bond->lock); return 0; } /* * In bond_xmit_xor() , we determine the output device by using a pre- * determined xmit_hash_policy(), If the selected device is not enabled, * find the next active slave. */ static int bond_xmit_xor(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct slave *slave, *start_at; int slave_no; int i; int res = 1; read_lock(&bond->lock); if (!BOND_IS_OK(bond)) { goto out; } slave_no = bond->xmit_hash_policy(skb, bond_dev, bond->slave_cnt); bond_for_each_slave(bond, slave, i) { slave_no--; if (slave_no < 0) { break; } } start_at = slave; bond_for_each_slave_from(bond, slave, i, start_at) { if (IS_UP(slave->dev) && (slave->link == BOND_LINK_UP) && (slave->state == BOND_STATE_ACTIVE)) { res = bond_dev_queue_xmit(bond, skb, slave->dev); break; } } out: if (res) { /* no suitable interface, frame not sent */ dev_kfree_skb(skb); } read_unlock(&bond->lock); return 0; } /* * in broadcast mode, we send everything to all usable interfaces. */ static int bond_xmit_broadcast(struct sk_buff *skb, struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; struct slave *slave, *start_at; struct net_device *tx_dev = NULL; int i; int res = 1; read_lock(&bond->lock); if (!BOND_IS_OK(bond)) { goto out; } read_lock(&bond->curr_slave_lock); start_at = bond->curr_active_slave; read_unlock(&bond->curr_slave_lock); if (!start_at) { goto out; } bond_for_each_slave_from(bond, slave, i, start_at) { if (IS_UP(slave->dev) && (slave->link == BOND_LINK_UP) && (slave->state == BOND_STATE_ACTIVE)) { if (tx_dev) { struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); if (!skb2) { printk(KERN_ERR DRV_NAME ": %s: Error: bond_xmit_broadcast(): " "skb_clone() failed\n", bond_dev->name); continue; } res = bond_dev_queue_xmit(bond, skb2, tx_dev); if (res) { dev_kfree_skb(skb2); continue; } } tx_dev = slave->dev; } } if (tx_dev) { res = bond_dev_queue_xmit(bond, skb, tx_dev); } out: if (res) { /* no suitable interface, frame not sent */ dev_kfree_skb(skb); } /* frame sent to all suitable interfaces */ read_unlock(&bond->lock); return 0; } /*------------------------- Device initialization ---------------------------*/ static void bond_set_xmit_hash_policy(struct bonding *bond) { switch (bond->params.xmit_policy) { case BOND_XMIT_POLICY_LAYER23: bond->xmit_hash_policy = bond_xmit_hash_policy_l23; break; case BOND_XMIT_POLICY_LAYER34: bond->xmit_hash_policy = bond_xmit_hash_policy_l34; break; case BOND_XMIT_POLICY_LAYER2: default: bond->xmit_hash_policy = bond_xmit_hash_policy_l2; break; } } /* * set bond mode specific net device operations */ void bond_set_mode_ops(struct bonding *bond, int mode) { struct net_device *bond_dev = bond->dev; switch (mode) { case BOND_MODE_ROUNDROBIN: bond_dev->hard_start_xmit = bond_xmit_roundrobin; break; case BOND_MODE_ACTIVEBACKUP: bond_dev->hard_start_xmit = bond_xmit_activebackup; break; case BOND_MODE_XOR: bond_dev->hard_start_xmit = bond_xmit_xor; bond_set_xmit_hash_policy(bond); break; case BOND_MODE_BROADCAST: bond_dev->hard_start_xmit = bond_xmit_broadcast; break; case BOND_MODE_8023AD: bond_set_master_3ad_flags(bond); bond_dev->hard_start_xmit = bond_3ad_xmit_xor; bond_set_xmit_hash_policy(bond); break; case BOND_MODE_ALB: bond_set_master_alb_flags(bond); /* FALLTHRU */ case BOND_MODE_TLB: bond_dev->hard_start_xmit = bond_alb_xmit; bond_dev->set_mac_address = bond_alb_set_mac_address; break; default: /* Should never happen, mode already checked */ printk(KERN_ERR DRV_NAME ": %s: Error: Unknown bonding mode %d\n", bond_dev->name, mode); break; } } static void bond_ethtool_get_drvinfo(struct net_device *bond_dev, struct ethtool_drvinfo *drvinfo) { strncpy(drvinfo->driver, DRV_NAME, 32); strncpy(drvinfo->version, DRV_VERSION, 32); snprintf(drvinfo->fw_version, 32, "%d", BOND_ABI_VERSION); } static