/* * Driver for BCM963xx builtin Ethernet mac * * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <linux/init.h> #include <linux/module.h> #include <linux/clk.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/ethtool.h> #include <linux/crc32.h> #include <linux/err.h> #include <linux/dma-mapping.h> #include <linux/platform_device.h> #include <linux/if_vlan.h> #include <bcm63xx_dev_enet.h> #include "bcm63xx_enet.h" static char bcm_enet_driver_name[] = "bcm63xx_enet"; static char bcm_enet_driver_version[] = "1.0"; static int copybreak __read_mostly = 128; module_param(copybreak, int, 0); MODULE_PARM_DESC(copybreak, "Receive copy threshold"); /* io memory shared between all devices */ static void __iomem *bcm_enet_shared_base; /* * io helpers to access mac registers */ static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off) { return bcm_readl(priv->base + off); } static inline void enet_writel(struct bcm_enet_priv *priv, u32 val, u32 off) { bcm_writel(val, priv->base + off); } /* * io helpers to access shared registers */ static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off) { return bcm_readl(bcm_enet_shared_base + off); } static inline void enet_dma_writel(struct bcm_enet_priv *priv, u32 val, u32 off) { bcm_writel(val, bcm_enet_shared_base + off); } /* * write given data into mii register and wait for transfer to end * with timeout (average measured transfer time is 25us) */ static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data) { int limit; /* make sure mii interrupt status is cleared */ enet_writel(priv, ENET_IR_MII, ENET_IR_REG); enet_writel(priv, data, ENET_MIIDATA_REG); wmb(); /* busy wait on mii interrupt bit, with timeout */ limit = 1000; do { if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII) break; udelay(1); } while (limit-- > 0); return (limit < 0) ? 1 : 0; } /* * MII internal read callback */ static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id, int regnum) { u32 tmp, val; tmp = regnum << ENET_MIIDATA_REG_SHIFT; tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; tmp |= ENET_MIIDATA_OP_READ_MASK; if (do_mdio_op(priv, tmp)) return -1; val = enet_readl(priv, ENET_MIIDATA_REG); val &= 0xffff; return val; } /* * MII internal write callback */ static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id, int regnum, u16 value) { u32 tmp; tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT; tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT; tmp |= regnum << ENET_MIIDATA_REG_SHIFT; tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT; tmp |= ENET_MIIDATA_OP_WRITE_MASK; (void)do_mdio_op(priv, tmp); return 0; } /* * MII read callback from phylib */ static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id, int regnum) { return bcm_enet_mdio_read(bus->priv, mii_id, regnum); } /* * MII write callback from phylib */ static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id, int regnum, u16 value) { return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value); } /* * MII read callback from mii core */ static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id, int regnum) { return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum); } /* * MII write callback from mii core */ static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id, int regnum, int value) { bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value); } /* * refill rx queue */ static int bcm_enet_refill_rx(struct net_device *dev) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); while (priv->rx_desc_count < priv->rx_ring_size) { struct bcm_enet_desc *desc; struct sk_buff *skb; dma_addr_t p; int desc_idx; u32 len_stat; desc_idx = priv->rx_dirty_desc; desc = &priv->rx_desc_cpu[desc_idx]; if (!priv->rx_skb[desc_idx]) { skb = netdev_alloc_skb(dev, priv->rx_skb_size); if (!skb) break; priv->rx_skb[desc_idx] = skb; p = dma_map_single(&priv->pdev->dev, skb->data, priv->rx_skb_size, DMA_FROM_DEVICE); desc->address = p; } len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT; len_stat |= DMADESC_OWNER_MASK; if (priv->rx_dirty_desc == priv->rx_ring_size - 1) { len_stat |= DMADESC_WRAP_MASK; priv->rx_dirty_desc = 0; } else { priv->rx_dirty_desc++; } wmb(); desc->len_stat = len_stat; priv->rx_desc_count++; /* tell dma engine we allocated one buffer */ enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan)); } /* If rx ring is still empty, set a timer to try allocating * again at a later time. */ if (priv->rx_desc_count == 0 && netif_running(dev)) { dev_warn(&priv->pdev->dev, "unable to refill rx ring\n"); priv->rx_timeout.expires = jiffies + HZ; add_timer(&priv->rx_timeout); } return 0; } /* * timer callback to defer refill rx queue in case we're OOM */ static void bcm_enet_refill_rx_timer(unsigned long data) { struct net_device *dev; struct bcm_enet_priv *priv; dev = (struct net_device *)data; priv = netdev_priv(dev); spin_lock(&priv->rx_lock); bcm_enet_refill_rx((struct net_device *)data); spin_unlock(&priv->rx_lock); } /* * extract packet from rx queue */ static int bcm_enet_receive_queue(struct net_device *dev, int budget) { struct bcm_enet_priv *priv; struct device *kdev; int processed; priv = netdev_priv(dev); kdev = &priv->pdev->dev; processed = 0; /* don't scan ring further than number of refilled * descriptor */ if (budget > priv->rx_desc_count) budget = priv->rx_desc_count; do { struct bcm_enet_desc *desc; struct sk_buff *skb; int desc_idx; u32 len_stat; unsigned int len; desc_idx = priv->rx_curr_desc; desc = &priv->rx_desc_cpu[desc_idx]; /* make sure we actually read the descriptor status at * each loop */ rmb(); len_stat = desc->len_stat; /* break if dma ownership belongs to hw */ if (len_stat & DMADESC_OWNER_MASK) break; processed++; priv->rx_curr_desc++; if (priv->rx_curr_desc == priv->rx_ring_size) priv->rx_curr_desc = 0; priv->rx_desc_count--; /* if the packet does not have start of packet _and_ * end of packet flag set, then just recycle it */ if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) { priv->stats.rx_dropped++; continue; } /* recycle packet if it's marked as bad */ if (unlikely(len_stat & DMADESC_ERR_MASK)) { priv->stats.rx_errors++; if (len_stat & DMADESC_OVSIZE_MASK) priv->stats.rx_length_errors++; if (len_stat & DMADESC_CRC_MASK) priv->stats.rx_crc_errors++; if (len_stat & DMADESC_UNDER_MASK) priv->stats.rx_frame_errors++; if (len_stat & DMADESC_OV_MASK) priv->stats.rx_fifo_errors++; continue; } /* valid packet */ skb = priv->rx_skb[desc_idx]; len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT; /* don't include FCS */ len -= 4; if (len < copybreak) { struct sk_buff *nskb; nskb = netdev_alloc_skb_ip_align(dev, len); if (!nskb) { /* forget packet, just rearm desc */ priv->stats.rx_dropped++; continue; } dma_sync_single_for_cpu(kdev, desc->address, len, DMA_FROM_DEVICE); memcpy(nskb->data, skb->data, len); dma_sync_single_for_device(kdev, desc->address, len, DMA_FROM_DEVICE); skb = nskb; } else { dma_unmap_single(&priv->pdev->dev, desc->address, priv->rx_skb_size, DMA_FROM_DEVICE); priv->rx_skb[desc_idx] = NULL; } skb_put(skb, len); skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); priv->stats.rx_packets++; priv->stats.rx_bytes += len; dev->last_rx = jiffies; netif_receive_skb(skb); } while (--budget > 0); if (processed || !priv->rx_desc_count) { bcm_enet_refill_rx(dev); /* kick rx dma */ enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, ENETDMA_CHANCFG_REG(priv->rx_chan)); } return processed; } /* * try to or force reclaim of transmitted buffers */ static int bcm_enet_tx_reclaim(struct net_device *dev, int force) { struct bcm_enet_priv *priv; int released; priv = netdev_priv(dev); released = 0; while (priv->tx_desc_count < priv->tx_ring_size) { struct bcm_enet_desc *desc; struct sk_buff *skb; /* We run in a bh and fight against start_xmit, which * is called with bh disabled */ spin_lock(&priv->tx_lock); desc = &priv->tx_desc_cpu[priv->tx_dirty_desc]; if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) { spin_unlock(&priv->tx_lock); break; } /* ensure other field of the descriptor were not read * before we checked ownership */ rmb(); skb = priv->tx_skb[priv->tx_dirty_desc]; priv->tx_skb[priv->tx_dirty_desc] = NULL; dma_unmap_single(&priv->pdev->dev, desc->address, skb->len, DMA_TO_DEVICE); priv->tx_dirty_desc++; if (priv->tx_dirty_desc == priv->tx_ring_size) priv->tx_dirty_desc = 0; priv->tx_desc_count++; spin_unlock(&priv->tx_lock); if (desc->len_stat & DMADESC_UNDER_MASK) priv->stats.tx_errors++; dev_kfree_skb(skb); released++; } if (netif_queue_stopped(dev) && released) netif_wake_queue(dev); return released; } /* * poll func, called by network core */ static int bcm_enet_poll(struct napi_struct *napi, int budget) { struct bcm_enet_priv *priv; struct net_device *dev; int tx_work_done, rx_work_done; priv = container_of(napi, struct bcm_enet_priv, napi); dev = priv->net_dev; /* ack interrupts */ enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IR_REG(priv->rx_chan)); enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IR_REG(priv->tx_chan)); /* reclaim sent skb */ tx_work_done = bcm_enet_tx_reclaim(dev, 0); spin_lock(&priv->rx_lock); rx_work_done = bcm_enet_receive_queue(dev, budget); spin_unlock(&priv->rx_lock); if (rx_work_done >= budget || tx_work_done > 0) { /* rx/tx queue is not yet empty/clean */ return rx_work_done; } /* no more packet in rx/tx queue, remove device from poll * queue */ napi_complete(napi); /* restore rx/tx interrupt */ enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IRMASK_REG(priv->rx_chan)); enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IRMASK_REG(priv->tx_chan)); return rx_work_done; } /* * mac interrupt handler */ static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id) { struct net_device *dev; struct bcm_enet_priv *priv; u32 stat; dev = dev_id; priv = netdev_priv(dev); stat = enet_readl(priv, ENET_IR_REG); if (!(stat & ENET_IR_MIB)) return IRQ_NONE; /* clear & mask interrupt */ enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); enet_writel(priv, 0, ENET_IRMASK_REG); /* read mib registers in workqueue */ schedule_work(&priv->mib_update_task); return IRQ_HANDLED; } /* * rx/tx dma interrupt handler */ static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id) { struct net_device *dev; struct bcm_enet_priv *priv; dev = dev_id; priv = netdev_priv(dev); /* mask rx/tx interrupts */ enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); napi_schedule(&priv->napi); return IRQ_HANDLED; } /* * tx request callback */ static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct bcm_enet_priv *priv; struct bcm_enet_desc *desc; u32 len_stat; int ret; priv = netdev_priv(dev); /* lock against tx reclaim */ spin_lock(&priv->tx_lock); /* make sure the tx hw queue is not full, should not happen * since we stop queue before it's the case */ if (unlikely(!priv->tx_desc_count)) { netif_stop_queue(dev); dev_err(&priv->pdev->dev, "xmit called with no tx desc " "available?