/* * Copyright(c) 2007 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., 59 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "atl1e.h" #define DRV_VERSION "1.0.0.7-NAPI" char atl1e_driver_name[] = "ATL1E"; char atl1e_driver_version[] = DRV_VERSION; #define PCI_DEVICE_ID_ATTANSIC_L1E 0x1026 /* * atl1e_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static struct pci_device_id atl1e_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1E)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, 0x1066)}, /* required last entry */ { 0 } }; MODULE_DEVICE_TABLE(pci, atl1e_pci_tbl); MODULE_AUTHOR("Atheros Corporation, , Jie Yang "); MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter); static const u16 atl1e_rx_page_vld_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = { {REG_HOST_RXF0_PAGE0_VLD, REG_HOST_RXF0_PAGE1_VLD}, {REG_HOST_RXF1_PAGE0_VLD, REG_HOST_RXF1_PAGE1_VLD}, {REG_HOST_RXF2_PAGE0_VLD, REG_HOST_RXF2_PAGE1_VLD}, {REG_HOST_RXF3_PAGE0_VLD, REG_HOST_RXF3_PAGE1_VLD} }; static const u16 atl1e_rx_page_hi_addr_regs[AT_MAX_RECEIVE_QUEUE] = { REG_RXF0_BASE_ADDR_HI, REG_RXF1_BASE_ADDR_HI, REG_RXF2_BASE_ADDR_HI, REG_RXF3_BASE_ADDR_HI }; static const u16 atl1e_rx_page_lo_addr_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = { {REG_HOST_RXF0_PAGE0_LO, REG_HOST_RXF0_PAGE1_LO}, {REG_HOST_RXF1_PAGE0_LO, REG_HOST_RXF1_PAGE1_LO}, {REG_HOST_RXF2_PAGE0_LO, REG_HOST_RXF2_PAGE1_LO}, {REG_HOST_RXF3_PAGE0_LO, REG_HOST_RXF3_PAGE1_LO} }; static const u16 atl1e_rx_page_write_offset_regs[AT_MAX_RECEIVE_QUEUE][AT_PAGE_NUM_PER_QUEUE] = { {REG_HOST_RXF0_MB0_LO, REG_HOST_RXF0_MB1_LO}, {REG_HOST_RXF1_MB0_LO, REG_HOST_RXF1_MB1_LO}, {REG_HOST_RXF2_MB0_LO, REG_HOST_RXF2_MB1_LO}, {REG_HOST_RXF3_MB0_LO, REG_HOST_RXF3_MB1_LO} }; static const u16 atl1e_pay_load_size[] = { 128, 256, 512, 1024, 2048, 4096, }; /* * atl1e_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static inline void atl1e_irq_enable(struct atl1e_adapter *adapter) { if (likely(atomic_dec_and_test(&adapter->irq_sem))) { AT_WRITE_REG(&adapter->hw, REG_ISR, 0); AT_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); AT_WRITE_FLUSH(&adapter->hw); } } /* * atl1e_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static inline void atl1e_irq_disable(struct atl1e_adapter *adapter) { atomic_inc(&adapter->irq_sem); AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_FLUSH(&adapter->hw); synchronize_irq(adapter->pdev->irq); } /* * atl1e_irq_reset - reset interrupt confiure on the NIC * @adapter: board private structure */ static inline void atl1e_irq_reset(struct atl1e_adapter *adapter) { atomic_set(&adapter->irq_sem, 0); AT_WRITE_REG(&adapter->hw, REG_ISR, 0); AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_FLUSH(&adapter->hw); } /* * atl1e_phy_config - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl1e_phy_config(unsigned long data) { struct atl1e_adapter *adapter = (struct atl1e_adapter *) data; struct atl1e_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->mdio_lock, flags); atl1e_restart_autoneg(hw); spin_unlock_irqrestore(&adapter->mdio_lock, flags); } void atl1e_reinit_locked(struct atl1e_adapter *adapter) { WARN_ON(in_interrupt()); while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) msleep(1); atl1e_down(adapter); atl1e_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); } static void atl1e_reset_task(struct work_struct *work) { struct atl1e_adapter *adapter; adapter = container_of(work, struct atl1e_adapter, reset_task); atl1e_reinit_locked(adapter); } static int atl1e_check_link(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err = 0; u16 speed, duplex, phy_data; /* MII_BMSR must read twise */ atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); atl1e_read_phy_reg(hw, MII_BMSR, &phy_data); if ((phy_data & BMSR_LSTATUS) == 0) { /* link down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ u32 value; /* disable rx */ value = AT_READ_REG(hw, REG_MAC_CTRL); value &= ~MAC_CTRL_RX_EN; AT_WRITE_REG(hw, REG_MAC_CTRL, value); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } } else { /* Link Up */ err = atl1e_get_speed_and_duplex(hw, &speed, &duplex); if (unlikely(err)) return err; /* link result is our setting */ if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1e_setup_mac_ctrl(adapter); dev_info(&pdev->dev, "%s: %s NIC Link is Up<%d Mbps %s>\n", atl1e_driver_name, netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex"); } if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ netif_carrier_on(netdev); netif_wake_queue(netdev); } } return 0; } /* * atl1e_link_chg_task - deal with link change event Out of interrupt context * @netdev: network interface device structure */ static void atl1e_link_chg_task(struct work_struct *work) { struct atl1e_adapter *adapter; unsigned long flags; adapter = container_of(work, struct atl1e_adapter, link_chg_task); spin_lock_irqsave(&adapter->mdio_lock, flags); atl1e_check_link(adapter); spin_unlock_irqrestore(&adapter->mdio_lock, flags); } static void atl1e_link_chg_event(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; u16 phy_data = 0; u16 link_up = 0; spin_lock(&adapter->mdio_lock); atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); atl1e_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); spin_unlock(&adapter->mdio_lock); link_up = phy_data & BMSR_LSTATUS; /* notify upper layer link down ASAP */ if (!link_up) { if (netif_carrier_ok(netdev)) { /* old link state: Up */ dev_info(&pdev->dev, "%s: %s NIC Link is Down\n", atl1e_driver_name, netdev->name); adapter->link_speed = SPEED_0; netif_stop_queue(netdev); } } schedule_work(&adapter->link_chg_task); } static void atl1e_del_timer(struct atl1e_adapter *adapter) { del_timer_sync(&adapter->phy_config_timer); } static void atl1e_cancel_work(struct atl1e_adapter *adapter) { cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->link_chg_task); } /* * atl1e_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure */ static void atl1e_tx_timeout(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ schedule_work(&adapter->reset_task); } /* * atl1e_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. */ static void atl1e_set_multi(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct atl1e_hw *hw = &adapter->hw; struct dev_mc_list *mc_ptr; u32 mac_ctrl_data = 0; u32 hash_value; /* Check for Promiscuous and All Multicast modes */ mac_ctrl_data = AT_READ_REG(hw, REG_MAC_CTRL); if (netdev->flags & IFF_PROMISC) { mac_ctrl_data |= MAC_CTRL_PROMIS_EN; } else if (netdev->flags & IFF_ALLMULTI) { mac_ctrl_data |= MAC_CTRL_MC_ALL_EN; mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN; } else { mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); } AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); /* clear the old settings from the multicast hash table */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); /* comoute mc addresses' hash value ,and put it into hash table */ for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) { hash_value = atl1e_hash_mc_addr(hw, mc_ptr->dmi_addr); atl1e_hash_set(hw, hash_value); } } static void atl1e_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; u32 mac_ctrl_data = 0; dev_dbg(&pdev->dev, "atl1e_vlan_rx_register\n"); atl1e_irq_disable(adapter); adapter->vlgrp = grp; mac_ctrl_data = AT_READ_REG(&adapter->hw, REG_MAC_CTRL); if (grp) { /* enable VLAN tag insert/strip */ mac_ctrl_data |= MAC_CTRL_RMV_VLAN; } else { /* disable VLAN tag insert/strip */ mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN; } AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data); atl1e_irq_enable(adapter); } static void atl1e_restore_vlan(struct atl1e_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; dev_dbg(&pdev->dev, "atl1e_restore_vlan !"); atl1e_vlan_rx_register(adapter->netdev, adapter->vlgrp); } /* * atl1e_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int atl1e_set_mac_addr(struct net_device *netdev, void *p) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (netif_running(netdev)) return -EBUSY; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); atl1e_hw_set_mac_addr(&adapter->hw); return 0; } /* * atl1e_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl1e_change_mtu(struct net_device *netdev, int new_mtu) { struct atl1e_adapter *adapter = netdev_priv(netdev); int old_mtu = netdev->mtu; int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { dev_warn(&adapter->pdev->dev, "invalid MTU setting\n"); return -EINVAL; } /* set MTU */ if (old_mtu != new_mtu && netif_running(netdev)) { while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) msleep(1); netdev->mtu = new_mtu; adapter->hw.max_frame_size = new_mtu; adapter->hw.rx_jumbo_th = (max_frame + 7) >> 3; atl1e_down(adapter); atl1e_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); } return 0; } /* * caller should hold mdio_lock */ static int atl1e_mdio_read(struct net_device *netdev, int phy_id, int reg_num) { struct atl1e_adapter *adapter = netdev_priv(netdev); u16 result; atl1e_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result); return result; } static void atl1e_mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val) { struct atl1e_adapter *adapter = netdev_priv(netdev); atl1e_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val); } /* * atl1e_mii_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1e_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; int retval = 0; if (!netif_running(netdev)) return -EINVAL; spin_lock_irqsave(&adapter->mdio_lock, flags); switch (cmd) { case SIOCGMIIPHY: data->phy_id = 0; break; case SIOCGMIIREG: if (!capable(CAP_NET_ADMIN)) { retval = -EPERM; goto out; } if (atl1e_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) { retval = -EIO; goto out; } break; case SIOCSMIIREG: if (!capable(CAP_NET_ADMIN)) { retval = -EPERM; goto out; } if (data->reg_num & ~(0x1F)) { retval = -EFAULT; goto out; } dev_dbg(&pdev->dev, " write %x %x", data->reg_num, data->val_in); if (atl1e_write_phy_reg(&adapter->hw, data->reg_num, data->val_in)) { retval = -EIO; goto out; } break; default: retval = -EOPNOTSUPP; break; } out: spin_unlock_irqrestore(&adapter->mdio_lock, flags); return retval; } /* * atl1e_ioctl - * @netdev: * @ifreq: * @cmd: */ static int atl1e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return atl1e_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } static void atl1e_setup_pcicmd(struct pci_dev *pdev) { u16 cmd; pci_read_config_word(pdev, PCI_COMMAND, &cmd); cmd &= ~(PCI_COMMAND_INTX_DISABLE | PCI_COMMAND_IO); cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); pci_write_config_word(pdev, PCI_COMMAND, cmd); /* * some motherboards BIOS(PXE/EFI) driver may set PME * while they transfer control to OS (Windows/Linux) * so we should clear this bit before NIC work normally */ pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); msleep(1); } /* * atl1e_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * */ static int __devinit atl1e_alloc_queues(struct atl1e_adapter *adapter) { return 0; } /* * atl1e_sw_init - Initialize general software structures (struct atl1e_adapter) * @adapter: board private structure to initialize * * atl1e_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int __devinit atl1e_sw_init(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; u32 phy_status_data = 0; adapter->wol = 0; adapter->link_speed = SPEED_0; /* hardware init */ adapter->link_duplex = FULL_DUPLEX; adapter->num_rx_queues = 1; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); /* nic type */ if (hw->revision_id >= 0xF0) { hw->nic_type = athr_l2e_revB; } else { if (phy_status_data & PHY_STATUS_100M) hw->nic_type = athr_l1e; else hw->nic_type = athr_l2e_revA; } phy_status_data = AT_READ_REG(hw, REG_PHY_STATUS); if (phy_status_data & PHY_STATUS_EMI_CA) hw->emi_ca = true; else hw->emi_ca = false; hw->phy_configured = false; hw->preamble_len = 7; hw->max_frame_size = adapter->netdev->mtu; hw->rx_jumbo_th = (hw->max_frame_size + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + 7) >> 3; hw->rrs_type = atl1e_rrs_disable; hw->indirect_tab = 0; hw->base_cpu = 0; /* need confirm */ hw->ict = 50000; /* 100ms */ hw->smb_timer = 200000; /* 200ms */ hw->tpd_burst = 5; hw->rrd_thresh = 1; hw->tpd_thresh = adapter->tx_ring.count / 2; hw->rx_count_down = 4; /* 2us resolution */ hw->tx_count_down = hw->imt * 4 / 3; hw->dmar_block = atl1e_dma_req_1024; hw->dmaw_block = atl1e_dma_req_1024; hw->dmar_dly_cnt = 15; hw->dmaw_dly_cnt = 4; if (atl1e_alloc_queues(adapter)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } atomic_set(&adapter->irq_sem, 1); spin_lock_init(&adapter->mdio_lock); spin_lock_init(&adapter->tx_lock); set_bit(__AT_DOWN, &adapter->flags); return 0; } /* * atl1e_clean_tx_ring - Free Tx-skb * @adapter: board private structure */ static void atl1e_clean_tx_ring(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *) &adapter->tx_ring; struct atl1e_tx_buffer *tx_buffer = NULL; struct pci_dev *pdev = adapter->pdev; u16 index, ring_count; if (tx_ring->desc == NULL || tx_ring->tx_buffer == NULL) return; ring_count = tx_ring->count; /* first unmmap dma */ for (index = 0; index < ring_count; index++) { tx_buffer = &tx_ring->tx_buffer[index]; if (tx_buffer->dma) { pci_unmap_page(pdev, tx_buffer->dma, tx_buffer->length, PCI_DMA_TODEVICE); tx_buffer->dma = 0; } } /* second free skb */ for (index = 0; index < ring_count; index++) { tx_buffer = &tx_ring->tx_buffer[index]; if (tx_buffer->skb) { dev_kfree_skb_any(tx_buffer->skb); tx_buffer->skb = NULL; } } /* Zero out Tx-buffers */ memset(tx_ring->desc, 0, sizeof(struct atl1e_tpd_desc) * ring_count); memset(tx_ring->tx_buffer, 0, sizeof(struct atl1e_tx_buffer) * ring_count); } /* * atl1e_clean_rx_ring - Free rx-reservation skbs * @adapter: board private structure */ static void atl1e_clean_rx_ring(struct atl1e_adapter *adapter) { struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)&adapter->rx_ring; struct atl1e_rx_page_desc *rx_page_desc = rx_ring->rx_page_desc; u16 i, j; if (adapter->ring_vir_addr == NULL) return; /* Zero out the descriptor ring */ for (i = 0; i < adapter->num_rx_queues; i++) { for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { if (rx_page_desc[i].rx_page[j].addr != NULL) { memset(rx_page_desc[i].rx_page[j].addr, 0, rx_ring->real_page_size); } } } } static void atl1e_cal_ring_size(struct atl1e_adapter *adapter, u32 *ring_size) { *ring_size = ((u32)(adapter->tx_ring.count * sizeof(struct atl1e_tpd_desc) + 7 /* tx ring, qword align */ + adapter->rx_ring.real_page_size * AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues + 31 /* rx ring, 32 bytes align */ + (1 + AT_PAGE_NUM_PER_QUEUE * adapter->num_rx_queues) * sizeof(u32) + 3)); /* tx, rx cmd, dword align */ } static void atl1e_init_ring_resources(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = NULL; struct atl1e_rx_ring *rx_ring = NULL; tx_ring = &adapter->tx_ring; rx_ring = &adapter->rx_ring; rx_ring->real_page_size = adapter->rx_ring.page_size + adapter->hw.max_frame_size + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; rx_ring->real_page_size = roundup(rx_ring->real_page_size, 32); atl1e_cal_ring_size(adapter, &adapter->ring_size); adapter->ring_vir_addr = NULL; adapter->rx_ring.desc = NULL; rwlock_init(&adapter->tx_ring.tx_lock); return; } /* * Read / Write Ptr Initialize: */ static void atl1e_init_ring_ptrs(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = NULL; struct atl1e_rx_ring *rx_ring = NULL; struct atl1e_rx_page_desc *rx_page_desc = NULL; int i, j; tx_ring = &adapter->tx_ring; rx_ring = &adapter->rx_ring; rx_page_desc = rx_ring->rx_page_desc; tx_ring->next_to_use = 0; atomic_set(&tx_ring->next_to_clean, 0); for (i = 0; i < adapter->num_rx_queues; i++) { rx_page_desc[i].rx_using = 0; rx_page_desc[i].rx_nxseq = 0; for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { *rx_page_desc[i].rx_page[j].write_offset_addr = 0; rx_page_desc[i].rx_page[j].read_offset = 0; } } } /* * atl1e_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl1e_free_ring_resources(struct atl1e_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; atl1e_clean_tx_ring(adapter); atl1e_clean_rx_ring(adapter); if (adapter->ring_vir_addr) { pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr, adapter->ring_dma); adapter->ring_vir_addr = NULL; } if (adapter->tx_ring.tx_buffer) { kfree(adapter->tx_ring.tx_buffer); adapter->tx_ring.tx_buffer = NULL; } } /* * atl1e_setup_mem_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static int atl1e_setup_ring_resources(struct atl1e_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct atl1e_tx_ring *tx_ring; struct atl1e_rx_ring *rx_ring; struct atl1e_rx_page_desc *rx_page_desc; int size, i, j; u32 offset = 0; int err = 0; if (adapter->ring_vir_addr != NULL) return 0; /* alloced already */ tx_ring = &adapter->tx_ring; rx_ring = &adapter->rx_ring; /* real ring DMA buffer */ size = adapter->ring_size; adapter->ring_vir_addr = pci_alloc_consistent(pdev, adapter->ring_size, &adapter->ring_dma); if (adapter->ring_vir_addr == NULL) { dev_err(&pdev->dev, "pci_alloc_consistent failed, " "size = D%d", size); return -ENOMEM; } memset(adapter->ring_vir_addr, 0, adapter->ring_size); rx_page_desc = rx_ring->rx_page_desc; /* Init TPD Ring */ tx_ring->dma = roundup(adapter->ring_dma, 8); offset = tx_ring->dma - adapter->ring_dma; tx_ring->desc = (struct atl1e_tpd_desc *) (adapter->ring_vir_addr + offset); size = sizeof(struct atl1e_tx_buffer) * (tx_ring->count); tx_ring->tx_buffer = kzalloc(size, GFP_KERNEL); if (tx_ring->tx_buffer == NULL) { dev_err(&pdev->dev, "kzalloc failed , size = D%d", size); err = -ENOMEM; goto failed; } /* Init RXF-Pages */ offset += (sizeof(struct atl1e_tpd_desc) * tx_ring->count); offset = roundup(offset, 32); for (i = 0; i < adapter->num_rx_queues; i++) { for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { rx_page_desc[i].rx_page[j].dma = adapter->ring_dma + offset; rx_page_desc[i].rx_page[j].addr = adapter->ring_vir_addr + offset; offset += rx_ring->real_page_size; } } /* Init CMB dma address */ tx_ring->cmb_dma = adapter->ring_dma + offset; tx_ring->cmb = (u32 *)(adapter->ring_vir_addr + offset); offset += sizeof(u32); for (i = 0; i < adapter->num_rx_queues; i++) { for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { rx_page_desc[i].rx_page[j].write_offset_dma = adapter->ring_dma + offset; rx_page_desc[i].rx_page[j].write_offset_addr = adapter->ring_vir_addr + offset; offset += sizeof(u32); } } if (unlikely(offset > adapter->ring_size)) { dev_err(&pdev->dev, "offset(%d) > ring size(%d) !!\n", offset, adapter->ring_size); err = -1; goto failed; } return 0; failed: if (adapter->ring_vir_addr != NULL) { pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr, adapter->ring_dma); adapter->ring_vir_addr = NULL; } return err; } static inline void atl1e_configure_des_ring(const struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *)&adapter->rx_ring; struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *)&adapter->tx_ring; struct atl1e_rx_page_desc *rx_page_desc = NULL; int i, j; AT_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, (u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32)); AT_WRITE_REG(hw, REG_TPD_BASE_ADDR_LO, (u32)((tx_ring->dma) & AT_DMA_LO_ADDR_MASK)); AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u16)(tx_ring->count)); AT_WRITE_REG(hw, REG_HOST_TX_CMB_LO, (u32)((tx_ring->cmb_dma) & AT_DMA_LO_ADDR_MASK)); rx_page_desc = rx_ring->rx_page_desc; /* RXF Page Physical address / Page Length */ for (i = 0; i < AT_MAX_RECEIVE_QUEUE; i++) { AT_WRITE_REG(hw, atl1e_rx_page_hi_addr_regs[i], (u32)((adapter->ring_dma & AT_DMA_HI_ADDR_MASK) >> 32)); for (j = 0; j < AT_PAGE_NUM_PER_QUEUE; j++) { u32 page_phy_addr; u32 offset_phy_addr; page_phy_addr = rx_page_desc[i].rx_page[j].dma; offset_phy_addr = rx_page_desc[i].rx_page[j].write_offset_dma; AT_WRITE_REG(hw, atl1e_rx_page_lo_addr_regs[i][j], page_phy_addr & AT_DMA_LO_ADDR_MASK); AT_WRITE_REG(hw, atl1e_rx_page_write_offset_regs[i][j], offset_phy_addr & AT_DMA_LO_ADDR_MASK); AT_WRITE_REGB(hw, atl1e_rx_page_vld_regs[i][j], 1); } } /* Page Length */ AT_WRITE_REG(hw, REG_HOST_RXFPAGE_SIZE, rx_ring->page_size); /* Load all of base address above */ AT_WRITE_REG(hw, REG_LOAD_PTR, 1); return; } static inline void atl1e_configure_tx(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; u32 dev_ctrl_data = 0; u32 max_pay_load = 0; u32 jumbo_thresh = 0; u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */ /* configure TXQ param */ if (hw->nic_type != athr_l2e_revB) { extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN; if (hw->max_frame_size <= 1500) { jumbo_thresh = hw->max_frame_size + extra_size; } else if (hw->max_frame_size < 6*1024) { jumbo_thresh = (hw->max_frame_size + extra_size) * 2 / 3; } else { jumbo_thresh = (hw->max_frame_size + extra_size) / 2; } AT_WRITE_REG(hw, REG_TX_EARLY_TH, (jumbo_thresh + 7) >> 3); } dev_ctrl_data = AT_READ_REG(hw, REG_DEVICE_CTRL); max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT)) & DEVICE_CTRL_MAX_PAYLOAD_MASK; hw->dmaw_block = min(max_pay_load, hw->dmaw_block); max_pay_load = ((dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT)) & DEVICE_CTRL_MAX_RREQ_SZ_MASK; hw->dmar_block = min(max_pay_load, hw->dmar_block); if (hw->nic_type != athr_l2e_revB) AT_WRITE_REGW(hw, REG_TXQ_CTRL + 2, atl1e_pay_load_size[hw->dmar_block]); /* enable TXQ */ AT_WRITE_REGW(hw, REG_TXQ_CTRL, (((u16)hw->tpd_burst & TXQ_CTRL_NUM_TPD_BURST_MASK) << TXQ_CTRL_NUM_TPD_BURST_SHIFT) | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN); return; } static inline void atl1e_configure_rx(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = (struct atl1e_hw *)&adapter->hw; u32 rxf_len = 0; u32 rxf_low = 0; u32 rxf_high = 0; u32 rxf_thresh_data = 0; u32 rxq_ctrl_data = 0; if (hw->nic_type != athr_l2e_revB) { AT_WRITE_REGW(hw, REG_RXQ_JMBOSZ_RRDTIM, (u16)((hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) << RXQ_JMBOSZ_TH_SHIFT | (1 & RXQ_JMBO_LKAH_MASK) << RXQ_JMBO_LKAH_SHIFT)); rxf_len = AT_READ_REG(hw, REG_SRAM_RXF_LEN); rxf_high = rxf_len * 4 / 5; rxf_low = rxf_len / 5; rxf_thresh_data = ((rxf_high & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((rxf_low & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); AT_WRITE_REG(hw, REG_RXQ_RXF_PAUSE_THRESH, rxf_thresh_data); } /* RRS */ AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab); AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu); if (hw->rrs_type & atl1e_rrs_ipv4) rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4; if (hw->rrs_type & atl1e_rrs_ipv4_tcp) rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV4_TCP; if (hw->rrs_type & atl1e_rrs_ipv6) rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6; if (hw->rrs_type & atl1e_rrs_ipv6_tcp) rxq_ctrl_data |= RXQ_CTRL_HASH_TYPE_IPV6_TCP; if (hw->rrs_type != atl1e_rrs_disable) rxq_ctrl_data |= (RXQ_CTRL_HASH_ENABLE | RXQ_CTRL_RSS_MODE_MQUESINT); rxq_ctrl_data |= RXQ_CTRL_IPV6_XSUM_VERIFY_EN | RXQ_CTRL_PBA_ALIGN_32 | RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN; AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data); return; } static inline void atl1e_configure_dma(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; u32 dma_ctrl_data = 0; dma_ctrl_data = DMA_CTRL_RXCMB_EN; dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT; dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) << DMA_CTRL_DMAW_BURST_LEN_SHIFT; dma_ctrl_data |= DMA_CTRL_DMAR_REQ_PRI | DMA_CTRL_DMAR_OUT_ORDER; dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK) << DMA_CTRL_DMAR_DLY_CNT_SHIFT; dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK) << DMA_CTRL_DMAW_DLY_CNT_SHIFT; AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data); return; } static void atl1e_setup_mac_ctrl(struct atl1e_adapter *adapter) { u32 value; struct atl1e_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; /* Config MAC CTRL Register */ value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN ; if (FULL_DUPLEX == adapter->link_duplex) value |= MAC_CTRL_DUPLX; value |= ((u32)((SPEED_1000 == adapter->link_speed) ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); if (adapter->vlgrp) value |= MAC_CTRL_RMV_VLAN; value |= MAC_CTRL_BC_EN; if (netdev->flags & IFF_PROMISC) value |= MAC_CTRL_PROMIS_EN; if (netdev->flags & IFF_ALLMULTI) value |= MAC_CTRL_MC_ALL_EN; AT_WRITE_REG(hw, REG_MAC_CTRL, value); } /* * atl1e_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static int atl1e_configure(struct atl1e_adapter *adapter) { struct atl1e_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; u32 intr_status_data = 0; /* clear interrupt status */ AT_WRITE_REG(hw, REG_ISR, ~0); /* 1. set MAC Address */ atl1e_hw_set_mac_addr(hw); /* 2. Init the Multicast HASH table done by set_muti */ /* 3. Clear any WOL status */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* 4. Descripter Ring BaseMem/Length/Read ptr/Write ptr * TPD Ring/SMB/RXF0 Page CMBs, they use the same * High 32bits memory */ atl1e_configure_des_ring(adapter); /* 5. set Interrupt Moderator Timer */ AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, hw->imt); AT_WRITE_REGW(hw, REG_IRQ_MODU_TIMER2_INIT, hw->imt); AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE | MASTER_CTRL_ITIMER_EN | MASTER_CTRL_ITIMER2_EN); /* 6. rx/tx threshold to trig interrupt */ AT_WRITE_REGW(hw, REG_TRIG_RRD_THRESH, hw->rrd_thresh); AT_WRITE_REGW(hw, REG_TRIG_TPD_THRESH, hw->tpd_thresh); AT_WRITE_REGW(hw, REG_TRIG_RXTIMER, hw->rx_count_down); AT_WRITE_REGW(hw, REG_TRIG_TXTIMER, hw->tx_count_down); /* 7. set Interrupt Clear Timer */ AT_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, hw->ict); /* 8. set MTU */ AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); /* 9. config TXQ early tx threshold */ atl1e_configure_tx(adapter); /* 10. config RXQ */ atl1e_configure_rx(adapter); /* 11. config DMA Engine */ atl1e_configure_dma(adapter); /* 12. smb timer to trig interrupt */ AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer); intr_status_data = AT_READ_REG(hw, REG_ISR); if (unlikely((intr_status_data & ISR_PHY_LINKDOWN) != 0)) { dev_err(&pdev->dev, "atl1e_configure failed," "PCIE phy link down\n"); return -1; } AT_WRITE_REG(hw, REG_ISR, 0x7fffffff); return 0; } /* * atl1e_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. */ static struct net_device_stats *atl1e_get_stats(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); struct atl1e_hw_stats *hw_stats = &adapter->hw_stats; struct net_device_stats *net_stats = &netdev->stats; net_stats->rx_packets = hw_stats->rx_ok; net_stats->tx_packets = hw_stats->tx_ok; net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = hw_stats->tx_1_col + hw_stats->tx_2_col * 2 + hw_stats->tx_late_col + hw_stats->tx_abort_col; net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err + hw_stats->rx_len_err + hw_stats->rx_sz_ov + hw_stats->rx_rrd_ov + hw_stats->rx_align_err; net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col + hw_stats->tx_underrun + hw_stats->tx_trunc; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_window_errors = hw_stats->tx_late_col; return net_stats; } static void atl1e_update_hw_stats(struct atl1e_adapter *adapter) { u16 hw_reg_addr = 0; unsigned long *stats_item = NULL; /* update rx status */ hw_reg_addr = REG_MAC_RX_STATUS_BIN; stats_item = &adapter->hw_stats.rx_ok; while (hw_reg_addr <= REG_MAC_RX_STATUS_END) { *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr); stats_item++; hw_reg_addr += 4; } /* update tx status */ hw_reg_addr = REG_MAC_TX_STATUS_BIN; stats_item = &adapter->hw_stats.tx_ok; while (hw_reg_addr <= REG_MAC_TX_STATUS_END) { *stats_item += AT_READ_REG(&adapter->hw, hw_reg_addr); stats_item++; hw_reg_addr += 4; } } static inline void atl1e_clear_phy_int(struct atl1e_adapter *adapter) { u16 phy_data; spin_lock(&adapter->mdio_lock); atl1e_read_phy_reg(&adapter->hw, MII_INT_STATUS, &phy_data); spin_unlock(&adapter->mdio_lock); } static bool atl1e_clean_tx_irq(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = (struct atl1e_tx_ring *) &adapter->tx_ring; struct atl1e_tx_buffer *tx_buffer = NULL; u16 hw_next_to_clean = AT_READ_REGW(&adapter->hw, REG_TPD_CONS_IDX); u16 next_to_clean = atomic_read(&tx_ring->next_to_clean); while (next_to_clean != hw_next_to_clean) { tx_buffer = &tx_ring->tx_buffer[next_to_clean]; if (tx_buffer->dma) { pci_unmap_page(adapter->pdev, tx_buffer->dma, tx_buffer->length, PCI_DMA_TODEVICE); tx_buffer->dma = 0; } if (tx_buffer->skb) { dev_kfree_skb_irq(tx_buffer->skb); tx_buffer->skb = NULL; } if (++next_to_clean == tx_ring->count) next_to_clean = 0; } atomic_set(&tx_ring->next_to_clean, next_to_clean); if (netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) { netif_wake_queue(adapter->netdev); } return true; } /* * atl1e_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure * @pt_regs: CPU registers structure */ static irqreturn_t atl1e_intr(int irq, void *data) { struct net_device *netdev = data; struct atl1e_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct atl1e_hw *hw = &adapter->hw; int max_ints = AT_MAX_INT_WORK; int handled = IRQ_NONE; u32 status; do { status = AT_READ_REG(hw, REG_ISR); if ((status & IMR_NORMAL_MASK) == 0 || (status & ISR_DIS_INT) != 0) { if (max_ints != AT_MAX_INT_WORK) handled = IRQ_HANDLED; break; } /* link event */ if (status & ISR_GPHY) atl1e_clear_phy_int(adapter); /* Ack ISR */ AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); handled = IRQ_HANDLED; /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { dev_err(&pdev->dev, "pcie phy linkdown %x\n", status); if (netif_running(adapter->netdev)) { /* reset MAC */ atl1e_irq_reset(adapter); schedule_work(&adapter->reset_task); break; } } /* check if DMA read/write error */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { dev_err(&pdev->dev, "PCIE DMA RW error (status = 0x%x)\n", status); atl1e_irq_reset(adapter); schedule_work(&adapter->reset_task); break; } if (status & ISR_SMB) atl1e_update_hw_stats(adapter); /* link event */ if (status & (ISR_GPHY | ISR_MANUAL)) { netdev->stats.tx_carrier_errors++; atl1e_link_chg_event(adapter); break; } /* transmit event */ if (status & ISR_TX_EVENT) atl1e_clean_tx_irq(adapter); if (status & ISR_RX_EVENT) { /* * disable rx interrupts, without * the synchronize_irq bit */ AT_WRITE_REG(hw, REG_IMR, IMR_NORMAL_MASK & ~ISR_RX_EVENT); AT_WRITE_FLUSH(hw); if (likely(napi_schedule_prep( &adapter->napi))) __napi_schedule(&adapter->napi); } } while (--max_ints > 0); /* re-enable Interrupt*/ AT_WRITE_REG(&adapter->hw, REG_ISR, 0); return handled; } static inline void atl1e_rx_checksum(struct atl1e_adapter *adapter, struct sk_buff *skb, struct atl1e_recv_ret_status *prrs) { u8 *packet = (u8 *)(prrs + 1); struct iphdr *iph; u16 head_len = ETH_HLEN; u16 pkt_flags; u16 err_flags; skb->ip_summed = CHECKSUM_NONE; pkt_flags = prrs->pkt_flag; err_flags = prrs->err_flag; if (((pkt_flags & RRS_IS_IPV4) || (pkt_flags & RRS_IS_IPV6)) && ((pkt_flags & RRS_IS_TCP) || (pkt_flags & RRS_IS_UDP))) { if (pkt_flags & RRS_IS_IPV4) { if (pkt_flags & RRS_IS_802_3) head_len += 8; iph = (struct iphdr *) (packet + head_len); if (iph->frag_off != 0 && !(pkt_flags & RRS_IS_IP_DF)) goto hw_xsum; } if (!(err_flags & (RRS_ERR_IP_CSUM | RRS_ERR_L4_CSUM))) { skb->ip_summed = CHECKSUM_UNNECESSARY; return; } } hw_xsum : return; } static struct atl1e_rx_page *atl1e_get_rx_page(struct atl1e_adapter *adapter, u8 que) { struct atl1e_rx_page_desc *rx_page_desc = (struct atl1e_rx_page_desc *) adapter->rx_ring.rx_page_desc; u8 rx_using = rx_page_desc[que].rx_using; return (struct atl1e_rx_page *)&(rx_page_desc[que].rx_page[rx_using]); } static void atl1e_clean_rx_irq(struct atl1e_adapter *adapter, u8 que, int *work_done, int work_to_do) { struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; struct atl1e_rx_ring *rx_ring = (struct atl1e_rx_ring *) &adapter->rx_ring; struct atl1e_rx_page_desc *rx_page_desc = (struct atl1e_rx_page_desc *) rx_ring->rx_page_desc; struct sk_buff *skb = NULL; struct atl1e_rx_page *rx_page = atl1e_get_rx_page(adapter, que); u32 packet_size, write_offset; struct atl1e_recv_ret_status *prrs; write_offset = *(rx_page->write_offset_addr); if (likely(rx_page->read_offset < write_offset)) { do { if (*work_done >= work_to_do) break; (*work_done)++; /* get new packet's rrs */ prrs = (struct atl1e_recv_ret_status *) (rx_page->addr + rx_page->read_offset); /* check sequence number */ if (prrs->seq_num != rx_page_desc[que].rx_nxseq) { dev_err(&pdev->dev, "rx sequence number" " error (rx=%d) (expect=%d)\n", prrs->seq_num, rx_page_desc[que].rx_nxseq); rx_page_desc[que].rx_nxseq++; /* just for debug use */ AT_WRITE_REG(&adapter->hw, REG_DEBUG_DATA0, (((u32)prrs->seq_num) << 16) | rx_page_desc[que].rx_nxseq); goto fatal_err; } rx_page_desc[que].rx_nxseq++; /* error packet */ if (prrs->pkt_flag & RRS_IS_ERR_FRAME) { if (prrs->err_flag & (RRS_ERR_BAD_CRC | RRS_ERR_DRIBBLE | RRS_ERR_CODE | RRS_ERR_TRUNC)) { /* hardware error, discard this packet*/ dev_err(&pdev->dev, "rx packet desc error %x\n", *((u32 *)prrs + 1)); goto skip_pkt; } } packet_size = ((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK) - 4; /* CRC */ skb = netdev_alloc_skb(netdev, packet_size + NET_IP_ALIGN); if (skb == NULL) { dev_warn(&pdev->dev, "%s: Memory squeeze," "deferring packet.\n", netdev->name); goto skip_pkt; } skb_reserve(skb, NET_IP_ALIGN); skb->dev = netdev; memcpy(skb->data, (u8 *)(prrs + 1), packet_size); skb_put(skb, packet_size); skb->protocol = eth_type_trans(skb, netdev); atl1e_rx_checksum(adapter, skb, prrs); if (unlikely(adapter->vlgrp && (prrs->pkt_flag & RRS_IS_VLAN_TAG))) { u16 vlan_tag = (prrs->vtag >> 4) | ((prrs->vtag & 7) << 13) | ((prrs->vtag & 8) << 9); dev_dbg(&pdev->dev, "RXD VLAN TAG=0x%04x\n", prrs->vtag); vlan_hwaccel_receive_skb(skb, adapter->vlgrp, vlan_tag); } else { netif_receive_skb(skb); } skip_pkt: /* skip current packet whether it's ok or not. */ rx_page->read_offset += (((u32)((prrs->word1 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK) + sizeof(struct atl1e_recv_ret_status) + 31) & 0xFFFFFFE0); if (rx_page->read_offset >= rx_ring->page_size) { /* mark this page clean */ u16 reg_addr; u8 rx_using; rx_page->read_offset = *(rx_page->write_offset_addr) = 0; rx_using = rx_page_desc[que].rx_using; reg_addr = atl1e_rx_page_vld_regs[que][rx_using]; AT_WRITE_REGB(&adapter->hw, reg_addr, 1); rx_page_desc[que].rx_using ^= 1; rx_page = atl1e_get_rx_page(adapter, que); } write_offset = *(rx_page->write_offset_addr); } while (rx_page->read_offset < write_offset); } return; fatal_err: if (!test_bit(__AT_DOWN, &adapter->flags)) schedule_work(&adapter->reset_task); } /* * atl1e_clean - NAPI Rx polling callback * @adapter: board private structure */ static int atl1e_clean(struct napi_struct *napi, int budget) { struct atl1e_adapter *adapter = container_of(napi, struct atl1e_adapter, napi); struct pci_dev *pdev = adapter->pdev; u32 imr_data; int work_done = 0; /* Keep link state information with original netdev */ if (!netif_carrier_ok(adapter->netdev)) goto quit_polling; atl1e_clean_rx_irq(adapter, 0, &work_done, budget); /* If no Tx and not enough Rx work done, exit the polling mode */ if (work_done < budget) { quit_polling: napi_complete(napi); imr_data = AT_READ_REG(&adapter->hw, REG_IMR); AT_WRITE_REG(&adapter->hw, REG_IMR, imr_data | ISR_RX_EVENT); /* test debug */ if (test_bit(__AT_DOWN, &adapter->flags)) { atomic_dec(&adapter->irq_sem); dev_err(&pdev->dev, "atl1e_clean is called when AT_DOWN\n"); } /* reenable RX intr */ /*atl1e_irq_enable(adapter); */ } return work_done; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void atl1e_netpoll(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); disable_irq(adapter->pdev->irq); atl1e_intr(adapter->pdev->irq, netdev); enable_irq(adapter->pdev->irq); } #endif static inline u16 atl1e_tpd_avail(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; u16 next_to_use = 0; u16 next_to_clean = 0; next_to_clean = atomic_read(&tx_ring->next_to_clean); next_to_use = tx_ring->next_to_use; return (u16)(next_to_clean > next_to_use) ? (next_to_clean - next_to_use - 1) : (tx_ring->count + next_to_clean - next_to_use - 1); } /* * get next usable tpd * Note: should call atl1e_tdp_avail to make sure * there is enough tpd to use */ static struct atl1e_tpd_desc *atl1e_get_tpd(struct atl1e_adapter *adapter) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; u16 next_to_use = 0; next_to_use = tx_ring->next_to_use; if (++tx_ring->next_to_use == tx_ring->count) tx_ring->next_to_use = 0; memset(&tx_ring->desc[next_to_use], 0, sizeof(struct atl1e_tpd_desc)); return (struct atl1e_tpd_desc *)&tx_ring->desc[next_to_use]; } static struct atl1e_tx_buffer * atl1e_get_tx_buffer(struct atl1e_adapter *adapter, struct atl1e_tpd_desc *tpd) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; return &tx_ring->tx_buffer[tpd - tx_ring->desc]; } /* Calculate the transmit packet descript needed*/ static u16 atl1e_cal_tdp_req(const struct sk_buff *skb) { int i = 0; u16 tpd_req = 1; u16 fg_size = 0; u16 proto_hdr_len = 0; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { fg_size = skb_shinfo(skb)->frags[i].size; tpd_req += ((fg_size + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT); } if (skb_is_gso(skb)) { if (skb->protocol == htons(ETH_P_IP) || (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6)) { proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); if (proto_hdr_len < skb_headlen(skb)) { tpd_req += ((skb_headlen(skb) - proto_hdr_len + MAX_TX_BUF_LEN - 1) >> MAX_TX_BUF_SHIFT); } } } return tpd_req; } static int atl1e_tso_csum(struct atl1e_adapter *adapter, struct sk_buff *skb, struct atl1e_tpd_desc *tpd) { struct pci_dev *pdev = adapter->pdev; u8 hdr_len; u32 real_len; unsigned short offload_type; int err; if (skb_is_gso(skb)) { if (skb_header_cloned(skb)) { err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); if (unlikely(err)) return -1; } offload_type = skb_shinfo(skb)->gso_type; if (offload_type & SKB_GSO_TCPV4) { real_len = (((unsigned char *)ip_hdr(skb) - skb->data) + ntohs(ip_hdr(skb)->tot_len)); if (real_len < skb->len) pskb_trim(skb, real_len); hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ dev_warn(&pdev->dev, "IPV4 tso with zero data??\n"); goto check_sum; } else { ip_hdr(skb)->check = 0; ip_hdr(skb)->tot_len = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic( ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); tpd->word3 |= (ip_hdr(skb)->ihl & TDP_V4_IPHL_MASK) << TPD_V4_IPHL_SHIFT; tpd->word3 |= ((tcp_hdrlen(skb) >> 2) & TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; tpd->word3 |= ((skb_shinfo(skb)->gso_size) & TPD_MSS_MASK) << TPD_MSS_SHIFT; tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; } return 0; } if (offload_type & SKB_GSO_TCPV6) { real_len = (((unsigned char *)ipv6_hdr(skb) - skb->data) + ntohs(ipv6_hdr(skb)->payload_len)); if (real_len < skb->len) pskb_trim(skb, real_len); /* check payload == 0 byte ? */ hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ dev_warn(&pdev->dev, "IPV6 tso with zero data??\n"); goto check_sum; } else { tcp_hdr(skb)->check = ~csum_ipv6_magic( &ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); tpd->word3 |= 1 << TPD_IP_VERSION_SHIFT; hdr_len >>= 1; tpd->word3 |= (hdr_len & TPD_V6_IPHLLO_MASK) << TPD_V6_IPHLLO_SHIFT; tpd->word3 |= ((hdr_len >> 3) & TPD_V6_IPHLHI_MASK) << TPD_V6_IPHLHI_SHIFT; tpd->word3 |= (tcp_hdrlen(skb) >> 2 & TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; tpd->word3 |= ((skb_shinfo(skb)->gso_size) & TPD_MSS_MASK) << TPD_MSS_SHIFT; tpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; } } return 0; } check_sum: if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { u8 css, cso; cso = skb_transport_offset(skb); if (unlikely(cso & 0x1)) { dev_err(&adapter->pdev->dev, "pay load offset should not ant event number\n"); return -1; } else { css = cso + skb->csum_offset; tpd->word3 |= (cso & TPD_PLOADOFFSET_MASK) << TPD_PLOADOFFSET_SHIFT; tpd->word3 |= (css & TPD_CCSUMOFFSET_MASK) << TPD_CCSUMOFFSET_SHIFT; tpd->word3 |= 1 << TPD_CC_SEGMENT_EN_SHIFT; } } return 0; } static void atl1e_tx_map(struct atl1e_adapter *adapter, struct sk_buff *skb, struct atl1e_tpd_desc *tpd) { struct atl1e_tpd_desc *use_tpd = NULL; struct atl1e_tx_buffer *tx_buffer = NULL; u16 buf_len = skb->len - skb->data_len; u16 map_len = 0; u16 mapped_len = 0; u16 hdr_len = 0; u16 nr_frags; u16 f; int segment; nr_frags = skb_shinfo(skb)->nr_frags; segment = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; if (segment) { /* TSO */ map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); use_tpd = tpd; tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); tx_buffer->length = map_len; tx_buffer->dma = pci_map_single(adapter->pdev, skb->data, hdr_len, PCI_DMA_TODEVICE); mapped_len += map_len; use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | ((cpu_to_le32(tx_buffer->length) & TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); } while (mapped_len < buf_len) { /* mapped_len == 0, means we should use the first tpd, which is given by caller */ if (mapped_len == 0) { use_tpd = tpd; } else { use_tpd = atl1e_get_tpd(adapter); memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc)); } tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); tx_buffer->skb = NULL; tx_buffer->length = map_len = ((buf_len - mapped_len) >= MAX_TX_BUF_LEN) ? MAX_TX_BUF_LEN : (buf_len - mapped_len); tx_buffer->dma = pci_map_single(adapter->pdev, skb->data + mapped_len, map_len, PCI_DMA_TODEVICE); mapped_len += map_len; use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | ((cpu_to_le32(tx_buffer->length) & TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); } for (f = 0; f < nr_frags; f++) { struct skb_frag_struct *frag; u16 i; u16 seg_num; frag = &skb_shinfo(skb)->frags[f]; buf_len = frag->size; seg_num = (buf_len + MAX_TX_BUF_LEN - 1) / MAX_TX_BUF_LEN; for (i = 0; i < seg_num; i++) { use_tpd = atl1e_get_tpd(adapter); memcpy(use_tpd, tpd, sizeof(struct atl1e_tpd_desc)); tx_buffer = atl1e_get_tx_buffer(adapter, use_tpd); BUG_ON(tx_buffer->skb); tx_buffer->skb = NULL; tx_buffer->length = (buf_len > MAX_TX_BUF_LEN) ? MAX_TX_BUF_LEN : buf_len; buf_len -= tx_buffer->length; tx_buffer->dma = pci_map_page(adapter->pdev, frag->page, frag->page_offset + (i * MAX_TX_BUF_LEN), tx_buffer->length, PCI_DMA_TODEVICE); use_tpd->buffer_addr = cpu_to_le64(tx_buffer->dma); use_tpd->word2 = (use_tpd->word2 & (~TPD_BUFLEN_MASK)) | ((cpu_to_le32(tx_buffer->length) & TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT); } } if ((tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK) /* note this one is a tcp header */ tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; /* The last tpd */ use_tpd->word3 |= 1 << TPD_EOP_SHIFT; /* The last buffer info contain the skb address, so it will be free after unmap */ tx_buffer->skb = skb; } static void atl1e_tx_queue(struct atl1e_adapter *adapter, u16 count, struct atl1e_tpd_desc *tpd) { struct atl1e_tx_ring *tx_ring = &adapter->tx_ring; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); AT_WRITE_REG(&adapter->hw, REG_MB_TPD_PROD_IDX, tx_ring->next_to_use); } static netdev_tx_t atl1e_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); unsigned long flags; u16 tpd_req = 1; struct atl1e_tpd_desc *tpd; if (test_bit(__AT_DOWN, &adapter->flags)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (unlikely(skb->len <= 0)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } tpd_req = atl1e_cal_tdp_req(skb); if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) return NETDEV_TX_LOCKED; if (atl1e_tpd_avail(adapter) < tpd_req) { /* no enough descriptor, just stop queue */ netif_stop_queue(netdev); spin_unlock_irqrestore(&adapter->tx_lock, flags); return NETDEV_TX_BUSY; } tpd = atl1e_get_tpd(adapter); if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) { u16 vlan_tag = vlan_tx_tag_get(skb); u16 