const struct ethtool_ops bond_ethtool_ops = { .get_drvinfo = bond_ethtool_get_drvinfo, }; /* * Does not allocate but creates a /proc entry. * Allowed to fail. */ static int bond_init(struct net_device *bond_dev, struct bond_params *params) { struct bonding *bond = bond_dev->priv; dprintk("Begin bond_init for %s\n", bond_dev->name); /* initialize rwlocks */ rwlock_init(&bond->lock); rwlock_init(&bond->curr_slave_lock); bond->params = *params; /* copy params struct */ bond->wq = create_singlethread_workqueue(bond_dev->name); if (!bond->wq) return -ENOMEM; /* Initialize pointers */ bond->first_slave = NULL; bond->curr_active_slave = NULL; bond->current_arp_slave = NULL; bond->primary_slave = NULL; bond->dev = bond_dev; bond->send_grat_arp = 0; bond->setup_by_slave = 0; INIT_LIST_HEAD(&bond->vlan_list); /* Initialize the device entry points */ bond_dev->open = bond_open; bond_dev->stop = bond_close; bond_dev->get_stats = bond_get_stats; bond_dev->do_ioctl = bond_do_ioctl; bond_dev->ethtool_ops = &bond_ethtool_ops; bond_dev->set_multicast_list = bond_set_multicast_list; bond_dev->change_mtu = bond_change_mtu; bond_dev->set_mac_address = bond_set_mac_address; bond_dev->validate_addr = NULL; bond_set_mode_ops(bond, bond->params.mode); bond_dev->destructor = free_netdev; /* Initialize the device options */ bond_dev->tx_queue_len = 0; bond_dev->flags |= IFF_MASTER|IFF_MULTICAST; bond_dev->priv_flags |= IFF_BONDING; /* At first, we block adding VLANs. That's the only way to * prevent problems that occur when adding VLANs over an * empty bond. The block will be removed once non-challenged * slaves are enslaved. */ bond_dev->features |= NETIF_F_VLAN_CHALLENGED; /* don't acquire bond device's netif_tx_lock when * transmitting */ bond_dev->features |= NETIF_F_LLTX; /* By default, we declare the bond to be fully * VLAN hardware accelerated capable. Special * care is taken in the various xmit functions * when there are slaves that are not hw accel * capable */ bond_dev->vlan_rx_register = bond_vlan_rx_register; bond_dev->vlan_rx_add_vid = bond_vlan_rx_add_vid; bond_dev->vlan_rx_kill_vid = bond_vlan_rx_kill_vid; bond_dev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER); #ifdef CONFIG_PROC_FS bond_create_proc_entry(bond); #endif list_add_tail(&bond->bond_list, &bond_dev_list); return 0; } /* De-initialize device specific data. * Caller must hold rtnl_lock. */ static void bond_deinit(struct net_device *bond_dev) { struct bonding *bond = bond_dev->priv; list_del(&bond->bond_list); #ifdef CONFIG_PROC_FS bond_remove_proc_entry(bond); #endif } static void bond_work_cancel_all(struct bonding *bond) { write_lock_bh(&bond->lock); bond->kill_timers = 1; write_unlock_bh(&bond->lock); if (bond->params.miimon && delayed_work_pending(&bond->mii_work)) cancel_delayed_work(&bond->mii_work); if (bond->params.arp_interval && delayed_work_pending(&bond->arp_work)) cancel_delayed_work(&bond->arp_work); if (bond->params.mode == BOND_MODE_ALB && delayed_work_pending(&bond->alb_work)) cancel_delayed_work(&bond->alb_work); if (bond->params.mode == BOND_MODE_8023AD && delayed_work_pending(&bond->ad_work)) cancel_delayed_work(&bond->ad_work); } /* Unregister and free all bond devices. * Caller must hold rtnl_lock. */ static void bond_free_all(void) { struct bonding *bond, *nxt; list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { struct net_device *bond_dev = bond->dev; bond_work_cancel_all(bond); netif_tx_lock_bh(bond_dev); bond_mc_list_destroy(bond); netif_tx_unlock_bh(bond_dev); /* Release the bonded slaves */ bond_release_all(bond_dev); bond_destroy(bond); } #ifdef CONFIG_PROC_FS bond_destroy_proc_dir(); #endif } /*------------------------- Module initialization ---------------------------*/ /* * Convert string input module parms. Accept either the * number of the mode or its string name. A bit complicated because * some mode names are substrings of other names, and calls from sysfs * may have whitespace in the name (trailing newlines, for example). */ int bond_parse_parm(const char *buf, struct bond_parm_tbl *tbl) { int mode = -1, i, rv; char *p, modestr[BOND_MAX_MODENAME_LEN + 1] = { 0, }; for (p = (char *)buf; *p; p++) if (!