\n"); ret = NETDEV_TX_BUSY; goto out_unlock; } /* point to the next available desc */ desc = &priv->tx_desc_cpu[priv->tx_curr_desc]; priv->tx_skb[priv->tx_curr_desc] = skb; /* fill descriptor */ desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK; len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC | DMADESC_OWNER_MASK; priv->tx_curr_desc++; if (priv->tx_curr_desc == priv->tx_ring_size) { priv->tx_curr_desc = 0; len_stat |= DMADESC_WRAP_MASK; } priv->tx_desc_count--; /* dma might be already polling, make sure we update desc * fields in correct order */ wmb(); desc->len_stat = len_stat; wmb(); /* kick tx dma */ enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, ENETDMA_CHANCFG_REG(priv->tx_chan)); /* stop queue if no more desc available */ if (!priv->tx_desc_count) netif_stop_queue(dev); priv->stats.tx_bytes += skb->len; priv->stats.tx_packets++; dev->trans_start = jiffies; ret = NETDEV_TX_OK; out_unlock: spin_unlock(&priv->tx_lock); return ret; } /* * Change the interface's mac address. */ static int bcm_enet_set_mac_address(struct net_device *dev, void *p) { struct bcm_enet_priv *priv; struct sockaddr *addr = p; u32 val; priv = netdev_priv(dev); memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); /* use perfect match register 0 to store my mac address */ val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) | (dev->dev_addr[4] << 8) | dev->dev_addr[5]; enet_writel(priv, val, ENET_PML_REG(0)); val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]); val |= ENET_PMH_DATAVALID_MASK; enet_writel(priv, val, ENET_PMH_REG(0)); return 0; } /* * Change rx mode (promiscous/allmulti) and update multicast list */ static void bcm_enet_set_multicast_list(struct net_device *dev) { struct bcm_enet_priv *priv; struct dev_mc_list *mc_list; u32 val; int i; priv = netdev_priv(dev); val = enet_readl(priv, ENET_RXCFG_REG); if (dev->flags & IFF_PROMISC) val |= ENET_RXCFG_PROMISC_MASK; else val &= ~ENET_RXCFG_PROMISC_MASK; /* only 3 perfect match registers left, first one is used for * own mac address */ if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > 3) val |= ENET_RXCFG_ALLMCAST_MASK; else val &= ~ENET_RXCFG_ALLMCAST_MASK; /* no need to set perfect match registers if we catch all * multicast */ if (val & ENET_RXCFG_ALLMCAST_MASK) { enet_writel(priv, val, ENET_RXCFG_REG); return; } for (i = 0, mc_list = dev->mc_list; (mc_list != NULL) && (i < dev->mc_count) && (i < 3); i++, mc_list = mc_list->next) { u8 *dmi_addr; u32 tmp; /* filter non ethernet address */ if (mc_list->dmi_addrlen != 6) continue; /* update perfect match registers */ dmi_addr = mc_list->dmi_addr; tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) | (dmi_addr[4] << 8) | dmi_addr[5]; enet_writel(priv, tmp, ENET_PML_REG(i + 1)); tmp = (dmi_addr[0] << 8 | dmi_addr[1]); tmp |= ENET_PMH_DATAVALID_MASK; enet_writel(priv, tmp, ENET_PMH_REG(i + 1)); } for (; i < 3; i++) { enet_writel(priv, 0, ENET_PML_REG(i + 1)); enet_writel(priv, 0, ENET_PMH_REG(i + 1)); } enet_writel(priv, val, ENET_RXCFG_REG); } /* * set mac duplex parameters */ static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex) { u32 val; val = enet_readl(priv, ENET_TXCTL_REG); if (fullduplex) val |= ENET_TXCTL_FD_MASK; else val &= ~ENET_TXCTL_FD_MASK; enet_writel(priv, val, ENET_TXCTL_REG); } /* * set mac flow control parameters */ static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en) { u32 val; /* rx flow control (pause frame handling) */ val = enet_readl(priv, ENET_RXCFG_REG); if (rx_en) val |= ENET_RXCFG_ENFLOW_MASK; else val &= ~ENET_RXCFG_ENFLOW_MASK; enet_writel(priv, val, ENET_RXCFG_REG); /* tx flow control (pause frame generation) */ val = enet_dma_readl(priv, ENETDMA_CFG_REG); if (tx_en) val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); else val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan); enet_dma_writel(priv, val, ENETDMA_CFG_REG); } /* * link changed callback (from phylib) */ static void bcm_enet_adjust_phy_link(struct net_device *dev) { struct bcm_enet_priv *priv; struct phy_device *phydev; int status_changed; priv = netdev_priv(dev); phydev = priv->phydev; status_changed = 0; if (priv->old_link != phydev->link) { status_changed = 1; priv->old_link = phydev->link; } /* reflect duplex change in mac configuration */ if (phydev->link && phydev->duplex != priv->old_duplex) { bcm_enet_set_duplex(priv, (phydev->duplex == DUPLEX_FULL) ? 1 : 0); status_changed = 1; priv->old_duplex = phydev->duplex; } /* enable flow control if remote advertise it (trust phylib to * check that duplex is full */ if (phydev->link && phydev->pause != priv->old_pause) { int rx_pause_en, tx_pause_en; if (phydev->pause) { /* pause was advertised by lpa and us */ rx_pause_en = 1; tx_pause_en = 1; } else if (!priv->pause_auto) { /* pause setting overrided by user */ rx_pause_en = priv->pause_rx; tx_pause_en = priv->pause_tx; } else { rx_pause_en = 0; tx_pause_en = 0; } bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en); status_changed = 1; priv->old_pause = phydev->pause; } if (status_changed) { pr_info("%s: link %s", dev->name, phydev->link ? "UP" : "DOWN"); if (phydev->link) pr_cont(" - %d/%s - flow control %s", phydev->speed, DUPLEX_FULL == phydev->duplex ? "full" : "half", phydev->pause == 1 ? "rx&tx" : "off"); pr_cont("\n"); } } /* * link changed callback (if phylib is not used) */ static void bcm_enet_adjust_link(struct net_device *dev) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); bcm_enet_set_duplex(priv, priv->force_duplex_full); bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx); netif_carrier_on(dev); pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n", dev->name, priv->force_speed_100 ? 