/* * EP93xx ethernet network device driver * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> * Dedicated to Marija Kulikova. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/mii.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/init.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <asm/arch/ep93xx-regs.h> #include <asm/arch/platform.h> #include <asm/io.h> #define DRV_MODULE_NAME "ep93xx-eth" #define DRV_MODULE_VERSION "0.1" #define RX_QUEUE_ENTRIES 64 #define TX_QUEUE_ENTRIES 8 #define MAX_PKT_SIZE 2044 #define PKT_BUF_SIZE 2048 #define REG_RXCTL 0x0000 #define REG_RXCTL_DEFAULT 0x00073800 #define REG_TXCTL 0x0004 #define REG_TXCTL_ENABLE 0x00000001 #define REG_MIICMD 0x0010 #define REG_MIICMD_READ 0x00008000 #define REG_MIICMD_WRITE 0x00004000 #define REG_MIIDATA 0x0014 #define REG_MIISTS 0x0018 #define REG_MIISTS_BUSY 0x00000001 #define REG_SELFCTL 0x0020 #define REG_SELFCTL_RESET 0x00000001 #define REG_INTEN 0x0024 #define REG_INTEN_TX 0x00000008 #define REG_INTEN_RX 0x00000007 #define REG_INTSTSP 0x0028 #define REG_INTSTS_TX 0x00000008 #define REG_INTSTS_RX 0x00000004 #define REG_INTSTSC 0x002c #define REG_AFP 0x004c #define REG_INDAD0 0x0050 #define REG_INDAD1 0x0051 #define REG_INDAD2 0x0052 #define REG_INDAD3 0x0053 #define REG_INDAD4 0x0054 #define REG_INDAD5 0x0055 #define REG_GIINTMSK 0x0064 #define REG_GIINTMSK_ENABLE 0x00008000 #define REG_BMCTL 0x0080 #define REG_BMCTL_ENABLE_TX 0x00000100 #define REG_BMCTL_ENABLE_RX 0x00000001 #define REG_BMSTS 0x0084 #define REG_BMSTS_RX_ACTIVE 0x00000008 #define REG_RXDQBADD 0x0090 #define REG_RXDQBLEN 0x0094 #define REG_RXDCURADD 0x0098 #define REG_RXDENQ 0x009c #define REG_RXSTSQBADD 0x00a0 #define REG_RXSTSQBLEN 0x00a4 #define REG_RXSTSQCURADD 0x00a8 #define REG_RXSTSENQ 0x00ac #define REG_TXDQBADD 0x00b0 #define REG_TXDQBLEN 0x00b4 #define REG_TXDQCURADD 0x00b8 #define REG_TXDENQ 0x00bc #define REG_TXSTSQBADD 0x00c0 #define REG_TXSTSQBLEN 0x00c4 #define REG_TXSTSQCURADD 0x00c8 #define REG_MAXFRMLEN 0x00e8 struct ep93xx_rdesc { u32 buf_addr; u32 rdesc1; }; #define RDESC1_NSOF 0x80000000 #define RDESC1_BUFFER_INDEX 0x7fff0000 #define RDESC1_BUFFER_LENGTH 0x0000ffff struct ep93xx_rstat { u32 rstat0; u32 rstat1; }; #define RSTAT0_RFP 0x80000000 #define RSTAT0_RWE 0x40000000 #define RSTAT0_EOF 0x20000000 #define RSTAT0_EOB 0x10000000 #define RSTAT0_AM 0x00c00000 #define RSTAT0_RX_ERR 0x00200000 #define RSTAT0_OE 0x00100000 #define RSTAT0_FE 0x00080000 #define RSTAT0_RUNT 0x00040000 #define RSTAT0_EDATA 0x00020000 #define RSTAT0_CRCE 0x00010000 #define RSTAT0_CRCI 0x00008000 #define RSTAT0_HTI 0x00003f00 #define RSTAT1_RFP 0x80000000 #define RSTAT1_BUFFER_INDEX 0x7fff0000 #define RSTAT1_FRAME_LENGTH 0x0000ffff struct ep93xx_tdesc { u32 buf_addr; u32 tdesc1; }; #define TDESC1_EOF 0x80000000 #define TDESC1_BUFFER_INDEX 0x7fff0000 #define TDESC1_BUFFER_ABORT 0x00008000 #define TDESC1_BUFFER_LENGTH 0x00000fff struct ep93xx_tstat { u32 tstat0; }; #define TSTAT0_TXFP 0x80000000 #define TSTAT0_TXWE 0x40000000 #define TSTAT0_FA 0x20000000 #define TSTAT0_LCRS 0x10000000 #define TSTAT0_OW 0x04000000 #define TSTAT0_TXU 0x02000000 #define TSTAT0_ECOLL 0x01000000 #define TSTAT0_NCOLL 0x001f0000 #define TSTAT0_BUFFER_INDEX 0x00007fff struct ep93xx_descs { struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES]; struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES]; struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES]; struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES]; }; struct ep93xx_priv { struct resource *res; void *base_addr; int irq; struct ep93xx_descs *descs; dma_addr_t descs_dma_addr; void *rx_buf[RX_QUEUE_ENTRIES]; void *tx_buf[TX_QUEUE_ENTRIES]; spinlock_t rx_lock; unsigned int rx_pointer; unsigned int tx_clean_pointer; unsigned int tx_pointer; spinlock_t tx_pending_lock; unsigned int tx_pending; struct net_device *dev; struct napi_struct napi; struct net_device_stats stats; struct mii_if_info mii; u8 