atl1e_vlan_tag; tpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; AT_VLAN_TAG_TO_TPD_TAG(vlan_tag, atl1e_vlan_tag); tpd->word2 |= (atl1e_vlan_tag & TPD_VLANTAG_MASK) << TPD_VLAN_SHIFT; } if (skb->protocol == htons(ETH_P_8021Q)) tpd->word3 |= 1 << TPD_VL_TAGGED_SHIFT; if (skb_network_offset(skb) != ETH_HLEN) tpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; /* 802.3 frame */ /* do TSO and check sum */ if (atl1e_tso_csum(adapter, skb, tpd) != 0) { spin_unlock_irqrestore(&adapter->tx_lock, flags); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } atl1e_tx_map(adapter, skb, tpd); atl1e_tx_queue(adapter, tpd_req, tpd); netdev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */ spin_unlock_irqrestore(&adapter->tx_lock, flags); return NETDEV_TX_OK; } static void atl1e_free_irq(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->pdev->irq, netdev); if (adapter->have_msi) pci_disable_msi(adapter->pdev); } static int atl1e_request_irq(struct atl1e_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; int flags = 0; int err = 0; adapter->have_msi = true; err = pci_enable_msi(adapter->pdev); if (err) { dev_dbg(&pdev->dev, "Unable to allocate MSI interrupt Error: %d\n", err); adapter->have_msi = false; } else netdev->irq = pdev->irq; if (!adapter->have_msi) flags |= IRQF_SHARED; err = request_irq(adapter->pdev->irq, &atl1e_intr, flags, netdev->name, netdev); if (err) { dev_dbg(&pdev->dev, "Unable to allocate interrupt Error: %d\n", err); if (adapter->have_msi) pci_disable_msi(adapter->pdev); return err; } dev_dbg(&pdev->dev, "atl1e_request_irq OK\n"); return err; } int atl1e_up(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err = 0; u32 val; /* hardware has been reset, we need to reload some things */ err = atl1e_init_hw(&adapter->hw); if (err) { err = -EIO; return err; } atl1e_init_ring_ptrs(adapter); atl1e_set_multi(netdev); atl1e_restore_vlan(adapter); if (atl1e_configure(adapter)) { err = -EIO; goto err_up; } clear_bit(__AT_DOWN, &adapter->flags); napi_enable(&adapter->napi); atl1e_irq_enable(adapter); val = AT_READ_REG(&adapter->hw, REG_MASTER_CTRL); AT_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | MASTER_CTRL_MANUAL_INT); err_up: return err; } void atl1e_down(struct atl1e_adapter *adapter) { struct net_device *netdev = adapter->netdev; /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__AT_DOWN, &adapter->flags); #ifdef NETIF_F_LLTX netif_stop_queue(netdev); #else netif_tx_disable(netdev); #endif /* reset MAC to disable all RX/TX */ atl1e_reset_hw(&adapter->hw); msleep(1); napi_disable(&adapter->napi); atl1e_del_timer(adapter); atl1e_irq_disable(adapter); netif_carrier_off(netdev); adapter->link_speed = SPEED_0; adapter->link_duplex = -1; atl1e_clean_tx_ring(adapter); atl1e_clean_rx_ring(adapter); } /* * atl1e_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1e_open(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); int err; /* disallow open during test */ if (test_bit(__AT_TESTING, &adapter->flags)) return -EBUSY; /* allocate rx/tx dma buffer & descriptors */ atl1e_init_ring_resources(adapter); err = atl1e_setup_ring_resources(adapter); if (unlikely(err)) return err; err = atl1e_request_irq(adapter); if (unlikely(err)) goto err_req_irq; err = atl1e_up(adapter); if (unlikely(err)) goto err_up; return 0; err_up: atl1e_free_irq(adapter); err_req_irq: atl1e_free_ring_resources(adapter); atl1e_reset_hw(&adapter->hw); return err; } /* * atl1e_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl1e_close(struct net_device *netdev) { struct atl1e_adapter *adapter = netdev_priv(netdev); WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); atl1e_down(adapter); atl1e_free_irq(adapter); atl1e_free_ring_resources(adapter); return 0; } static int atl1e_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); struct atl1e_hw *hw = &adapter->hw; u32 ctrl = 0; u32 mac_ctrl_data = 0; u32 wol_ctrl_data = 0; u16 mii_advertise_data = 0; u16 mii_bmsr_data = 0; u16 mii_intr_status_data = 0; u32 wufc = adapter->wol; u32 i; #ifdef CONFIG_PM int retval = 0; #endif if (netif_running(netdev)) { WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); atl1e_down(adapter); } netif_device_detach(netdev); #ifdef CONFIG_PM retval = pci_save_state(pdev); if (retval) return retval; #endif if (wufc) { /* get link status */ atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); mii_advertise_data = MII_AR_10T_HD_CAPS; if ((atl1e_write_phy_reg(hw, MII_AT001_CR, 0) != 0) || (atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_advertise_data) != 0) || (atl1e_phy_commit(hw)) != 0) { dev_dbg(&pdev->dev, "set phy register failed\n"); goto wol_dis; } hw->phy_configured = false; /* re-init PHY when resume */ /* turn on magic packet wol */ if (wufc & AT_WUFC_MAG) wol_ctrl_data |= WOL_MAGIC_EN | WOL_MAGIC_PME_EN; if (wufc & AT_WUFC_LNKC) { /* if orignal link status is link, just wait for retrive link */ if (mii_bmsr_data & BMSR_LSTATUS) { for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) { msleep(100); atl1e_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data); if (mii_bmsr_data & BMSR_LSTATUS) break; } if ((mii_bmsr_data & BMSR_LSTATUS) == 0) dev_dbg(&pdev->dev, "%s: Link may change" "when suspend\n", atl1e_driver_name); } wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN; /* only link up can wake up */ if (atl1e_write_phy_reg(hw, MII_INT_CTRL, 0x400) != 0) { dev_dbg(&pdev->dev, "%s: read write phy " "register failed.\n", atl1e_driver_name); goto wol_dis; } } /* clear phy interrupt */ atl1e_read_phy_reg(hw, MII_INT_STATUS, &mii_intr_status_data); /* Config MAC Ctrl register */ mac_ctrl_data = MAC_CTRL_RX_EN; /* set to 10/100M halt duplex */ mac_ctrl_data |= MAC_CTRL_SPEED_10_100 << MAC_CTRL_SPEED_SHIFT; mac_ctrl_data |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); if (adapter->vlgrp) mac_ctrl_data |= MAC_CTRL_RMV_VLAN; /* magic packet maybe Broadcast&multicast&Unicast frame */ if (wufc & AT_WUFC_MAG) mac_ctrl_data |= MAC_CTRL_BC_EN; dev_dbg(&pdev->dev, "%s: suspend MAC=0x%x\n", atl1e_driver_name, mac_ctrl_data); AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data); AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); /* pcie patch */ ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); goto suspend_exit; } wol_dis: /* WOL disabled */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* pcie patch */ ctrl = AT_READ_REG(hw, REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); atl1e_force_ps(hw); hw->phy_configured = false; /* re-init PHY when resume */ pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); suspend_exit: if (netif_running(netdev)) atl1e_free_irq(adapter); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } #ifdef CONFIG_PM static int atl1e_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "ATL1e: Cannot enable PCI" " device from suspend\n"); return err; } pci_set_master(pdev); AT_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */ pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); if (netif_running(netdev)) { err = atl1e_request_irq(adapter); if (err) return err; } atl1e_reset_hw(&adapter->hw); if (netif_running(netdev)) atl1e_up(adapter); netif_device_attach(netdev); return 0; } #endif static void atl1e_shutdown(struct pci_dev *pdev) { atl1e_suspend(pdev, PMSG_SUSPEND); } static const struct net_device_ops