100 : 10, priv->force_duplex_full ? "full" : "half", priv->pause_rx ? "rx" : "off", priv->pause_tx ? "tx" : "off"); } /* * open callback, allocate dma rings & buffers and start rx operation */ static int bcm_enet_open(struct net_device *dev) { struct bcm_enet_priv *priv; struct sockaddr addr; struct device *kdev; struct phy_device *phydev; int i, ret; unsigned int size; char phy_id[MII_BUS_ID_SIZE + 3]; void *p; u32 val; priv = netdev_priv(dev); kdev = &priv->pdev->dev; if (priv->has_phy) { /* connect to PHY */ snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT, priv->mac_id ? "1" : "0", priv->phy_id); phydev = phy_connect(dev, phy_id, &bcm_enet_adjust_phy_link, 0, PHY_INTERFACE_MODE_MII); if (IS_ERR(phydev)) { dev_err(kdev, "could not attach to PHY\n"); return PTR_ERR(phydev); } /* mask with MAC supported features */ phydev->supported &= (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_Pause | SUPPORTED_MII); phydev->advertising = phydev->supported; if (priv->pause_auto && priv->pause_rx && priv->pause_tx) phydev->advertising |= SUPPORTED_Pause; else phydev->advertising &= ~SUPPORTED_Pause; dev_info(kdev, "attached PHY at address %d [%s]\n", phydev->addr, phydev->drv->name); priv->old_link = 0; priv->old_duplex = -1; priv->old_pause = -1; priv->phydev = phydev; } /* mask all interrupts and request them */ enet_writel(priv, 0, ENET_IRMASK_REG); enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev); if (ret) goto out_phy_disconnect; ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, IRQF_SAMPLE_RANDOM | IRQF_DISABLED, dev->name, dev); if (ret) goto out_freeirq; ret = request_irq(priv->irq_tx, bcm_enet_isr_dma, IRQF_DISABLED, dev->name, dev); if (ret) goto out_freeirq_rx; /* initialize perfect match registers */ for (i = 0; i < 4; i++) { enet_writel(priv, 0, ENET_PML_REG(i)); enet_writel(priv, 0, ENET_PMH_REG(i)); } /* write device mac address */ memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN); bcm_enet_set_mac_address(dev, &addr); /* allocate rx dma ring */ size = priv->rx_ring_size * sizeof(struct bcm_enet_desc); p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL); if (!p) { dev_err(kdev, "cannot allocate rx ring %u\n", size); ret = -ENOMEM; goto out_freeirq_tx; } memset(p, 0, size); priv->rx_desc_alloc_size = size; priv->rx_desc_cpu = p; /* allocate tx dma ring */ size = priv->tx_ring_size * sizeof(struct bcm_enet_desc); p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL); if (!p) { dev_err(kdev, "cannot allocate tx ring\n"); ret = -ENOMEM; goto out_free_rx_ring; } memset(p, 0, size); priv->tx_desc_alloc_size = size; priv->tx_desc_cpu = p; priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size, GFP_KERNEL); if (!priv->tx_skb) { dev_err(kdev, "cannot allocate rx skb queue\n"); ret = -ENOMEM; goto out_free_tx_ring; } priv->tx_desc_count = priv->tx_ring_size; priv->tx_dirty_desc = 0; priv->tx_curr_desc = 0; spin_lock_init(&priv->tx_lock); /* init & fill rx ring with skbs */ priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size, GFP_KERNEL); if (!priv->rx_skb) { dev_err(kdev, "cannot allocate rx skb queue\n"); ret = -ENOMEM; goto out_free_tx_skb; } priv->rx_desc_count = 0; priv->rx_dirty_desc = 0; priv->rx_curr_desc = 0; /* initialize flow control buffer allocation */ enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0, ENETDMA_BUFALLOC_REG(priv->rx_chan)); if (bcm_enet_refill_rx(dev)) { dev_err(kdev, "cannot allocate rx skb queue\n"); ret = -ENOMEM; goto out; } /* write rx & tx ring addresses */ enet_dma_writel(priv, priv->rx_desc_dma, ENETDMA_RSTART_REG(priv->rx_chan)); enet_dma_writel(priv, priv->tx_desc_dma, ENETDMA_RSTART_REG(priv->tx_chan)); /* clear remaining state ram for rx & tx channel */ enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_SRAM2_REG(priv->tx_chan)); enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_SRAM3_REG(priv->tx_chan)); enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_SRAM4_REG(priv->tx_chan)); /* set max rx/tx length */ enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG); enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG); /* set dma maximum burst len */ enet_dma_writel(priv, BCMENET_DMA_MAXBURST, ENETDMA_MAXBURST_REG(priv->rx_chan)); enet_dma_writel(priv, BCMENET_DMA_MAXBURST, ENETDMA_MAXBURST_REG(priv->tx_chan)); /* set correct transmit fifo watermark */ enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG); /* set flow control low/high threshold to 1/3 / 2/3 */ val = priv->rx_ring_size / 3; enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan)); val = (priv->rx_ring_size * 2) / 3; enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan)); /* all set, enable mac and interrupts, start dma engine and * kick rx dma channel */ wmb(); enet_writel(priv, ENET_CTL_ENABLE_MASK, ENET_CTL_REG); enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG); enet_dma_writel(priv, ENETDMA_CHANCFG_EN_MASK, ENETDMA_CHANCFG_REG(priv->rx_chan)); /* watch "mib counters about to overflow" interrupt */ enet_writel(priv, ENET_IR_MIB, ENET_IR_REG); enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); /* watch "packet transferred" interrupt in rx and tx */ enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IR_REG(priv->rx_chan)); enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IR_REG(priv->tx_chan)); /* make sure we enable napi before rx interrupt */ napi_enable(&priv->napi); enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IRMASK_REG(priv->rx_chan)); enet_dma_writel(priv, ENETDMA_IR_PKTDONE_MASK, ENETDMA_IRMASK_REG(priv->tx_chan)); if (priv->has_phy) phy_start(priv->phydev); else bcm_enet_adjust_link(dev); netif_start_queue(dev); return 0; out: for (i = 0; i < priv->rx_ring_size; i++) { struct