/* bnx2x_init.h: Broadcom Everest network driver. * * Copyright (c) 2007-2008 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein * Written by: Eliezer Tamir */ #ifndef BNX2X_INIT_H #define BNX2X_INIT_H #define COMMON 0x1 #define PORT0 0x2 #define PORT1 0x4 #define INIT_EMULATION 0x1 #define INIT_FPGA 0x2 #define INIT_ASIC 0x4 #define INIT_HARDWARE 0x7 #define STORM_INTMEM_SIZE_E1 (0x5800 / 4) #define STORM_INTMEM_SIZE_E1H (0x10000 / 4) #define TSTORM_INTMEM_ADDR 0x1a0000 #define CSTORM_INTMEM_ADDR 0x220000 #define XSTORM_INTMEM_ADDR 0x2a0000 #define USTORM_INTMEM_ADDR 0x320000 /* Init operation types and structures */ /* Common for both E1 and E1H */ #define OP_RD 0x1 /* read single register */ #define OP_WR 0x2 /* write single register */ #define OP_IW 0x3 /* write single register using mailbox */ #define OP_SW 0x4 /* copy a string to the device */ #define OP_SI 0x5 /* copy a string using mailbox */ #define OP_ZR 0x6 /* clear memory */ #define OP_ZP 0x7 /* unzip then copy with DMAE */ #define OP_WR_64 0x8 /* write 64 bit pattern */ #define OP_WB 0x9 /* copy a string using DMAE */ /* Operation specific for E1 */ #define OP_RD_E1 0xa /* read single register */ #define OP_WR_E1 0xb /* write single register */ #define OP_IW_E1 0xc /* write single register using mailbox */ #define OP_SW_E1 0xd /* copy a string to the device */ #define OP_SI_E1 0xe /* copy a string using mailbox */ #define OP_ZR_E1 0xf /* clear memory */ #define OP_ZP_E1 0x10 /* unzip then copy with DMAE */ #define OP_WR_64_E1 0x11 /* write 64 bit pattern on E1 */ #define OP_WB_E1 0x12 /* copy a string using DMAE */ /* Operation specific for E1H */ #define OP_RD_E1H 0x13 /* read single register */ #define OP_WR_E1H 0x14 /* write single register */ #define OP_IW_E1H 0x15 /* write single register using mailbox */ #define OP_SW_E1H 0x16 /* copy a string to the device */ #define OP_SI_E1H 0x17 /* copy a string using mailbox */ #define OP_ZR_E1H 0x18 /* clear memory */ #define OP_ZP_E1H 0x19 /* unzip then copy with DMAE */ #define OP_WR_64_E1H 0x1a /* write 64 bit pattern on E1H */ #define OP_WB_E1H 0x1b /* copy a string using DMAE */ /* FPGA and EMUL specific operations */ #define OP_WR_EMUL_E1H 0x1c /* write single register on E1H Emul */ #define OP_WR_EMUL 0x1d /* write single register on Emulation */ #define OP_WR_FPGA 0x1e /* write single register on FPGA */ #define OP_WR_ASIC 0x1f /* write single register on ASIC */ struct raw_op { u32 op:8; u32 offset:24; u32 raw_data; }; struct op_read { u32 op:8; u32 offset:24; u32 pad; }; struct op_write { u32 op:8; u32 offset:24; u32 val; }; struct op_string_write { u32 op:8; u32 offset:24; #ifdef __LITTLE_ENDIAN u16 data_off; u16 data_len; #else /* __BIG_ENDIAN */ u16 data_len; u16 data_off; #endif }; struct op_zero { u32 op:8; u32 offset:24; u32 len; }; union init_op { struct op_read read; struct op_write write; struct op_string_write str_wr; struct op_zero zero; struct raw_op raw; }; #include "bnx2x_init_values.h" static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len); static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, u32 len) { int i; for (i = 0; i < len; i++) { REG_WR(bp, addr + i*4, data[i]); if (!(i % 10000)) { touch_softlockup_watchdog(); cpu_relax(); } } } static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, u16 len) { int i; for (i = 0; i < len; i++) { REG_WR_IND(bp, addr + i*4, data[i]); if (!(i % 10000)) { touch_softlockup_watchdog(); cpu_relax(); } } } static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) { #ifdef USE_DMAE int offset = 0; if (bp->dmae_ready) { while (len > DMAE_LEN32_WR_MAX) { bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, DMAE_LEN32_WR_MAX); offset += DMAE_LEN32_WR_MAX * 4; len -= DMAE_LEN32_WR_MAX; } bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); } else bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); #else bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); #endif } static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) { if ((len * 4) > FW_BUF_SIZE) { BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x len 0x%x\n", addr, len*4); return; } memset(bp->gunzip_buf, fill, len * 4); bnx2x_write_big_buf(bp, addr, len); } static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, u32 len64) { u32 buf_len32 = FW_BUF_SIZE/4; u32 len = len64*2; u64 data64 = 0; int i; /* 64 bit value is in a blob: first low DWORD, then high DWORD */ data64 = HILO_U64((*(data + 1)), (*data)); len64 = min((u32)(FW_BUF_SIZE/8), len64); for (i = 0; i < len64; i++) { u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; *pdata = data64; } for (i = 0; i < len; i += buf_len32) { u32 cur_len = min(buf_len32, len - i); bnx2x_write_big_buf(bp, addr + i * 4, cur_len); } } /********************************************************* There are different blobs for each PRAM section. In addition, each blob write operation is divided into a few operations in order to decrease the amount of phys. contiguous buffer