atl1e_netdev_ops = { .ndo_open = atl1e_open, .ndo_stop = atl1e_close, .ndo_start_xmit = atl1e_xmit_frame, .ndo_get_stats = atl1e_get_stats, .ndo_set_multicast_list = atl1e_set_multi, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = atl1e_set_mac_addr, .ndo_change_mtu = atl1e_change_mtu, .ndo_do_ioctl = atl1e_ioctl, .ndo_tx_timeout = atl1e_tx_timeout, .ndo_vlan_rx_register = atl1e_vlan_rx_register, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = atl1e_netpoll, #endif }; static int atl1e_init_netdev(struct net_device *netdev, struct pci_dev *pdev) { SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); netdev->irq = pdev->irq; netdev->netdev_ops = &atl1e_netdev_ops; netdev->watchdog_timeo = AT_TX_WATCHDOG; atl1e_set_ethtool_ops(netdev); netdev->features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; netdev->features |= NETIF_F_LLTX; netdev->features |= NETIF_F_TSO; netdev->features |= NETIF_F_TSO6; return 0; } /* * atl1e_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1e_pci_tbl * * Returns 0 on success, negative on failure * * atl1e_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int __devinit atl1e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl1e_adapter *adapter = NULL; static int cards_found; int err = 0; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "cannot enable PCI device\n"); return err; } /* * The atl1e chip can DMA to 64-bit addresses, but it uses a single * shared register for the high 32 bits, so only a single, aligned, * 4 GB physical address range can be used at a time. * * Supporting 64-bit DMA on this hardware is more trouble than it's * worth. It is far easier to limit to 32-bit DMA than update * various kernel subsystems to support the mechanics required by a * fixed-high-32-bit system. */ if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) || (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) { dev_err(&pdev->dev, "No usable DMA configuration,aborting\n"); goto err_dma; } err = pci_request_regions(pdev, atl1e_driver_name); if (err) { dev_err(&pdev->dev, "cannot obtain PCI resources\n"); goto err_pci_reg; } pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct atl1e_adapter)); if (netdev == NULL) { err = -ENOMEM; dev_err(&pdev->dev, "etherdev alloc failed\n"); goto err_alloc_etherdev; } err = atl1e_init_netdev(netdev, pdev); if (err) { dev_err(&pdev->dev, "init netdevice failed\n"); goto err_init_netdev; } adapter = netdev_priv(netdev); adapter->bd_number = cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; adapter->hw.hw_addr = pci_iomap(pdev, BAR_0, 0); if (!adapter->hw.hw_addr) { err = -EIO; dev_err(&pdev->dev, "cannot map device registers\n"); goto err_ioremap; } netdev->base_addr = (unsigned long)adapter->hw.hw_addr; /* init mii data */ adapter->mii.dev = netdev; adapter->mii.mdio_read = atl1e_mdio_read; adapter->mii.mdio_write = atl1e_mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK; netif_napi_add(netdev, &adapter->napi, atl1e_clean, 64); init_timer(&adapter->phy_config_timer); adapter->phy_config_timer.function = &atl1e_phy_config; adapter->phy_config_timer.data = (unsigned long) adapter; /* get user settings */ atl1e_check_options(adapter); /* * Mark all PCI regions associated with PCI device * pdev as being reserved by owner atl1e_driver_name * Enables bus-mastering on the device and calls * pcibios_set_master to do the needed arch specific settings */ atl1e_setup_pcicmd(pdev); /* setup the private structure */ err = atl1e_sw_init(adapter); if (err) { dev_err(&pdev->dev, "net device private data init failed\n"); goto err_sw_init; } /* Init GPHY as early as possible due to power saving issue */ atl1e_phy_init(&adapter->hw); /* reset the controller to * put the device in a known good starting state */ err = atl1e_reset_hw(&adapter->hw); if (err) { err = -EIO; goto err_reset; } if (atl1e_read_mac_addr(&adapter->hw) != 0) { err = -EIO; dev_err(&pdev->dev, "get mac address failed\n"); goto err_eeprom; } memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len); dev_dbg(&pdev->dev, "mac address : %02x-%02x-%02x-%02x-%02x-%02x\n", adapter->hw.mac_addr[0], adapter->hw.mac_addr[1], adapter->hw.mac_addr[2], adapter->hw.mac_addr[3], adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]); INIT_WORK(&adapter->reset_task, atl1e_reset_task); INIT_WORK(&adapter->link_chg_task, atl1e_link_chg_task); err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "register netdevice failed\n"); goto err_register; } /* assume we have no link for now */ netif_stop_queue(netdev); netif_carrier_off(netdev); cards_found++; return 0; err_reset: err_register: err_sw_init: err_eeprom: iounmap(adapter->hw.hw_addr); err_init_netdev: err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /* * atl1e_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1e_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void __devexit atl1e_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); /* * flush_scheduled work may reschedule our watchdog task, so * explicitly disable watchdog tasks from being rescheduled */ set_bit(__AT_DOWN, &adapter->flags); atl1e_del_timer(adapter); atl1e_cancel_work(adapter); unregister_netdev(netdev); atl1e_free_ring_resources(adapter); atl1e_force_ps(&adapter->hw); iounmap(adapter->hw.hw_addr); pci_release_regions(pdev); free_netdev(netdev); pci_disable_device(pdev); } /* * atl1e_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t atl1e_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) atl1e_down(adapter); pci_disable_device(pdev); /* Request a slot slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /* * atl1e_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the e1000_resume routine. */ static pci_ers_result_t atl1e_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); if (pci_enable_device(pdev)) { dev_err(&pdev->dev, "ATL1e: Cannot re-enable PCI device after reset.\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); atl1e_reset_hw(&adapter->hw); return PCI_ERS_RESULT_RECOVERED; } /* * atl1e_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the atl1e_resume routine. */ static void atl1e_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1e_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { if (atl1e_up(adapter)) { dev_err(&pdev->dev, "ATL1e: can't bring device back up after reset\n"); return; } } netif_device_attach(netdev); } static struct pci_error_handlers atl1e_err_handler = { .error_detected = atl1e_io_error_detected, .slot_reset = atl1e_io_slot_reset, .resume = atl1e_io_resume, }; static struct pci_driver atl1e_driver = { .name = atl1e_driver_name, .id_table = atl1e_pci_tbl, .probe = atl1e_probe, .remove = __devexit_p(atl1e_remove), /* Power Managment Hooks */ #ifdef CONFIG_PM .suspend = atl1e_suspend, .resume = atl1e_resume, #endif .shutdown = atl1e_shutdown, .err_handler = &atl1e_err_handler }; /* * atl1e_init_module - Driver Registration Routine * * atl1e_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init atl1e_init_module(void) { return pci_register_driver(&atl1e_driver); } /* * atl1e_exit_module - Driver Exit Cleanup Routine * * atl1e_exit_module is called just before the driver is removed * from memory. */ static void __exit atl1e_exit_module(void) { pci_unregister_driver(&atl1e_driver); } module_init(atl1e_init_module); module_exit(atl1e_exit_module);