mdc_divisor; }; #define rdb(ep, off) __raw_readb((ep)->base_addr + (off)) #define rdw(ep, off) __raw_readw((ep)->base_addr + (off)) #define rdl(ep, off) __raw_readl((ep)->base_addr + (off)) #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off)) #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off)) #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off)) static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg); static struct net_device_stats *ep93xx_get_stats(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); return &(ep->stats); } static int ep93xx_rx(struct net_device *dev, int processed, int budget) { struct ep93xx_priv *ep = netdev_priv(dev); while (processed < budget) { int entry; struct ep93xx_rstat *rstat; u32 rstat0; u32 rstat1; int length; struct sk_buff *skb; entry = ep->rx_pointer; rstat = ep->descs->rstat + entry; rstat0 = rstat->rstat0; rstat1 = rstat->rstat1; if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP)) break; rstat->rstat0 = 0; rstat->rstat1 = 0; if (!(rstat0 & RSTAT0_EOF)) printk(KERN_CRIT "ep93xx_rx: not end-of-frame " " %.8x %.8x\n", rstat0, rstat1); if (!(rstat0 & RSTAT0_EOB)) printk(KERN_CRIT "ep93xx_rx: not end-of-buffer " " %.8x %.8x\n", rstat0, rstat1); if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry) printk(KERN_CRIT "ep93xx_rx: entry mismatch " " %.8x %.8x\n", rstat0, rstat1); if (!(rstat0 & RSTAT0_RWE)) { ep->stats.rx_errors++; if (rstat0 & RSTAT0_OE) ep->stats.rx_fifo_errors++; if (rstat0 & RSTAT0_FE) ep->stats.rx_frame_errors++; if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA)) ep->stats.rx_length_errors++; if (rstat0 & RSTAT0_CRCE) ep->stats.rx_crc_errors++; goto err; } length = rstat1 & RSTAT1_FRAME_LENGTH; if (length > MAX_PKT_SIZE) { printk(KERN_NOTICE "ep93xx_rx: invalid length " " %.8x %.8x\n", rstat0, rstat1); goto err; } /* Strip FCS. */ if (rstat0 & RSTAT0_CRCI) length -= 4; skb = dev_alloc_skb(length + 2); if (likely(skb != NULL)) { skb_reserve(skb, 2); dma_sync_single(NULL, ep->descs->rdesc[entry].buf_addr, length, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, ep->rx_buf[entry], length); skb_put(skb, length); skb->protocol = eth_type_trans(skb, dev); dev->last_rx = jiffies; netif_receive_skb(skb); ep->stats.rx_packets++; ep->stats.rx_bytes += length; } else { ep->stats.rx_dropped++; } err: ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1); processed++; } if (processed) { wrw(ep, REG_RXDENQ, processed); wrw(ep, REG_RXSTSENQ, processed); } return processed; } static int ep93xx_have_more_rx(struct ep93xx_priv *ep) { struct ep93xx_rstat *rstat = ep->descs->rstat + ep->rx_pointer; return !!((rstat->rstat0 & RSTAT0_RFP) && (rstat->rstat1 & RSTAT1_RFP)); } static int ep93xx_poll(struct napi_struct *napi, int budget) { struct ep93xx_priv *ep = container_of(napi, struct ep93xx_priv, napi); struct net_device *dev = ep->dev; int rx = 0; poll_some_more: rx = ep93xx_rx(dev, rx, budget); if (rx < budget) { int more = 0; spin_lock_irq(&ep->rx_lock); __netif_rx_complete(dev, napi); wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX); if (ep93xx_have_more_rx(ep)) { wrl(ep, REG_INTEN, REG_INTEN_TX); wrl(ep, REG_INTSTSP, REG_INTSTS_RX); more = 1; } spin_unlock_irq(&ep->rx_lock); if (more && netif_rx_reschedule(dev, napi)) goto poll_some_more; } return rx; } static int ep93xx_xmit(struct sk_buff *skb, struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int entry; if (unlikely(skb->len > MAX_PKT_SIZE)) { ep->stats.tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } entry = ep->tx_pointer; ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1); ep->descs->tdesc[entry].tdesc1 = TDESC1_EOF | (entry << 16) | (skb->len & 0xfff); skb_copy_and_csum_dev(skb, ep->tx_buf[entry]); dma_sync_single(NULL, ep->descs->tdesc[entry].buf_addr, skb->len, DMA_TO_DEVICE); dev_kfree_skb(skb); dev->trans_start = jiffies; spin_lock_irq(&ep->tx_pending_lock); ep->tx_pending++; if (ep->tx_pending == TX_QUEUE_ENTRIES) netif_stop_queue(dev); spin_unlock_irq(&ep->tx_pending_lock); wrl(ep, REG_TXDENQ, 1); return NETDEV_TX_OK; } static void ep93xx_tx_complete(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int wake; wake = 0; spin_lock(&ep->tx_pending_lock); while (1) { int entry; struct ep93xx_tstat *tstat; u32 tstat0; entry = ep->tx_clean_pointer; tstat = ep->descs->tstat + entry; tstat0 = tstat->tstat0; if (!