needed. Thus, when we select a blob the address may be with some offset from the beginning of PRAM section. The same holds for the INT_TABLE sections. **********************************************************/ #define IF_IS_INT_TABLE_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) #define IF_IS_PRAM_ADDR(base, addr) \ if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1) { IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) data = is_e1 ? tsem_int_table_data_e1 : tsem_int_table_data_e1h; else IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) data = is_e1 ? csem_int_table_data_e1 : csem_int_table_data_e1h; else IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) data = is_e1 ? usem_int_table_data_e1 : usem_int_table_data_e1h; else IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) data = is_e1 ? xsem_int_table_data_e1 : xsem_int_table_data_e1h; else IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h; else IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h; else IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h; else IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h; return data; } static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, u32 len, int gunzip, int is_e1, u32 blob_off) { int offset = 0; data = bnx2x_sel_blob(addr, data, is_e1) + blob_off; if (gunzip) { int rc; #ifdef __BIG_ENDIAN int i, size; u32 *temp; temp = kmalloc(len, GFP_KERNEL); size = (len / 4) + ((len % 4) ? 1 : 0); for (i = 0; i < size; i++) temp[i] = swab32(data[i]); data = temp; #endif rc = bnx2x_gunzip(bp, (u8 *)data, len); if (rc) { BNX2X_ERR("gunzip failed ! rc %d\n", rc); #ifdef __BIG_ENDIAN kfree(temp); #endif return; } len = bp->gunzip_outlen; #ifdef __BIG_ENDIAN kfree(temp); for (i = 0; i < len; i++) ((u32 *)bp->gunzip_buf)[i] = swab32(((u32 *)bp->gunzip_buf)[i]); #endif } else { if ((len * 4) > FW_BUF_SIZE) { BNX2X_ERR("LARGE DMAE OPERATION ! " "addr 0x%x len 0x%x\n", addr, len*4); return; } memcpy(bp->gunzip_buf, data, len * 4); } if (bp->dmae_ready) { while (len > DMAE_LEN32_WR_MAX) { bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, DMAE_LEN32_WR_MAX); offset += DMAE_LEN32_WR_MAX * 4; len -= DMAE_LEN32_WR_MAX; } bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len); } else bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len); } static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end) { int is_e1 = CHIP_IS_E1(bp); int is_e1h = CHIP_IS_E1H(bp); int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h); int hw_wr, i; union init_op *op; u32 op_type, addr, len; const u32 *data, *data_base; if (CHIP_REV_IS_FPGA(bp)) hw_wr = OP_WR_FPGA; else if (CHIP_REV_IS_EMUL(bp)) hw_wr = OP_WR_EMUL; else hw_wr = OP_WR_ASIC; if (is_e1) data_base = init_data_e1; else /* CHIP_IS_E1H(bp) */ data_base = init_data_e1h; for (i = op_start; i < op_end; i++) { op = (union init_op *)&(init_ops[i]); op_type = op->str_wr.op; addr = op->str_wr.offset; len = op->str_wr.data_len; data = data_base + op->str_wr.data_off; /* careful! it must be in order */ if (unlikely(op_type > OP_WB)) { /* If E1 only */ if (op_type <= OP_WB_E1) { if (is_e1) op_type -= (OP_RD_E1 - OP_RD); /* If E1H only */ } else if (op_type <= OP_WB_E1H) { if (is_e1h) op_type -= (OP_RD_E1H - OP_RD); } /* HW/EMUL specific */ if (op_type == hw_wr) op_type = OP_WR; /* EMUL on E1H is special */ if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h) op_type = OP_WR; } switch (op_type) { case OP_RD: REG_RD(bp, addr); break; case OP_WR: REG_WR(bp, addr, op->write.val); break; case OP_SW: bnx2x_init_str_wr(bp, addr, data, len); break; case OP_WB: bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0); break; case OP_SI: bnx2x_init_ind_wr(bp, addr, data, len); break; case OP_ZR: bnx2x_init_fill(bp, addr, 0, op->zero.len); break; case OP_ZP: bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1, op->str_wr.data_off); break; case OP_WR_64: bnx2x_init_wr_64(bp, addr, data, len); break; default: /* happens whenever an op is of a diff HW */ #if 0 DP(NETIF_MSG_HW, "skipping init operation " "index %d[%d:%d]: type %d addr 0x%x " "len %d(0x%x)\n", i, op_start, op_end, op_type, addr, len, len); #endif break; } } } /**************************************************************************** * PXP ****************************************************************************/ /* * This code configures the PCI read/write arbiter * which implements a weighted round robin * between the virtual queues in the chip. * * The values were derived for each PCI max payload and max request size. * since max payload and max request size are only known at run time, * this is done as a separate init stage. */ #define NUM_WR_Q 13 #define NUM_RD_Q 29 #define MAX_RD_ORD 3 #define MAX_WR_ORD 2 /* configuration for one arbiter queue */ struct arb_line { int l; int add; int ubound; }; /* derived configuration for each read queue for each max request size */ static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} }, { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} }, { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} }, /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } }; /* derived configuration for each write queue for each max request size */ static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} }, { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} }, { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} }, /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} }, { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} }, { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } }; /* register addresses for read queues */ static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, PXP2_REG_RQ_BW_RD_UBOUND0}, {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, PXP2_REG_RQ_BW_RD_UBOUND4}, {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, PXP2_REG_RQ_BW_RD_UBOUND5}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, PXP2_REG_RQ_BW_RD_UBOUND12}, {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, PXP2_REG_RQ_BW_RD_UBOUND13}, {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, PXP2_REG_RQ_BW_RD_UBOUND14}, {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, PXP2_REG_RQ_BW_RD_UBOUND15}, {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, PXP2_REG_RQ_BW_RD_UBOUND16}, {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, PXP2_REG_RQ_BW_RD_UBOUND17}, {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, PXP2_REG_RQ_BW_RD_UBOUND18}, /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, PXP2_REG_RQ_BW_RD_UBOUND19}, {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, PXP2_REG_RQ_BW_RD_UBOUND20}, {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, PXP2_REG_RQ_BW_RD_UBOUND22}, {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, PXP2_REG_RQ_BW_RD_UBOUND23}, {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, PXP2_REG_RQ_BW_RD_UBOUND24}, {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, PXP2_REG_RQ_BW_RD_UBOUND25}, {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, PXP2_REG_RQ_BW_RD_UBOUND26}, {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, PXP2_REG_RQ_BW_RD_UBOUND27}, {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28} }; /* register addresses for write queues */ static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, PXP2_REG_PSWRQ_BW_UB1}, {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, PXP2_REG_PSWRQ_BW_UB2}, {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, PXP2_REG_PSWRQ_BW_UB3}, {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, PXP2_REG_PSWRQ_BW_UB6}, {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, PXP2_REG_PSWRQ_BW_UB7}, {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, PXP2_REG_PSWRQ_BW_UB8}, {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, PXP2_REG_PSWRQ_BW_UB9}, {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, PXP2_REG_PSWRQ_BW_UB10}, {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, PXP2_REG_PSWRQ_BW_UB11}, /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, PXP2_REG_PSWRQ_BW_UB28}, {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, PXP2_REG_RQ_BW_WR_UBOUND29}, {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, PXP2_REG_RQ_BW_WR_UBOUND30} }; static void bnx2x_init_pxp(struct bnx2x *bp) { u16 devctl; int r_order, w_order; u32 val, i; pci_read_config_word(bp->pdev, bp->pcie_cap + PCI_EXP_DEVCTL, &devctl); DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl); w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); if (bp->mrrs == -1) r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12); else { DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs); r_order = bp->mrrs; } if (r_order > MAX_RD_ORD) { DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n", r_order, MAX_RD_ORD); r_order = MAX_RD_ORD; } if (w_order > MAX_WR_ORD) { DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n", w_order, MAX_WR_ORD); w_order = MAX_WR_ORD; } if (CHIP_REV_IS_FPGA(bp)) { DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); w_order = 0; } DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order); for (i = 0; i < NUM_RD_Q-1; i++) { REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); REG_WR(bp, read_arb_addr[i].add, read_arb_data[i][r_order].add); REG_WR(bp, read_arb_addr[i].ubound, read_arb_data[i][r_order].ubound); } for (i = 0; i < NUM_WR_Q-1; i++) { if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { REG_WR(bp, write_arb_addr[i].l, write_arb_data[i][w_order].l); REG_WR(bp, write_arb_addr[i].add, write_arb_data[i][w_order].add); REG_WR(bp, write_arb_addr[i].ubound, write_arb_data[i][w_order].ubound); } else { val = REG_RD(bp, write_arb_addr[i].l); REG_WR(bp, write_arb_addr[i].l, val | (write_arb_data[i][w_order].l << 10)); val = REG_RD(bp, write_arb_addr[i].add); REG_WR(bp, write_arb_addr[i].add, val | (write_arb_data[i][w_order].add << 10)); val = REG_RD(bp, write_arb_addr[i].ubound); REG_WR(bp, write_arb_addr[i].ubound, val | (write_arb_data[i][w_order].ubound << 7)); } } val = write_arb_data[NUM_WR_Q-1][w_order].add; val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); val = read_arb_data[NUM_RD_Q-1][r_order].add; val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); if (r_order == MAX_RD_ORD) REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); if (CHIP_IS_E1H(bp)) { val = ((w_order == 0) ? 