bcm_enet_desc *desc; if (!priv->rx_skb[i]) continue; desc = &priv->rx_desc_cpu[i]; dma_unmap_single(kdev, desc->address, priv->rx_skb_size, DMA_FROM_DEVICE); kfree_skb(priv->rx_skb[i]); } kfree(priv->rx_skb); out_free_tx_skb: kfree(priv->tx_skb); out_free_tx_ring: dma_free_coherent(kdev, priv->tx_desc_alloc_size, priv->tx_desc_cpu, priv->tx_desc_dma); out_free_rx_ring: dma_free_coherent(kdev, priv->rx_desc_alloc_size, priv->rx_desc_cpu, priv->rx_desc_dma); out_freeirq_tx: free_irq(priv->irq_tx, dev); out_freeirq_rx: free_irq(priv->irq_rx, dev); out_freeirq: free_irq(dev->irq, dev); out_phy_disconnect: phy_disconnect(priv->phydev); return ret; } /* * disable mac */ static void bcm_enet_disable_mac(struct bcm_enet_priv *priv) { int limit; u32 val; val = enet_readl(priv, ENET_CTL_REG); val |= ENET_CTL_DISABLE_MASK; enet_writel(priv, val, ENET_CTL_REG); limit = 1000; do { u32 val; val = enet_readl(priv, ENET_CTL_REG); if (!(val & ENET_CTL_DISABLE_MASK)) break; udelay(1); } while (limit--); } /* * disable dma in given channel */ static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan) { int limit; enet_dma_writel(priv, 0, ENETDMA_CHANCFG_REG(chan)); limit = 1000; do { u32 val; val = enet_dma_readl(priv, ENETDMA_CHANCFG_REG(chan)); if (!(val & ENETDMA_CHANCFG_EN_MASK)) break; udelay(1); } while (limit--); } /* * stop callback */ static int bcm_enet_stop(struct net_device *dev) { struct bcm_enet_priv *priv; struct device *kdev; int i; priv = netdev_priv(dev); kdev = &priv->pdev->dev; netif_stop_queue(dev); napi_disable(&priv->napi); if (priv->has_phy) phy_stop(priv->phydev); del_timer_sync(&priv->rx_timeout); /* mask all interrupts */ enet_writel(priv, 0, ENET_IRMASK_REG); enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->rx_chan)); enet_dma_writel(priv, 0, ENETDMA_IRMASK_REG(priv->tx_chan)); /* make sure no mib update is scheduled */ flush_scheduled_work(); /* disable dma & mac */ bcm_enet_disable_dma(priv, priv->tx_chan); bcm_enet_disable_dma(priv, priv->rx_chan); bcm_enet_disable_mac(priv); /* force reclaim of all tx buffers */ bcm_enet_tx_reclaim(dev, 1); /* free the rx skb ring */ for (i = 0; i < priv->rx_ring_size; i++) { struct bcm_enet_desc *desc; if (!priv->rx_skb[i]) continue; desc = &priv->rx_desc_cpu[i]; dma_unmap_single(kdev, desc->address, priv->rx_skb_size, DMA_FROM_DEVICE); kfree_skb(priv->rx_skb[i]); } /* free remaining allocated memory */ kfree(priv->rx_skb); kfree(priv->tx_skb); dma_free_coherent(kdev, priv->rx_desc_alloc_size, priv->rx_desc_cpu, priv->rx_desc_dma); dma_free_coherent(kdev, priv->tx_desc_alloc_size, priv->tx_desc_cpu, priv->tx_desc_dma); free_irq(priv->irq_tx, dev); free_irq(priv->irq_rx, dev); free_irq(dev->irq, dev); /* release phy */ if (priv->has_phy) { phy_disconnect(priv->phydev); priv->phydev = NULL; } return 0; } /* * core request to return device rx/tx stats */ static struct net_device_stats *bcm_enet_get_stats(struct net_device *dev) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); return &priv->stats; } /* * ethtool callbacks */ struct bcm_enet_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; int mib_reg; }; #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \ offsetof(struct bcm_enet_priv, m) static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = { { "rx_packets", GEN_STAT(stats.rx_packets), -1 }, { "tx_packets", GEN_STAT(stats.tx_packets), -1 }, { "rx_bytes", GEN_STAT(stats.rx_bytes), -1 }, { "tx_bytes", GEN_STAT(stats.tx_bytes), -1 }, { "rx_errors", GEN_STAT(stats.rx_errors), -1 }, { "tx_errors", GEN_STAT(stats.tx_errors), -1 }, { "rx_dropped", GEN_STAT(stats.rx_dropped), -1 }, { "tx_dropped", GEN_STAT(stats.tx_dropped), -1 }, { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS}, { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS }, { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST }, { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT }, { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 }, { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 }, { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 }, { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 }, { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 }, { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX }, { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB }, { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR }, { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG }, { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP }, { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN }, { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND }, { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC }, { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN }, { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM }, { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE }, { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL }, { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS }, { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS }, { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST }, { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT }, { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 }, { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 }, { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 }, { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 }, { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023}, { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX }, { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB }, { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR }, { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG }, { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN }, { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL }, { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL }, { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL }, { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL }, { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE }, { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF }, { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS }, { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE }, }; #define BCM_ENET_STATS_LEN \ (sizeof(bcm_enet_gstrings_stats) / sizeof(struct bcm_enet_stats)) static const u32 unused_mib_regs[] = { ETH_MIB_TX_ALL_OCTETS, ETH_MIB_TX_ALL_PKTS, ETH_MIB_RX_ALL_OCTETS, ETH_MIB_RX_ALL_PKTS, }; static void bcm_enet_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { strncpy(drvinfo->driver, bcm_enet_driver_name, 32); strncpy(drvinfo->version, bcm_enet_driver_version, 32); strncpy(drvinfo->fw_version, "N/A", 32); strncpy(drvinfo->bus_info, "bcm63xx", 32); drvinfo->n_stats = BCM_ENET_STATS_LEN; } static int bcm_enet_get_sset_count(struct net_device *netdev, int string_set) { switch (string_set) { case ETH_SS_STATS: return BCM_ENET_STATS_LEN; default: return -EINVAL; } } static void bcm_enet_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < BCM_ENET_STATS_LEN; i++) { memcpy(data + i * ETH_GSTRING_LEN, bcm_enet_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); } break; } } static void update_mib_counters(struct bcm_enet_priv *priv) { int i; for (i = 0; i < BCM_ENET_STATS_LEN; i++) { const struct bcm_enet_stats *s; u32 val; char *p; s = &bcm_enet_gstrings_stats[i]; if (s->mib_reg == -1) continue; val = enet_readl(priv, ENET_MIB_REG(s->mib_reg)); p = (char *)priv + s->stat_offset; if (s->sizeof_stat == sizeof(u64)) *(u64 *)p += val; else *(u32 *)p += val; } /* also empty unused mib counters to make sure mib counter * overflow interrupt is cleared */ for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++) (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i])); } static void bcm_enet_update_mib_counters_defer(struct work_struct *t) { struct bcm_enet_priv *priv; priv = container_of(t, struct bcm_enet_priv, mib_update_task); mutex_lock(&priv->mib_update_lock); update_mib_counters(priv); mutex_unlock(&priv->mib_update_lock); /* reenable mib interrupt */ if (netif_running(priv->net_dev)) enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG); } static void bcm_enet_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct bcm_enet_priv *priv; int i; priv = netdev_priv(netdev); mutex_lock(&priv->mib_update_lock); update_mib_counters(priv); for (i = 0; i < BCM_ENET_STATS_LEN; i++) { const struct bcm_enet_stats *s; char *p; s = &bcm_enet_gstrings_stats[i]; p = (char *)priv + s->stat_offset; data[i] = (s->sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } mutex_unlock(&priv->mib_update_lock); } static int bcm_enet_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); cmd->maxrxpkt = 0; cmd->maxtxpkt = 0; if (priv->has_phy) { if (!priv->phydev) return -ENODEV; return phy_ethtool_gset(priv->phydev, cmd); } else { cmd->autoneg = 0; cmd->speed = (priv->force_speed_100) ? SPEED_100 : SPEED_10; cmd->duplex = (priv->force_duplex_full) ? DUPLEX_FULL : DUPLEX_HALF; cmd->supported = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; cmd->advertising = 0; cmd->port = PORT_MII; cmd->transceiver = XCVR_EXTERNAL; } return 0; } static int bcm_enet_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); if (priv->has_phy) { if (!priv->phydev) return -ENODEV; return phy_ethtool_sset(priv->phydev, cmd); } else { if (cmd->autoneg || (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) || cmd->port != PORT_MII) return -EINVAL; priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0; priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0; if (netif_running(dev)) bcm_enet_adjust_link(dev); return 0; } } static void bcm_enet_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); /* rx/tx ring is actually only limited by memory */ ering->rx_max_pending = 8192; ering->tx_max_pending = 8192; ering->rx_mini_max_pending = 0; ering->rx_jumbo_max_pending = 0; ering->rx_pending = priv->rx_ring_size; ering->tx_pending = priv->tx_ring_size; } static int bcm_enet_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering) { struct bcm_enet_priv *priv; int was_running; priv = netdev_priv(dev); was_running = 0; if (netif_running(dev)) { bcm_enet_stop(dev); was_running = 1; } priv->rx_ring_size = ering->rx_pending; priv->tx_ring_size = ering->tx_pending; if (was_running) { int err; err = bcm_enet_open(dev); if (err) dev_close(dev); else bcm_enet_set_multicast_list(dev); } return 0; } static void bcm_enet_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); ecmd->autoneg = priv->pause_auto; ecmd->rx_pause = priv->pause_rx; ecmd->tx_pause = priv->pause_tx; } static int bcm_enet_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *ecmd) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); if (priv->has_phy) { if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) { /* asymetric pause mode not supported, * actually possible but integrated PHY has RO * asym_pause bit */ return -EINVAL; } } else { /* no pause autoneg on direct mii connection */ if (ecmd->autoneg) return -EINVAL; } priv->pause_auto = ecmd->autoneg; priv->pause_rx = ecmd->rx_pause; priv->pause_tx = ecmd->tx_pause; return 0; } static struct ethtool_ops bcm_enet_ethtool_ops = { .get_strings = bcm_enet_get_strings, .get_sset_count = bcm_enet_get_sset_count, .get_ethtool_stats = bcm_enet_get_ethtool_stats, .get_settings = bcm_enet_get_settings, .set_settings = bcm_enet_set_settings, .get_drvinfo = bcm_enet_get_drvinfo, .get_link = ethtool_op_get_link, .get_ringparam = bcm_enet_get_ringparam, .set_ringparam = bcm_enet_set_ringparam, .get_pauseparam = bcm_enet_get_pauseparam, .set_pauseparam = bcm_enet_set_pauseparam, }; static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct bcm_enet_priv *priv; priv = netdev_priv(dev); if (priv->has_phy) { if (!priv->phydev) return -ENODEV; return phy_mii_ioctl(priv->phydev, if_mii(rq), cmd); } else { struct mii_if_info mii; mii.dev = dev; mii.mdio_read = bcm_enet_mdio_read_mii; mii.mdio_write = bcm_enet_mdio_write_mii; mii.phy_id = 0; mii.phy_id_mask = 0x3f; mii.reg_num_mask = 0x1f; return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL); } } /* * calculate actual hardware mtu */ static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu) { int actual_mtu; actual_mtu = mtu; /* add ethernet header + vlan tag size */ actual_mtu += VLAN_ETH_HLEN; if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU) return -EINVAL; /* * setup maximum size before we get overflow mark in * descriptor, note that this will not prevent reception of * big frames, they will be split into multiple buffers * anyway */ priv->hw_mtu = actual_mtu; /* * align rx buffer size to dma burst len, account FCS since * it's appended */ priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN, BCMENET_DMA_MAXBURST * 4); return 0; } /* * adjust mtu, can't be called while device is running */ static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu) { int ret; if (netif_running(dev)) return -EBUSY; ret = compute_hw_mtu(netdev_priv(dev), new_mtu); if (ret) return ret; dev->mtu = new_mtu; return 0; } /* * preinit hardware to allow mii operation while device is down */ static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv) { u32 val; int limit; /* make sure mac is disabled */ bcm_enet_disable_mac(priv); /* soft reset mac */ val = ENET_CTL_SRESET_MASK; enet_writel(priv, val, ENET_CTL_REG); wmb(); limit = 1000; do { val = enet_readl(priv, ENET_CTL_REG); if (!(val & ENET_CTL_SRESET_MASK)) break; udelay(1); } while (limit--); /* select correct mii interface */ val = enet_readl(priv, ENET_CTL_REG); if (priv->use_external_mii) val |= ENET_CTL_EPHYSEL_MASK; else val &= ~ENET_CTL_EPHYSEL_MASK; enet_writel(priv, val, ENET_CTL_REG); /* turn on mdc clock */ enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) | ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG); /* set mib counters to self-clear when read */ val = enet_readl(priv, ENET_MIBCTL_REG); val |= ENET_MIBCTL_RDCLEAR_MASK; enet_writel(priv, val, ENET_MIBCTL_REG); } static const struct net_device_ops bcm_enet_ops = { .ndo_open = bcm_enet_open, .ndo_stop = bcm_enet_stop, .ndo_start_xmit = bcm_enet_start_xmit, .ndo_get_stats = bcm_enet_get_stats, .ndo_set_mac_address = bcm_enet_set_mac_address, .ndo_set_multicast_list = bcm_enet_set_multicast_list, .ndo_do_ioctl = bcm_enet_ioctl, .ndo_change_mtu = bcm_enet_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = bcm_enet_netpoll, #endif }; /* * allocate netdevice, request register memory and register device. */ static int __devinit bcm_enet_probe(struct platform_device *pdev) { struct bcm_enet_priv *priv; struct net_device *dev; struct bcm63xx_enet_platform_data *pd; struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx; struct mii_bus *bus; const char *clk_name; unsigned int iomem_size; int i, ret; /* stop if shared driver failed, assume driver->probe will be * called in the same order we register devices (correct ?) */ if (!bcm_enet_shared_base) return -ENODEV; res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1); res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2); if (!res_mem || !res_irq || !res_irq_rx || !res_irq_tx) return -ENODEV; ret = 0; dev = alloc_etherdev(sizeof(*priv)); if (!dev) return -ENOMEM; priv = netdev_priv(dev); memset(priv, 0, sizeof(*priv)); ret = compute_hw_mtu(priv, dev->mtu); if (ret) goto out; iomem_size = res_mem->end - res_mem->start + 1; if (!request_mem_region(res_mem->start, iomem_size, "bcm63xx_enet")) { ret = -EBUSY; goto out; } priv->base = ioremap(res_mem->start, iomem_size); if (priv->base == NULL) { ret = -ENOMEM; goto out_release_mem; } dev->irq = priv->irq = res_irq->start; priv->irq_rx = res_irq_rx->start; priv->irq_tx = res_irq_tx->start; priv->mac_id = pdev->id; /* get rx & tx dma channel id for this mac */ if (priv->mac_id == 0) { priv->rx_chan = 0; priv->tx_chan = 1; clk_name = "enet0"; } else { priv->rx_chan = 2; priv->tx_chan = 3; clk_name = "enet1"; } priv->mac_clk = clk_get(&pdev->dev, clk_name); if (IS_ERR(priv->mac_clk)) { ret = PTR_ERR(priv->mac_clk); goto out_unmap; } clk_enable(priv->mac_clk); /* initialize default and fetch platform data */ priv->rx_ring_size = BCMENET_DEF_RX_DESC; priv->tx_ring_size = BCMENET_DEF_TX_DESC; pd = pdev->dev.platform_data; if (pd) { memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN); priv->has_phy = pd->has_phy; priv->phy_id = pd->phy_id; priv->has_phy_interrupt = pd->has_phy_interrupt; priv->phy_interrupt = pd->phy_interrupt; priv->use_external_mii = !pd->use_internal_phy; priv->pause_auto = pd->pause_auto; priv->pause_rx = pd->pause_rx; priv->pause_tx = pd->pause_tx; priv->force_duplex_full = pd->force_duplex_full; priv->force_speed_100 = pd->force_speed_100; } if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) { /* using internal