(tstat0 & TSTAT0_TXFP)) break; tstat->tstat0 = 0; if (tstat0 & TSTAT0_FA) printk(KERN_CRIT "ep93xx_tx_complete: frame aborted " " %.8x\n", tstat0); if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry) printk(KERN_CRIT "ep93xx_tx_complete: entry mismatch " " %.8x\n", tstat0); if (tstat0 & TSTAT0_TXWE) { int length = ep->descs->tdesc[entry].tdesc1 & 0xfff; ep->stats.tx_packets++; ep->stats.tx_bytes += length; } else { ep->stats.tx_errors++; } if (tstat0 & TSTAT0_OW) ep->stats.tx_window_errors++; if (tstat0 & TSTAT0_TXU) ep->stats.tx_fifo_errors++; ep->stats.collisions += (tstat0 >> 16) & 0x1f; ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1); if (ep->tx_pending == TX_QUEUE_ENTRIES) wake = 1; ep->tx_pending--; } spin_unlock(&ep->tx_pending_lock); if (wake) netif_wake_queue(dev); } static irqreturn_t ep93xx_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct ep93xx_priv *ep = netdev_priv(dev); u32 status; status = rdl(ep, REG_INTSTSC); if (status == 0) return IRQ_NONE; if (status & REG_INTSTS_RX) { spin_lock(&ep->rx_lock); if (likely(netif_rx_schedule_prep(dev, &ep->napi))) { wrl(ep, REG_INTEN, REG_INTEN_TX); __netif_rx_schedule(dev, &ep->napi); } spin_unlock(&ep->rx_lock); } if (status & REG_INTSTS_TX) ep93xx_tx_complete(dev); return IRQ_HANDLED; } static void ep93xx_free_buffers(struct ep93xx_priv *ep) { int i; for (i = 0; i < RX_QUEUE_ENTRIES; i += 2) { dma_addr_t d; d = ep->descs->rdesc[i].buf_addr; if (d) dma_unmap_single(NULL, d, PAGE_SIZE, DMA_FROM_DEVICE); if (ep->rx_buf[i] != NULL) free_page((unsigned long)ep->rx_buf[i]); } for (i = 0; i < TX_QUEUE_ENTRIES; i += 2) { dma_addr_t d; d = ep->descs->tdesc[i].buf_addr; if (d) dma_unmap_single(NULL, d, PAGE_SIZE, DMA_TO_DEVICE); if (ep->tx_buf[i] != NULL) free_page((unsigned long)ep->tx_buf[i]); } dma_free_coherent(NULL, sizeof(struct ep93xx_descs), ep->descs, ep->descs_dma_addr); } /* * The hardware enforces a sub-2K maximum packet size, so we put * two buffers on every hardware page. */ static int ep93xx_alloc_buffers(struct ep93xx_priv *ep) { int i; ep->descs = dma_alloc_coherent(NULL, sizeof(struct ep93xx_descs), &ep->descs_dma_addr, GFP_KERNEL | GFP_DMA); if (ep->descs == NULL) return 1; for (i = 0; i < RX_QUEUE_ENTRIES; i += 2) { void *page; dma_addr_t d; page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (page == NULL) goto err; d = dma_map_single(NULL, page, PAGE_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(NULL, d)) { free_page((unsigned long)page); goto err; } ep->rx_buf[i] = page; ep->descs->rdesc[i].buf_addr = d; ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE; ep->rx_buf[i + 1] = page + PKT_BUF_SIZE; ep->descs->rdesc[i + 1].buf_addr = d + PKT_BUF_SIZE; ep->descs->rdesc[i + 1].rdesc1 = ((i + 1) << 16) | PKT_BUF_SIZE; } for (i = 0; i < TX_QUEUE_ENTRIES; i += 2) { void *page; dma_addr_t d; page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (page == NULL) goto err; d = dma_map_single(NULL, page, PAGE_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(NULL, d)) { free_page((unsigned long)page); goto err; } ep->tx_buf[i] = page; ep->descs->tdesc[i].buf_addr = d; ep->tx_buf[i + 1] = page + PKT_BUF_SIZE; ep->descs->tdesc[i + 1].buf_addr = d + PKT_BUF_SIZE; } return 0; err: ep93xx_free_buffers(ep); return 1; } static int ep93xx_start_hw(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); unsigned long addr; int i; wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0) break; msleep(1); } if (i == 10) { printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to reset\n"); return 1; } wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9)); /* Does