(isdigit(*p) || isspace(*p))) break; if (*p) rv = sscanf(buf, "%20s", modestr); else rv = sscanf(buf, "%d", &mode); if (!rv) return -1; for (i = 0; tbl[i].modename; i++) { if (mode == tbl[i].mode) return tbl[i].mode; if (strcmp(modestr, tbl[i].modename) == 0) return tbl[i].mode; } return -1; } static int bond_check_params(struct bond_params *params) { int arp_validate_value; /* * Convert string parameters. */ if (mode) { bond_mode = bond_parse_parm(mode, bond_mode_tbl); if (bond_mode == -1) { printk(KERN_ERR DRV_NAME ": Error: Invalid bonding mode \"%s\"\n", mode == NULL ? "NULL" : mode); return -EINVAL; } } if (xmit_hash_policy) { if ((bond_mode != BOND_MODE_XOR) && (bond_mode != BOND_MODE_8023AD)) { printk(KERN_INFO DRV_NAME ": xor_mode param is irrelevant in mode %s\n", bond_mode_name(bond_mode)); } else { xmit_hashtype = bond_parse_parm(xmit_hash_policy, xmit_hashtype_tbl); if (xmit_hashtype == -1) { printk(KERN_ERR DRV_NAME ": Error: Invalid xmit_hash_policy \"%s\"\n", xmit_hash_policy == NULL ? "NULL" : xmit_hash_policy); return -EINVAL; } } } if (lacp_rate) { if (bond_mode != BOND_MODE_8023AD) { printk(KERN_INFO DRV_NAME ": lacp_rate param is irrelevant in mode %s\n", bond_mode_name(bond_mode)); } else { lacp_fast = bond_parse_parm(lacp_rate, bond_lacp_tbl); if (lacp_fast == -1) { printk(KERN_ERR DRV_NAME ": Error: Invalid lacp rate \"%s\"\n", lacp_rate == NULL ? "NULL" : lacp_rate); return -EINVAL; } } } if (max_bonds < 1 || max_bonds > INT_MAX) { printk(KERN_WARNING DRV_NAME ": Warning: max_bonds (%d) not in range %d-%d, so it " "was reset to BOND_DEFAULT_MAX_BONDS (%d)\n", max_bonds, 1, INT_MAX, BOND_DEFAULT_MAX_BONDS); max_bonds = BOND_DEFAULT_MAX_BONDS; } if (miimon < 0) { printk(KERN_WARNING DRV_NAME ": Warning: miimon module parameter (%d), " "not in range 0-%d, so it was reset to %d\n", miimon, INT_MAX, BOND_LINK_MON_INTERV); miimon = BOND_LINK_MON_INTERV; } if (updelay < 0) { printk(KERN_WARNING DRV_NAME ": Warning: updelay module parameter (%d), " "not in range 0-%d, so it was reset to 0\n", updelay, INT_MAX); updelay = 0; } if (downdelay < 0) { printk(KERN_WARNING DRV_NAME ": Warning: downdelay module parameter (%d), " "not in range 0-%d, so it was reset to 0\n", downdelay, INT_MAX); downdelay = 0; } if ((use_carrier != 0) && (use_carrier != 1)) { printk(KERN_WARNING DRV_NAME ": Warning: use_carrier module parameter (%d), " "not of valid value (0/1), so it was set to 1\n", use_carrier); use_carrier = 1; } /* reset values for 802.3ad */ if (bond_mode == BOND_MODE_8023AD) { if (!miimon) { printk(KERN_WARNING DRV_NAME ": Warning: miimon must be specified, " "otherwise bonding will not detect link " "failure, speed and duplex which are " "essential for 802.3ad operation\n"); printk(KERN_WARNING "Forcing miimon to 100msec\n"); miimon = 100; } } /* reset values for TLB/ALB */ if ((bond_mode == BOND_MODE_TLB) || (bond_mode == BOND_MODE_ALB)) { if (!miimon) { printk(KERN_WARNING DRV_NAME ": Warning: miimon must be specified, " "otherwise bonding will not detect link " "failure and link speed which are essential " "for TLB/ALB load balancing\n"); printk(KERN_WARNING "Forcing miimon to 100msec\n"); miimon = 100; } } if (bond_mode == BOND_MODE_ALB) { printk(KERN_NOTICE DRV_NAME ": In ALB mode you might experience client " "disconnections upon reconnection of a link if the " "bonding module updelay parameter (%d msec) is " "incompatible with the forwarding delay time of the " "switch\n", updelay); } if (!miimon) { if (updelay || downdelay) { /* just warn the user the up/down delay will have * no effect since miimon is zero... */ printk(KERN_WARNING DRV_NAME ": Warning: miimon module parameter not set " "and updelay (%d) or downdelay (%d) module " "parameter is set; updelay and downdelay have " "no effect unless miimon is set\n", updelay, downdelay); } } else { /* don't allow arp monitoring */ if (arp_interval) { printk(KERN_WARNING DRV_NAME ": Warning: miimon (%d) and arp_interval (%d) " "can't be used simultaneously, disabling ARP " "monitoring\n", miimon, arp_interval); arp_interval = 0; } if ((updelay % miimon) != 0) { printk(KERN_WARNING DRV_NAME ": Warning: updelay (%d) is not a multiple " "of miimon (%d), updelay rounded to %d ms\n", updelay, miimon, (updelay / miimon) * miimon); } updelay /= miimon; if ((downdelay % miimon) != 0) { printk(KERN_WARNING DRV_NAME ": Warning: downdelay (%d) is not a multiple " "of miimon (%d), downdelay rounded to %d ms\n", downdelay, miimon, (downdelay / miimon) * miimon); } downdelay /= miimon; } if (arp_interval < 0) { printk(KERN_WARNING DRV_NAME ": Warning: arp_interval module parameter (%d) " ", not in range 0-%d, so it was reset to %d\n", arp_interval, INT_MAX, BOND_LINK_ARP_INTERV); arp_interval = BOND_LINK_ARP_INTERV; } for (arp_ip_count = 0; (arp_ip_count < BOND_MAX_ARP_TARGETS) && arp_ip_target[arp_ip_count]; arp_ip_count++) { /* not complete check, but should be good enough to catch mistakes */ if (!isdigit(arp_ip_target[arp_ip_count][0])) { printk(KERN_WARNING DRV_NAME ": Warning: bad arp_ip_target module parameter " "(%s), ARP monitoring will not be performed\n", arp_ip_target[arp_ip_count]); arp_interval = 0; } else { __be32 ip = in_aton(arp_ip_target[arp_ip_count]); arp_target[arp_ip_count] = ip; } } if (arp_interval && !arp_ip_count) { /* don't allow arping if no arp_ip_target given... */ printk(KERN_WARNING DRV_NAME ": Warning: arp_interval module parameter (%d) " "specified without providing an arp_ip_target " "parameter, arp_interval was reset to 0\n", arp_interval); arp_interval = 0; } if (arp_validate) { if (bond_mode != BOND_MODE_ACTIVEBACKUP) { printk(KERN_ERR DRV_NAME ": arp_validate only supported in active-backup mode\n"); return -EINVAL; } if (!arp_interval) { printk(KERN_ERR DRV_NAME ": arp_validate requires arp_interval\n"); return -EINVAL; } arp_validate_value = bond_parse_parm(arp_validate, arp_validate_tbl); if (arp_validate_value == -1) { printk(KERN_ERR DRV_NAME ": Error: invalid arp_validate \"%s\"\n", arp_validate == NULL ? "NULL" : arp_validate); return -EINVAL; } } else arp_validate_value = 0; if (miimon) { printk(KERN_INFO DRV_NAME ": MII link monitoring set to %d ms\n", miimon); } else if (arp_interval) { int i; printk(KERN_INFO DRV_NAME ": ARP monitoring set to %d ms, validate %s, with %d target(s):", arp_interval, arp_validate_tbl[arp_validate_value].modename, arp_ip_count); for (i = 0; i < arp_ip_count; i++) printk (" %s", arp_ip_target[i]); printk("\n"); } else { /* miimon and arp_interval not set, we need one so things * work as expected, see bonding.txt for details */ printk(KERN_WARNING DRV_NAME ": Warning: either miimon or arp_interval and " "arp_ip_target module parameters must be specified, " "otherwise bonding will not detect link failures! see " "bonding.txt for details.\n"); } if (primary && !USES_PRIMARY(bond_mode)) { /* currently, using a primary only makes sense * in active backup, TLB or ALB modes */ printk(KERN_WARNING DRV_NAME ": Warning: %s primary device specified but has no " "effect in %s mode\n", primary, bond_mode_name(bond_mode)); primary = NULL; } if (fail_over_mac && (bond_mode != BOND_MODE_ACTIVEBACKUP)) printk(KERN_WARNING DRV_NAME ": Warning: fail_over_mac only affects " "active-backup mode.