2 : 3); REG_WR(bp, PXP2_REG_WR_HC_MPS, val); REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); REG_WR(bp, PXP2_REG_WR_QM_MPS, val); REG_WR(bp, PXP2_REG_WR_TM_MPS, val); REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); } } /**************************************************************************** * CDU ****************************************************************************/ #define CDU_REGION_NUMBER_XCM_AG 2 #define CDU_REGION_NUMBER_UCM_AG 4 /** * String-to-compress [31:8] = CID (all 24 bits) * String-to-compress [7:4] = Region * String-to-compress [3:0] = Type */ #define CDU_VALID_DATA(_cid, _region, _type) \ (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) #define CDU_CRC8(_cid, _region, _type) \ calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80) /***************************************************************************** * Description: * Calculates crc 8 on a word value: polynomial 0-1-2-8 * Code was translated from Verilog. ****************************************************************************/ static u8 calc_crc8(u32 data, u8 crc) { u8 D[32]; u8 NewCRC[8]; u8 C[8]; u8 crc_res; u8 i; /* split the data into 31 bits */ for (i = 0; i < 32; i++) { D[i] = data & 1; data = data >> 1; } /* split the crc into 8 bits */ for (i = 0; i < 8; i++) { C[i] = crc & 1; crc = crc >> 1; } NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ C[6] ^ C[7]; NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ C[0] ^ C[1] ^ C[4] ^ C[5]; NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ C[1] ^ C[2] ^ C[5] ^ C[6]; NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ C[3] ^ C[4] ^ C[7]; NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ C[5]; NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ C[6]; crc_res = 0; for (i = 0; i < 8; i++) crc_res |= (NewCRC[i] << i); return crc_res; } /* registers addresses are not in order so these arrays help simplify the code */ static const int cm_start[E1H_FUNC_MAX][9] = { {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START, XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START, XSEM_FUNC0_START}, {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START, XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START, XSEM_FUNC1_START}, {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START, XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START, XSEM_FUNC2_START}, {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START, XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START, XSEM_FUNC3_START}, {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START, XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START, XSEM_FUNC4_START}, {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START, XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START, XSEM_FUNC5_START}, {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START, XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START, XSEM_FUNC6_START}, {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START, XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START, XSEM_FUNC7_START} }; static const int cm_end[E1H_FUNC_MAX][9] = { {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END, XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END, XSEM_FUNC0_END}, {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END, XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END, XSEM_FUNC1_END}, {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END, XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END, XSEM_FUNC2_END}, {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END, XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END, XSEM_FUNC3_END}, {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END, XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END, XSEM_FUNC4_END}, {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END, XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END, XSEM_FUNC5_END}, {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END, XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END, XSEM_FUNC6_END}, {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END, XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END, XSEM_FUNC7_END}, }; static const int hc_limits[E1H_FUNC_MAX][2] = { {HC_FUNC0_START, HC_FUNC0_END}, {HC_FUNC1_START, HC_FUNC1_END}, {HC_FUNC2_START, HC_FUNC2_END}, {HC_FUNC3_START, HC_FUNC3_END}, {HC_FUNC4_START, HC_FUNC4_END}, {HC_FUNC5_START, HC_FUNC5_END}, {HC_FUNC6_START, HC_FUNC6_END}, {HC_FUNC7_START, HC_FUNC7_END} }; #endif /* BNX2X_INIT_H */