the PHY support preamble suppress? */ if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0) wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8)); /* Receive descriptor ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc); wrl(ep, REG_RXDQBADD, addr); wrl(ep, REG_RXDCURADD, addr); wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc)); /* Receive status ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat); wrl(ep, REG_RXSTSQBADD, addr); wrl(ep, REG_RXSTSQCURADD, addr); wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat)); /* Transmit descriptor ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc); wrl(ep, REG_TXDQBADD, addr); wrl(ep, REG_TXDQCURADD, addr); wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc)); /* Transmit status ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat); wrl(ep, REG_TXSTSQBADD, addr); wrl(ep, REG_TXSTSQCURADD, addr); wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat)); wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX); wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX); wrl(ep, REG_GIINTMSK, 0); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0) break; msleep(1); } if (i == 10) { printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to start\n"); return 1; } wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES); wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES); wrb(ep, REG_INDAD0, dev->dev_addr[0]); wrb(ep, REG_INDAD1, dev->dev_addr[1]); wrb(ep, REG_INDAD2, dev->dev_addr[2]); wrb(ep, REG_INDAD3, dev->dev_addr[3]); wrb(ep, REG_INDAD4, dev->dev_addr[4]); wrb(ep, REG_INDAD5, dev->dev_addr[5]); wrl(ep, REG_AFP, 0); wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE); wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT); wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE); return 0; } static void ep93xx_stop_hw(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int i; wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0) break; msleep(1); } if (i == 10) printk(KERN_CRIT DRV_MODULE_NAME ": hw failed to reset\n"); } static int ep93xx_open(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int err; if (ep93xx_alloc_buffers(ep)) return -ENOMEM; if (is_zero_ether_addr(dev->dev_addr)) { random_ether_addr(dev->dev_addr); printk(KERN_INFO "%s: generated random MAC address " "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x.\n", dev->name, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); } napi_enable(&ep->napi); if (ep93xx_start_hw(dev)) { napi_disable(&ep->napi); ep93xx_free_buffers(ep); return -EIO; } spin_lock_init(&ep->rx_lock); ep->rx_pointer = 0; ep->tx_clean_pointer = 0; ep->tx_pointer = 0; spin_lock_init(&ep->tx_pending_lock); ep->tx_pending = 0; err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev); if (err) { napi_disable(&ep->napi); ep93xx_stop_hw(dev); ep93xx_free_buffers(ep); return err; } wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE); netif_start_queue(dev); return 0; } static int ep93xx_close(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); napi_disable(&ep->napi); netif_stop_queue(dev); wrl(ep, REG_GIINTMSK, 0); free_irq(ep->irq, dev); ep93xx_stop_hw(dev); ep93xx_free_buffers(ep); return 0; } static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ep93xx_priv *ep = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); return generic_mii_ioctl(&ep->mii, data, cmd, NULL); } static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg) { struct ep93xx_priv *ep = netdev_priv(dev); int data; int i; wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0) break; msleep(1); } if (i == 10) { printk(KERN_INFO DRV_MODULE_NAME ": mdio read timed out\n"); data = 0xffff; } else { data = rdl(ep, REG_MIIDATA); } return data; } static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data) { struct ep93xx_priv *ep = netdev_priv(dev); int i; wrl(ep, REG_MIIDATA, data); wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0) break; msleep(1); } if (i == 10) printk(KERN_INFO DRV_MODULE_NAME ": mdio write timed out\n"); } static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strcpy(info->driver, DRV_MODULE_NAME); strcpy(info->version, DRV_MODULE_VERSION); } static int ep93xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_ethtool_gset(&ep->mii, cmd); } static int ep93xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_ethtool_sset(&ep->mii, cmd); } static int ep93xx_nway_reset(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_nway_restart(&ep->mii); } static u32 ep93xx_get_link(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_link_ok(&ep->mii); } static struct ethtool_ops ep93xx_ethtool_ops = { .get_drvinfo = ep93xx_get_drvinfo, .get_settings = ep93xx_get_settings, .set_settings = ep93xx_set_settings, .nway_reset = ep93xx_nway_reset, .get_link = ep93xx_get_link, }; struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data) { struct net_device *dev; dev = alloc_etherdev(sizeof(struct ep93xx_priv)); if (dev == NULL) return NULL; memcpy(dev->dev_addr, data->dev_addr, ETH_ALEN); dev->get_stats = ep93xx_get_stats; dev->ethtool_ops = &ep93xx_ethtool_ops; dev->hard_start_xmit = ep93xx_xmit; dev->open = ep93xx_open; dev->stop = ep93xx_close; dev->do_ioctl = ep93xx_ioctl; dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; return dev; } static int ep93xx_eth_remove(struct platform_device *pdev) { struct net_device *dev; struct ep93xx_priv *ep; dev = platform_get_drvdata(pdev); if (dev == NULL) return 0; platform_set_drvdata(pdev, NULL); ep = netdev_priv(dev); /* @@@ Force down. */ unregister_netdev(dev); ep93xx_free_buffers(ep); if (ep->base_addr != NULL) iounmap(ep->base_addr); if (ep->res != NULL) { release_resource(ep->res); kfree(ep->res); } free_netdev(dev); return 0; } static int ep93xx_eth_probe(struct platform_device *pdev) { struct ep93xx_eth_data *data; struct net_device *dev; struct ep93xx_priv *ep; int err; if (pdev == NULL) return -ENODEV; data = pdev->dev.platform_data; dev = ep93xx_dev_alloc(data); if (dev == NULL) { err = -ENOMEM; goto err_out; } ep = netdev_priv(dev); ep->dev = dev; netif_napi_add(dev, &ep->napi, ep93xx_poll, 64); platform_set_drvdata(pdev, dev); ep->res = request_mem_region(pdev->resource[0].start, pdev->resource[0].end - pdev->resource[0].start + 1, dev_name(&pdev->dev)); if (ep->res == NULL) { dev_err(&pdev->dev, "Could not reserve memory region\n"); err = -ENOMEM; goto err_out; } ep->base_addr = ioremap(pdev->resource[0].start, pdev->resource[0].end - pdev->resource[0].start); if (ep->base_addr == NULL) { dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n"); err = -EIO; goto err_out; } ep->irq = pdev->resource[1].start; ep->mii.phy_id = data->phy_id; ep->mii.phy_id_mask = 0x1f; ep->mii.reg_num_mask = 0x1f; ep->mii.dev = dev; ep->mii.mdio_read = ep93xx_mdio_read; ep->mii.mdio_write = ep93xx_mdio_write; ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */ err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Failed to register netdev\n"); goto err_out; } printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, " "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x.\n", dev->name, ep->irq, data->dev_addr[0], data->dev_addr[1], data->dev_addr[2], data->dev_addr[3], data->dev_addr[4], data->dev_addr[5]); return 0; err_out: ep93xx_eth_remove(pdev); return err; } static struct platform_driver ep93xx_eth_driver = { .probe = ep93xx_eth_probe, .remove = ep93xx_eth_remove, .driver = { .name = "ep93xx-eth", .owner = THIS_MODULE, }, }; static int __init ep93xx_eth_init_module(void) { printk(KERN_INFO DRV_MODULE_NAME " version " DRV_MODULE_VERSION " loading\n"); return platform_driver_register(&ep93xx_eth_driver); } static void __exit ep93xx_eth_cleanup_module(void) { platform_driver_unregister(&ep93xx_eth_driver); } module_init(ep93xx_eth_init_module); module_exit(ep93xx_eth_cleanup_module); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:ep93xx-eth");