\n"); /* fill params struct with the proper values */ params->mode = bond_mode; params->xmit_policy = xmit_hashtype; params->miimon = miimon; params->arp_interval = arp_interval; params->arp_validate = arp_validate_value; params->updelay = updelay; params->downdelay = downdelay; params->use_carrier = use_carrier; params->lacp_fast = lacp_fast; params->primary[0] = 0; params->fail_over_mac = fail_over_mac; if (primary) { strncpy(params->primary, primary, IFNAMSIZ); params->primary[IFNAMSIZ - 1] = 0; } memcpy(params->arp_targets, arp_target, sizeof(arp_target)); return 0; } static struct lock_class_key bonding_netdev_xmit_lock_key; /* Create a new bond based on the specified name and bonding parameters. * If name is NULL, obtain a suitable "bond%d" name for us. * Caller must NOT hold rtnl_lock; we need to release it here before we * set up our sysfs entries. */ int bond_create(char *name, struct bond_params *params, struct bonding **newbond) { struct net_device *bond_dev; struct bonding *bond, *nxt; int res; rtnl_lock(); down_write(&bonding_rwsem); /* Check to see if the bond already exists. */ if (name) { list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) if (strnicmp(bond->dev->name, name, IFNAMSIZ) == 0) { printk(KERN_ERR DRV_NAME ": cannot add bond %s; it already exists\n", name); res = -EPERM; goto out_rtnl; } } bond_dev = alloc_netdev(sizeof(struct bonding), name ? name : "", ether_setup); if (!bond_dev) { printk(KERN_ERR DRV_NAME ": %s: eek! can't alloc netdev!\n", name); res = -ENOMEM; goto out_rtnl; } if (!name) { res = dev_alloc_name(bond_dev, "bond%d"); if (res < 0) goto out_netdev; } /* bond_init() must be called after dev_alloc_name() (for the * /proc files), but before register_netdevice(), because we * need to set function pointers. */ res = bond_init(bond_dev, params); if (res < 0) { goto out_netdev; } res = register_netdevice(bond_dev); if (res < 0) { goto out_bond; } lockdep_set_class(&bond_dev->_xmit_lock, &bonding_netdev_xmit_lock_key); if (newbond) *newbond = bond_dev->priv; netif_carrier_off(bond_dev); up_write(&bonding_rwsem); rtnl_unlock(); /* allows sysfs registration of net device */ res = bond_create_sysfs_entry(bond_dev->priv); if (res < 0) { rtnl_lock(); down_write(&bonding_rwsem); goto out_bond; } return 0; out_bond: bond_deinit(bond_dev); out_netdev: free_netdev(bond_dev); out_rtnl: up_write(&bonding_rwsem); rtnl_unlock(); return res; } static int __init bonding_init(void) { int i; int res; struct bonding *bond, *nxt; printk(KERN_INFO "%s", version); res = bond_check_params(&bonding_defaults); if (res) { goto out; } #ifdef CONFIG_PROC_FS bond_create_proc_dir(); #endif init_rwsem(&bonding_rwsem); for (i = 0; i < max_bonds; i++) { res = bond_create(NULL, &bonding_defaults, NULL); if (res) goto err; } res = bond_create_sysfs(); if (res) goto err; register_netdevice_notifier(&bond_netdev_notifier); register_inetaddr_notifier(&bond_inetaddr_notifier); goto out; err: list_for_each_entry_safe(bond, nxt, &bond_dev_list, bond_list) { bond_work_cancel_all(bond); destroy_workqueue(bond->wq); } rtnl_lock(); bond_free_all(); bond_destroy_sysfs(); rtnl_unlock(); out: return res; } static void __exit bonding_exit(void) { unregister_netdevice_notifier(&bond_netdev_notifier); unregister_inetaddr_notifier(&bond_inetaddr_notifier); rtnl_lock(); bond_free_all(); bond_destroy_sysfs(); rtnl_unlock(); } module_init(bonding_init); module_exit(bonding_exit); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); MODULE_DESCRIPTION(DRV_DESCRIPTION ", v" DRV_VERSION); MODULE_AUTHOR("Thomas Davis, tadavis@lbl.gov and many others"); MODULE_SUPPORTED_DEVICE("most ethernet devices"); /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * tab-width: 8 * End: */