/* bnx2x_init.h: Broadcom Everest network driver. * * Copyright (c) 2007 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Written by: Eliezer Tamir <eliezert@broadcom.com> */ #ifndef BNX2X_INIT_H #define BNX2X_INIT_H #define COMMON 0x1 #define PORT0 0x2 #define PORT1 0x4 #define INIT_EMULATION 0x1 #define INIT_FPGA 0x2 #define INIT_ASIC 0x4 #define INIT_HARDWARE 0x7 #define STORM_INTMEM_SIZE (0x5800 / 4) #define TSTORM_INTMEM_ADDR 0x1a0000 #define CSTORM_INTMEM_ADDR 0x220000 #define XSTORM_INTMEM_ADDR 0x2a0000 #define USTORM_INTMEM_ADDR 0x320000 /* Init operation types and structures */ #define OP_RD 0x1 /* read single register */ #define OP_WR 0x2 /* write single register */ #define OP_IW 0x3 /* write single register using mailbox */ #define OP_SW 0x4 /* copy a string to the device */ #define OP_SI 0x5 /* copy a string using mailbox */ #define OP_ZR 0x6 /* clear memory */ #define OP_ZP 0x7 /* unzip then copy with DMAE */ #define OP_WB 0x8 /* copy a string using DMAE */ struct raw_op { u32 op :8; u32 offset :24; u32 raw_data; }; struct op_read { u32 op :8; u32 offset :24; u32 pad; }; struct op_write { u32 op :8; u32 offset :24; u32 val; }; struct op_string_write { u32 op :8; u32 offset :24; #ifdef __LITTLE_ENDIAN u16 data_off; u16 data_len; #else /* __BIG_ENDIAN */ u16 data_len; u16 data_off; #endif }; struct op_zero { u32 op :8; u32 offset :24; u32 len; }; union init_op { struct op_read read; struct op_write write; struct op_string_write str_wr; struct op_zero zero; struct raw_op raw; }; #include "bnx2x_init_values.h" static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); static void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr, u32 len32); static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len); static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, u32 len) { int i; for (i = 0; i < len; i++) { REG_WR(bp, addr + i*4, data[i]); if (!(i % 10000)) { touch_softlockup_watchdog(); cpu_relax(); } } } #define INIT_MEM_WR(reg, data, reg_off, len) \ bnx2x_init_str_wr(bp, reg + reg_off*4, data, len) static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, u16 len) { int i; for (i = 0; i < len; i++) { REG_WR_IND(bp, addr + i*4, data[i]); if (!(i % 10000)) { touch_softlockup_watchdog(); cpu_relax(); } } } static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, u32 len, int gunzip) { int offset = 0; if (gunzip) { int rc; #ifdef __BIG_ENDIAN int i, size; u32 *temp; temp = kmalloc(len, GFP_KERNEL); size = (len / 4) + ((len % 4) ? 1 : 0); for (i = 0; i < size; i++) temp[i] = swab32(data[i]); data = temp; #endif rc = bnx2x_gunzip(bp, (u8 *)data, len); if (rc) { DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc); return; } len = bp->gunzip_outlen; #ifdef __BIG_ENDIAN kfree(temp); for (i = 0; i < len; i++) ((u32 *)bp->gunzip_buf)[i] = swab32(((u32 *)bp->gunzip_buf)[i]); #endif } else { if ((len * 4) > FW_BUF_SIZE) { BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4); return; } memcpy(bp->gunzip_buf, data, len * 4); } while (len > DMAE_LEN32_MAX) { bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, DMAE_LEN32_MAX); offset += DMAE_LEN32_MAX * 4; len -= DMAE_LEN32_MAX; } bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); } #define INIT_MEM_WB(reg, data, reg_off, len) \ bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0) #define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \ bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1) static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) { int offset = 0; if ((len * 4) > FW_BUF_SIZE) { BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4); return; } memset(bp->gunzip_buf, fill, len * 4); while (len > DMAE_LEN32_MAX) { bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, DMAE_LEN32_MAX); offset += DMAE_LEN32_MAX * 4; len -= DMAE_LEN32_MAX; } bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); } static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end) { int i; union init_op *op; u32 op_type, addr, len; const u32 *data; for (i = op_start; i < op_end; i++) { op = (union init_op *)&(init_ops[i]); op_type = op->str_wr.op; addr = op->str_wr.offset; len = op->str_wr.data_len; data = init_data + op->str_wr.data_off; switch (op_type) { case OP_RD: REG_RD(bp, addr); break; case OP_WR: REG_WR(bp, addr, op->write.val); break; case OP_SW: bnx2x_init_str_wr(bp, addr, data, len); break; case OP_WB: bnx2x_init_wr_wb(bp, addr, data, len, 0); break; case OP_SI: bnx2x_init_ind_wr(bp, addr, data, len); break; case OP_ZR: bnx2x_init_fill(bp, addr, 0, op->zero.len); break; case OP_ZP: bnx2x_init_wr_wb(bp, addr, data, len, 1); break; default: BNX2X_ERR("BAD init operation!\n"); } } } /**************************************************************************** * PXP ****************************************************************************/ /* * This code configures the PCI read/write arbiter * which implements a wighted round robin * between the virtual queues in the chip. * * The values were derived for each PCI max payload and max request size. * since max payload and max request size are only known at run time, * this is done as a separate init stage. */ #define NUM_WR_Q 13 #define NUM_RD_Q 29 #define MAX_RD_ORD 3 #define MAX_WR_ORD 2 /* configuration for one arbiter queue */ struct arb_line { int l; int add; int ubound; }; /* derived configuration for each read queue for each max request size */ static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} }, {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} }, {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} }, {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} }, {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} } }; /* derived configuration for each write queue for each max request size */ static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} }, {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} }, {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} }, {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} }, {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} }, {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} }, {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} }, {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} }, {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} } }; /* register adresses for read queues */ static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, PXP2_REG_RQ_BW_RD_UBOUND0}, {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, PXP2_REG_RQ_BW_RD_UBOUND4}, {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, PXP2_REG_RQ_BW_RD_UBOUND5}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, PXP2_REG_RQ_BW_RD_UBOUND12}, {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, PXP2_REG_RQ_BW_RD_UBOUND13}, {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, PXP2_REG_RQ_BW_RD_UBOUND14}, {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, PXP2_REG_RQ_BW_RD_UBOUND15}, {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, PXP2_REG_RQ_BW_RD_UBOUND16}, {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, PXP2_REG_RQ_BW_RD_UBOUND17}, {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, PXP2_REG_RQ_BW_RD_UBOUND18}, {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, PXP2_REG_RQ_BW_RD_UBOUND19}, {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, PXP2_REG_RQ_BW_RD_UBOUND20}, {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, PXP2_REG_RQ_BW_RD_UBOUND22}, {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, PXP2_REG_RQ_BW_RD_UBOUND23}, {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, PXP2_REG_RQ_BW_RD_UBOUND24}, {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, PXP2_REG_RQ_BW_RD_UBOUND25}, {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, PXP2_REG_RQ_BW_RD_UBOUND26}, {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, PXP2_REG_RQ_BW_RD_UBOUND27}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28} }; /* register adresses for wrtie queues */ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28}, {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, PXP2_REG_RQ_BW_WR_UBOUND29}, {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, PXP2_REG_RQ_BW_WR_UBOUND30} }; static void bnx2x_init_pxp(struct bnx2x *bp) { int r_order, w_order; u32 val, i; pci_read_config_word(bp->pdev, bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val); DP(NETIF_MSG_HW, "read 0x%x from devctl\n", val); w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5); r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12); if (r_order > MAX_RD_ORD) { DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", r_order, MAX_RD_ORD); r_order = MAX_RD_ORD; } if (w_order > MAX_WR_ORD) { DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", w_order, MAX_WR_ORD); w_order = MAX_WR_ORD; } DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); for (i = 0; i < NUM_RD_Q-1; i++) { REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); REG_WR(bp, read_arb_addr[i].add, read_arb_data[i][r_order].add); REG_WR(bp, read_arb_addr[i].ubound, read_arb_data[i][r_order].ubound); } for (i = 0; i < NUM_WR_Q-1; i++) { if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { REG_WR(bp, write_arb_addr[i].l, write_arb_data[i][w_order].l); REG_WR(bp, write_arb_addr[i].add, write_arb_data[i][w_order].add); REG_WR(bp, write_arb_addr[i].ubound, write_arb_data[i][w_order].ubound); } else { val = REG_RD(bp, write_arb_addr[i].l); REG_WR(bp, write_arb_addr[i].l, val | (write_arb_data[i][w_order].l << 10)); val = REG_RD(bp, write_arb_addr[i].add); REG_WR(bp, write_arb_addr[i].add, val | (write_arb_data[i][w_order].add << 10)); val = REG_RD(bp, write_arb_addr[i].ubound); REG_WR(bp, write_arb_addr[i].ubound, val | (write_arb_data[i][w_order].ubound << 7)); } } val = write_arb_data[NUM_WR_Q-1][w_order].add; val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); val = read_arb_data[NUM_RD_Q-1][r_order].add; val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); REG_WR(bp, PXP2_REG_RQ_WR_MBS0 + 8, w_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS0 + 8, r_order); REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16); } /**************************************************************************** * CDU ****************************************************************************/ #define CDU_REGION_NUMBER_XCM_AG 2 #define CDU_REGION_NUMBER_UCM_AG 4 /** * String-to-compress [31:8] = CID (all 24 bits) * String-to-compress [7:4] = Region * String-to-compress [3:0] = Type */ #define CDU_VALID_DATA(_cid, _region, _type) \ (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) #define CDU_CRC8(_cid, _region, _type) \ calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) /***************************************************************************** * Description: * Calculates crc 8 on a word value: polynomial 0-1-2-8 * Code was translated from Verilog. ****************************************************************************/ static u8 calc_crc8(u32 data, u8 crc) { u8 D[32]; u8 NewCRC[8]; u8 C[8]; u8 crc_res; u8 i; /* split the data into 31 bits */ for (i = 0; i < 32; i++) { D[i] = data & 1; data = data >> 1; } /* split the crc into 8 bits */ for (i = 0; i < 8; i++) { C[i] = crc & 1; crc = crc >> 1; } NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ C[6] ^ C[7]; NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[4] ^ C[5]; NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[5] ^ C[6]; NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ C[3] ^ C[4] ^ C[7]; NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ C[5]; NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ C[6]; crc_res = 0; for (i = 0; i < 8; i++) crc_res |= (NewCRC[i] << i); return crc_res; } #endif /* BNX2X_INIT_H */