PHY, enable clock */ priv->phy_clk = clk_get(&pdev->dev, "ephy"); if (IS_ERR(priv->phy_clk)) { ret = PTR_ERR(priv->phy_clk); priv->phy_clk = NULL; goto out_put_clk_mac; } clk_enable(priv->phy_clk); } /* do minimal hardware init to be able to probe mii bus */ bcm_enet_hw_preinit(priv); /* MII bus registration */ if (priv->has_phy) { priv->mii_bus = mdiobus_alloc(); if (!priv->mii_bus) { ret = -ENOMEM; goto out_uninit_hw; } bus = priv->mii_bus; bus->name = "bcm63xx_enet MII bus"; bus->parent = &pdev->dev; bus->priv = priv; bus->read = bcm_enet_mdio_read_phylib; bus->write = bcm_enet_mdio_write_phylib; sprintf(bus->id, "%d", priv->mac_id); /* only probe bus where we think the PHY is, because * the mdio read operation return 0 instead of 0xffff * if a slave is not present on hw */ bus->phy_mask = ~(1 << priv->phy_id); bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); if (!bus->irq) { ret = -ENOMEM; goto out_free_mdio; } if (priv->has_phy_interrupt) bus->irq[priv->phy_id] = priv->phy_interrupt; else bus->irq[priv->phy_id] = PHY_POLL; ret = mdiobus_register(bus); if (ret) { dev_err(&pdev->dev, "unable to register mdio bus\n"); goto out_free_mdio; } } else { /* run platform code to initialize PHY device */ if (pd->mii_config && pd->mii_config(dev, 1, bcm_enet_mdio_read_mii, bcm_enet_mdio_write_mii)) { dev_err(&pdev->dev, "unable to configure mdio bus\n"); goto out_uninit_hw; } } spin_lock_init(&priv->rx_lock); /* init rx timeout (used for oom) */ init_timer(&priv->rx_timeout); priv->rx_timeout.function = bcm_enet_refill_rx_timer; priv->rx_timeout.data = (unsigned long)dev; /* init the mib update lock&work */ mutex_init(&priv->mib_update_lock); INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer); /* zero mib counters */ for (i = 0; i < ENET_MIB_REG_COUNT; i++) enet_writel(priv, 0, ENET_MIB_REG(i)); /* register netdevice */ dev->netdev_ops = &bcm_enet_ops; netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16); SET_ETHTOOL_OPS(dev, &bcm_enet_ethtool_ops); SET_NETDEV_DEV(dev, &pdev->dev); ret = register_netdev(dev); if (ret) goto out_unregister_mdio; netif_carrier_off(dev); platform_set_drvdata(pdev, dev); priv->pdev = pdev; priv->net_dev = dev; return 0; out_unregister_mdio: if (priv->mii_bus) { mdiobus_unregister(priv->mii_bus); kfree(priv->mii_bus->irq); } out_free_mdio: if (priv->mii_bus) mdiobus_free(priv->mii_bus); out_uninit_hw: /* turn off mdc clock */ enet_writel(priv, 0, ENET_MIISC_REG); if (priv->phy_clk) { clk_disable(priv->phy_clk); clk_put(priv->phy_clk); } out_put_clk_mac: clk_disable(priv->mac_clk); clk_put(priv->mac_clk); out_unmap: iounmap(priv->base); out_release_mem: release_mem_region(res_mem->start, iomem_size); out: free_netdev(dev); return ret; } /* * exit func, stops hardware and unregisters netdevice */ static int __devexit bcm_enet_remove(struct platform_device *pdev) { struct bcm_enet_priv *priv; struct net_device *dev; struct resource *res; /* stop netdevice */ dev = platform_get_drvdata(pdev); priv = netdev_priv(dev); unregister_netdev(dev); /* turn off mdc clock */ enet_writel(priv, 0, ENET_MIISC_REG); if (priv->has_phy) { mdiobus_unregister(priv->mii_bus); kfree(priv->mii_bus->irq); mdiobus_free(priv->mii_bus); } else { struct bcm63xx_enet_platform_data *pd; pd = pdev->dev.platform_data; if (pd && pd->mii_config) pd->mii_config(dev, 0, bcm_enet_mdio_read_mii, bcm_enet_mdio_write_mii); } /* release device resources */ iounmap(priv->base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, res->end - res->start + 1); /* disable hw block clocks */ if (priv->phy_clk) { clk_disable(priv->phy_clk); clk_put(priv->phy_clk); } clk_disable(priv->mac_clk); clk_put(priv->mac_clk); platform_set_drvdata(pdev, NULL); free_netdev(dev); return 0; } struct platform_driver bcm63xx_enet_driver = { .probe = bcm_enet_probe, .remove = __devexit_p(bcm_enet_remove), .driver = { .name = "bcm63xx_enet", .owner = THIS_MODULE, }, }; /* * reserve & remap memory space shared between all macs */ static int __devinit bcm_enet_shared_probe(struct platform_device *pdev) { struct resource *res; unsigned int iomem_size; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; iomem_size = res->end - res->start + 1; if (!request_mem_region(res->start, iomem_size, "bcm63xx_enet_dma")) return -EBUSY; bcm_enet_shared_base = ioremap(res->start, iomem_size); if (!bcm_enet_shared_base) { release_mem_region(res->start, iomem_size); return -ENOMEM; } return 0; } static int __devexit bcm_enet_shared_remove(struct platform_device *pdev) { struct resource *res; iounmap(bcm_enet_shared_base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, res->end - res->start + 1); return 0; } /* * this "shared" driver is needed because both macs share a single * address space */ struct platform_driver bcm63xx_enet_shared_driver = { .probe = bcm_enet_shared_probe, .remove = __devexit_p(bcm_enet_shared_remove), .driver = { .name = "bcm63xx_enet_shared", .owner = THIS_MODULE, }, }; /* * entry point */ static int __init bcm_enet_init(void) { int ret; ret = platform_driver_register(&bcm63xx_enet_shared_driver); if (ret) return ret; ret = platform_driver_register(&bcm63xx_enet_driver); if (ret) platform_driver_unregister(&bcm63xx_enet_shared_driver); return ret; } static void __exit bcm_enet_exit(void) { platform_driver_unregister(&bcm63xx_enet_driver); platform_driver_unregister(&bcm63xx_enet_shared_driver); } module_init(bcm_enet_init); module_exit(bcm_enet_exit); MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver"); MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>"); MODULE_LICENSE("GPL");